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Abstract. Let K[x, y] be the polynomial algebra in two variables over
a field K of characteristic 0. In this paper, we contribute toward a clas-
sification of two-variable polynomials by classifying (up to an automor-
phism of K[x, y]) polynomials of the form axn + bym +

∑
im+jn≤mn cijx

iyj,
a, b, cij ∈ K (i.e., polynomials whose Newton polygon is either a triangle
or a line segment). Our classification has several applications to the study
of embeddings of algebraic curves in the plane. In particular, we show that
for any k ≥ 2, there is an irreducible curve with one place at infinity, which
has at least k inequivalent embeddings in C

2. Also, upon combining our
method with a well-known theorem of Zaidenberg and Lin, we show that
one can decide “almost” just by inspection whether or not a polynomial
fiber {p(x, y) = 0} is an irreducible simply connected curve.

1. Introduction

Let K[x, y] be the polynomial algebra in two variables over a field K of charac-
teristic 0. Here we contribute toward a classification of polynomials from K[x, y]
by proving the following

Theorem 1.1. Let p(x, y) = axn + bym +
∑

im+jn≤mn cijx
iyj, a, b, cij ∈ K, i, j >

0; a, b are not both zero, and q(x, y) = Axr + Bys +
∑

is+jr≤rs bijx
iyj, A, B, bij ∈

K, i, j > 0; A, B are not both zero. Suppose that m does not divide n, n does not
divide m, s does not divide r, r does not divide s, and max(m, n) 6= max(r, s).
Then there is no automorphism α ∈ Aut(K[x, y]) that takes p(x, y) to q(x, y).
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Polynomials of the form given in Theorem 1.1 can be considered “canonical
models” for their automorphic images. Note that if, say, n divides m, then the
degree of the polynomial p(x, y) in the statement of Theorem 1.1 can be reduced
by applying an automorphism of the form (x → x + µ · ym/n; y → λy) with
µ, λ ∈ K. However, there is no guarantee that the resulting polynomial will have
the same form. This shows how subtle the situation is.

In some special cases though, we can handle those polynomials with m di-
visible by n or vice versa. This is possible, for example, if some fiber of a given
polynomial admits a one-variable polynomial parametrization x = u(t); y = v(t):

Proposition 1.2. Suppose the fibers {p(x, y) = 0}, {q(x, y) = 0} of two polyno-
mials p, q ∈ C[x, y], admit one-variable polynomial parametrizations. Then one
can effectively find out (even without knowing the parametrizations) if there is
an automorphism of C[x, y] that takes p to q.

In particular, if some fiber of a given polynomial is an irreducible simply
connected curve, then, by a well-known theorem of Zaidenberg and Lin [10], this
fiber admits a one-variable polynomial parametrization. More precisely, they
prove that (in case K = C) every polynomial like that has a canonical model of
the form xk − yl with (k, l) = 1. Upon combining this with our method, we have
the following

Theorem 1.3. Let p(x, y) ∈ C[x, y] be a polynomial whose fiber {p(x, y) = 0} is
an irreducible simply connected curve. Then some automorphism of C[x, y] takes
p(x, y) to xk − yl with (k, l) = 1, and:

(a) max(k, l) ≤ deg(p(x, y));

(b) either k or l divides deg(p(x, y));

(c) the Newton polygon of p(x, y) is either a triangle or a line segment, i.e., p(x, y)

is of the form axn + bym +
∑

im+jn≤mn

cijx
iyj, m, n ≥ 0. If m does not divide n, n

does not divide m, and m, n 6= 0, then m = k or l, and n = l or k, respectively.

Otherwise, either p(x, y) is linear, or the “leading” part axn+bym+
∑

im+jn=mn

cijx
iyj

is a proper power of some other polynomial.

Thus, in many situations it is possible to rule out polynomials without irre-
ducible simply connected fibers just by inspection. In any case, by Proposition
1.2, there is an effective procedure for deciding if a given polynomial fiber is
irreducible and simply connected.
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The next application of our method concerns embeddings of algebraic curves
in the plane.

Theorem 1.4. For any k ≥ 2, there is an irreducible algebraic curve (with one
place at infinity) which has at least k inequivalent embeddings in the plane C2.

More formally, this means the following. Suppose we have two polynomial
fibers {p(x, y) = 0} and {q(x, y) = 0}. We say that these curves are isomorphic

if the algebras of residue classes C[x, y]/〈p(x, y)〉 and C[x, y]/〈q(x, y)〉 are iso-
morphic. Here 〈p(x, y)〉 denotes the ideal of C[x, y] generated by p(x, y). On the
other hand, we say that these curves (or, rather, embeddings of the same curve
in C2) are equivalent if there is an automorphism of C2 that takes one of them
onto the other.

Now our Theorem 1.4 says that there are arbitrarily (but finitely) many iso-
morphic algebraic curves in C2, all of which belong to different orbits under the
action of the group Aut(C2). A particular example of a curve like that would be
y = xp0 − yp1p2...pk, where p0, p1, ..., pk are distinct primes, p0 > p1p2 · ... · pk.

Note that by a result of Abhyankar and Singh [3], an irreducible curve with
one place at infinity cannot have infinitely many inequivalent embeddings in C2.

We also note that the first example of an irreducible algebraic curve with one
place at infinity which has at least 2 inequivalent embeddings in C2, was recently
claimed in [2].

To conclude the Introduction, we say a few words about our general method.
It is a well-known result of Jung and van der Kulk that every automorphism of
K[x, y] is a product of elementary and linear automorphisms. The main difficulty
in finding a canonical model for a given polynomial is to prove that one can find
a sequence of elementary and linear automorphisms that would reduce the degree
at every step, until it is further irreducible by any elementary automorphism.
Then this last polynomial, whose degree is irreducible, will be a canonical model.

To arrange that, we use two principal ideas. First, we mimic elementary
automorphisms of K[x, y] by “elementary transformations” of K[t]×K[t]. Second,
we use Whitehead’s idea of “peak reduction” (see e.g. [6]) to arrange a sequence
of elementary transformations of K[t]×K[t] so that the maximum degree would
decrease at every step. This is described in the next Section 2.

While the “peak reduction” always works for elementary transformations of
K[t] × K[t], the first part (mimicking elementary automorphisms of K[x, y] by
elementary transformations of K[t] × K[t]) is where the difficulty is. We man-
aged to do that for polynomials of the form given in Theorem 1.1, and also for
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polynomials p(x, y) whose fiber {p(x, y) = 0} admits a one-variable polynomial
parametrization x = u(t); y = v(t) (i.e., this fiber is a rational curve with one
place at infinity). The latter is used in proving Proposition 1.2 and Theorem
1.3. Those parametrizable fibers actually constitute the most tractable class of
plane algebraic curves. It seems plausible that every curve like that has a unique
embedding in C2. Below we give a high-school version of this conjecture.

Conjecture. Suppose K[p(t), q(t)] = K[u(t), v(t)] for some (one-variable) poly-
nomials p(t), q(t), u(t), v(t). Let deg(p(t)) = k; deg(q(t)) = l; deg(u(t)) = m;
deg(v(t)) = n, and max(m, n) > max(k, l). Then either m divides n, or n divides
m.

So far, this was established only in the case where p(t) = tk; q(t) = tl; (k, l) =
1, in the aforementioned paper by Zaidenberg and Lin [10]. This generalizes ear-
lier results of Abhyankar and Moh [1] and Suzuki [9].

2. Elementary automorphisms and peak reduction

It is a well-known result of Jung and van der Kulk that every automorphism
of K[x, y] is a product of elementary and linear automorphisms. We give here a
somewhat more precise statement which can be found in [5, Theorem 6.8.5]:

Proposition 2.1. Every automorphism of K[x, y] is a product of linear auto-
morphisms and automorphisms of the form x → x+f(y); y → y. More precisely,
if (g1, g2) is an automorphism of K[x, y] such that deg(g1) ≥ deg(g2), say, then
either (g1, g2) is a linear automorphism, or there exists a unique µ ∈ K∗ and a
positive integer d such that deg(g1 − µgd

2) < deg(g1).

Now we are going to consider the direct product K[t]×K[t] of two copies of the
one-variable polynomial algebra over K, and introduce the following elementary
transformations (ET) that can be applied to elements of this algebra:

(ET1) (u, v) −→ (u + µ · vk, v) for some µ ∈ K∗; k ≥ 2.

(ET2) (u, v) −→ (u, v + µ · uk).

(ET3) a non-degenerate linear transformation (u, v) −→ (a1u + a2v, b1u + b2v);
a1, a2, b1, b2 ∈ K.

One might notice that some of these transformations are redundant, e.g.,
(ET1) is a composition of the other ones. There is a reason behind that which
will be clear a little later.

We shall need the following
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Proposition 2.2. For any pair (u, v) ∈ K[t] ×K[t], there is a (perhaps, empty)
sequence of elementary transformations that takes (u, v) to some (û, v̂) such
that:

(i) the maximum of the degrees of polynomials decreases at every step in this
sequence;

(ii) the maximum of the degrees in (û, v̂) is irreducible by any sequence of ele-
mentary transformations.

Comment to (i): if it happens so that u and v have the same leading terms,
then, perhaps by somewhat abusing the language, we say that the transformation
(u, v) → (u − v, v) reduces the maximum of the degrees.

Proof. We shall use the “peak reduction” method to prove this statement. This
means the following. If at some point of a sequence of ET, the maximum degree
goes up (or remains unchanged) before eventually going down, then there must
be a pair of subsequent ET in our sequence (a “peak”) such that one of them
increases the maximum degree (or leaves it unchanged), and then the other one
decreases it. We are going to show that such a peak can always be reduced. In
other words, if the maximum degree can be decreased by a sequence of ET, then

it can also be decreased by a single ET. To prove that, we have to consider many
different cases, but all of them are quite simple.

Let (u, v) be a pair of polynomials from K[t]×K[t] with, say, deg(u) ≤ deg(v),
and let α1 and α2 be two subsequent ET applied to (u, v), as described in the
previous paragraph. Consider several cases:

(1) α1 : (u, v) −→ (u + µ · vk, v) for some µ ∈ K∗; k ≥ 2.
This α1 strictly increases the maximum degree since deg(u) ≤ deg(v) by

the assumption. Now we have two possibilities for α2 since a linear ET cannot
decrease the maximum degree.

(a) α2 : (u+µ · vk, v) −→ (u+µ · vk, v +λ(u+µ · vk)m) for some λ ∈ K∗; m ≥ 2.
But this obviously increases the maximum degree, contrary to our assumption.

(b) α2 : (u+µ ·vk, v) −→ (u+µ ·vk +λ ·vm, v). If this α2 decreases the maximum
degree, then we should have µ · vk = −λ · vm, in which case α2 = α−1

1 , and the
peak reduction is just cancelling out α1 and α2.

(2) α1 : (u, v) −→ (u, v + µ · uk) for some µ ∈ K∗; k ≥ 2.
If this α1 increases the maximum degree, this can only happen when deg(v +

µ·uk) = deg(uk), in which case we argue exactly as in the case (1). However, since
deg(u) ≤ deg(v), it might happen that this α1 does not change the maximum
degree. Then we consider two possibilities for α2:
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(a) α2 : (u, v+µ ·uk) −→ (u, v+µ ·uk +λ ·um). If this α2 decreases the maximum
degree, then we should have m ≥ k. If m = k, then α1α2 is equal to a single ET.
If m > k, then, in order for α2 to decrease the maximum degree, we must have
deg(v) divisible by deg(u), in which case α2 alone would decrease the maximum
degree of (u, v), i.e., we can get rid of α1.

(b) α2 : (u, v + µ · uk) −→ (u + λ(v + µ · uk)m, v + µ · uk). But this α2 can only
change the degree of the first polynomial in the pair, and this is not where the
maximum degree was.

(3) α1 is linear, i.e., α1 : (u, v) −→ (a1u + a2v, b1u + b2v); a1, a2, b1, b2 ∈ K.
Again, we have two possibilities for α2.

(a) α2 : (a1u + a2v, b1u + b2v) −→ (a1u + a2v, b1u + b2v + µ(a1u + a2v)k). If
k = 1, then α2 is linear, and therefore does not change the maximum degree. If
k > 1, then α2 might decrease the maximum degree, but this can only happen if
a2 = 0, in which case we could decrease the maximum degree of (u, v) by a single
ET of the type (ET2).

(b) the case where α2 is of the type (ET1), is completely similar.

Thus, in any of the considered cases, if there is a “peak”, then we can reduce
the number of ET in the sequence. An obvious inductive argument completes the
proof of Proposition 2.2. ✷

3. Proof of Theorem 1.1

To prove Theorem 1.1, it is clearly sufficient to prove the following

Proposition 3.1. Let p(x, y) = axn + bym +
∑

im+jn≤mn cijx
iyj, a, b, cij ∈ K,

a, b are not both zero. Suppose that m does not divide n, and n does not divide
m. Then no automorphism α ∈ Aut(K[x, y]) can reduce the degree of p(x, y).

First, we need the following

Lemma 3.2. Let p(x, y) be a polynomial of the form axn+bym+
∑

im+jn≤mn cijx
iyj,

cij ∈ K. Then applying an elementary or linear automorphism β to p(x, y) gives
a polynomial of the same form, except, perhaps, in the case where m divides n
or n divides m, say, m = kn, and β : x → x + µ · yk; y → y for some µ ∈ K∗.

Proof. The statement is obvious for a linear automorphism, so suppose we have
an elementary automorphism β : x → x + µ · yk; y → y for some µ ∈ K∗; k ≥ 2.
Then

β(p(x, y)) = axn + aµnykn + bym +

n−1∑

i=1

bijx
iyk(n−i) +
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+
∑

im+jn≤mn

cij(x
i + µiyki+j +

i−1∑

s=1

aijx
syk(i−s)+j). (1)

Now we have to consider 3 cases:

(a) kn < m. We have to show that for every monomial xiyj in (1), one has
im + jn ≤ mn. This is not obvious only for monomials of the form xsyk(i−s)+j.
Compute:

sm + (k(i − s) + j)n = sm + kn(i − s) + jn. (2)

To see that the right hand side of (2) does not exceed mn, note that sm +
kn(i−s) < sm+m(i−s) = mi, since kn < m. Therefore, sm+(k(i−s)+ j)n <
mi + nj ≤ mn by the assumption.

(b) kn > m. In this case, the “leading part” of β(p(x, y)) is axn + aµnykn, so
we have to show that for every monomial xiyj in (1), one has ikn + jn ≤ kn2.
Again, we only have to show that for monomials of the form xsyk(i−s)+j:

skn + (k(i − s) + j)n = kni + jn. (3)

Since mi+nj ≤ mn, after multiplying both sides by kn
m

we get kni+ kn2

m
j ≤ kn2.

Since kn2

m
> n (recall that kn > m), this yields kni + jn ≤ kn2. Comparing this

to (3) completes the proof in this case.

(c) kn = m. The same argument as in the previous case works here, unless
β : x → x + µ · yk; y → y for some µ ∈ K∗, which can cause cancellation of the
leading ym and loosing control thereby. ✷

Proof of Proposition 3.1. By way of contradiction, assume there is α ∈
Aut(K[x, y]) that takes p(x, y) to some q(x, y) of smaller degree. Put into corre-
spondence to the polynomial p(x, y) a pair of its face polynomials (p(0, t), p(t, 0)) ∈
K[t] × K[t].

In the sequence of elementary (linear) automorphisms that corresponds to the
automorphism α, there must be an elementary automorphism which decreases
the degree of the current polynomial. Find the first place in our sequence of
elementary (linear) automorphisms where we can apply an elementary automor-
phism which decreases the degree. Suppose this automorphism is of the form
β : x → x + µ · yk; y → y, and it is applied to a polynomial p̃(x, y), which we as-
sume to have the same form as in the statement of Proposition 3.1 (by Lemma 3.2,
we can indeed make this assumption): p̃(x, y) = ãxñ + b̃ym̃ +

∑
im̃+jñ≤m̃ñ c̃ijx

iyj.
If applying the automorphism β decreases the degree of the polynomial p̃(x, y),

then, in particular, k̃ñ = m̃, and applying the ET of the form (u, v) −→ (u +
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ν · vk, v) for some ν ∈ K∗ to the pair of face polynomials (p̃(0, t), p̃(t, 0)), would
decrease the maximum of their degrees. (The coefficient ν here can be actually
computed as b̃ã−k).

Now Proposition 2.2 implies that there is an ET that decreases the maximum
of the degrees of the original face polynomials (p(0, t), p(t, 0)). However, given
the hypotheses of Proposition 3.1, this is readily seen to be impossible. This
contradiction completes the proof of Proposition 3.1 and of Theorem 1.1 thereby.
✷

4. Embeddings of curves in the plane

Before we get to the proof of Proposition 1.2 and Theorem 1.3, we make a
general remark. If a polynomial fiber {p(x, y) = 0} admits a one-variable poly-
nomial parametrization x = u(t); y = v(t), where u(t), v(t) have zero constant
terms, then, by a result of McKay and Wang [8], the polynomial pm(x, y), where
m = [C(t) : C(u(t), v(t))], equals the resultant R(x, y) = Rest(u(t)− x, v(t)− y).
Moreover, they prove [8, Theorem 5] that the leading part of pk(x, y) is obtained
the same way (i.e., as a resultant) from the leading parts of u(t) and v(t). This
implies, in particular, that the Newton polygon of p(x, y) is either a triangle or a
line segment, i.e., p(x, y) is of the form

axn + bym +
∑

im+jn≤mn

cijx
iyj; m, n ≥ 0 (4)

(see [8, Corollary 6]). Furthermore, from the fact that p(x, y) is the minimal poly-
nomial for u(t) and v(t), it follows that, for example, p(x + yk, y) is the minimal
polynomial for u(t) − vk(t) and v(t). This establishes a correspondence between
elementary (linear) automorphisms of K[x, y] applied to p(x, y), and elementary
(linear) transformations (ET) of K[t] × K[t] applied to (u(t), v(t)). Theorem
5 of [8] implies that in any sequence of elementary (linear) automorphisms of
K[x, y] applied to p(x, y), all polynomials have the form (4), and, therefore, by
our Proposition 2.2, the corresponding sequence of ET applied to (u(t), v(t)) can
be arranged so that it decreases the maximum of the degrees in a pair of polyno-
mials at every step.

Proof of Proposition 1.2.

First we show that both p and q have “canonical models”, i.e., automorphic
images whose degrees cannot be reduced by any automorphisms of C[x, y]. In-
deed, by the remark above, both polynomials are of the form (4). If m divides n
or n divides m, then we can reduce the degree of the polynomial by applying an
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elementary automorphism. This elementary automorphism can be easily found:
if, say, kn = m, then we apply the automorphism β : x → x + µ · yk; y → y (see
(1)) with µ = n

√
−b.

Continuing this way, we arrive at a polynomial of the form (4), where m does
not divide n, n does not divide m, and, say, m < n. The other polynomial can
be reduced to the same form with the degrees m′ and n′, respectively. Again, we
can assume that m′ < n′. Now, if n′ 6= n, we conclude (by Theorem 1.1) that
there is no automorphism of C[x, y] that takes p(x, y) to q(x, y).

If n′ = n, then an automorphism taking p to q exists if and only if a com-
bination of a linear automorphism with some automorphism of the form {x →
x; y → y + f(x)}, where deg(f) < m/n, can take p to q.

To figure out if this is possible, we have to consider coefficients of the poly-
nomial f(x) as indeterminates and find out if the corresponding system of poly-
nomial equations in those indeterminates (together with indeterminates that are
the coefficients coming from the linear automorphism) has a solution over C. To
do that, we can apply a well-known algorithm that makes use of Gröbner bases
(see e.g. [4]).

This latter algorithm is pretty slow in general. However, there is one special
case of Proposition 1.2 where we do not have to apply this algorithm at all. This
happens when we want to find out if a given polynomial is coordinate, i.e., is an
automorphic image of x. In that case, if at some point we get a polynomial of the
form (4), where m does not divide n and n does not divide m, then the polynomial
is coordinate if and only if max(m, n) = 1; no further analysis is needed. ✷

Proof of Theorem 1.3. By a result of Zaidenberg and Lin [10], some automor-
phism of C[x, y] takes p(x, y) to xk − yl with (k, l) = 1. The polynomial fiber
{xk − yl = 0} admits a one-variable polynomial parametrization x = tl; y = tk.
Therefore, by the remark in the beginning of this section, the polynomial fiber
{p(x, y) = 0} admits a parametrization x = u(t); y = v(t), and there is a se-
quence of ET that takes (u(t), v(t)) to (tl, tk), so that the maximum of the degrees
in a pair of polynomials decreases at every step except, perhaps, several terminal
steps that do not change the maximum degree. This immediately implies parts
(a) and (c) of Theorem 1.3.

Then, take the last ET in the sequence that decreases the maximum degree,
i.e., after applying this ET we get a pair of polynomials whose degrees are {k, k},
or {k, l}, or {l, l}. That means, the preceding pair of polynomials in the sequence
either has degrees {km, k}, or {l, ml} for some m ≥ 2. In any case, either k or
l divides the maximum of the degrees in the preceding pair of polynomials, and
therefore also divides the degree of the corresponding two-variable polynomial.
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An obvious inductive argument completes the proof of part (b). ✷

Now we get to

Proof of Theorem 1.4. We have to exhibit k polynomials f1, ..., fk from C[x, y]
such that C[x, y]/〈fi〉 ∼= C[x, y]/〈f1〉 for every i = 1, ..., k, but none of those
polynomials can be taken to another by an automorphism of C[x, y] (here the
symbol ∼= means “is isomorphic to”).

A particular collection of such polynomials is as follows (it is modeled on the
corresponding example in combinatorial group theory [7]):

f1 = y − xp0 + yp1p2...pk, where p0, p1, ..., pk are distinct primes, p0 > p1p2 · ... · pk;

f2 = y − (xp0 − yp2...pk)p1;

f3 = y − (xp0 − yp3...pk)p1p2;
...

fk = y − (xp0 − ypk)p1p2...pk−1.

We are now going to show that the corresponding algebras of residue classes
are isomorphic. It will be technically more convenient to write those algebras of
residue classes as “algebras with relations”, i.e., for example, instead of C[x, y]/〈f1〉
we shall write 〈x, y | f1 = 0〉. Following is the chain of isomorphism-preserving
transformations (similar to Tietze transformations in group theory – see [6]) that
establishes the isomorphism between 〈x, y | f1 = 0〉 and 〈x, y | f2 = 0〉:
〈x, y | y = xp0 − yp1p2...pk〉 ∼= 〈x, y, z | y = xp0 − yp1p2...pk; z = yp1〉 ∼=
〈x, y, z | y = xp0 − zp2...pk; z = yp1〉 ∼= 〈x, z | z = (xp0 − zp2...pk)p1〉 ∼=
〈x, y | y = (xp0 − yp2...pk)p1〉.

In a similar way, one can establish the isomorphism between 〈x, y | f1 = 0〉
and 〈x, y | fi = 0〉 for every i = 2, ..., k.

Applying our Theorem 1.1 shows that none of the polynomials fi can be taken
to fj , j 6= i, by an automorphism of C[x, y] (the restriction p0 > p1p2 · ... · pk

ensures that the conditions of Theorem 1.1 are satisfied).
Finally, the fact that the curve {f1 = 0} (and hence any curve {fi = 0}) is

irreducible, is obvious since f1 is of the form u(x) + v(y) for non-constant poly-
nomials u, v of relatively prime degrees. ✷
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plexes, et automorphismes algébriques de l’espace C2, J. Math. Soc. Japan
26 (1974), 241–257.

[10] M.G.Zaidenberg, V.Ya.Lin, An irreducible, simply connected algebraic
curve in C2 is equivalent to a quasihomogeneous curve, Soviet Math. Dokl.
28 (1983), 200–204.

11


