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Abstract

We show that every Lie algebroid A over a manifold P has a natural representation
on the line bundle QA = ∧topA ⊗ ∧topT ∗P . The line bundle QA may be viewed as the
Lie algebroid analog of the orientation bundle in topology, and sections of QA may be
viewed as transverse measures to A. As a consequence, there is a well-defined class in the
first Lie algebroid cohomology H1(A) called the modular class of the Lie algebroid A.
This is the same as the one introduced earlier by Weinstein using the Poisson structure
on A∗. We show that there is a natural pairing between the Lie algebroid cohomology
spaces of A with trivial coefficients and with coefficients in QA. This generalizes the
pairing used in the Poincare duality of finite-dimensional Lie algebra cohomology. The
case of holomorphic Lie algebroids is also discussed, where the existence of the modular
class is connected with the Chern class of the line bundle QA.
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1 Introduction

The notion of Lie algebroids generalizes that of both Lie algebras and tangent bundles.

Precisely, a Lie algebroid over a smooth manifold P is a vector bundle A over P together

with 1) a Lie algebra structure on the space Γ(A) of smooth sections of A, and 2) a bundle

map ρ : A → TP , such that

1) ρ defines a Lie algebra homomorphism from Γ(A) to the space χ1(P ) of vector fields

with the commutator Lie algebra structure, and

2) for f ∈ C∞(P ) and ω1, ω2 ∈ Γ(A), the following derivation law holds:

{ω1, fω2} = f{ω1, ω2} + (ρ(ω1)f)ω2.

The map ρ : A → TP is called the anchor map of the Lie algebroid A. A representation

of a Lie algebroid A over P is a vector bundle E over P , together with an R-bilinear map

(we will deal with the complex case later)

Γ(A) × Γ(E) −→ Γ(E) : a ⊗ s 7−→ Das,

where Γ(E) denotes the space of smooth sections of E, such that for any a, b ∈ Γ(A), s ∈
Γ(E) and f ∈ C∞(P ),

(1) Dfas = fDas;

(2) Da(fs) = fDas + (ρ(a)f)s;

(3) Da(Dbs) − Db(Das) = D[a,b]s.

Any Lie algebra is a Lie algebroid over a one point space, and its representations are

representations of this Lie algebra. The tangent bundle TP is a Lie algebroid over P with

the identity map of TP as the anchor map. Representations of TP are vector bundles over

P with flat connections. The trivial representation of a Lie algebroid A is, by definition,

the representation of A on the trivial line bundle over P with the action given by

Daf = ρ(a) · f, a ∈ Γ(A), f ∈ C∞(P ).
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Our motivating example is, however, the cotangent bundle Lie algebroid of a Poisson

manifold: if P is a Poisson manifold with the Poisson bivector field π, the cotangent bundle

T ∗P of P has a natural Lie algebroid structure, where the anchor map π̃ : T ∗P → TP is

defined by

π̃(p) : T ∗
p P −→ TpP : αp 7−→ αp π(p),

and the Lie bracket of 1-forms α and β is given by

{α, β} = dπ(α, β) + π̃(α) dβ − π̃(β) dα (1)

= −dπ(α, β) + Lπ̃(α)β − Lπ̃(β)α. (2)

All the basic geometrical aspects of the Poisson structure π such as its symplectic leaves and

transversal Lie algebra structures to the symplectic leaves are reflected in the Lie algebroid

structure on T ∗P .

Other examples of Lie algebroids are the gauge Lie algebroids of principal bundles, the

boundary Lie algebroids in b-calculus and the Weyl Lie algebroids in Fedosov quantization.

Given a representation E of a Lie algebroid A, one can define the Lie algebroid coho-

mology of A with coefficients in E (see Section 2). When A is a Lie algebra or the tangent

bundle TP , the Lie algebroid cohomology of A is the Lie algebra cohomology or the de

Rham cohomology of P . When A = T ∗P is the cotangent bundle Lie algebroid of a Pois-

son manifold P , the Lie algebroid cohomology of A (with trivial coefficients) is called the

Poisson cohomology of P .

In this paper, we first construct, for an arbitrary Lie algebroid A over P , an intrinsic

representation of A on the line bundle QA = ∧topA⊗ ∧top T ∗P . When A is the subbundle

of TP tangent to a foliation F , sections of QA are the transverse measures to the foliation,

and we recover the Bott connection for this foliation. Because of this, for a general Lie

algebroid A, we may think of sections of QA as transverse measures to A.

We give two applications of the construction of the representation on QA.

The first application concerns the modular class of A. In [We], the third author showed

that there is a canonical class in the first Poisson cohomology space for each Poisson manifold

P called the modular class of P , which measures the extent to which the Hamiltonian vector

fields on P fail to preserve volume forms on P (when P is orientable). It is the semi-classical
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counterpart of the theory of modular automorphism groups for Von Neumann algebras. By

using the Poisson structure on the dual bundle A∗ of a Lie algebroid A, he shows that there is

also a canonical class, called the modular class of A, in the first Lie algebroid cohomology

space of A (with trivial coefficients). We show that this modular class of A can be directly

constructed from the representation on QA. We also treat the case of holomorphic Lie

algebroids in Section 6. We explain the obstruction for the existence of the modular class

in this case in terms of the Chern class of the line bundle QA.

When A is the cotangent bundle Lie algebroid T ∗P of a Poisson manifold P , we have

QA = (∧topT ∗P )2, and we show that there is, in fact, a representation of A = T ∗P on

the ”square root” ∧topT ∗P of QA. We also show that the cochain complex that calculates

the Lie algebroid cohomology of T ∗P with coefficients in ∧topT ∗P is isomorphic to chain

complex on differential forms on P introduced by Koszul [Kz] and studied by Brylinski [Br].

As the second application of the representation of A on QA, we establish a pairing be-

tween the Lie algebroid cohomology of A with trivial coefficients and that with coefficients

in QA. This generalizes the pairing that gives Poincare duality for Lie algebra cohomology

or for de Rham cohomology. As a special case, we get a pairing between Poisson cohomol-

ogy and what we call the ”twisted Poisson cohomology”. This pairing may, however, be

degenerate in general, as is seen by examples. The problem of when it is non-degenerate is

very interesting. We hope to look at it in the future.

2 Differential calculus on Lie algebroids

In this section, we list some facts on the calculus on Lie algebroids that will be used in this

paper. See [Ma] for more details.

Let A be a Lie algebroid over P with anchor map ρ. For k ≥ 0, let Γ(∧kA∗) be the

space of smooth sections of ∧kA∗. Define

dA : Γ(∧k−1A∗) −→ Γ(∧kA∗) :

(dAξ)(a1, ..., ak) =
∑

i

(−1)i+1ρ(ai)(ξ(a1, ..., âi, ..., ak)) (3)

+
∑
i<j

(−1)i+jξ({ai, aj}, ..., âi, ..., âj , ..., ak).
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It is well-defined and satisfies d2
A = 0. The cohomology of (Γ(∧•A∗), dA) is called the Lie

algebroid cohomology of A (with trivial coefficients), and it is denoted by H•(A).

In the case when A = TP is the tangent bundle of P , the Lie algebroid cohomology of

A is nothing but the de Rham cohomology of P .

In the case when A = T ∗P is the cotangent bundle Lie algebroid of a Poisson manifold

(P, π), the Lie algebroid cohomology of A is called the Poisson cohomology of (P, π).

Suppose that E is a representation of A. Let

Γk(A∗, E) = Γ(∧kA∗) ⊗ Γ(E)

be the space of “k-forms” on A with values in E. We regard the action of A on E as defining

a map

D : Γ0(A∗, E) = Γ(E) −→ Γ1(A∗, E).

Using dA, we can extend D to a map

D : Γk(A∗, E) −→ Γk+1(A∗, E)

by the rule

D(ξ ⊗ s) = dAξ ⊗ s + (−1)kξ ⊗ Ds,

where ξ ∈ Γ(∧kA∗) and s ∈ Γ(E). Then D2 = 0. The cohomology of (Γ•(A∗, E), D) is

called the cohomology of A with coefficients in E. The operator D satisfies

D(ξ ∧ η ⊗ s) = dAξ ∧ η ⊗ s + (−1)|ξ|ξ ∧ D(η ⊗ s) (4)

for ξ, η ∈ Γ(∧•A∗) and s ∈ Γ(E).

The Lie bracket on the sections of A can be extended to the so-called Schouten bracket

[ , ] on the space Γ(∧•A) = ⊕kΓ(∧kA) of multi-sections of A. It is characterized by the

following properties: for f, f1, f2 ∈ Γ(∧0A) = C∞(P ), a, a1, a2 ∈ Γ(A) and X,Y,Z ∈
Γ(∧•A),

[X,Y ] ∈ Γ(∧|X|+|Y |−1A); (5)

[a, f ] = ρ(a) · f ; (6)

[a1, a2] is the Lie bracket in Γ(A); (7)

[X,Y ] = −(−1)(|X|−1)(|Y |−1)[Y,X]; (8)

[X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)(|X|−1)|Y |Y ∧ [X,Z]. (9)
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Explicitly, for ξ ∈ Γ(∧|X|+|Y |−1A∗), we have,

(ξ, [X,Y ]) = (−1)(|X|−1)(|Y |−1)iXdAiY ξ − iY dAiXξ + (−1)|X|iX∧Y dAξ,
(10)

where iX is the contraction operator by X, i.e.,

(iXξ)(Y ) = (ξ, X ∧ Y ).

We now recall the Lie derivative operators on A. For a section a ∈ Γ(A), let

La : Γ(∧kA) −→ Γ(∧kA), k ≥ 0

be given by

La(a1 ∧ a2 ∧ · · · ∧ ak) = [a, a1 ∧ a2 ∧ · · · ∧ ak] =

k∑
i=1

a1 ∧ · · · ∧ [a, ai] ∧ · · · ∧ ak,
(11)

where ai ∈ Γ(A), i = 1, 2, ..., k. It is well-defined. We have, for a, b ∈ Γ(A) and X ∈ Γ(∧•A),

L[a,b] = LaLb − LbLa (12)

LfaX = fLaX − a ∧ (dAf X) (13)

La(fX) = fLaX + (ρ(a) · f)X. (14)

We use the same letter La to denote the operator on Γ(∧•A∗) given by

(Laξ, X) + (ξ, LaX) = ρ(a) · (ξ, X), (15)

where ξ ∈ Γ(∧A∗), and X ∈ Γ(∧A). Then

La = dAia + iadA (16)

L[a,b] = LaLb − LbLa (17)

Lfaξ = fLaξ + dAf ∧ iaξ (18)

La(fξ) = fLaξ + (ρ(a) · f)ξ. (19)

In particular, if X ∈ Γ(∧topA) and ξ ∈ Γ(∧topA∗), we have, for any a ∈ Γ(A),

LfaX = fLaX − (ρ(a) · f)X (20)

La(fX) = fLaX + (ρ(a) · f)X (21)

Lfaξ = fLaξ + (ρ(a) · f)ξ (22)

La(fξ) = fLaξ + (ρ(a) · f)ξ. (23)
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3 The representation of A on QA and the modular class of A

Assume that a Lie algebroid A acts on a real line bundle L over P . We first assume that L

has a nowhere vanishing section; thus L is trivial as a line bundle over P .

Let s be a nowhere vanishing section of L. For a section a of A, define θs(a) ∈ C∞(P )

by

Das = θs(a)s. (24)

Clearly θs ∈ Γ(A∗). Moreover, it follows from D[a,b]s = DaDbs − DbDas that

θs([a, b]) = ρ(a) · θs(b) − ρ(b) · θs(a)

for any two sections a and b of A. Thus θs is a 1-cocycle with respect to dA. If s1 is another

nowhere vanishing section of L, and if s1 = f1s for a nowhere vanishing function f1, we

have

θs1
= θs + dA(log |f1|) ∈ Γ(A∗).

Thus [θs1
] = [θs] ∈ H1(A). We denote this class in H1(A) by θL.

Suppose that L1 and L2 are two line bundle representations of A. Equip the tensor

product line bundle L1⊗L2 with the representation of A given by

Da(s1⊗s2) = Da(s1) ⊗ s2 + s1 ⊗ Da(s2)

for a ∈ Γ(A). Then, assuming both L1 and L2 have nowhere vanishing sections, we have

θL1⊗L2
= θL1

+ θL2
. In particular, θL2 = 2θL, where L2 = L⊗L.

For a general line bundle L that does not necessarily have a nowhere vanishing section,

we define

θL =
1

2
θL2 ∈ H1(A).

Since the square of any real line bundle over P is trivial as a line bundle, the class θL2 is

defined. By the remark above, θL is well-defined.

Definition 3.1 The class θL ∈ H1(A) is called the characteristic class of A associated

to the representation L.

The following Proposition is immediate.
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Proposition 3.2 For any two line bundles L1 and L2 with A representations,

θL1⊗L2
= θL1

+ θL2
.

Our notion of characteristic class is very much like that for flat line bundles.

Example 3.3 The characteristic class of A associated to the trivial representation is zero.

Example 3.4 Any Lie algebra homomorphism

ρ : g −→ χ1(P )

from a Lie algebra g to the Lie algebra χ1(P ) of vector fields on P defines a Lie algebroid

structure on the trivial vector bundle A = P×g called the transformation Lie algebroid.

The anchor map is ρ, now regarded as a bundle map from P × g to TP . The Lie bracket

on the space Γ(P × g) ∼= C∞(P, g) of smooth sections of P × g is given by

{x̄, ȳ} = [x̄, ȳ]g + ρx̄ · ȳ − ρȳ · x̄, (25)

where the first term on the right hand side denotes the pointwise Lie bracket in g, and the

second term denotes the derivative of the g-valued function ȳ in the direction of the vector

field ρx̄.

Suppose that U is a vector space on which the Lie algebra g acts. Then there is a

representation of A on the trivial vector bundle P × U given by

Dx̄ū = ρx̄ · ū + x̄(ū), (26)

where ū ∈ C∞(P,U) is a section of P × U , ρx̄ · ū is the pointwise derivative of ū in the

direction of ρx̄, and x̄(ū) denotes the action of x̄ ∈ C∞(P, g) on ū ∈ C∞(P,U) taken

pointwise over P . When U is finite dimensional, we get a representation of A = P × g on

the trivial line bundle P × (∧topU). Let χU ∈ g∗ be the character of g associated to U .

Then the characteristic class of the transformation Lie algebroid A = P × g associated to

the line bundle P × (∧topU) is given by the constant section of A∗ = P × g∗ defined by

χU . In particular, there is a representation of A on the line bundle ∧topA = P × (∧topg)

coming from the adjoint action of g on ∧topg, and the corresponding characteristic class of

A is given by the constant section of A∗ defined by the adjoint character ξ0 ∈ g∗ of g.
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There is also a natural representation of the transformation Lie algebroid A = P × g on

the tangent bundle TP of P via

Dx̄V = [ρx̄, V ] + ρV ·x̄, (27)

where V is a vector field on P and V · x̄ denotes the Lie derivative of x̄ in the direction of V .

Correspondingly, there is a representation of P × g on the cotangent bundle T ∗P satisfying

ρx̄(α, V ) = (Dx̄α, V ) + (α, Dx̄V ) (28)

for any 1-form α on P . Equivalently,

(Dx̄α, V ) = ρx̄(α, V ) − (α, [ρx̄, V ] + ρV ·x̄) = (Lρx̄α)(V ) − (α, ρV ·x̄).
(29)

Consequently, there is a representation of A on the line bundle ∧topT ∗P , as well as one on

the density bundle | ∧top T ∗P | of P (see [B-T]). Let µ be a non-vanishing density on P .

Recall that the divergence of a vector field V on P with respect to µ is defined to be the

function divµV given by

LV µ = (divµV )µ.

The characteristic class of A associated to ∧topT ∗P or the density bundle | ∧top T ∗P | is now

given by the section of A∗ that associates to each constant section x of A corresponding to

x ∈ g the function divµρx.

We now show that every Lie algebroid has an intrinsic line bundle representation.

Let A be a Lie algebroid over P with anchor map ρ. Consider the line bundle

QA = ∧topA ⊗ ∧top T ∗P. (30)

For a section a of A, define

Da : Γ(QA) −→ Γ(QA)

by

Da(X⊗µ) = La(X) ⊗ µ + X ⊗ Lρ(a)µ, (31)

where X ∈ Γ(∧topA), µ ∈ Γ(∧topT ∗P ), and Lρ(a)µ denotes the Lie derivative of µ in the

direction of ρ(a). It follows from (21) and (23) that Da is well-defined.
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Theorem 3.5 The map

Γ(A) ⊗ Γ(QA) −→ Γ(QA) : a ⊗ (X⊗µ) 7−→ Da(X⊗µ)

given by (31) defines a representation of A on the line bundle QA.

Proof. The proof is straightforward. The underlying idea is given in Remark 3.7.

Q.E.D.

Definition 3.6 We define the modular class of A to be the characteristic class associated

to the representation of A on the line bundle QA, and we denote it by θA

Remark 3.7 Alternatively, we can define QA as Hom(∧topA∗,∧topT ∗P ). There is a Lie

derivative action of A on ∧top(A∗), and a Lie derivative action of A on ∧top(T ∗P ) defined

using the anchor map and the usual Lie derivative of vector fields. Neither of these Lie

derivative actions defines a representation of A, but we can combine these two Lie derivatives

to get a representation of A on QA by the formula

(Daφ)(ξ) = Lρ(a)(φ(ξ)) − φ(Laξ). (32)

When we calculate (Dfaφ)(ξ), each Lie derivative contributes a term (ρ(a)f)φ(ξ), and these

two terms cancel:

(Dfaφ)(ξ) = f · Lρ(a)(φ(ξ)) + (ρ(a)f)φ(ξ) − fφ(Laξ) − (ρ(a)f)φ(ξ)

= fDaφ(ξ).

Thus we obtain Dfa = fDa. In this interpretation, the representation of A on QA is the

difference between the Lie derivative action of a on ∧topA∗ and the Lie derivative action on

∧topT ∗P defined via the anchor map.

This construction can also be interpreted as follows: the relations of the Lie derivative

imply that we can give ∧topA∗ and ∧topT ∗P the structure of right representations of A.

Explicitly, we set r(a) · s = − La(s) and r(f) · s = fs, where f ∈ C∞(P ) and s is a section

of ∧topA∗ and use the analogous construction for ∧topT ∗P . A Lie algebroid has a functori-

ally defined universal enveloping D-algebra, which is the associative algebra generated by

functions on P and sections of the Lie algebroid subject to the relations induced by the Lie
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algebroid relations (see [B-B]). When we say a module is a right representation of A, we

mean that it is a right module for the universal enveloping D-algebra.

Let DP be the algebra of smooth differential operators on P. It is the universal enveloping

D-algebra for the tangent Lie algebroid TP . There is a standard construction in the theory

of DP -modules for changing a right DP -module into a left one. It proceeds by observing that

the canonical bundle ∧topT ∗P is a right DP -module and that for any right DP -module M ,

there is a new left DP -module HomC∞(P )(∧topT ∗P,M) with action given by the formula:

(a · φ)(ω) = a(φ(ω)) − φ(Laω),

where a is a vector field on P (see [Bo]). The action of C∞(P ) is by multiplication on M

and this makes HomC∞(P )(∧topT ∗P,M) into a left DP -module. Our construction of the

representation of A on QA is just the Lie algebroid analog of this construction applied to

the right Lie algebroid module ∧topT ∗P . It would be of interest to apply more serious ideas

from D-module theory to Lie algebroids. We hope to return to this subject in the future.

Remark 3.8 Another definition of the modular class begins with the observation of Kont-

sevich [Ks] that a Lie algebroid A can be viewed as a supermanifold As, with Γ(∧•A∗)

as its algebra of functions. The differential dA defining Lie algebroid cohomology can be

considered as a vector field on As. On the other hand, a section s0 of QA determines in

a natural way a volume element on As. The divergence of dA with respect to this volume

element is a function on As which is in fact the section θs0
of A∗ representing the modular

class.

Remark 3.9 When P is not orientable, we can also replace ∧topT ∗P by the density bundle

| ∧top T ∗P |, i.e., define

QA = ∧topA ⊗ | ∧top T ∗P |.

Then formula (31) still defines a representation of A on QA.

Example 3.10 For A = TP and when P is orientable, we have

QA = ∧topTP ⊗ ∧top T ∗P ∼= Hom(∧topT ∗P, ∧topT ∗P ).

11



It has a canonical nowhere vanishing section given by the identity morphism. It is clear

from (32) that

DV s = 0

for every vector field V on P . Thus the modular class of TP is zero. When P is not

orientable, let O be the orientation bundle for P . Then |∧top T ∗P | = ∧topT ∗P⊗O, and thus

QA
∼= O.

Because of Example 3.10, we can view QA for a Lie algebroid A as the orientation

bundle of A.

Example 3.11 When A is an integrable subbundle of TP , the line bundle QA is isomorphic

to the top exterior power of the conormal bundle to the corresponding foliation F (assuming

the normal bundle is orientable - otherwise the twisting by the orientation bundle is needed),

and thus sections of QA are transverse measures to F . The representation of A on QA is

nothing but the Bott connection of the foliation. It is thus appropriate to call the modular

class of A the modular class of the foliation.

Because of Exam 3.11, for a general Lie algebroid A, we should think of sections of QA

as being “transverse measures to A”.

Example 3.12 When a Lie algebra g is considered as a Lie algebroid over a one point

space, its modular class is given by the adjoint character ξ0 ∈ g∗:

(ξ0, x) = tr(adx), x ∈ g.

Example 3.13 Let A = P × g be the transformation Lie algebroid (see Example 3.4). In

this case, there is a representation of A on each of the line bundles ∧topA and ∧topT ∗P . The

representation of A on QA is simply the tensor product of these two. Let µ be a nowhere

vanishing density on P . Then the modular class of A is given by the section of A∗ that

assigns to each section x̄ of A the function (ξ0, x̄) − divµ(ρx̄), where ξ0 ∈ g∗ is the adjoint

character of g.
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4 The case of T ∗P

In this section, we treat the case of the cotangent bundle Lie algebroid T ∗P of a Poisson

manifold P . We will show that the modular class we define here is twice the modular class

of P as a Poisson manifold defined in [We]. We first recall that definition.

Consider the density bundle | ∧top T ∗P | of P . Let µ be a nowhere vanishing density on

P . For a function f on P , define wµ(f) ∈ C∞(P ) by

Lπ̃(df)µ = wµ(f) µ.

One then checks that wµ(f) is a derivation with respect to f , so it is given by a vector field,

which we denote by wµ. It also satisfies, for any 1-forms α and β on P ,

wµ({α, β}) = π̃(α) · wµ(β) − π̃(β) · wµ(α).

(This is equivalent to Lwµπ = 0.) Thus, wµ defines a class in the first Poisson cohomology

H1
π(P ) of P . If µ1 = f1µ is another nowhere vanishing density on P , the two vector fields

wµ and wµ1
are related by

wµ1
= wµ − π̃(d log |f1|).

Thus wµ and wµ1
define the same cohomology class in H1

π(P ). It is called the modular class

of (P, π) in [We].

We now look at the modular class θT ∗P given by Definition 3.6. The line bundle QA in

this case is

QA = (∧topT ∗P )2.

The representation of T ∗P on (∧topT ∗P )2 is given by

Dα(µ1⊗µ2) = {α, µ1} ⊗ µ2 + µ1 ⊗ Lπ̃(α)µ2,

where α is a 1-form on P, µ1 and µ2 are two top degree forms on P , and {α, µ1} is the

Schouten bracket between α and µ1.

We consider the special case when α = df is an exact 1-form.

Lemma 4.1 For any differential k-form ξ on P ,

{df, ξ} = Lπ̃(df)ξ.
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Proof. Since the operators Lπ̃(df) and Ldf : ξ 7→ {df, ξ} have the same derivation properties

with respect to the wedge product on differential forms, it is enough to check the cases when

k = 0 and when k = 1. The case k = 0 is obvious from the definition. Now let ξ be a

1-form. From Formula (1), we know that for any 1-form α,

{α, ξ} = (diπ̃(α) + iπ̃(α)d)ξ − π̃(ξ) dα

= Lπ̃(α)ξ − π̃(ξ) dα.

In particular, when dα = 0, we have

{α, ξ} = Lπ̃(α)ξ.

Thus {df, ξ} = Lπ̃(df)ξ.

Q.E.D.

It now follows from the Lemma that

Ddf (µ1 ⊗ µ2) = (Lπ̃(df)µ1) ⊗ µ2 + µ1 ⊗ (Lπ̃(df)µ2)

for any two top degree forms µ1 and µ2.

The density bundle SP also satisfies S2
P = (∧topT ∗P )2. Let µ be a nowhere vanishing

section of SP . Then µ⊗µ = µ2 is a nowhere vanishing section of (∧topT ∗P )2. For any

α = df , we have

Ddf (µ2) = 2(Lπ̃(df)µ) ⊗ µ.

Since Lπ̃(df)µ = wµ(f)µ, we have

Ddf (µ2) = 2wµ(f)µ2.

Thus (recall the definition of θµ2 from Section 3) we have

θµ2 = 2wµ.

This shows that the modular class θT ∗P of the Lie algebroid T ∗P we define here is twice

the modular class of P as a Poisson manifold defined in [We].

Definition 4.2 The modular class θP of a Poisson manifold P is defined to be θP = 1
2θT ∗P ,

i.e., one half of the modular class of the cotangent Lie algebroid T ∗P .
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Thus our definition for θP is the same as that in [We].

We now show that there is, in fact, a representation of T ∗P on the line bundle ∧topT ∗P .

We first state the following Proposition. The proof is straightforward, and we omit it.

Proposition 4.3 Assume that M is a line bundle over P such that a Lie algebroid A with

anchor map ρ : A → TP acts on M⊗M = M2. Then there is a representation of A on M

as well that is defined as follows: let a be a section of A, and let s be a section of M . Let

U be an open subset of P over which t is a nowhere vanishing section of M . Write s = ft

for some function f defined on U . Define

(Das)|U = (ρ(a) · f)t +
1

2

Da(t
2)

t2
s. (33)

This is well-defined, and it defines a representation of A on M , whose square gives the

original representation of A on M2.

We now give the explicit representation of the cotangent bundle Lie algebroid T ∗P on

the line bundle ∧topT ∗P , whose existence is guaranteed by Proposition 4.3. Formula (36)

has also been independently discovered by Ping Xu in [Xu].

Theorem 4.4 Let P be a Poisson manifold with the Poisson bivector field π. For a 1-form

α and a top degree form µ on P , define

Dαµ = {α, µ} − (π, dα)µ, (34)

where {α, µ} denotes the Schouten bracket between α and µ, and (π, dα) denotes the

pairing between π and dα. Then (34) defines a representation of T ∗P on ∧topT ∗P . We also

have

Dαµ = Lπ̃(α)µ + (π, dα)µ (35)

= α ∧ diπµ. (36)
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Proof. For any f ∈ C∞(P ), we have

Dfαµ = {fα, µ} − (π, d(fα))µ

= f{α, µ} − (π̃(α) · f)µ − f(π, dα)µ − (π, df ∧ α)µ

= fDαµ − ((π, α ∧ df) + (π, df ∧ α))µ

= fDαµ;

Dα(fµ) = {α, fµ} − (π, dα)fµ

= (π̃(α) · f)µ + fDαµ.

If β is another 1-form on P , we have

DαDβµ − DβDαµ = Dα({β, µ} − (π, dβ)µ) − Dβ({α, µ} − (π, dα)µ)

= {α, {β, µ}} − (π, dα){β, µ}

− π̃(α) · (π, dβ)µ − (π, dβ){α, µ} + (π, dβ)(π, dα)µ

− {β, {α, µ}} + (π, dβ){α, µ}

+ π̃(β) · (π, dα)µ + (π, dα){β, µ} − (π, dα)(π, dβ)µ

= {{α, β}, µ} − π̃(α) · (π, dβ)µ + π̃(β) · (π, dα)µ

= {{α, β}, µ} − (π, d{α, β})µ

= D{α, β}µ.

In the last step, we used the fact that

π̃(α) · (π, dβ) − π̃(β) · (π, dα) = (π, d{α, β}).

Indeed,

l.h.s = ([π̃(α), π], dβ) + (π, Lπ̃(α)dβ) − ([π̃(β), π], dα) − (π, Lπ̃(β)dα)

= −([π, π̃(α)], dβ) + ([π, π̃(β)], dα) + (π, d{α, β})

= −(π̃(dα), dβ) + (π̃(dβ), dα) + (π, d{α, β})

= (π, d{α, β})

= r.h.s.

Here we used Formula (2) and the fact that

π̃ : Γ(∧•T ∗P ) −→ Γ(∧•TP )
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intertwines the operators d and dπ = [π, •].
To show that Dαµ is also given by (35), we first observe that the right hand side of (35)

is C∞(P )-linear in α. We also know from Lemma 4.1 that (35) holds when α is exact. Thus

it holds for an arbitrary α. To show (36), we start with

α ∧ iπµ = −iπ̃(α)µ

and apply d to both sides. We get

dα ∧ iπµ − α ∧ diπµ = −diπ̃(α)µ,

or,

(π, dα)µ − α ∧ diπµ = −Lπ̃(α)µ.

Formula (36) now follows from (35).

Q.E.D.

The characteristic class of the Lie algebroid T ∗P associated to this representation on

∧topT ∗P is now exactly the same as the modular class of P as a Poisson manifold defined

in [We].

We now consider the Lie algebroid cohomology H•(P, ∧topT ∗P ) of T ∗P with coefficients

in ∧topT ∗P . We will show that it is isomorphic to the Poisson homology space H•(P ) of

Koszul [Kz] and Brylinski [Br].

Recall (Section 2) that the complex that gives rise to the Lie algebroid cohomology

H•(P, ∧topT ∗P ) is the space

C1 = χ•(P )⊗Γ(∧topT ∗P )

together with the operator

δ
′

π : χk(P )⊗Γ(∧topT ∗P ) −→ χk+1(P )⊗Γ(∧topT ∗P )

given by

δ
′

π : V ⊗µ 7−→ [π, V ]⊗µ + (−1)kV ∧ Dµ, (37)

where, for µ ∈ Γ(∧topT ∗P ),

Dµ ∈ χ1(P )⊗Γ(∧topT ∗P )
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is given by

(Dµ)(α) = Dαµ = {α, µ} − (π, dα)µ = Lπ̃αµ + (π, dα)µ = α ∧ diπµ

for any 1-form α on P (see Theorem 4.4).

In [Kz], Koszul (also see [Br]) introduced the operator

∂π = iπd − diπ : Ωk+1(P ) −→ Ωk(P ). (38)

It satisfies (∂π)2 = 0. The homology of (Ω•(P ), ∂π) is called the Poisson homology of

(P, π) and it is denoted by H•(P ).

Let n = dimP , and for each k = 0, 1, ..., n, define

τ : χk(P )⊗Γ(∧nT ∗P ) −→ Ωn−k(P ) : V ⊗µ 7−→ iV µ = V µ. (39)

It is clearly a vector space isomorphism from C1 to Ω•(P ).

Theorem 4.5 For any V ⊗µ ∈ Ck
1 = χk(P )⊗Γ(∧nT ∗P ),

τδ
′

π(V ⊗µ) = (−1)k+1∂πτ(V ⊗µ). (40)

Consequently,

Hk(P, ∧topT ∗P ) ∼= Hn−k(P ).

Proof. Since all operators in (40) are local, we only need to prove that it holds locally.

Thus, without loss of generality, we can assume that P is orientable. Let µ0 be a volume

form of P . We can then identify χ•(P ) with C1 by

χ•(P ) −→ C1 : V 7−→ V ⊗µ0.

The isomorphism τ : C1 → Ω•(P ) now becomes

τµ0
: χk(P ) −→ Ωn−k(P ) : V 7−→ V µ0 = iV µ0. (41)

Let θ0 be the modular vector field associated to ∧topT ∗P defined by µ0, i.e., for any

1-form α,

θ0(α)µ0 = Dαµ0 = Lπ̃(α)µ0 + (π, dα)µ0 (42)
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(see Theorem 4.4). Then the operator δ
′

π becomes

δ
′

π,µ0
: χk(P ) −→ χk+1(P ) : V 7−→ [π, V ] + θ0 ∧ V, (43)

and (40) becomes

([π, V ] + θ0 ∧ V ) µ0 = (−1)k+1(π d(V µ0) − d((V ∧ π) µ0)) (44)

for V ∈ χk(P ).

Introduce the operator

bµ0
: χk(P ) −→ χk−1(P ) : (bµ0

V ) µ0 = (−1)kd(V µ0). (45)

Clearly b2
µ0

= 0.

Lemma 4.6 For any V1, V2 ∈ χ•(P ),

bµ0
(V1 ∧ V2) = bµ0

(V1) ∧ V2 + (−1)|V1|V1 ∧ bµ0
(V2) + (−1)|V1|[V1, V2]; (46)

proof. It follows from Formula (10) for the Schouten bracket [V1, V2] that the two sides of

(46) are equal when paired with any for α of degree |V1| + |V2| − 1.

Q.E.D.

Lemma 4.7

bµ0
π = θ0. (47)

Proof. This is an immediate consequence of (36).

Q.E.D.

We now continue with the proof of Theorem 4.5. We need to prove (44). Using again the

operator bµ0
and its property (46), we see that

r.h.s. of (44) = (bµ0
(V ∧ π) − bµ0

V ∧ π) µ0

= ((−1)kV ∧ bµ0
π + (−1)k[V, π]) µ0

= (bµ0
π ∧ V [π, V ]) µ0

= (θ0 ∧ V + [π, V ]) µ0

= l.h.s. of (44).

This completes the proof of Theorem 4.5.
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Q.E.D.

We now look at the case when G is a Poisson Lie group. Let (G,π) be a connected

Poisson Lie group with tangent Lie bialgebra (g, g∗) (see, for example, [STS] and [L-W]).

Let ξ0 ∈ g and x0 ∈ g be respectively the characters of the Lie algebras g and g∗ with

respect to their adjoint representations, i.e., for any x ∈ g and ξ ∈ g∗,

(ξ0, x) = tr(adx)

(x0, ξ) = tr(adξ).

Denote respectively by xl
0 and xr

0 the left and right invariant vector fields on G whose values

at the identity element e are x0. Denote by ξr
0 the right invariant 1-form on G whose value

at e is ξ0. Recall that the right dressing vector field [L-W] [STS] defined by ξ0 is the vector

field

σξ0 = π̃(ξr
0).

Proposition 4.8 Let µ be a right invariant volume form on G. The vector field θµ on G

defined by µ:

(θµ, α) :=
Dαµ

µ

is given by

θµ =
1

2
(xl

0 + xr
0 − σξ0). (48)

Similarly, if µl is a left invariant volume form on G. The vector field θµl on G is given by

θµl =
1

2
(xl

0 + xr
0 + σξ0). (49)

Proof. Let α be a right invariant 1-form on G. The Schouten bracket {α, µ} is also right

invariant, and is equal to (xr
0, α)µ. Consider the vector field v on G defined by

(v, α) =
1

2
(xr

0 − xl
0 + σξ0 , α) − (π, dα),

where α is a right invariant 1-form on G. It remains to show that v = 0. Since π is

multiplicative and since ξ0 is AdG-invariant, we know that v is multiplicative [Lu], i.e., for

g, h ∈ G,

v(gh) = lgv(h) + rhv(g).

Since v(e) = 0, the fact that v = 0 follows from the fact that the linearization of v at e is

zero. The case for µl is similarly proved.
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Q.E.D.

Remark 4.9 1) The vector fields xl
0 and xr

0 are Poisson vector fields because x0 is a char-

acter of g∗. Let f0 be the function on G defined by

f0(g) := det(Adg on ∧top g).

Then d(log f0) = ξr
0. Thus

σξ0 = π̃(d(log f0))

is a Hamiltonian vector field.

2) If we identify the cotangent bundle T ∗G with the trivial bundle G × g∗ by right

translations, the Lie algebroid structure on T ∗G becomes that of the transformation Lie

algebroid defined by the infinitesimal right dressing action of g∗ on G (see [Lu]). Proposition

4.8 can then also be proved as a corollary of Example 3.13.

Assume now that H ⊂ G is a connected and closed Poisson Lie subgroup of G [STS].

Recall that this is equivalent to h⊥ ⊂ g∗ being an ideal in g∗, where

h⊥ = {ξ ∈ g∗ : (ξ, x) = 0 ∀x ∈ h}.

The quotient space G/H has a unique Poisson structure such that the projection map

j : G → G/H : g 7−→ gH

is a Poisson map. Assume that there exists a G-invariant volume form µ0 on G/H. We

wish to determine the modular vector field θµ0
on G/H defined by µ0.

Set µ̃0 = j∗µ0. It is a left invariant l-form on G, where l = dim(G/H). Choose any

µ1 ∈ ∧n−lg∗, where n = dim G, such that µ = µ1 ∧ µ̃0 is a left invariant volume form on G.

We have shown that the modular vector field θµ on G defined by µ is given by (49).

Proposition 4.10 The modular vector field θµ0
on G/H defined by µ0 is given by

θµ0
= j∗(θµ) =

1

2
j∗(x

l
0 + xr

0 + σξ0), (50)

i.e., it is the projection to G/H by j of the modular vector field θµ on G defined by µ =

µ1 ∧ µ̃0.
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Proof. Let γ1, ..., γl be a basis for h⊥ ⊂ g∗. Denote by the same letters the corresponding

left invariant 1-forms on G. Assume that µ1 = ξ1 ∧ ξ2 ∧ · · · ∧ ξt, where t = dimH and the

ξi’s are in g∗ and denote also the corresponding left invariant 1-forms on G.

Let α be an arbitrary 1-form on G/H. Let α̃ = j∗α be the pull-back of α to G by the

projection map j. Then

{α̃, µ} = {α̃, µ1} ∧ µ̃0 + µ1 ∧ {α̃, µ̃0}.

Now,

{α̃, µ1} =

t∑
j=1

ξ1 ∧ · · · ∧ ξj−1 ∧ {α̃, ξj} ∧ ξj+1 ∧ · · · ∧ ξt.

Write α̃ =
∑l

i=1 fiγi, where the fi’s are functions on G. Then for each j = 1, ..., t,

{α̃, ξj} =
∑

i

(fi{γi, ξj} − (π̃(ξj) · fi)γi).

Since h⊥ is an ideal of g∗, we have {γi, ξj} ∈ h⊥. Thus

{α̃, ξj} ∧ µ̃0 = 0, ∀j,

and

{α̃, µ1} ∧ µ̃0 = 0.

Hence

{α̃, µ} = µ1 ∧ {α̃, µ̃0} = µ1 ∧ j∗{α, µ0}.

Therefore, using πG and π to denote respectively the Poisson bi-vector fields on G and on

G/H, we have from the definition that

θµ(α̃)µ = {α̃, µ1 ∧ µ̃0} − (πG, dα̃)µ1 ∧ µ̃0

= µ1 ∧ j∗{α, µ0} − j∗(π, dα)µ1 ∧ µ̃0

= µ1 ∧ j∗(θµ0
(α)µ0)

= j∗(θµ0
(α))µ.

Thus

θµ(α̃) = j∗(θµ0
(α)).

This shows that j∗θµ is well-defined and that

θµ0
= j∗θµ =

1

2
j∗(x

l
0 + xr

0 + σξ0).
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Q.E.D.

Example 4.11 Let K be a compact semi-simple Lie group and let T be a maximal torus

of K. There is a naturally defined Poisson structure on K making it into a Poisson Lie

group [L-W]. This Poisson structure vanishes at points in T . Thus it descends to a Poisson

structure, called the Bruhat-Poisson structure, on the flag manifold K/T . It follows from

Proposition 4.10 that the modular vector field of the Bruhat-Poisson structure defined by

a K-invariant volume form on K/T is the vector field defined by 2iHρ in the Lie algebra t

of T , where ρ is half of the sum of all the positive roots, and 2iHρ denotes the element in t

corresponding to 2iρ under the identification of t and t∗ via the Killing form.

5 A cohomology pairing

Let A be a Lie algebroid over P with anchor map ρ : A → TP . In this section, we show

that there is a natural pairing between Hk(A), the k-th Lie algebroid cohomology of A

with trivial coefficients, and Hr−k(A,QA), the (r − k)-th Lie algebroid cohomology of A

with coefficients in QA = ∧rA⊗ ∧top T ∗P , where r is the rank of A, and 0 ≤ k ≤ r.

For simplicity, we assume that P is compact and orientable. For a general P , we need to

consider the “compactly supported” Lie algebroid cohomology of A and replace ∧topT ∗P

by | ∧top T ∗P |, the density bundle of P .

Recall that

Hk(A) = Hk(C, dA), Hk(A, QA) = Hk(C̃, d̃A),

where C = ⊕r
k=0C

k = ⊕r
k=0Γ(∧kA∗) with dA given by (3), and C̃ = C⊗Γ(QA) with

d̃A : C̃k → C̃k+1 given by

d̃A(ξ⊗s) = dAξ ⊗ s + (−1)|ξ|ξ ⊗ Ds,

where, for s = X⊗µ ∈ Γ(QA), Ds ∈ Γ(A∗)⊗Γ(QA) maps a section a of A to the section

Da(s) = [a, X] ⊗ µ + X ⊗ Lρ(a)µ

of QA (see (31)).

Fix an orientation of P . Then integrating with respect to this orientation gives rise to

the following non-degenerate pairing between Ck and C̃r−k:

((ξ, η⊗X⊗µ))
def
=

∫
(ξ ∧ η, X)µ. (51)
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Theorem 5.1 For ξ ∈ Ck−1 and η⊗X⊗µ ∈ C̃r−k,

((dAξ, η⊗X⊗µ)) + (−1)|ξ|((ξ, d̃A(η⊗X⊗µ))) = 0. (52)

Consequently, there is an induced pairing between Hk(A) and Hn−k(A,QA).

Proof. Consider c = (ξ ∧ η)⊗X⊗µ ∈ C̃r−1. We know that

d̃A(c) = dAξ⊗(η⊗X⊗µ) + (−1)|ξ|ξ ∧ d̃A(η⊗X⊗µ) ∈ C̃r.

Theorem 5.1 now follows from the following Stokes’ Theorem.

Q.E.D.

Theorem 5.2 (Stokes’ Theorem) Identify C̃r = Γ(∧rA∗⊗ ∧r A⊗ ∧top T ∗P ) with the

space of top-degree forms on P by pairing the factors in ∧rA∗ and ∧rA pointwise. We have,

for every c = ξ⊗X⊗µ ∈ C̃r−1,

d̃A(c) = (−1)r−1d(ρ(ξ X) µ). (53)

Consequently, ∫
P

d̃A(c) = 0. (54)

Proof. We only need to prove (53) locally. Let U be an open subset of P over which both

∧rA and ∧topT ∗P are trivial with nowhere vanishing sections X0 and µ0 respectively. Set

s0 = X0⊗µ0. Let θ0 be the section of A∗ over U such that

θ0(a)s0 = Das0

for every section a of A. Write X⊗µ = fX0⊗µ0 = fs0 over U . We have,

d̃A(c) = (dA(fξ) + θ0 ∧ fξ, X0)µ0.

Set a = fξ X0. It follows from the definitions of θ0 and the representation of A on QA

that

(θ0 ∧ fξ, X0)µ0 = −(dA(fξ), X0)µ0 + (−1)r−1Lρ(a)µ0.

Hence,

d̃A(c) = (−1)r−1Lρ(a)µ = (−1)r−1d(ρ(ξ X) µ).

This proves (53). It now follows from Stokes’ Theorem for de Rham cohomology that∫
P

d̃A(c) = 0.
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Q.E.D.

Corollary 5.3 Let P be an orientable Poisson manifold with a fixed orientation. For a

differential form α and a compactly supported differential form β, define

(α, β) =

∫
P

α ∧ β.

Let ∂π : Ωk(P ) → Ωk−1(P ) be the Koszul-Brylinski operator as defined by (38). Then, for

any forms α and β with |α| + |β| − 1 = n = dim P , we have

(∂πα, β) + (−1)(|α|−1)(α, ∂πβ) = 0. (55)

Thus we get an induced pairing between the Poisson homology spaces Hk(P ) and Hn−k(P ).

Proof. Fix a volume form µ0 of P . Let θ0 be the modular vector field defined by µ0. Let

U ∈ χn−|α|(P ) and V ∈ χn−|β|(P ) be such that

α = U µ0, β = V µ0.

let (( )) be the pairing on χ(P ) given by

((V1, V2)) =

∫
P

(V1 ∧ V2, µ0)µ0.

Then we know from Theorem 5.1 that

(([π, U ], V )) + (−1)|U |((U, [π, V ] + 2θ0 ∧ V )) = 0.

It follows that

(([π, U ] + θ0 ∧ U, V )) + (−1)|U |((U, [π, V ] + θ0 ∧ V ))

= (([π, U ], V )) + (−1)|U |((U, [π, V ])) + ((θ0 ∧ U, V )) + (−1)|U |((U, θ0 ∧ V ))

= (([π, U ], V )) + (−1)|U |((U, [π, V ])) + 2(−1)|U |((U, θ0 ∧ V ))

= (([π, U ], V )) + (−1)|U |((U, [π, V ] + 2θ0 ∧ V ))

= 0.

From Theorem 4.5, we have

(∂πα, β) = (−1)|U |+1(([π, U ] + θ0 ∧ U, V ))

(α, ∂πβ) = (−1)|V |+1((U, [π, V ] + θ0 ∧ V )).

Thus we get (55).
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Q.E.D.

We now turn to the discussion of the non-degeneracy of the pairing (( , )) between Hk(A)

and Hr−k(A,QA). We will see that it is not always non-degenerate. We first look at some

familiar examples.

Example 5.4 When A is a Lie algebra g considered as a Lie algebroid over a one point

space, we have QA = ∧rg, where r = dim g. The pairing (( , )) in Theorem 5.1 is non-

degenerate and it gives rise to an isomorphism

Hk(g)∗ ∼= Hr−k(g, ∧rg).

This is the familiar Poincare duality for Lie algebra cohomology.

Example 5.5 Let P be a compact orientable manifold and let A = TP be the tangent

bundle Lie algebroid with the identity anchor map. The line bundle QA is trivial and so is

the representation of A on QA. The pairing (( , )) in Theorem 5.1 is the one obtained by in-

tegrating the wedge product of k-forms and (n−k)-forms, where n = dim P . This, of course,

is non-degenerate and gives the well-known Poincare duality for de Rham cohomology of

P .

Example 5.6 Let A be an arbitrary vector bundle over P of rank r. Consider A as a Lie

algebroid over P with the zero Lie bracket on its sections and the zero anchor map to TP .

Then Hk(A) is the space of smooth sections of ∧kA∗, and Hr−k(A,QA) is the space of

smooth sections of

∧r−kA∗⊗ ∧r A⊗ ∧top T ∗P ∼= ∧kA⊗ ∧top T ∗P.

The pairing between these two spaces, pairing the elements in ∧kA∗ and in ∧kA pointwise

and integrating the resulting top degree form on P over P , is again non-degenerate in each

argument.

Example 5.7 We now consider the case when A = P × g is a transformation Lie algebroid

defined by a Lie algebra homomorphism ρ : g → χ1(P ) from a Lie algebra g to the Lie

algebra of vector fields on P . See Example 3.4. In this case, both H•(A) and H•(A,QA)
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are natually isomorphic to certain Lie algebra cohomology spaces of g, and the pairing (( , ))

in Theorem 5.1 is the one that occurs in the Poincare duality of Lie algebra cohomology

(see, for example, [Kp]). More precisely, we have

Hk(A) ∼= Hk(g, C∞(P )), (56)

where the right hand side is the Lie algebra cohomology of g with coefficients in C∞(P )

considered as a g-module via ρ:

x · f = ρ(x) · f, x ∈ g, f ∈ C∞(P ), (57)

and

Hr−k(A,QA) ∼= Hr−k(g, ∧rg⊗Ωtop(P )), (58)

where r = dim g is the rank of A, and the right hand side is the Lie algebra cohomology of

g with coefficients in the tensor product module ∧rg⊗Ωtop(P ). The space ∧rg is equipped

with the adjoint representation of g, and Ωtop(P ) is equipped with the action of g by Lie

derivatives:

x · µ = Lρ(x)µ.

The isomorphisms (56) and (58) are easily seen to come from isomorphisms on the complex

level:

Ck = Γ(∧kA∗) ∼= ∧kg∗⊗C∞(P )

C̃r−k = Γ(∧r−kA∗⊗∧r A⊗ ∧top T ∗P ) ∼= ∧r−kg∗⊗ ∧r g⊗Ωtop(P ).

Consider the pairing between C∞(P ) and Ωtop(P ) given by

(f, µ) =

∫
P

fµ.

For each x ∈ g, it follows from ∫
P

Lρ(x)(fµ) = 0

that

(x · f, µ) + (f, x · µ) = 0.

Thus, the two g-modules C∞(P ) and Ωtop(P ) are contragradient to each other with respect

to the above pairing. Under the isomorphisms above, the pairing (( )) in Theorem 5.1

becomes the one between ∧kg∗⊗C∞(P ) and ∧r−kg∗⊗ ∧r g⊗Ωtop(P ) given by

(ξ⊗f, η⊗X0⊗µ) = (ξ ∧ η, X0)(f, µ).
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This is exactly the pairing that occurs in the Poincare duality for Lie algebra cohomology.

In this example, even though the pairing between the two g-modules C∞(P ) and Ωtop(P )

is non-degenerate, they are not the full duals of each other, so we can not conclude that the

induced pairing on the cohomology spaces is non-degenerate. For example,

H0(g, C∞(P )) = C∞(P )g

and

Hr(g, ∧rg⊗Ωtop(P )) ∼= Ωtop(P )

g · Ωtop(P )
.

These two spaces are not necessarily dual to each other, as we see from the following

example: the vector field

v0 = (1 − eiθ)N
d

dθ
,

where N ≥ 2 is an integer, defines an action of the 1-dimensional Lie algebra g = R
1 on

P = S1. The space H0(g, C∞(P )) is 1-dimensional, while the space Hr(g, ∧rg⊗Ωtop(P ))

is at least N -dimensional.

Example 5.8 For a general Lie algebroid A over P , we have

H0(A) ∼= {f ∈ C∞(P ) : ρ(a) · f = 0, ∀a ∈ Γ(A)}.

and, from Stokes’ Theorem,

Hr(A, QA) ∼= Ωtop(P )

{Lρ(a)µ, a⊗µ ∈ Γ(A)⊗Ωtop(P )} .

If P is not compact, we consider compactly supported top-degree forms in Hr(A,QA). The

following is another example where the two spaces H0 and Hr are not dual to each other:

let P = R
2 with the Poisson structure given by

{x, y} = (x2 + y2)N ,

where N is an integer and N ≥ 3. Let A be T ∗P with the cotangent bundle Lie algebroid

defined by this Poisson structure. Again, H0(A) is 1-dimensional and Hr(A,QA) is at least

(N − 1)-dimensional.
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6 The holomorphic case

In this section, we extend our results to the holomorphic setting. Closely related results are

studied in [B-Z] in different language, where questions of monodromy are also discussed.

The theory of Lie algebroids can be developed in the setting of sheaves (see [B-B] [K-T]).

Let OP be either the sheaf of smooth functions on a manifold or the sheaf of holomorphic

functions on a complex manifold (one can also consider the algebraic setting, but it will not

be useful for us). Let TP be the tangent sheaf defined over OP . Note that TP is a sheaf of

Lie algebras over the scalars, where the Lie algebra structure on sections over an open set

is the usual Lie bracket of vector fields.

A Lie algebroid A over OP is a sheaf of OP modules together with 1) a Lie algebra struc-

ture on A making A into a sheaf of Lie algebras over the scalars, and 2) a homomorphism

ρ : A → TP of sheaves of modules over OP and of Lie algebras, such that for f ∈ OP (U)

and ω1, ω2 ∈ A(U), the following derivation law holds:

{ω1, fω2} = f{ω1, ω2} + (ρ(ω1)f)ω2.

As before, ρ is called the anchor map of the Lie algebroid. For the rest of this section, we

will always assume that A is locally free, so that it is the sheaf of sections of a vector bundle

over OP .

A representation of A is a sheaf M of A modules, i.e., for every open set U, the space of

sections M(U) is a representation of A(U) satisfying the properties given in Section 1 and

the representations are compatible with restriction maps. It follows as in Section 3 that the

line bundle QA = ∧topA⊗ ∧top T ∗P determines an A module.

Consider the sheaf Ωk(A) of sections of ∧kA∗. The formula for dA given in Section 2

makes the sequence

... → Ωk−1(A) → Ωk(A) → Ωk+1(A) → ...

into a complex of sheaves. We can take the hypercohomology of this complex of sheaves

H
•(Ω•(A)) (see [G-H] p. 445). We define Lie algebroid cohomology

H•(A,OP ) = H
•(Ω•(A)).

We also consider the cohomology sheaves H•(A,OP ). To define these sheaves, first con-

sider the cohomology of the above complex on any open set. The assignment

U 7→ H i(Ω•(A)(U), dA)
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determines a presheaf. By definition, H•(A,OP ) is the sheaf associated to this presheaf.

We will compute H•(P,S) for a sheaf S using Cech cohomology, so H i(A,OP ) is

the total cohomology of the double complex Cp(P,Ωq(A)). The usual filtrations give two

first quadrant spectral sequences converging to H•(A,OP ) [G-H]. The first has E2 term

Hp(P,Hq(A,OP )) and the second has E2 term Hq(Hp(P,Ω•(A))).

In the case where OP is smooth functions on P, we have Hp(P,Ω•(A))) = 0 for p > 0

since the sheaves Ω•(A) are soft. It follows that in this case the second spectral sequence

degenerates at the E2 term, so that Hq(A,OP ) = Hq(Γ(P,Ω•(A))). Thus our hypercoho-

mology definition of Lie algebroid cohomology agrees with the definition given in Section 2.

The same remarks apply when OP is the sheaf of holomorphic functions on a Stein manifold

P.

We return to the general case. We can compute Cech cohomology using an open cover

Uα of P such that all intersections of the Uα’s are contractible or empty. In particular, we

may assume that on an intersection of open sets, every nowhere vanishing function has a

logarithm. On such a cover, QA is a trivial line bundle. We can define a modular class

ΘA ∈ H0(P,H1(A,OP )) as follows. On each open set Uα in our cover, choose a nowhere

vanishing section sα of QA|Uα. Define a modular class on Uα by setting

Dasα = Θsα(a)sα.

As in Section 3, it follows that the class of Θsα ∈ H1(A,OP ) is independent of the choice

of sα. We will denote it by Θα. Moreover, Θα and Θβ agree on open sets Uα and Uβ in our

cover. Indeed, on Uα ∩ Uβ, we know sα = gαβsβ for some nowhere vanishing function gαβ .

Then it follows as above that the cohomology classes Θα and Θβ coincide. Thus we have

a well-defined global section of the sheaf H1(A,OP ) which we denote by ΘA. In fact, the

functions gαβ are just the transition functions of QA.

We wish to determine whether ΘA determines a class in H1(A,OP ). We showed in the

previous paragraph that ΘA determines a class in H0(P,H1(A,OP )), which is in E0,1
2 for the

first spectral sequence discussed above. ΘA defines a class in H1(A,OP ) if it is annihilated

by all differentials in the spectral sequence. All differentials dr for r > 2 annihilate ΘA for

reasons of degree. Thus it suffices to determine if d2ΘA = 0 for the differential

d2 : H0(P,H1(A,OP )) → H2(P,H0(A,OP )).

Denote the Cech differential by δ. By definition, for a class r ∈ H0(P,H1(A,OP )), d2(r) =
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δc, where c ∈ C1(P,H0(A,OP )) is chosen so dAc = δr (see [B-T]).

Proposition 6.1 Let i : CP → H0(A,OP ) be the inclusion of the constant sheaf into the

sheaf of functions annihilated by A. Then

d2(ΘA) = i∗(2π
√
−1c1(QA)),

where c1(QA) is the first Chern class of the line bundle QA in the holomorphic setting and

of the complexification of QA in the real setting which is 0.

Proof. We defined ΘA by choosing a nowhere vanishing section sα ∈ Γ(Uα, QA). Then

δΘA(a)(Uα ∩ Uβ) =
Da(sα)

sα
|Uα∩Uβ

− Da(sβ)

sβ
|Uα∩Uβ

= dA(log(gαβ))(a)

where the gαβ are the transition functions of QA discussed above. Then

d2(ΘA)(Uα ∩ Uβ ∩ Uγ) = log(gαβ) + log(gβγ) − log(gαγ)

This is, up to a factor of 2π
√
−1, the usual sheaf cohomology description of the first Chern

class of the line bundle QA. Since we regard this class as an element of H2(P,H0(A,OP )),

we write it as i∗(2π
√
−1c1(QA)).

Q.E.D.

Corollary 6.2 Suppose c1(QA) = 0. Then d2(ΘA) = 0.

When d2(ΘA) = 0, we denote the corresponding class in H1(A,OP ) by θA.

We remark that it follows from the proposition that d2(ΘA) = 0 when OP is the sheaf of

smooth functions. Indeed, in this case, the line bundle QA has an underlying real structure

so c1(QA) = 0 ([B-T]). In the holomorphic setting, QA is always trivial if P is a Stein

manifold. In addition, if P admits a holomorphic symplectic structure, then ∧topT ∗P is

trivial, so c1(QT ∗P ) = 0. This is the case for G/H, where G is a complex reductive group

and H is a maximal torus, and a Poisson structure analogous to that of [L-W] can be

introduced. In addition, in the case where the anchor map is zero, d2(ΘA) = 0 even though

c1(QA) may not vanish.
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7 Appendix A: The adjoint “representation” of a Lie alge-

broid

In this appendix, we will describe a construction which includes as special cases the adjoint

representation of a Lie algebra and the (dual of the) flat “Bott” connection on the normal

bundle to a foliation. Given a Lie algebroid A, we will construct a “representation up to

homotopy” of A on the “formal difference” A ⊖ TP . Taking the highest exterior power of

this object will yield the representation of A on QA described in Section 3. That is all we

will use of our construction in this paper, but we believe that it is interesting in its own

right.

The idea behind our construction is similar to that in the construction of the represen-

tation of A on QA, namely that neither the Lie derivative action of A on itself nor on TP

is a representation, but that “the anomalies cancel.” The following discussion makes this

idea precise.

Definition 7.1 Let A be a Lie algebroid over P and let (E, ∂) be a bundle of Z2-graded

complexes over P ; i.e., E is a Z2-graded vector bundle over P and ∂ is a bundle map of

degree 1 with ∂2 = 0. A representation up to homotopy of A on (E, ∂) is an R-bilinear

map

Γ(A) × Γ(E) −→ Γ(E) : a ⊗ s 7−→ Das,

such that the operators Da preserve the grading and commute with the action of ∂ on

sections, and such that the properties

(2) Da(fs) = fDas + (ρ(a)f)s;

(3) Da(Dbs) − Db(Das) = D[a,b]s.

of a representation hold, while property

(1) Dfas = fDas

holds only up to homotopy, in the sense that for each a ∈ Γ(A) and f ∈ C∞(P ) there is a

bundle map I(a, f) : E −→ E of degree 1 such that

(1′) Dfas = fDas + I(a, f)∂s + ∂I(a, f)s.
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Remark 7.2 If we drop condition (3) from the definition of a representation, we get the

definition of an A-connection on a vector bundle E. The difference of the left and right

hand sides of (3) is then C∞(P )-linear in a, b, and s and becomes the curvature tensor

of the connection. Similarly, we can drop condition (3) from Definition 7.1 to define an

A-connection up to homotopy, and we could also weaken (3) to require flatness only up to

homotopy in the definition of a representation. Finally, one might put further conditions

on the trilinear expressions I(a, f)s as one does in the the theory of strongly homotopy Lie

algebras [L-M]. We have had no need to explore these options yet, though.

For a bundle (E, ∂) of complexes over P , the homology H(E) is not a vector bundle

unless ∂ has constant rank. We can still consider H(E) as a C∞(P )-module by looking at

the action of ∂ on sections of E, though, so that the notion of a representation of A on

H(E) still makes sense. Also, we will define the determinant line bundle ∧topE of the

graded vector bundle E = E0 ⊕ E1 to be ∧topE∗
0 ⊗ ∧topE1.

Proposition 7.3 A representation up to homotopy of a Lie algebroid A on a bundle (E, ∂)

of Z2-graded complexes induces representations (not just up to homotopy) on the homology

H(E) and the determinant line bundle ∧topE.

Proof. Since each Da commutes with ∂, it induces an operator H(Da) on homology.

Properties (2) and (3) of the Da’s are inherited by the induced operators. To verify (1), we

let s be a cycle and find from (1′) that Dfas − fDas is a boundary.

When ∂ has constant rank, the determinant bundle of H(E) is isomorphic to that of E,

so the second part of the theorem follows from the first part in that special situation. For

the general case, we will define and study the extended operators locally.

First of all, we note that a family of operators Da on sections of a vector bundle V

satisfying (2) and (3) can be extended in a unique way to a family of operators on all the

tensors over V , satisfying the same identities, by requiring that the operators be derivations

with respect to tensor product and commute with contractions. This is done just is as

usually done for Lie derivatives or covariant derivatives. In particular, we obtain operators,

also denoted by Da, on E∗, ∧topE∗
0 , ∧topE1, and ∧topE∗

0 ⊗ ∧topE1.

For instance, the operators on E∗ are defined by

(Daω, s) = ρ(a) · (ω, s) − (ω,Das),
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from which it follows that we have a representation up to homotopy on the dual complex

(E∗, ∂∗), using the bundle maps −I(a, f)∗ to satisfy (1′).

To compute the operators on ∧topE1, we use a local basis t1, . . . , tl for the sections of

E1. By the derivation property,

Da(t1 ∧ . . . ∧ tl) =
l∑

r=1

(t1 ∧ . . . ∧ Datr ∧ . . . ∧ tl).

Then

Dfa(t1 ∧ . . . ∧ tl) =

l∑
r=1

(t1 ∧ . . . ∧ Dfatr ∧ . . . ∧ tl)

= fDa(t1 ∧ . . . ∧ tl)

+

l∑
r=1

(t1 ∧ . . . ∧ (I10(a, f)∂01 + ∂10I01(a, f))tr ∧ . . . ∧ tl),

where the superscript ij on I or ∂ refers to the part of that bundle map which goes from

Ej to Ei.

Expressing (I10(a, f)∂01 + ∂10I01(a, f))tr in terms of our basis, we see that all but its

r’th component is annihilated by another factor in the wedge product, so that we get a

simple expression in terms of a trace:

Dfa(t1 ∧ . . . ∧ tl) = fDa(t1 ∧ . . . ∧ tl) + Tr(I10(a, f)∂01 + ∂10I01(a, f))t1 ∧ . . . ∧ tl.
(59)

Similarly, in terms of a basis s∗1, . . . , s∗k of local sections of E∗
0 , we have:

Dfa(s
∗
1 ∧ . . . ∧ s∗k) = fDa(s

∗
1 ∧ . . . s∗k) − Tr(I10∗(a, f)∂01∗ + ∂10∗I01∗(a, f))s∗1 ∧ . . . s∗k.

(60)

Combining the two previous equations and using the derivation property with respect to

tensor product, we obtain an expression for the behavior of the Da’s operating on the

determinant bundle:

Dfa(s
∗
1∧ . . . s∗k⊗ t1∧ . . .∧ tl) = fDa(s

∗
1∧ . . . s∗k ⊗ t1∧ . . .∧ tl)+K(a, f)s∗1∧ . . . s∗k⊗ t1∧ . . .∧ tl,

where

K(a, f) = Tr(I10(a, f)∂01 + ∂10I01(a, f)) − Tr(I10∗(a, f)∂01∗ + ∂10∗I01∗(a, f)).
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Using the invariance of the trace under dualization and exchange of factors, we can cancel

all the terms in this expression to conclude that K(a, f) = 0, so that the operation of A on

the determinant bundle satisfies Dfa = fDa, so that we have an honest representation.

Q.E.D.

With the general notion of representation up to homotopy at hand, we can consider our

principal example. Given the Lie algebroid A with anchor ρ : A → TP , we let E0 = TP ,

E1 = A, ∂01 = ρ, and ∂10 = 0. The homology of this little complex is the normal “bundle”

TP/ρ(A) to the orbits in degree 0, and the isotropy “bundle” ker ρ in degree 1. We call

this the normal complex of the Lie algebroid and denote it by N(A). The determinant

bundle of the normal complex is precisely what we have called QA.

We define the operators Da on Γ(E) for a ∈ Γ(A) by Dab = [a, b] for b ∈ Γ(A) and by

Dau = [ρ(a), u] for u ∈ Γ(TP ), where the last bracket is the usual bracket of vector fields.

Proposition 7.4 The operators defined above form a representation up to homotopy of the

Lie algebroid A on N(A).

Proof. The fact that the Da are chain maps follows from the fact that ρ defines a Lie

algebroid homomorphism. Properties (2) and (3) in the definition of a representation are

standard facts in the differential calculus on Lie algebroids (see Section 2). For property

(1′), we note as in Section 3 that for the action on A we have

Dfab = fDab − (ρ(b) · f)a

and for the action on TP we have

Dfau = fDau − (u · f)ρ(a).

If we define the homotopy operators by I10(a, f)(u) = −(df(u))a and I01(a, f) = 0, we

see immediately from the two displayed equations above that (1′) is satisfied, so we have a

representation up to homotopy.

Q.E.D.

When A is a Lie algebra, the operators Da just give the adjoint representation, so we

refer to them as the adjoint “representation” in the general case. When ρ is the inclusion of
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a subbundle of TP , the homology of the normal complex is just the normal bundle to the

corresponding foliation, and we recover the usual flat connection along the leaves. Finally,

the associated representation of A on QA may now be seen as the “top exterior power of

the adjoint representation” for a general Lie algebroid.

8 Appendix B: The adjoint “representation” and modular

class of a Lie groupoid

Let G be a Lie groupoid (i.e. a differentiable groupoid) over P . We will denote its target

and source maps by α and β, so that the product gh is defined whenever β(g) = α(h). The

groupoid analog of the Lie algebroid “representation” constructed in the previous section

ought to be a representation up to homotopy of G on the normal complex of its Lie algebroid

A. There are many possible definitions of the notion of representation up to homotopy for

a groupoid, and we have not yet found an optimal one, so we will limit ourselves here to a

discussion of the particular case of the adjoint “representation.”

Recall that a representation of G on a vector bundle λ : B → P consists of a mapping

(g, r) 7→ gr from G ×P B = {(g, r) ∈ G × B|β(g) = λ(r)} to B which is linear on fibres of

B and which satisfies the axioms:

(1) λ(gr) = α(g);

(2) (gh)r = g(hr);

(3) er = r when e is an identity element of G.

In the case of Lie algebroids, the distinction between a representation up to homotopy in

our sense and an honest representation is that Das(x) can depend on the entire section

a in the former case, while it depends only on a(x) in the latter. In fact, for the adjoint

“representation”, Das(x) depends only on the 1-jet of a at x, and this carries over to the

groupoid case.

We will denote by J1G the 1-jet prolongation groupoid of the Lie groupoid G over P .

The elements of J1G are the 1-jets of bi-sections of G, i.e., submanifolds of G which project

diffeomorphically to P under the source and target maps.

Unlike the groupoid G itself, J1G has a natural representation on the normal complex

N(A) of the Lie algebroid of G; i.e., J1G has representations on A and TP for which the

anchor ρ is an equivariant map. One way to see this is to consider elements of J1G as special
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subsets of the tangent bundle groupoid TG over TP . TG acts on itself by left translations,

leaving invariant the part TP G of TG lying over the identity section of G. Identifying TP

with a subbundle of TP G and A with the normal bundle TP G/TP allows to obtain the

required representation of J1G.

For example, if G is the pair groupoid P ×P , an element (x, y) of G does not naturally

transport tangent vectors from y to x, but an element of J1G is precisely a vector space

isomorphism from TyP to TxP .

We would like to make the action of J1G descend to G via the natural “forgetful”

projection j : J1G → G. As the example above shows, this is not possible, but it turns out

to be possible “up to homotopy” in the sense that, if g′1 and g′2 are two elements of J1G

lying over the same g ∈ G, then the mappings induced by the g′i between the complexes

Nα(g)A and Nβ(g)A are homotopic. Proving the latter statement may be reduced to the

case where g is an identity element at x ∈ P , in which case the “difference” between g′1 and

g′2 can be considered as a linear map from TxP to the fibre Ax of the Lie algebroid, and this

map (together with the zero map in the other direction) provides the required homotopy

operator.

As a consequence of this representation up to homotopy, the representations of J1G on

A and TP descend to induce honest representations of G on the (generally singular) normal

bundle TP/ρ(A) to the orbits and isotropy bundle ker ρ and on the determinant line bundle

QA. In particular, the latter representation defines an element of first cohomology of G with

values in the multiplicative real numbers. This is the modular class of the groupoid.

In the situation of Example 3.11, where A is an integrable subbundle of TP we may

take G to be the holonomy groupoid of the foliation, in which case we recover the linearized

holonomy representation of the foliation and the modular class of the foliation in groupoid

cohomology discussed in [Ya] and Chapter IV of [M-S].
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