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Abstract

We study Lagrangian subalgebras of a semisimple Lie algebra with respect to
the imaginary part of the Killing form. We show that the variety £ of Lagrangian
subalgebras carries a natural Poisson structure II. We determine the irreducible
components of £, and we show that each irreducible component is a smooth fiber
bundle over a generalized flag variety, and that the fiber is the product of the
real points of a De Concini-Procesi compactification and a compact homogeneous
space. We study some properties of the Poisson structure IT and show that it
contains many interesting Poisson submanifolds.

1 Introduction

Let g be a complex semi-simple Lie algebra and let Im <, > be the imaginary part
of the Killing form <, > of g. We will say that a real subalgebra [ of g is Lagrangian
if dimg [ = dimcg and if Im < z, y >=0for all v,y € L.

In this paper, we study the geometry of the variety £ of Lagrangian subalgebras of
g and show that £ carries a natural Poisson structure II. We show that each irreducible
component of £ is smooth and is a fiber bundle over a generalized flag variety, and

the fiber is the product of the real points of a De Concini-Procesi compactification and
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a compact homogeneous space. We study some properties of the Poisson structure II
and show that it contains many interesting Poisson submanifolds.

The Poisson structure II is defined using the fact that g, regarded as a real Lie
algebra, is the double of a Lie bialgebra structure on a compact real form ¢ of g. The
construction of Il works for any Lie bialgebra, and we present it in the first part of
the paper. In the second part, we study the specific example of £, which we regard as
the most important example since it is closely related to interesting problems in Lie
theory.

We now explain our motivation and give more details of our results.

Let (u,u*) be any Lie bialgebra, let » be its double, and let (, ) be the symmetric

scalar product on o given by

(x+&y+mn) = (z,n) + (y,8), wyeuwneu.

A subalgebra 1 of v is said to be Lagrangian if dimt = dimu and if (a,b) = 0 for all
a,b € . Denote by L(?) the set of all Lagrangian subalgebras of v. It is a subvariety of
the Grassmannian of n-dimensional subspaces of v, where n = dimu. The motivation
for studying £(2) comes from a theorem of Drinfeld [0] on Poisson homogeneous spaces
which we now recall briefly. More details are given in Section P.]].

Let (U, m,) be a Poisson Lie group with (u,u*) as its tangent Lie bialgebra. Recall
that an action of U on a Poisson manifold (M, ) is called Poisson if the action map
U x M — M is a Poisson map. When the action is also transitive, (M, ) is called
a (U, m,)-homogeneous Poisson space. In this case, Drinfeld [D] associated to each
m € M a Lagrangian subalgebra [, of » and showed that 1., = Ad,l,, for every u € U

and m € M. Thus we have a U-equivariant map
P:M— L(2): m— 1, (1)

where U acts on L(d) by the Adjoint action. Drinfeld’s theorem says that the as-
signment that assigns to each (M, 7) the image of the map P in ([) gives a one-to-
one correspondence between the set of U-equivariant isomorphism classes of (U, 7, )-
homogeneous Poisson spaces with connected stabilizer subgroups and the set of U-
orbits in a certain subset £(2)c of L£(d) (see Section B for more details).

We prove the following theorem.

Theorem 1.1 1) There is a Poisson structure 11 on L(d) with respect to which the
Adjoint action of U on L(d) is Poisson;



2) Each U-orbit O in L(d) is a Poisson submanifold and consequently a (U, m,)-
homogeneous Poisson space;

3) For any (U, m,)-homogeneous Poisson space (M, ), the map P in (1) is a Pois-
son map onto the U-orbit of 1, for any m € M.

We introduce the notation of model points in L£(v). For a homogeneous Poisson
space (M, ), let | = P(m) for some m € M. We show [ is a model point if and only
if the map P : M — O, = U - 1 is a local diffeomorphism (and thus a covering map).
When this happens, we regard (O, II) as a model for the Poisson space (M, 7).

The second part of the paper is concerned with the variety £ of Lagrangian subal-
gebras of a semi-simple Lie algebra g with respect to the imaginary part of its Killing
form. Let G be the adjoint group of g. Based on the Karolinsky classification of
Lagrangian subalgebras of g in [Kd], we prove

Theorem 1.2 The irreducible components of L are smooth. FEach irreducible compo-
nent fibers over a generalized flag variety, and its fiber is the product of a homoge-
neous space and the space of real points of a De Concini-Procesi compactification of

the semisimple part of a Levi subgroup of G.

For example, when g = si(2,C), there are two irreducible components: the first
component is the SL(2, C)-orbit through a+n and is isomorphic to CP! (here a consists
of diagonal real trace zero matrices and n strictly upper triangular matrices), and
the second component contains the SL(2, C)-orbits through su(2) and s((2,R) as open
orbits, and the SL(2,C)-orbit through ia + n as the unique closed orbit. The second
component may be identified as RP3.

Let € be a compact real form of g and K C G the connected subgroup with Lie
algebra ¢. Then there is a natural Poisson structure mx on K making (K, m) into a
Poisson Lie group such that the double of its tangent Lie bialgebra is g. By Theorem
[1, each K-orbit in £ is a (K, 7k )-homogeneous Poisson space, and every (K, mg)-
homogeneous Poisson space maps onto a K-orbit in £ by a Poisson map. In particular,
we show that every point in the (unique) irreducible component L, of £ that contains ¢
is a model point. Consequently, a number of interesting (K, 7 )-homogeneous Poisson
spaces are contained in L (possibly up to covering maps) as Poisson submanifolds.
Among these are all (K, 7x)-homogeneous Poisson structures on any K/Kj, where K
is a closed subgroup of K containing a maximal torus of K. For example, K/K; could
be any flag variety G/Q = K/K N @, where @) is a parabolic subgroup of G. We
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remark that it is shown in [Lud] that all (K, 7 )-homogeneous Poisson structures on
K/T, where T is a maximal torus in K, can be obtained from solutions to the Classical
Dynamical Yang-Baxter Equation [E-V]. Some Poisson geometrical properties of such
Poisson structures are also studied in [Lud].

We are motivated to study (K, 7k )-homogeneous Poisson structures because of their
connections to Lie theory. One remarkable example is the so-called Bruhat Poisson
structure 7o, [L-W]] on K/T. It corresponds to the Lagrangian subalgebra t+ n of g,
where g = € + a + n is an Iwasawa decomposition of g, and t = ia is the Lie algebra of
T. The name Bruhat Poisson structure comes from the fact that its symplectic leaves
are exactly the Bruhat cells for a Bruhat decomposition of K/T [L-W]; its Poisson
cohomology is isomorphic to a direct sum of n-cohomology groups with coefficients in
certain principal representations of G [Lud]; its K-invariant Poisson harmonic forms
are exactly the harmonic forms introduced and studied by Kostant in [Kd]. This last
fact is proved in [E-T]], where we also use 74, to construct S'-equivariantly closed forms
on K/T and use them to reinterpret the Kostant-Kumar approach to the Schubert
calculus on K/T [K=K]. One key fact used in [E-I]] is that the Poisson structure ., is
the limit of a family 7, t € (0, +00), of (K, mx)-homogeneous symplectic structures on
K/T. The family 7, corresponds to a continuous curve in £. Thus, we regard £ as a
natural setting for deformation problems for Poisson homogeneous spaces, and for this
reason it is desirable to study its geometry.

The paper is organized as follows.

We start our discussion in Section f with an arbitrary Poisson Lie group (U, my),
its tangent Lie bialgebra (u,u*), and the variety £(2) of Lagrangian subalgebras of its
double o = u < u*. We first review Drinfeld’s theorem on (U, 7, )-homogeneous spaces.
We then give the construction of the Poisson structure IT on £(d) and establish the
properties listed in Theorem [.]].

The rest of the paper is devoted to the Poisson Lie group (K, 7). In B, we review
Karolinsky’s classification of Lagrangian subalgebras, and use it to decompose £ into
a finite disjoint union of submanifolds £(S,€,d). The study of the closure £(S, ¢, d)
is reduced to studying the closure of the variety of real forms of a semisimple Lie
algebra. After some preliminary results in Section [, we identify the closure with the
real points of a De Concini-Procesi compactification in Section [ In Section f, we
apply our results to determine the irreducible components of £ and show they are

smooth. We also study the set of model points in £ and show that every Lie algebra in



the irreducible component £y containing ¢ is a model point. Finally, in Section [], we
study some properties of the Poisson structrure II. In particular, we study the K-orbits
in the irreducible component £, and the (K, g )-homogeneous Poisson spaces arising
from them.

We would like to thank Eugene Karolinsky and Hermann Flaschka for useful con-
versations, and the Banach Center for its hospitality when some of these results were
found. In addition, the first author would like to thank Northwestern University and
the University of Chicago and the second author the Hong Kong University of Science
and Technology for their hospitality during the preparation of the paper.

2 Generalities on Lie bialgebras

2.1 Drinfeld’s theorem

In this section, we review Drinfeld’s theorem on homogeneous spaces of Poisson Lie
groups in [D]. Details on Poisson Lie groups can be found in [L-W] and [K-3] and the
references cited in [K-3.

Let (U, m,) be a Poisson Lie group with tangent Lie bialgebra (u,u*), where u is the

Lie algebra of U and u* its dual space equipped with a Lie algebra structure coming from
the linearization of 7, at the identity element of U. We will use letters x,y, x1, v, - -
to denote elements in u and &,n,&, 7y, -+ for elements in u*. The pairing between
elements in u and in u* will be denoted by (, ).

Let (, ) be the symmetric non-degenerate scalar product on the direct sum vector
space u @ u* defined by

(1 + &, 22+ &) = (11,82) + (22, &) (2)

Then there is a unique Lie bracket on the u@u* such that (, ) is ad-invariant and that
both u and u* are its Lie subalgebras with respect to the natural inclusions. The vector
space u @ u* together with this Lie bracket is called the double Lie algebra of (u,u*)
and we will denote it by o = u < u*. Note that U acts on v by the Adjoint action (by
first mapping U to the adjoint group of v).

Example 2.1 Let u = ¢ be a compact semi-simple Lie algebra. Let g = €c be the
complexification of ¢ with an Iwasawa decomposition g = ¢ 4+ a+n. Let (, ) be twice

the imaginary part of the Killing form of g. Then the pairing between ¢ and a + n via



(, ) gives an identification of ¢ and a+n, and (¢, a +n) becomes a Lie bialgebra whose
double is g. If K is any group with Lie algebra ¢, then there is a Poisson structure 7y
on K making (K, 7k ) into a Poisson Lie group whose tangent Lie bialgebra is (¢, a+n).

This will be our most important example.

Definition 2.2 Let n = dimu. A Lie subalgebra [ of 2 is called Lagrangian if (a, b) = 0
for all a,b € rand if dim 1 = n. The set of all Lagrangian subalgebras of o will be denoted
by L(d).

Both u and u* are Lagrangian. If D is the adjoint group of », then D acts on the
set of Lagrangian subalgebras. In Example P.J], any real form of g is a Lagrangian

subalgebra, as is t + n, where t = ia is the centralizer of a in ¢.

Let (M, 7) be a (U, m,)-homogeneous Poisson space. Recall [ that this means
that U acts on M transitively and that the action map U x M — M is a Poisson
map, where U x M is equipped with the direct product Poisson structure m, & . Let

m € M. Then being (U, 7, )-homogeneous, the Poisson structure 7 on M must satisfy
m(um) = u,m(m) + mumy(u), Yu €U, m € M. (3)

Here u, and m, are respectively the differentials of the maps M — M : m; — umy
and U — M : uy — uym. Thus, 7 is totally determined by its value w(m) € A*(T,,,M)
at m. Let U,, C U be the stabilizer subgroup of U at m with Lie algebra u,,. Identify
TrnM = u/u, so that m(m) € A?(u/u,,). Let I, be the subspace of v defined by

by = {z+&:z€u, €&, =0, In(m) =2+ uy}. (4)
Theorem 2.3 (Drinfeld [D]) 1) 1, is a Lagrangian subalgebra of o for all m € M;
2) For allm e M and u € U,

L, Nu = uy,, (5)
Adyly, = lym, YueU. (6)

3) Let M be a U-homogeneous space. A (U, m,)-homogeneous Poisson structure m
on M is equivalent to a U-equivariant map P : M — L(d) : m +— 1, such that ([J) holds
for allm e M.



Definition 2.4 We will call 1,, the Lagrangian subalgebra of o associated to (M, ) at
the point m. The map P : M — L(v) will be called the Drinfeld map.

Definition 2.5 Given a U-homogeneous space M, we say that a U-equivariant map
M — L(d) : m — 1, has Property I (I for intersection) if () is satisfied for all m € M.

Thus 3) of Theorem P.3 can be rephrased as follows: given a U-homogeneous space
M, a (U,m,)-homogeneous Poisson structure on M is equivalent to a U-equivariant
map M — L(v) with Property I.

Remark 2.6 We explain how a U-equivariant map M — L(d) having Property I gives
a (U, my)-homogeneous Poisson structure on M: pick any m € M. Because [, C 0 is
maximal isotropic (this means that dim1l,, = n and that (a, b) = 0 for all a,b € 1,,)
and because of ([]), an easy linear algebra argument (see also Lemma P.23) shows that
there is a unique element 7(m) € A?(u/u,,) such that (f]) holds. Define a bivector field
7 on M by (B). This is well defined because of ({§). This 7 is Poisson because L, is
Lagrangian. It is (U, m,)-homogeneous because (B) holds by definition.

We now state some consequences of Theorem P.3.

Definition 2.7 A Lagrangian subalgebra of v is said to have Property C (C for closed)
if the connected subgroup U, of U with Lie algebra [ Nu is closed in U.

Note that any [, in the image of the Drinfeld map for any (M, 7) has Property C,
because the connected subgroup of U with Lie algebra I, Nu is the identity connected
component of the stabilizer subgroup of U at m, so it is closed in U. Conversely, if
[ € £(d) has Property C, we have the U-homogeneous space U/U, and the U-equivariant
map

U/U — L(d) : ulU, — Ad,L

It has Property I. More generally, suppose that U; is any closed subgroup of U having
the properties

A) the Lie algebra of Uy is [N u;

B) U, normalizes I,

Then we have the U-equivariant map
U/Uy — L(d) : ulU; — Ad,L.

It has Property I. Thus, by Theorem P.3, we have
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Corollary 2.8 Suppose that | € L(v) has Property C. Then for any closed subgroup Uy
of U having Properties A) and B), there is a (U, m,)-homogeneous Poisson structure

on U/Uy, whose Drinfeld map is given by

P:U/U — L(?): ulU; — Ad,L

Definition 2.9 For a Lagrangian subalgebra | of » with Property C and any sub-
group U of U with the above Properties A) and B), we say that the Poisson manifold
(U/Uy, ) described in Corollary P.§ is determined by .

Denote by L(d)¢ the set of all points in £(2) with Property C. It is clearly invariant
under the Adjoint action of U. For every (U, m,)-homogeneous Poisson space (M, ),
the image of the Drinfeld map M — L(2) is a U-orbit in L(d)¢.

Corollary 2.10 (Drinfeld [D]) The map that assigns to each (M, ) the image of its
Drinfeld map gives a one-to-one correspondence between U -equivariant isomorphism
classes of (U, m,)-homogeneous Poisson spaces with connected stabilizer subgroups and
the set of U-orbits in L(d)c.

We close this section by an example of a Lagrangian subalgebra I that does not

have Property C.

Example 2.11 [Kg] Consider the Lie bialgebra (¢ a + n) in Example B.T. Let U = K
be a compact connected Lie group with Lie algebra ¢ and let T" be the maximal torus of
K with Lie algebra ia. Choose a topological generator ¢ of 7" and let ¢t = exp(X), X € t.
Let I=R-X + (aN(R- X)) +n, where the perpendicular is computed relative to the
Killing form. Then [ is Lagrangian, but if rank(7") > 1 then (M€ is not the Lie algebra
of a closed subgroup of K, so I does not have Property C.

2.2 A “Poisson structure” on L(v)

Let (U,m,) be a Poisson Lie group and let (u,u*) be its tangent Lie bialgebra. Let
? = u < u® be its double Lie algebra equipped with the symmetric scalar product ()
given by (B). Recall that £(d) is the set of Lagrangian subalgebras of » with respect to

(, )



Notation 2.12 We will use Gr(n,?) to denote the Grassmannian of n-dimensional
subspaces of . Since the condition of being closed under Lie bracket and the condition

of being Lagrangian are polynomial conditions, £(?) C Gr(n,?) is an algebraic subset.

The group U acts on Gr(n,?) by the Adjoint action and it leaves L£(d) invariant.
Although £(d) may be singular, all the U-orbits in £(d) are smooth.

In this section, we will show that there is a smooth bi-vector field II on Gr(n,?)
with the property

[T, () = 0

for every 1 € L(v), where [II, II} is the Schouten bracket of IT with itself. Moreover, we
show that II is tangent to every U-orbit O in L(d), so (O,1I) is a Poisson manifold.
In fact, each (O,1I) is a (U, m,)-homogeneous Poisson space. If (M,7) is a (U, my)-
homogeneous Poisson space, we show that the Drinfeld map P : M — O is a Poisson

map, where O is the U-orbit of 1, for any m € M.

Notation 2.13 We identify o* = u* @ u in the obvious way. Denote by # : 2* — o the

isomorphism induced by the nondegenerate pairing (, ) on v. It is given by

H v —o: #(El+x)=0+¢. (7)

For V C o, we let
Ve={fe?: fly =0}

To define the bi-vector field IT on Gr(n, ), we consider the element R € A% defined
by
R(&+a1, L+ x2) = (&, 11) — (&1, 22), Va2 €u §, e

The element R is an example of a classical r-matrix on » [K-5. In particular, the
Schouten bracket [R, R] € A% of R with itself is ad-invariant and is given by

(R, RI(f1, fo, f3) = 2 < #tf1, [# fa, #f3] >

for f; € »*. Denote by x*(Gr(n,?)) the space of k-vector fields on Gr(n,?) (i.e.,
the space of smooth sections of the k-th exterior power of the tangent bundle of
Gr(n,?)). The action by the adjoint group D of » on Gr(n,?) gives a Lie algebra
anti-homomorphism

ko — x'(Gr(n,2))
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whose multi-linear extension from Ao to x*(Gr(n,2)), for any integer k > 1, will also
be denoted by k.
Define the bi-vector field II on Gr(n,0) by

II = —k(R).

Theorem 2.14 For every Lagrangian subalgebra | of o regarded as a point in Gr(n,0),
we have

[II, 1] (1) = 0,
where [I1,11] is the Schouten bracket of 11 with itself.

Proof. Since I = 1x(R) and since « is a Lie algebra anti-homomorphism, we have

I, 1) = —w([R, R)).

Let D, be the stabilizer subgroup of D at [ for the Adjoint action, and let a, be its Lie
algebra. Since II is tangent to the D-orbit D - [ in Gr(n,0), we only need to show that

[IT, IT] = 0 when evaluated on a triple (aq, as, a3) of covectors in T*(D - 1). The map
k:o— Ty(D-1)

gives an identification
K TH(D - 1) — o,

Thus, it suffices to show

[Ra R](fla f2> f3) =0
for f; € 97,4 =1,2,3. Since [ C v, we have #(v7) C #(1°) = 1. It follows that

(R, R|(f1, fa, f3) = 2 < #f1, [# o, #S3] >=0

because [ is a Lagrangian subalgebra.

Q.E.D.

Corollary 2.15 For everyt € L(d) C Gr(n,0), the bivector field I defines a Poisson
structure on the D-orbit D - 1 in Gr(n,?).
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Since [R, R] € A% is ad-invariant, the following bivector field 7_ on D is Poisson:

7T_(d) = %(T’dR — ldR), de D,

where r4 and [; are respectively the differentials of the right and left translations on
D defined by d. Moreover, (D,n_) is a Poisson Lie group and (U, m,) is a Poisson
subgroup of (D, 7_) (see [Lul]).

Proposition 2.16 For every | € L(d), the Poisson manifold (D -, I1) is (D, m_)-
homogeneous.

Proof. Let again D, be the stabilizer subgroup of 1in D. Then D -1 = D/D,. Consider
the bivector field II; on D defined by

1
Hl(d) = §TdR, d € D.

Then 1T = p,I1;, where p : D — D/D, is the natural projection and p, its differential.
It is easy to check that for any di,ds € D, we have

Hl(dldg) = ldlﬂl(dg) + Td27T_(d1).
It follows that (D -1, IT) is a (D, 7_)-homogeneous Poisson space.

Q.E.D.

Consider now the U-orbits in £(v) through a point ( € L(d). We have

Theorem 2.17 At any t € L(d), the bi-vector field I on Gr(n,?) is tangent to the
U-orbit through , so that (U -1, II) is a Poisson submanifold of (D -1, II).

Proof. Regard II as a bivector field on the D-orbit D -, so I1(1) € A*Ty(D - 1). Let
I1(1)# be the linear map

noO#*: THD-1) — TY(D-1):
HO*(@)(8) = 0()(a, B), a,f€ T (D).

It is enough to show that the image of II(1)* is tangent to the U-orbit through .
By the identification, 7(D - 1) — 27, it is enough to show that

k((E+2) JR) € Ti(U -1), Vé+z e,

11



where (£ + ) R € v is defined by
(E+z) JR)(n+y) = R€+x,n+y), Vn+yea™

We compute explicitly. It follows from the definition of R that
R = Zm/\ei S /\20,
i=1
where {ey, ..., e,} is a basis for u and {ny, ...,n,} is its dual basis for u*. It follows that

n

(E+x)dR = ((z,m)e; — (€, e)m) = x —&.

i=1
Hence

A((§ +2) dR) = r(z) — K(E).
But since £ +z € 2}, we have x + € € [, so k(z + &) = 0. Thus

K((E+2) JR) = 2k(x) € Ty(U -1).

Q.E.D.

Corollary 2.18 For every | € L(d), the Poisson manifold (U -, I1) is a (U, my)-

homogeneous Poisson space.

Proof. This follows from Proposition R.1¢ because (U, m,) is a Poisson subgroup of
(D,7_) and (U -1, II) is a Poisson submanifold of (D -1, II).

Q.E.D.

Remark 2.19 Let U* be the connected and simply connected group with Lie algebra
u*. Then for any Lagrangian subalgebra [ € L(d), the orbit U* - I is also a Poisson
submanifold of (D - [,II). Indeed, the roles of u and u* are symmetric in the definition
of D and of £(d), but the R-matrix for the Lie bialgebra (u*,u) differs from that for
(u,u*) by a minus sign. Consequently, if we denote by 7« the Poisosn structure on
U* such that (U*, m,+) is the dual Poisson Lie group of (U, 7, ), then every U*-orbit in

L(v) is a (U*, —my~ )-homogeneous Poisson space.
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We now look at the Drinfeld map P : U -t — L(d) for the (U, m,)-homogeneous
Poisson space (U - I,m) (see Definition 7).

Theorem 2.20 For any! € L(d), the Lagrangian subalgebra of o associated to (U -1, 11)
at 118
TO) = w + (utu) Ny

where w, is the normalizer subalgebra of 1 in u, and w = {& € u* : £]y, = 0}.

Proof. Denote by [ the Lagrangian subalgebra associated to (U -1, II) at 1. We need
to show that [ = T'(1). By definition,

( ={o+&: reu Ecu, € AT =z + ).
Let £ € u. Since the inclusion
(U -1, 1) — (D -1, )

is a Poisson map, it suffices to compute ((£*)~(¢ + x)) JTI(1) for any = € u such that
&+ 2 €00, where I1(1) is regarded as a bi-vector at 1 € D -, and (k)™ : T;(D 1) — of
is the isomorphism induced by x : o — Ti(D - 1). In the proof of Theorem P.17, we
showed that (k*)71(¢ + ) JTI(1) = k(x). As a result, we see that

/

I = {x+¢&: £+ 2 €9 forsomez; = xmod(u)}

= u + #(27).

Now the inclusions u, C 9, and [ C 9, induce inclusions #(v°) C u + ui- and #(2¢) C |,
so #(7) C (u+ui) Nt Hence,

w A+ #0) Cu + (wt+u)Ni=T().

On the other hand, it is obvious that T(I) is isotropic, so its dimension is at most n.

Since [ has dimension n, we must have [ = T'(I).

Q.E.D.

Remark 2.21 The map 7 : L(2) — L(d) is not continuous in general. For exam-
ple, consider the Lie bialgebra in Example B for g = s((3,C). Choose H € a

with the property that both simple roots are positive on H and consider the curve
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v = exp(adiy ) (sl(3,R)) in £ = L(g). Let 7o be the limit of 7, as t — oo in L. Clearly,
¢ 1s isomorphic to si(3,R) for ¢ # oo, and one can show 7., = h” 4+ n, where h = a +t
is a Cartan subalgebra of s((3,C), and 7 is an anti-linear automorphism such that
dim(h™Nt) = 1. We will show later that when [ is a real form of a complex semi-simple
Lie algebra, then [ is its own normalizer. It follows that T'(y;) = 7, for all t < co. On
the other hand, it is easy to check that T'(7.) = t+ n. It follows that 7" is not contin-
uous. This example can be generalized to any real form corresponding to a nontrivial

diagram automorphism (see Remark p.f for a generalization of this example).

Assume now that (M, 7) is an arbitrary (U, m,)-homogeneous Poisson space. Con-
sider the Drinfeld map
P: M— L(3): m— L.

By Theorem B3, P is a submersion of M onto the U-orbit O = U - 1, in L(d) for any
m e M.

Theorem 2.22 The Drinfeld map
P: (M, m)— (O, 1I)
18 a Poisson map.

Proof. Fix m € M. Let ( = ,,. Then O = U - 1. Since both (M, 7) and (O,1I) are

(U, my)-homogeneous, it is enough to show that
P.m(m) = TI(1).

Let U,, and U, be respectively the stabilizer subgroup of U at m and the normalizer
subgroup of [ in U. Their Lie algebras are respectively [ Nu and w. Since P is U-
equivariant, we have U, C U,. Identify

M =U/U,, O=U/U.
Then the map P becomes
p:U/U, — U/U : uU,, — uU,

and we have
w(m) € /\2(u/([ﬁu)), (1) € /\2(u/u[).
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Thus we only need to show that m(m) goes to II(I) under the map
Jru/(tNu) — w/w: 4+ 1Nur— x4+ u.

But this follows from a general linear algebra fact which we state as a lemma below.

Q.E.D.

Lemma 2.23 Let V' be an n-dimensional vector space and let V* be its dual space.

On the direct sum vector space V @ V*, consider the symmetric product (, ) defined by
(r+&y+m = (2,0 + w8, wyeV, {EneVr
1) Let Vi be any subspace of V.. For X € N2(V/V}), define
Wy=A{ae+&:2eV, eV =0, =+ 1.}

Then X\ — W)y, is a one-to-one correspondence between elements in A*(V/Vy) and maz-
imal isotropic subspaces W of V-&® V* such that W NV = V.
2) Let Vi be another subspace of V' such that Vo C Vi. Let

j:V/Vo—V/Vitv+Vyr—ov4+ W)

be the natural projection. Let N\g € N2(V/Vy) and \y € N2(V/V1). Then j(Xo) = A1 if
and only if

W)\1 =W + (V D ‘/1J_) N W)\O? (8)
where Vit = {£ € V* 1 €|y, = 0}.

Proof. 1) Given A € A*(V/1}), it is easy to see that Wy is maximal isotropic with
respect to (, ) and that W,\NV = V4. Conversely, if W is a maximal isotropic subspace
of V@& V* such that W NV =V}, then

{£eV*: x+ &€ Wiorsomezr € V} = VOL ={{eV": ¢y, =0}
Define

f: (Vo) —V/Vy: é—ax+V
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where ¢ € (V/V)* 2 Vit and z € V is such that x + ¢ € W. Then f is well defined
and is skew-symmetric. Thus there exists A € A%(V/V;) such that f(€) = & I for all
£ € (V/Vy)*. It is then easy to check that W = W,.

2) One way to prove this fact is to take a basis for Vj, extend it first to a basis for
V1 and then extend it further to a basis of V. One can then write down all the spaces

in (§) using these basis vectors and compare them. We omit the details.
Q.E.D.

As a special case of Theorem R.23, we have

Corollary 2.24 For any ! € L(d) with Property C and any (U, ,)-homogeneous space
(U/Uy, ) determined by | (see Definitions 2.7 and [2.9), the map

P: (U/Uy, ) — (U-,1I): ulU; — Ad,! 9)

1s Poisson.

2.3 Model points

Definition 2.25 We say that a Lagrangian subalgebra [ is a model point (in L(d)) if

[N u = u, where u, is the normalizer subalgebra of [ in u.
It is easy to see that the set of model points in £(v) is invariant under the U-action.

Every model point has Property C, for if [ € £(0d) is a model point, the connected
subgroup U, of U with Lie algebra [ N u is the identity component of the stabilizer
subgroup U, of [in U, so U{ is closed. Consequently, [ determines a (U, 7, )-homogeneous
Poisson structure on any U/U;, where U; is a closed subgroup of U, the normalizer
subgroup of [ in U, and has the same Lie algebra N u = w (see Corollary P-§ and
Definition B.9). In this case, the map P in (f) is a local diffeomorphism (in addition to
being a Poisson map), and is thus a covering map. Therefore, the orbit U - I, together
with the Poisson structure II, is a model (up to local diffeomorphism) of any (U, m,)-
homogeneous Poisson space (U/U;, m) determined by . This is the reason we call [ a

model point in L(d).

Observe also that [ is a model point if and only if 7'(1) = r.
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Example 2.26 Consider the Lie bialgebra (¢, a +n) in Example B.1. The Lagrangian
subalgebra I = a + n is not a model point because [ N ¢ = 0 while the normalizer
subalgebra of [in ¢ is t = ia. However, T'() = t+ n is a model point, as is any real form
of g. In this case, we will show that every point in a certain irreducible component L

of L(?) is a model point.

When [is a model point and when its normalizer subgroup U, in U is not connected,
the (U, m,)-homogeneous Poisson spaces (U/Uy, ) determined by [ might have non-

trivial symmetries, as is shown in the following proposition.

Proposition 2.27 Let [ be a model point and let (U/Uy, ) be any (U, w,)-homogeneous

Poisson space determined by (. Then all covering transformations for the covering map
P: (U/U,7) — (U/U,T) : wU; — ul, (10)
are Poisson isometries for (U/Uy, 7).

Proof. Let f: U/U; — U/U; be a covering transformation, so Po f = f. We know

that f is smooth because it must be of the form
f(UUl) = UUQUl

for some ug in the normalizer subgroup of U; in U,. Let z € U/U; be arbitrary. We
need to show that f.m(x) = w(f(x)). Since P is a local diffeomorphism, it is enough to
show that f.m(x) and 7(f(z)) have the same image under P. Now since P is a Poisson

map and since P o f = f, we have

Pofer(x) = (Poflr(x) = Pr(x) = II(P(x))
Pr(f(z)) = I(P(f(x))) = I(P(x)).

Thus P, f.m(x) = Pur(f(x)), and f is a Poisson map.
Q.E.D.

In particular, in the case when U; = U is the identity connected component of U,
the group U, /U, acts on U/U, as symmetries for (U, 7, )-homogeneous Poisson structure
on U/U, determined by L.
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3 Lagrangian subalgebras of

In the remainder of the paper, we will concentrate on the Lie bialgebra (¢, a 4+ n) as
described in Example R.1. We first fix more notation.

Throughout the rest of the paper, ¢ will be a compact semi-simple Lie algebra and
g = tc its complexification. The Killing form of g will be denoted by <, >. Let K be
a connected Lie group with Lie algebra ¢ and let 7' C K be a maximal subgroup with
Lie algebra t. Let h = t¢ C g be the complexification of t. Let 3 be the set of roots of

g with respect to b with the root decomposition

g=5+ ) g

aEX

Let 3, be a choice of positive roots, and let S(X, ) be the set of simple roots in ¥,. We
will also say a > 0 for a € ¥,. Set a = it and let n be the complex subspace spanned
by all the positive root vectors. Then we can identify ¢ with a +n (here n is regarded
as a real Lie subalgebra of g) through the pairing defined by twice the imaginary part
of the Killing form <, >. This way, (¢ a + n) becomes a Lie bialgebra whose double
is g = ¢+ a + n (Iwasawa Decomposition of g). Let mx be the Poisson structure on K
such that (K, mk) is a Poisson Lie group with tangent Lie bialgebra (¢ a 4+ n). We can
describe g explicitly as follows: Let 6 be the complex conjugation of g defined by ¢.
Let <, >y be the Hermitian positive definite inner product on g given by

Lz, Yy>g= — <L x, 0y> x,y€q.
For each a € ¥, choose E, € g, such that
<L E,, E, >p= 1.
Let E_, = —0(FE,) € g_, so that < E,, E_, >=1. Set
X, =E,—FE_, = E,+0(E,), Yo = i(Eo+ E_,) = iE, +0(iE,).

Then
t =t + spang{X,, Yo € X, }.

The Poisson bivector field on K is given by
7TK(]€) = rA — lkA, ke K,
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where
1

A:4

> XoAY, € EAL

aEn
Recall that a real subalgebra [ of g is Lagrangian if Im < x, y >=0 for all x,y € |
and if dimg [ = dim¢ g. These Lagrangian subalgebras correspond to (K, mx) Poisson-
homogeneous spaces by Drinfeld’s theorem. The set of all Lagrangian subalgebras of
g will be denoted by L. It is an algebraic subset of the Grassmannian Gr(n,g) of
n-dimensional subspaces of g (regarded as a 2n-dimensional real vector space).

In this section, we will decompose L into a finite union of manifolds.

3.1 Karolinsky’s classification

E. Karolinsky [Kd| has determined all Lagrangian subalgebras I of g. To describe his
result, we need some notation. Let S C S(X,) be a subset of the set of simple roots,

and let [S] be the set of roots in the linear span of S. Consider

mg =bh D (@ae[S}go‘)’ s = G90l62+—[51%‘

and

pS :mS+nS7

so that pg is a parabolic subalgebra of type S, ng is its nilradical, and mg is a Levi
factor. Let mg, = [mg, ms] be the (semi-simple) derived algebra of mg. The center of

mg i8S
is={H €bh: a;(H) =0, Vo; € S}, (11)

which is also the orthogonal complement of mg, in mg with respect to the Killing form
of g restricted to mg. Thus the restriction of the Killing form to ;4 is nondegenerate,
and we may consider Lagrangian subspaces of 35 (regarded as a real vector space) with

respect to the restriction to 3 of the imaginary part of the Killing form.

Now for any subset S of the set of simple roots, a Lagrangian subspace V' of 34, and

a real form my, of mg;,, set
(S, V,7) =mg, @V ®ng.
It is easy to see that it is a Lagrangian subalgebra of g.
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Definition 3.1 We will call (S, V, 1) the standard Lagrangian subalgebra associated
to (S,V,T).

Theorem 3.2 [Kd/ Every Lagrangian subalgebra of g is of the form Ady(1(S,V, 1)) for
some k € K.

Note that the nilradical of Ady(1(S,V, 7)) is Adg(ns). Denote by Py the connected
subgroup of G with Lie algebra p.

Proposition 3.3 Let
(= Adi(1(S,V, 7)) = Adg, (1(S1, V1, 71))

be a Lagrangian subalgebra. Then S = S,, V. = Vi, k='k; € P, and 7 is conjugate to
7 in KN Ps.

Proof. We have Adg-1x, (1(S1, Vi, 7)) = (S, V, 7). Using the fact that conjugate al-
gebras have conjugate nilradicals, it follows easily that Adg-1;,ns, = ns. From the
definition of ng, it follows that S = S;. Moreover, since pg is the perpendicular com-
plement of ng, it follows that Adg-1;, normalizes pg. Since a parabolic subgroup is the
normalizer of its nilradical, k~'k; € Ps;. The remaining claims follow from the facts

that ng is an ideal and ;4 is central in mg.
Q.E.D.

In the following, we study separately the pieces that come into the Karolinsky

classification.

3.2 Lagrangian subspaces of ;

For a subset S of the set of simple roots, let 35 be given as in ([[T]). Since the Killing
form is nondegenerate on 3., its imaginary part B is a nondegenerate symmetric bilinear
form of index (z, z) on 34, now regarded as a 2z-dimensional real vector space. Denote

by L, the variety of Lagrangian subspaces of 35 with respect to B.
Proposition 3.4 The variety

ﬁzs = Ue:il[’as,e

s a smooth manifold of dimension @ with two connected components L, € = +1.

We call L, the component containing 35 Nt and call L the other one. Each

3S,—1
component 1s Zariski closed.
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Proof. The first assertion follows from the identification of £, with O(n)xO(n)/O(n)
given in [Pq], Theorem 14.10. The algebraicity of each of the components can be
derived from the discussion of charts in [Pd] following Theorem 14.10, or by noting the

corresponding fact for the space L, . of complex linear Lagrangian subspaces of the

3s,c
complexification 34, with respect to the nondegenerate Killing form (see [A-C-G-HJ,
Exercise B, pp. 102-103), and verifying the easy fact that £, is the set of real points

of L

3s,c*

Q.E.D.

We remark that two Lagrangian subspaces V' and V' lie in the same component
if and only if dim(V N V') = dim(V)mod 2. This is proved in the complex case in
[A-C-G-HJ, and the real case can be deduced from the complex case. It follows that

tN s and a N 34 lie in the same component if and only if dim(;4) is even.

3.3 Real forms of 4

A real form of g is clearly a Lagrangian subalgebra of g. Denote by R the set of all real
forms of g. We will recall some facts about R in this section (see [O-V]] or [A-B-V]] for

more details.)

Let Aut, be the group of complex linear automorphisms of g. Its identity component
is the adjoint group G = Inty of interior automorphisms of g. Let Autpy) be the
automorphism group of the Dynkin diagram of g. It is well-known that there is a split

short exact sequence
0 — Int, — Aut, 2, Autp — 0.

Let 6 be the Cartan involution of g defined by the compact real form ¢. We will
identify a real form gy of g with the complex conjugation 7 on g such that g; = g¢".
Define a map

Y : R — Autpy,

as follows:

U(r) = o(18) = o(07).
To see that ¢(70) = ¢(07), choose g € Int, be such that 7, = g7g~! commutes with 6
(see [Hd|, Theorem II1.7.1, and the following remark). Then we get

o(70) = ¢(g7'1190) = d(1198) = ¢(1106~" gb) = ¢(710)
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and similarly, ¢(67) = ¢(0m). Since 1 commutes with 6, we have ¢(70) = ¢(07). In
particular, we see that ¢(7) is an involution.

Conversely, let d be an involutory automorphism of the Dynkin diagram D(g).
Then d extends to a complex linear involution 7, of g as follows: we can choose 74 €
Aut, preserving h and permuting the fixed simple root vectors E,,a € S(X,) (see for
example the proof of Proposition 2.7 in [[A-B-V]). Then v4(E,) = E4o and v4(F_,) =
E_4o. If H, = [E,, E_,], it follows that v4(H,) = Hg., and also v, commutes with
the Cartan involution on generators, and therefore on all of g.

Set

L(g,d) = ¢v™(d).
Then
R = UysL(g,d)

is a finite disjoint union, where d runs over the set of all involutory diagram automor-
phisms of g.
Let 74 = 74 = 074. Then 7, € L(g,d). To describe all the elements in L(g, d),

consider
Gi={gelnty: (972)° =1} = {g € Inty : T(g) =g~ '}.

If g € G™™, then g7, is a real form of g and ¥(g74) = d, so g4 € L(g,d). Conversely, if
7 € L(g,d), then ¢(70) = ¢(74), so T = g7y for some g € Int, = ker(¢). But 72 =1, so

g € G7™. Hence every real form 7 in L(g, d) is of the form 7 = g7, for some g € G™™.

Lemma 3.5 Fvery real form of g is its own normalizer in g.

Proof. The proof follows easily by considering the +1 eigenspace decomposition g =
g  Dg " of 7.

Q.E.D.

Lemma 3.6 L(g,d) is a smooth submanifold of Gr(n,g) of dimension dimc g.

Proof. Note that Int, acts on L(g,d) by the action g - 7 = grg~'. The orbits of
the larger group Aut, on the set of all real forms are the equivalence classes of real
forms, and there are only finitely many of them (see [O-V])). Since Int, is the identity

connected component of Aut, and Aut, has only finitely many components, it follows
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that Int, has only finitely many orbits on the set of all real forms. Since L(g,d) is a
subset of the set of all real forms, it follows that £(g, d) is a finite union of Int, orbits.
Now the action of Int, on Gr(n,g) by (g,!) — ¢(I) is smooth and L(g,d) C Gr(n,g) is
a disjoint union of finitely many Intg-orbits, it follows that each Int,-orbit in L(g, d) is
a smooth submanifold of Gr(n,g). Moreover, by Lemma B3, all orbits have the same

dimension. Thus, L(g,d) is a smooth submanifold of Gr(n,g) of dimension dim¢ g.
Q.E.D.

We will show later that the closure of L£(g,d) in £ is a smooth, compact and con-

nected submanifold of Gr(n, g).

3.4 Model points

Lemma 3.7 The normalizer of the Lagrangian subalgebra Ady(1(S,V,T)) in g is

Adg(x(S, 7)) := Adk(mgyl D 35 Dng).

Proof. It suffices to prove the statement when k = e, the identity element of K. It
is clear that v(S,7) normalizes (S, V, 7). Conversely, if X € g normalizes (S, V,T),
it normalizes its nilradical ng, so it normalizes the perpendicular py of ng. Since pg is
parabolic, it equals its own normalizer, so X € pg. Write X = X + X5, with X; € mg
and X, € ng. Then X normalizes m{,. It follows from Lemma B.H that X, € mg,+ 3

Q.E.D.

Proposition 3.8 The Lagrangian subalgebra Ady(1(S,V, 7)) is a model point if and
only if V=735 Nt.

Proof. Since the set of model points is K-invariant, it suffices to prove the proposition
when k£ = e. Let Ny(i(S,V,7) be the normalizer of (S, V,7) in ¢. By the previous

lemma, the quotient
Ne(i(S, Vo) en (S, V1) = (5: N/ (V Ny,

since 34 N € =34 N t. The proposition now follows from the definition of model points.
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Q.E.D.

Remark 3.9 In fact, essentially the same argument shows that if 1 = Ady(1(S,V, 7)),
then T'(1) = Ad(1(S,35 N, 7)) (see Theorem P.2Q for the definition of 7'(1)). It follows
that T(T'(1)) = T(1) for t € L. For a general Lie bialgebra, "o T # T. Indeed,
for a Lie algebra u, we can form a Lie bialgebra (u,u*), where u* has the abelian Lie
algebra structure. Its double is the semi-direct product Lie algebra structure on u + u*
defined by the co-adjoint action of u on u*. Consider the case when u is the three
dimensional Heisenberg algebra with basis {X,Y, Z} with Z central and [X,Y] = Z,
and let fx, fy, fz be the dual basis. Let [ be the Lagrangian subalgebra spanned by
X, fy and fz. Then T(1) is spanned by X, Z and fy while T(7T'(1)) = u.

Corollary 3.10 G preserves the set of model points.

Proof. It suffices to consider model points 1(S,35 Nt, 7). Let Py, Mg and Ng be
the connected Lie groups with Lie algebra pg, mg and ng respectively. Since K acts
transitively on G/Ps and preserves the set of model points, it suffices to prove that
Ad,(1(S, 35Nt 7)) is a model point for p € Ps. Using the Levi decomposition Py = MyNj
we write p = mn. Since Ad,I(S, ;s Nt, 7) = (5,35 Nt,7), it suffices to prove that Ad,,

preserves model points in pg, which follows because M acts trivially on ;.

Q.E.D.

Remark 3.11 In general, the adjoint group of the double Lie algebra does not preserve
the set of model points. Indeed, let g be a semisimple Lie algebra with triangular
decomposition g = n+h+n_, Borel subalgebra b, = h+n and opposite Borel b_ = h+n_.
Then the Lie algebra o = g @ h is the double of the pair (b,,b_) with embeddings
iy by —ogiven by ig(H +2) = (H+2,£H) with H € h, x €norn_. Let n € Ng(t)
be a representative for the long element of the Weyl group. Then although b, is clearly

a model point, Ad,(b,) is not a model point.
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3.5 Lagrangian data

Definition 3.12 A triple (S, ¢, d) is called Lagrangian datum if S C S(X,) is a subset
of the set of simple roots, ¢ = 1, and d is a diagram automorphism for the Dynkin
diagram D(mg,) of mg,. If 1 = Adg((S,V,7)), k € K, is a Lagrangian subalgebra,
then I has associated Lagrangian data ®(1) = (S,¢,d), where ¢ = 1 if V' lies in the
same connected component of £, as ;s Nt and is —1 otherwise, and d is the diagram
automorphism of mg, defined by 7. It follows from Proposition B.3 that the triple
(S, €,d) is determined by I.

Given Lagrangian datum (S, ¢, d), we let
L(S,e,d)={t: &(1) = (S,¢,d)}.

Then
L = U(S,Qd)E(S, E,d).

Note that this is a finite disjoint union.

Proposition 3.13 For each Lagrangian datum (S,e,d), L(S,e,d) is a smooth sub-

manifold of the Grassmannian Gr(n,g) of dimension dim(e) + @, and it fibers over

G/ Ps with the fiber being the product of L;, —and L(ms,,d).
Proof. Consider the subset
‘CPS(S> €, d) = {[(57 V> 7)}

of all standard Lagrangian subalgebras (see Definition B.T]) attached to the Lagrangian
datum (S,¢,d). It can be identified with L(ms,,d) X L;,  as a submanifold of the
Grassmannian Gr(n,g). Indeed, L(mg,,d) is a submanifold of the Grassmannian of
Gr(m,mg,) where m = dim(msg,), £;5, is a submanifold of Gr(z,;5), and the direct
sum map Gr(m, mg,) X Gr(z,35) — Gr(n,g), (U, V) — UBV @ny is a closed embedding.

We consider the multiplication map
m: K Xgnaps Lp (S, €,d) — L(S,€,d), m(k,1) = Ady(1)

The fiber product is a smooth manifold since it is a fiber bundle over K/KNPs = G/ Ps
with smooth fiber Ly (S,¢,d). The map m is onto by the Karolinsky classification
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Theorem B.9, and it is clearly smooth and proper. We will show that it is an immersion,
and it will follow that £(S,¢€,d) is a smooth submanifold of Gr(n, g).

The fact that m is injective follows from Proposition B.3. In order to show that the
tangent map m, is injective, it suffices to show m, is injective at points of the form
(e,1(S,V, 7)) by K-equivariance. Recall that the tangent space at a plane U to the
Grassmannian Gr(n, V') of n-planes in a space V' can be identified with Hom(U, V/U).
Using this identification, the tangent space to the fiber product K Xgnp, Gr(n,ps)
at ((S,V,7) is the quotient of ¢ & Hom(1(S,V,7),ps/1(S,V, 7)) by the relation (X —
YY)+ Z) ~ (X,Z), where X € &, Y € eNpg, £(Y) is the induced vector field
at (S,V,7), and Z € Hom(1(S,V,7),ps/U(S,V,T)). Observe that for Z to be tan-
gent to the fiber Ly (S, ¢, d), we must have Z : ng — 0. When we identify the tan-
gent space to Gr(n,g) at (S, V,7) with Hom(((S,V,7),a/1(S,V, 7)), the tangent map
is m.(X,Z) = &£(X) + Z, where £(X) is the induced vector field. Now the claim that
m, is injective follows since for any X ¢ ¢ Npg, £(X) - ng & (S, V, 7). To verify this
last assertion, let X € €\t Npg, and choose a maximal root o ¢ [S] such that the pro-
jection p_,(X) of X to the g_, root space is nonzero. Then [X, g,] = [p—a(X),8.] +Y
where K Y)Y >=< Y, [p_a(X), g4] >= 0. Since [p_a(X), ga] = [8a,0_a), Which is a
2-dimensional real vector space on which the imaginary part of the Killing form is not
isotropic, it follows that [X g,] is not isotropic. Thus, [X,g,] is not contained in any
Lagrangian subalgebra.

The dimension statement follows from Proposition B.4 and Lemma B.G.

Q.E.D.

Remark 3.14 Note that G preserves L(S,¢€,d). The proof is similar to that of Corol-

lary B.I0.

Example 3.15 When S is the set of all simple roots, we have mg = g and € can only
be 1, so L(S,€,d) = L(g,d).

Q.E.D.

Example 3.16 For g = s(2,C), there are three £(S,¢,d)’s. First, £L(S(X), 1,id) is a
disjoint union of the two symmetric spaces SO(3,C)/SO(3,R) and SO(3,C)/S0O(2,1),
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where the first piece consists of compact real forms and the second piece consists of real
forms isomorphic to so(2,1). £(0,1,id) is the SL(2,C) orbit of t+ n and is isomorphic
to CPL. £(0,—1,id) is also isomorphic to CP!, and is the SL(2, C) orbit through a+n.
As we will show in Section [, £(0,1,id) C £(S(X,),1,id). This last closure can be
identified with RP3, the projectivization of 2 x 2 Hermitian matrices.

In case g = sl(3), there are eight £(S,¢,d)’s. L(S(X4),1,id) is a union of compo-

nents consisting of the real forms isomorphic to su(p,3 — p). It is a union of symmetric

spaces. Let ¢ be the nontrivial involution of the Dynkin diagram of s((3). Then
L(S(34),1,0) consists of real forms isomorphic to sl(3,R). There are four pieces of
the form L(«;,+1,id) corresponding to the two choices of «; and the two choices of
+1. Each of these pieces fibers over G/P; for a parabolic P; with the fiber being a
symmetric space for SL(2,C). The final two components are of the form L£((, +1,id).
These are bundles over the full flag variety G/B with the fiber being a component of
the variety of Lagrangian subspaces of R* with respect to a quadratic form of index
(2,2). The only nontrivial inclusions are £(«;, 1,id) C L(S(X4),1,1id).

Because of the fiber bundle decomposition of £(S,¢€,d) and the fact that the base
and L, are compact, the study of the closure £(S, ¢, d) can be reduced to the study

of L(g, d) for g semisimple. In the following Sections f] and [, we show that £(g, d) is a
smooth connected submanifold of Gr(n,g). We will also determine its decomposition
into G-orbits. These results will be applied in Section { to show that m is a
smooth submanifold of Gr(n, g).

4 Extended signatures and the corresponding La-
grangian subalgebras of

In this section, we give examples of Lagrangian subalgebras of g that lie in £(g, d). They

are obtained by considering extended signatures of roots of g as slightly generalized from

[O-3. They will be used in Section [j to describe G-orbits in L(g, d).

4.1 Extended signatures

Recall that
S(2+> = {Oél,Oég,...,Oél}
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is the set of simple roots in ¥, . Let d be an involutory automorphism of the Dynkin

diagram of g.

Definition 4.1 An extended d-signature of the root system ¥ is a map ¢ : ¥ —
{—1,0,1} satisfying

o(a) =[[o(es)™, where a = | > m (12)

i=1,...,1

o(d(a;)) = o(ay). (13)
We say that o is a d-signature if o(a) # 0 for any a € 3.

An extended d-signature o is determined by its value on the simple roots. If o is

an extended d-signature, let

supp(c) = {a € ¥ : o(a) # 0}.

Then S, := S(3;) Nsupp(o) is d-invariant. If we use [S,]| to denote the set of roots

that are in the linear span of S,, then

supp(a) = [5].

Let

5071 = {ai € S(Z+) O'(Oéi) = —1}, [)1 = Z hl € a,

;€551

where {BZ :1=1,..,l} C ais the set of fundamental coweights corresponding to the

simple roots, namely «;(h;) = ¢;; for i,j =1, ...,{. Then

0, a ¢ S,
ole) = { (—1)°PD, ae {Scj. (1)

Conversely, for any d-invariant subset S of S(¥,) and any d-invariant subset S; of S,

there is an extended d-signature o such that S =S, and S; = S, 1.

For an extended d-signature o, let

mazmsazf)@(@ ga>,na=nsa= EB 9as Po = Ps, = My D1y

(XE[SU} a62+_[SU]
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as in the notation in Section B.I]. Also let 3, = 35, be the center of m,, and let

Ny — @ Jas my1 — [moamo]-
ace—34,0(a)=0

Then o determines a complex linear involution a, of m, by
aoly =1d, ayly, = o) -id,
where « € supp(o). In other words,

a, = Ad

exp(rifi1)"

Let 7, = 40 be the conjugate linear involution of g discussed in Section B.3. Then it
is routine to check that 75, := a,74 is a conjugate linear involution of m, so the Lie

algebra

is a real form of m,. Set

[d,cr = Ed,cr + ns.

It is easy to check that I;, is a Lagrangian subalgebra of g.

Since S, is d-invariant, m, is invariant under v4. Regarded as an complex automor-
phism of m, 1, 74 defines an automorphism of the Dynkin diagram of m,; which is just
d|s,. Let 37 be the fixed point set of 7, restricted to 3,. Set € = 1 if 37¢ lies in the same
component as 3, Nt and € = —1 otherwise. Then, since a, is an inner automorphism
of m, 1, we know that 5, € L£(S,,€,d|s, ).

Example 4.2 When o(«) = 0 for all o, we have I, = h™ +n. On the other hand, o

is a d-signature if and only if 15, is a real form of g. In this case, l;, € L(g,d).

We choose H € h such that a(H) > 0 if a is a root of n, and a(H) = 0 if a is a
root of m,;. Choose a d-signature ¢’ such that ¢'(a) = o(«) if o(a)) # 0. Then by

writing down generators of I;,/, one can check that
tl}inoo eXp(tH)[d70/ = ldo,

where the limit takes place in the Grassmannian Gr(n, g). It follows that (4, € L(g, d).
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4.2 Extended signatures and real forms

To relate real forms to signatures, we recall some standard results concerning real forms
(see [R-B-V]|, Chapter Two). Recall

GTa={reqG: 7yz)=a""}.

Note that GG acts on G~ by
grx = grry(g™t)

It is routine to check that if 7 = Ad,7, is an involution, then

AdgAdgchAdg* 1= Adg*de

Lemma 4.3 If x € G7™, there exists g € G such that gxx =1t € T is of order 2.

Proof. Since x € G, Ad,7, is an involution. By conjugating in GG, we may assume
Ad, 74 and 6 commute (see [Hd], Theorem I11.7.1 and following remark). It follows that
x € K. By [Kd], there exists u € K such that uxz € 77 so uxx € T since 6 acts

trivially on 7. But uxx € G7™, so uxx = (u*x)~', and hence u * x is of order two.

Q.E.D.

Lemma 4.4 Any € L(g,d) is G-conjugate to a real form lq, for some d-signature o.

Proof. We know any real form in £(g,d) is of of the form Ad,r; with ¢ € G™™, so
by the previous lemma, by (G-conjugation it can be put in the form Ad;7,; for some
t € T of order 2. Since t is of order 2, the eigenvalue oy(«) of ¢t on g, is +1. It is easy
to check that o, is a signature, and since ¢ € 174, it is a d-signature. Hence our real

form is conjugate to o;7y.

Q.E.D.
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4.3 The G-orbit of 1,

Let o be an extended d-signature o with supp(c) = [S,]. We will use Lg,, M,, P,
and NN, to denote the connected subgroups of G with Lie algebras I4,, my,p, and n,

respectively. Recall also that 3, = 35, .

Lemma 4.5
dimR G- [dﬁ = dlm(c g— dlm(c 3o
Proof. This follows from Lemma [.7.

Q.E.D.

Lemma 4.6 Let o be an extended d-signature with d trivial. Then G-lj, = K-A-14,.

Proof. Since K acts transitively on G/ P, and P, has Levi decomposition P, = M, N,,
we can write g = kmn, k € K,m € M,,n € N,. For any real reductive group G and the
fixed point subgroup Gy of an involution, there is a Cartan decomposition G = K AG,
where A is chosen so that its Lie algebra a has maximal intersection with g=®~?, the
subspace of g on which ¢ and 6 act as —1 (see [Rd], Theorem 10). When d is trivial,
any real form Gg in L(g,d) contains a Cartan subalgebra of ¢, so up to K-conjugacy
we can choose a = a = it s0 we can take A = A, the Iwasawa factor. By the Cartan
decomposition applied to the group M, , we can write m = k,,ax, with k,,, € M,NK, a €
A,z € MY. Thus, we can write g = kjau, with k; € K,a € A,u € Lg,.

Q.E.D.

5 L(s,d) as the real part of the De Concini-Procesi
compactification Z; of ¢

In this section, we identify the variety L(g,d) with the real points of a De Concini-

Procesi compactification Z; of the group G. Since Z; is known to be smooth, it follows

that £(g,d) is a manifold. We also show that L(g, d) is connected and determine the

G-orbits in L(g, d).
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5.1 The complexification of g

Regard g as a real Lie algebra and denote its complex structure by Jy € Endg(g). We
may identify its complexification gc with (g @ g, Jo ® Jp) via the map

gc — (@8, Jo® Jo): 41y — (v + Joy, 0(x) + Job(y)), =,y € s
Under this identification, the complex conjugation operator 7 on gc becomes
T(X,Y) = (0(Y),0(X)),
with its set of real points realized as
(e®g)” ={(X,0(X)): X €g}.

If © C g is a real subalgebra, then t¢ = v + v is regarded as a complex subalgebra
of g @ g. For example, ¢c is the diagonal subalgebra g = {(X,X) : X € g} and
(t+ny)c = ha + 1 +n_y, where for a Lie subalgebra t of g,

aA={(X,X): X e}, un={(x0):zer}, v={0,2):2¢cr} (15)
The proof of the following lemma is straightforward.

Lemma 5.1 For an exstended d-signature o, the complezification lq,c of lis S

goc = {(X, a;va(X)): X €my} Bnyy B gy

Recall that <, > is the Killing form of g. Consider the symmetric form [ on g® g
given by
I((z1,22), (Y1,Y2)) = 21, Y1 > — <K To, Yy > .
Then I C g is a real Lagrangian subalgebra of g with respect to the imaginary part
of the Killing form if and only if I C g @ g is a complex Lagrangian subalgebra with
respect to I.
If we denote by L the set of all complex Lagrangian subalgebras of g & g with

respect to I, then we have the injective map

L— Lc: —c.
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With respect to the Adjoint action of G on L, we have

(Adg)e = Adg) (o).

On the group level, we have the analogous identification G¢ = G x G. We lift 7 to
an involution also denoted 7 of G X G. In this context, G (as the set of real points) is
identified with the fixed point set of 7 as

{(g,0(9)) : g € G}

Let Gag = {(z,74(z)) : x € G}. Then (G x G)/Gaq is an example of a complex
symmetric space, and De Concini and Procesi [D-P] have exhibited a particular smooth
compactification Zy of (G X G)/Ga 4.

5.2 The De Concini-Procesi compactification Z;

Note that G x G acts on the Grassmannian of n-dimensional complex subspaces of g g
through the Adjoint action, where n = dim¢ g. Consider the 74-diagonal subalgebra

9aa = {(X;7a(X)) : X € g}

of g @ g and the orbit (G x G) - ga 4 inside the Grassmannian. The stabilizer subgroup
of G x G at gag is Gag, 50 (G X G) -gag = (G x G)/Gpg. By definition, the
De Concini-Procesi variety is the closure (with respect to the Zariski or the classical
topology) of (G X () -ga 4 in the Grassmannian. It will be denoted by Z; and it is called
the De Concini-Procesi compactification (of (G x G)/Gaq). It is a smooth complex
manifold of complex dimension n (see [D-P for more details). Since the variety of
complex Lagrangian subalgebras is G x G stable, it follows that every element in Z; is

a complex Lagrangian subalgebra of g @ g of dimension n.

It is known [D-H] that G x G has finitely many orbits on Z,;. We describe the orbits.
Recall that S(X1) = {a,...,a} is the set of all simple roots. Let n: S(¥;) — {0,1}
be any map. Regarding n as an extended signature for the trivial involution, we have
the parabolic subalgebra

p, = my + 1y

and n,_ = 0(n,) of g. Consider the subalgebra
9dny = {(X7 fyd<X>> X € mn} D Uy D f}/dnﬁ—Q'
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Note that when 7 is constant on d-orbits and is regarded as an extended d-signature,

we have gq, = lay.c-

Theorem 5.2 [D-H Every point v € Zy is in a G x G orbit of g4, for some .

We say that a complex subalgebra v of g g has a real structure if it is the complex-
ification of a real subalgebra of g under the identification go = g® ¢. This is equivalent

to the condition that 7(tr) =, and in this case,

t=(")c,

where «© C g @ g, the fixed point set of 7 in t, is identified with its image in g under

the projection g g — g: (z,y) — V.

Notation 5.3 We will denote the set of all Lie algebras in Z; with a real structure by
ZiRg.

Note that gr 4 € Zgr. In fact,

IANd — <[d,01 )(Cv

where o (a) =1 for all a.

In fact, g4, is in Zyg if and only if 7 is constant on d-orbits.

Since 7 preserves g 4, T preserves the open subset (G x G) - ga 4 C Z4. Since T
is continuous, it follows that 7 preserves Z;. Thus, Z;r is the set of real points of a

complex compact manifold, so Z; g is a compact manifold.

5.3 G-orbits on Z;pr

Recall that for every Lagrangian subalgebra [ C g,

(Ady(D)c = (Ady, Adyie)(1c), ¥y € G. (16)

Proposition 5.4 Everyr € Zgr is G-conjugate to lg,c for some extended d-signature

g.
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Proof. Let v = (g1, g2) - 94, for some 7, so
v = {(Ady, (y + 21), Adg,va(y + 22)) : y € my, 21 Enyy, 20 €y}
Since v has a real structure, 7(r) =t, so
(Adg(g)Ta(y + 22), Adgg,)0(y + 1))
is in v, so that Adg,)7a(y + 22) = Ady, (v + vy) for some u € m,, and v; € n,. But
py=10(y+2): ycmy,zncn, },

50 Ad-14(4,)7a(py) C py- Since ya(p,) is G-conjugate to p,, it follows that ya(p,) = p,.
Since P, is the normalizer of p,, it follows that g, '0(g2) € P,, s0 g2 = 0(g1p), for some
p € P,. Thus,

v={(Adg, (y + 21), Ado(gyomra(y + 22)) : Y € my, 21 €y, 22 €y}

Thus, up to G-conjugacy,

v={(y+ 21), Adgpyra(y + 22)) : ¥y € my, 21 €y, 20 Emyy_}
and m,, n, and n,_ are yg-stable.

We write §(p) = lu with [ € M,, u € N,_. Since
{u-(y+2):yemy,zcn t={(y+w): yemy,wen,_}

it follows that

t={((y+21), Adya(y + 22)) : y €Emy, 21 €y, 20 €1y}

We use again the assumption that ¢ has a real structure and the facts that 6(m,) = m,,

0(n,) = n,_, M, preserves the decompositions p, = m, +n, and 6(p,) = m, +n,_. Since

7(y + 21, Adra(y + 22)) = (Adgya(0(y) + 6(22)), 0(y) + 6(=1)),

we see that
{Adoyvay, ) : y € myt = {(y, Ada(y)) : v € my} = {(va(Adi-1y), y) © y € my}.
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Hence, Adggyya = 74Ad;-1, and it follows that 74(1) = i1

Now, by Lemma [I.3, there exists v € M, such that v« =t € T7 of order 2. But
it is easy to check that

(9(1)),'11) : (1a l) *8dn — (LU* l)gd,n'

Hence, after acting by an element of M,, we may assume that ¢ = (1,%) - g4, and that

t € T7 is an element of order 2.

As before, let o,(«) be the eigenvalue of ¢ on the root space g,. Then oy is a d-

signature and we can define a new extended d-signature o’ by

o'(a) = nla)oy()
Then (1,%)-g4, = l4,0,c, using Lemma 7], which completes the proof of the proposition.

Q.E.D.

5.4 Geometry and topology of the closure L(g,d)

Theorem 5.5 Z;r is connected.

Proof. Since G is connected, Proposition p.4 implies that it suffices to find a path
from 14,.c to the solvable Lie algebra Iy 4, ¢, where og(a) = 0 for all & € ¥. Note that

la,o0.c = {(H,7a(H)) : H € b} ®n Sn_,.

Let H €  have the property that a(H) > 0 for all « € ¥,. If X € m, Ng,, @ € 3
then
hmt—>+oo (Adexp(tH)a Ad@(exp(tH))C(Xa %Z(X)) = C(Xa 0)7

and if X € m, Ng,, a € —%,,

limy 4 oo (Adexp(err), Adgexper)) C(X, va(X)) = C(0,va(X)).

Since

[d,U,(C = {(X7 fydo(X)) X € mcf} S No1 S Ny _9,
it follows that

1irnt—>—|—oo (Adexp(tH),G(exp(tH)) ) ld,o,c = ld,oo,C-
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Q.E.D.

Remark 5.6 This theorem can also be proved by observing that Z;r has a unique
closed G-orbit G - Ig4, c. The Lie algebra (45, = 7 +n. When d is non-trivial, and o
is a d-signature, the curve exp(ad.y) lg, provides a class of examples when 7" : £ — £

is not continuous (see Remark P.27]).

Notation 5.7 We will use Z;,, to denote the G x G-orbit through g,,. We let n; be
the extended d-signature such that 7;(a;) = 1, all oy € S(2X5). Then g,4,, = ga 4, and
Zgqn is the unique open G x G orbit in Zj.

Theorem 5.8

,C(g, d) = Zd,]R

under the complezification map | — Ic. In particular, L(g,d) is a smooth manifold.

Proof. By Proposition p.4, we know G has finitely many orbits on Z;g, and the
orbits are given by extended d-signatures. The open orbits are given by the orbits
through 1;,.c, where o is a d-signature. Indeed, in the proof of Proposition p.4, we
showed that Z;, N Z,r is a finite disjoint union of G-orbits G - 4, ¢ with |o(a)| = n(«)
for every root a. Moreover, each of these G-orbits has the same dimension by Lemma
B.3. It follows that the orbits G - 4, are the connected components of Zg, N Zg g for
n = |o| and also that the G - 15, ¢ are locally closed. Since Z,,, is open, the orbits
G -l40c are open when o is a d-signature, and by the dimension statement, none of the
other orbits are open since Z;r is connected. Moreover, it follows from the fact that

Z4r is a finite union of locally closed orbits that the union of the open orbits is dense.

Now it suffices to prove that L(g, d) surjects onto the open orbits of Z; . By Lemma
.4, we know that every real form in £(g, d) is Ad,la,, for some d-signature o. It follows
from ([[@) and the above description of open orbits on Z,r that £(g,d) maps onto the

union of the open orbits of Z; .

Q.E.D.

37



Lemma 5.9 The Zariski closure of L(g,d) coincides with its closure in the classical

topology.

Proof. We know
‘C(ga d) = UO'G : [d,a = Zd,m N Zd,Ra

where the union is over all d-signatures and Z,,, is the open G x G orbit on Z;. Thus,
L(g, d) is the real points of Z,,,. But the Zariski closure of the real points is contained
in the real points of the Zariski closure, so the Zariski closure of L(g, d) is contained in
Zir = m Since the classical closure of L(g, d) is contained in the Zariski closure,
it follows that they coincide.

Q.E.D.

5.5 Open orbits in L(g, d)

In this subsection we identify the open orbits in Z;r with symmetric spaces.

Proposition 5.10 Let 7 be a real form of a semisimple Lie algebra g, and also denote
its lifting to the adjoint group G by 7. Then

G™ = Ng(g").
(see [D-RB] for the holomorphic version of this fact. The proof is essentially the same).
Corollary 5.11 For a d-signature o, the open orbit G - 4 ,c is the semisimple sym-
metric space GG

Proof. The above proposition implies that the stabilizer N¢(ly,) = G™e.

Q.E.D.
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5.6 Another description for L(g,id)

The set L(g,id) has been most important for applications. In this section, we give

another description of it.

When the diagram automorphism d is trivial, we will refer to the corresponding
real De Concini-Procesi compactification as Zg instead of Z,g. By Theorem p.§, Zg =

L(g,id). It will follow from the description of irreducible components in Section

that Zg is the unique irreducible component of £ containing ¢. We let
Ly={1e L: rank(¢N 1) = rank(e)}.

It is the set of Lagrangian subalgebras of £ containing the Lie algebra of a maximal

torus of .

Proposition 5.12 Ly = Zg.

Proof. Write [, for (4, for d trivial. First assume [ = Ad,l;, lies in Zx. By Lemma
f.g, we can write | = AdyAd,l,, for k € K, a € A. But [, contains t, so AdyAd,l,
contains Ady(t), since A acts trivially on t. Thus, [ € L.

Now assume a Lagrangian subalgebra [ contains the Lie algebra of a maximal torus
of K. By [Kd], we know [ = Ady(m}; © V @ ng), for some (S, V,7). By the assumption
on [, we may assume that mg; &V contains t. Then V' = t N3, and m{, contains a
Cartan subalgebra of mg, N e But it is easy to show that if 7 does not have trivial
diagram automorphism, then mf ; does not contain a Cartan subalgebra of mg, N¢. It
follows easily that [ € Zg.

Q.E.D.

We remark that it follows that G acts on Ly, a fact that is not clear from the
definition of L.
Corollary 5.13 All points of Zr are model points

Proof. This follows from Proposition B-§ and the observation that if (S, V, 7) contains
t, then V C t.
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Q.E.D.

Remark 5.14 It follows from Corollary that many familiar Poisson structures
are contained in Zg as GG or K orbits with the Poisson structures being the restriction
of the Poisson structure IT on £ defined in Section P.J. For example, we can identify
G-t = G/K, and the Poisson structure induced by II on G/K = AN is the negative
of the Poisson structure w4y that makes AN into the dual Poisson Lie group of K.
More generally, by looking at G-orbits in £(g,d), we obtain in this manner a Poisson
structure on G /Gy for every real form Gy of G. The Poisson manifolds arising from

K-orbits in Zg are studied in more detail in Section [].

Remark 5.15 Not all points in Z;r are model points when d is not trivial. The

criterion for I, to be a model point is that if o(«) = 0, then d(a) = .

In [E-TJ], we introduced certain K-invariant metrics gy on T%(K/T) for A € a,,
the set of elements in a whose centralizer in K is T. These metrics are important for
showing that an operator S introduced by Kostant is a limit of some Hodge Laplacians
S. The existence of this family simplifies the proof of Kostant’s basic result that Ker(.5)
is isomorphic to H*(K/T). We remark that the metrics g, can be understood in terms
of the restriction of a Riemannian metric on the Riemannian symmetric space G/K.
Since Zg is a compactification of G/K with closed orbit the flag manifold G/B, this
observation provides evidence that embedding the Bruhat-Poisson structure on G/B

into the manifold Zg is useful in Poisson geometry.

We give the construction of this metric. We can identify the tangent space of G/ K
at gK with Ad,(é¢). The Killing form is positive definite at Ad,(i¢), and we let s be the
metric on G/K given by taking the square root of the Killing form metric on Ad,(it).

Let Hy € a be such that A\(H) = (H, H) and let a) = exp(H,). Then the K-orbit
through ayK € G/K can be identified with K /7. If we restrict the above metric s to
a metric sy, on K - ayK C G/K, and use s, to identify the cotangent bundle with the

tangent bundle, then one can show by easy calculations that we obtain the metric g,

from [E-TJ].
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6 Geometry of L(S,¢,d)

In this section, we combine results from Section [] with results from Section [j to study
the closures L£(S,¢€,d).

6.1 Smoothness of L(S,¢,d)
Theorem 6.1 Each L(S,¢€,d) is a smooth connected submanifold of the Grassmannian

Gr(n,g) of dimension dim(?)+@. It fibers over G/ Ps with the fiber being the product

of Ly, with L(ms,,d), the real points of a De Concini-Procesi variety.
Proof. Recall from the proof of Proposition that
Ly (S,e,d) = L;g x L(mg,,d)

Thus,
Ly (S,6,d) = L, x L(mg,,d)

because L, is already closed. Once we identify

K XK[‘]PS EpS(S, E,d) = E(S,E,d)

the theorem will follow from Theorem p.§, Theorem p.5, and Proposition B.4.

So we consider the map

m: K Xgxps Lpg(S,€,d) — L(S,€,d)

given by m(k,1) = Adgl. It is easy to see that Karolinsky’s Theorem .3 implies that
m is onto. It suffices to check that m is an immersion, since m is clearly smooth and
proper. To show m is injective, suppose that for i = 1,2, ((S;, V;, ;) € m and
Ady,1(S1,V1,11) = Ady,1(S2, Va2, 7). It follows as in the proof of Proposition B3 that
S, = Sy and ky 'ky € K N Ps,. Note that ng C ng,, so Pg, C Ps. It follows easily
that m is injective, and the proof that the tangent map m, is injective is similar to the
proof of the same fact in Proposition B.13.
The dimension statement is clear from Proposition B.13

Q.E.D.
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6.2 Irreducible components

In this subsection we determine the irreducible components of L.
Proposition 6.2 L(S,e€,d) is Zariski closed and irreducible.

Proof. Since £(mg,,d) X L, is Zariski closed in Gr(n, g) via the embedding (1, V) —
[+ V +ng (Proposition B4 and Lemma B.9), it follows that G X p, (L(ms,, d) x L, ) is
Zariski closed in G X, Gr(n, g). Moreover, the map m : G Xp, (L(mg,,d) X L,5_) —
Gr(n, g) is projective, so its image is Zariski closed, and irreducible since the domain

is irreducible. Thus, the proposition follows from Theorem [6.1].
Q.E.D.

Definition 6.3 Lagrangian data (S, ¢, d) is said to be inessential if S = S(X.) — {«;},
d = d'|g for some diagram automorphism d of S(X,), and € = 1. Otherwise, (S, ¢, d)

is called essential.

Proposition 6.4 Lagrangian data (S,€,d) is inessential if and only if L(S,e,d) C
OL(S",€,d) for some Lagrangian data (S, €, d ).

Proof. 1If (S,¢,d) is inessential, then we claim £(S,e,d) C L£(S(X4),1,d"), where
d'|s = d. Indeed, since dim(35) = 1 and € = 1, the Lagrangian subspace V in 34 is
35 Nt. It follows from Theorem B.3 and Lemma f.4 that each subalgebra in L(S,€,d)
is G-conjugate to m;‘f’f ® 35 Nt D ng for some 0. But this algebra coincides with 1y .
Hence, L(S,¢,d) = U,G - 1y ,, 50

L(S,e,d) C Zy = L(a, d).

Suppose that £(S,¢,d) € 9L(S, €, d). It follows that S C " so dim(34) > dim(34 ).
Moreover, by Theorem p.]], we have
dim(35) (dim(35) — 3) < dim(3 ) (dim(35) — 3)
2 2
It follows that dim(35) = 1 and dim(3s) = 0. Thus, £(S,¢,d) = L(g,d ) consists of
real forms. But L(g,d) = Z > S0 every subalgebra in L(S, €, d) is G conjugate to some

l4,0 by Proposition p.4. Since 34 is one-dimensional, and 4 acts by permutations on b,
it follows that v, acts trivially on 34, so the Lagrangian subalgebra of ;4 associated by
Karolinsky’s classification with Iy, is 35 Nt. Thus, Iy, € £(S,1,d |s), and the assertion

follows.

42



Q.E.D.

Corollary 6.5

L= Uessontial(S,E,d)[’(Sa €, d)
is the decomposition of £ into irreducible components.

Proof. By Proposition p.2, each £(S, €, d) is irreducible. Thus, the irreducible compo-
nents are the £(9, €, d) not properly contained in any other £(S", €', d’). By the previous

Proposition, these correspond to essential data.

Q.E.D.

Corollary 6.6 L£(S(X;),1,id) = L(g,id) = Ly is the only irreducible component of L

containing .

Proof. The Zariski closure of G - ¢ is easily seen to be £(S(34),1,id), which is not

contained in any other irreducible component by the previous Corollary.

Q.E.D.

Note also that L itself is typically not smooth, because different irreducible com-
ponents can intersect. This does not happen for si(2), but for s((3), the components
L(S(X4),1,id) and L£((, 1,id) intersect in the flag variety of SL(3,C).

7 The Poisson structure Il on £

In this section, we study some properties of the Poisson structure II on £ defined in
Section . More specifically, we relate II to the Bruhat Poisson structure and determine

the (K, mx)-homogeneous Poisson spaces defined by points in Ly = L(g,id).
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7.1 The fibre projection L£(S,¢,d) — G/Ps is Poisson

It is clear from the definition of Il that every G-invariant smooth submanifold of L is
a Poisson submanifold. Thus, each L£(S,€,d) is a Poisson submanifold. On the other
hand, equip G/ Ps with the Bruhat Poisson structure 7, which is the unique (K, 7 )-

homogeneous Poisson structure on GG/ Py that vanishes at the identity coset ePs. Recall

from Theorem [.1 that we have the fiber bundle £(S,¢€,d) — G/ Ps.
Proposition 7.1 The fiber projection ¢ from L(S,¢€,d) to G/Ps is a Poisson map.

Proof. First, we observe that the projection ¢ is G-equivariant. Indeed, we can
identify K X gnpq W with G X pg W via the obvious inclusion, and the
map from G Xpg Ly (S, €,d) to L(S,¢€,d) is given by the Adjoint action (g,1) — Ad,l.
Then the projection to G/ Ps is given by (g, ) — gPs, which is obviously G-equivariant.

Recall that the Poisson structure on £(S, €, d) is induced by the element %R € N%g
given in Section P.J. Since ¢ is G-equivariant, it follows that ¢,.Il is given by the
bi-vector field on G/Ps induced by %R, so we just have to check that %R induces the
Bruhat Poisson structure on G/Ps. It follows from the definition of the Drinfeld map

that the Lagrangian subalgebra associated with the point ePs by 7, is (€N pg) @ ns.
By Theorem P.23, the Drinfeld map

P (G/Ps, ) — (K - (N ps) & ne), IT)

is a Poisson map. The normalizer of (¢Npg) ®ng in K is K N Ps, and it follows that the
Drinfeld map is a diffeomorphism, so 7, coincides with II. Since the Poisson structure
IT is induced by %R, the result follows.

Q.E.D.

7.2 (K, 7k)-homogeneous Poisson spaces determined by points
in ,C()

We now turn to the Poisson submanifold (Lo, II), where £y = L(g,id) is the unique
irreducible component of £ that contains ¢. We study the (K, 7 )-homogeneous Poisson
spaces determined by points in £y (see Definition P.9).

By Corollary b.13, every point in Ly is a model point. It follows from the discussion

in Section R.3 that each | € Ly can determine a number of (K, 7x )-homogeneous Poisson
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spaces, Indeed, let Ng (1) be the normalizer subgroup of [ in K. Then for any subgroup
K, of K with the same Lie algebra 1N e as Nk(l), the space K/K; carries a unique

Poisson structure 7 such that the covering map
P: K/Ki — K/Ng() 2 K -1 C Ly: kK — kNgk()

is a Poisson map. The space (K/K;, ) is automatically (K, 7k )-homogeneous, and
the map P is its Drinfeld map (see Definition B.4). Examples of K; are K; = Ng(I)
or K is the connected component of the identity of Nk (1). We can characterize these

(K, Tk )-homogeneous Poisson spaces determined by points [ € L, as follows.

Proposition 7.2 All (K, 7g)-homogeneous Poisson spaces (K/Ki,m) determined by
points in Ly (see Definition .3) have the property that K, contains a maximal torus
of K. Conversely, all (K, 7k )-homogeneous Poisson spaces with this property are de-

termined by points in Ly.

Proof. The first part of the proposition follows from the definition of £;. Now let
(K/Ky,m) beany (K, 7k )-homogeneous Poisson space such that K contains a maximal
torus of K. Then the Lie algebra ¢; of K; contains the Lie algebra of a maximal torus
of K. Consider the Drinfeld map

P: K/K,— L.

Let 1 = P(eK,) € L. Then by Drinfeld’s Theorem B.3, ¢, = (Nt and K; C Ng(1). Thus
(€ Lo by the definition of Ly, and (K /K, ) is determined by I.

Q.E.D.

The second part of Proposition [7.3 can be rephrased as the following.

Corollary 7.3 Every (K, mx)-homogeneous Poisson space (K/Ky, ), where Ky is a
closed subgroup of K containing a mazximal torus of K, is a Poisson submanifold of

(Lo, 1) up to a covering given by its Drinfeld map.

Remark 7.4 Examples of K; in Proposition [7.3 are K N Q, where @Q is a parabolic
sungroup of GG, so the corresponding homogeneous space is a flag manifold K /(KNQ) =

G/Q.
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7.3 The normalizer subgroup of 1 € £ in K

We now study the normalizer subgroup Ng (1) of an arbitrary | € Ly in K and determine
when it is connected. By Lemma [[.f] and Proposition .4, we can write | = AdyAd,lq
for some k € K,a € A and extended signature o for d = id, the trivial diagram
automorphism. In what follows, we will write [, = ;4 and call an extended signature
for d = id simply an extended signature. Write a = exp H with H € a and further
decompose H = Hy+ H, with Hy € aNm,; and Hy € aNj,. Then Adexp rle = Adexp i, o
since Hy normalizes [,. Thus, we can assume [ = Adexp gly With H € aNm, ;. We will

write (g, = Adexp i lo-

Lemma 7.5 For ly, = Adexp uls, where o is an estended signature and H € aNm, 1,
lHo NE = t+n, +spang{X,, Y, : o(a) =1,a(H) = 0}.

Proof. This follows from the fact that

Adexp H[U = t+ Ny + SpanR{AdeXp HXa, Adexp HYa : O‘(a) — 1}
-+ SpanR{iAdepoXa,iAdCXpHYa : U(O{) — _1}

Q.E.D.

We now describe the normalizer subgroup of Iy, in K.

Notation 7.6 For an extended signature ¢ and H € aNmgyy, let ¥, = {a € ¥ :
o(a) = 1}. Let W, be the subgroup of the Weyl group generated by the simple

reflections corresponding to the simple roots in the support of o. Let
Whoe = {weW, :wy, =%, wH=H}CW, CW.

Let
N/([H,o) = p_1<WH,U)7

where p : Ng(t) — W = Ng(t)/T is the projection from the normalizer subgroup
Ng(t) of t in K to the Weyl group. Finally, let Ky, be the connected subgroup of K
with Lie algebra (g, N¢.
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Proposition 7.7 For an extended signature o and H € a Nm, 1, the normalizer sub-

group Nk (lge) of lno = Adexp uls 1S given by
Ni(lgo) = N,([H,U)KH,U = KH,UN/([H,U)-

Proof. Tt is clear from Lemma [(.J that N '([HJ) normalizes [y ,, SO it normalizes [z , Nt
and the corresponding connected group Kp,. This implies the second equality, and
the inclusion Ky oN (i74) C Ni(Igo)-

Conversely, suppose that k£ € K normalizes (7 ,. Then it normalizes the group Ky,
so Ad,T is a maximal torus of Ky ,, where T is the maximal torus of K with Lie algebra
t. Thus there exists ky € Ky, such that AdkflAdkT =T, ie., ki'k € Ng(T) = Ng(t).
Write n = k; 'k, so that k = kyn. It remains to show that n € N’([H,U).

Denote by w,, the Weyl group element n7" € W. Since n normalizes Iy, it normal-
izes its nilradical n,. Thus w, € W,. Now for each « € [S,], the support of o, consider

the space
Vo = (H,o N (ga S g—a)'

By the description of the basis of [,, we know that the Killing form of g restricted to
V,, is either negative definite or positive definite depending on whether o(a) = 1 or
o(a) = —1. Now since n normalizes [y, it permutes the spaces V,, for a € [S,].
But n preserves the Killing form, so o(a) = 1 implies o(w,a) = 1. In other words,

Wpre = Ly. 1t also follows that n normalizes I,. Therefore we have
Adexp(wnH)[cr = Adoxp Hlo-

An easy calculation shows that this implies a(H) = a(w,H) for all a € [S,]. Since
H € aNm,; and w, € W,, it follows that H = w,H. Therefore w, € Wy,, or,
equivalently, n € N l([Hp)'

Q.E.D.

Corollary 7.8 Let the notation be as in Notation |7.4. Then

Ni(lgo)/ Ko = Nl([H,cr>/N/([H,o) NKyp.
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Remark 7.9 For an extended signature o, the group
Woo = {we W, :wi, =%,}

contains the subgroup R, generated by reflections {s,} for a € ¥, as a normal sub-
group. Indeed, this follows from the formula for s, and Formula ([[4) for o. Set
Z, = Wo,/Rs. Regard o as a signature for the root system [S,]. Then o defines a
signature for each irreducible subsystem of [S,], and we can calculate Z, separately for
each irreducible subsystem. The group Z, is computed for each simple Lie algebra in
[O-), Table 3, p. 80, and explicit elements are given. For example, when g = si(n, C),
then if 1, 2 su(n/2,n/2), then Z, is trivial, and if [, = su(n/2,n/2) then Z, is a
group with two elements. Z, has no more than two elements except in the case when
g = s50(4n,C) and I, = s0(2n,2n), when Z, is the Klein 4-group. In particular, the
group Wy, can be calculated explicitly in each case. It follows that we can compute

the group Wy, explicitly.

7.4 (K, mg)-homogeneous Poisson structures on K/T

In this section, we determine all (K, 7x)-homogeneous Poisson structures on the full
flag variety K /T, where T is the maximal torus of K with Lie algebra t.

By Proposition [(.3, we only need to identify those | € Ly such that (Nt =t We
can assume [ = [y, = Adexp nly, Where o is an extended signature and H € a Nm,,
because the Poisson structure on K /7T determined by any [ = Adgly,, for some k € K

(such that 1N e =t) will be K-equivariantly isomorphic to the one determined by (g 5.

Proposition 7.10 Let o be an extended signature and let H € a N'my;. Let g, =
Adexplo. Then tg, Ne =t if and only if a(H) # 0 for all a € X,,.

Proof. This is a direct consequence of Lemma [7.7.

Q.E.D.

For every Iy, such that Iy, Nt = t, denote by 7y, the associated (K, mg)-

homogeneous Poisson structure on K/7T.

Corollary 7.11 The collection {my s}, as o runs over all extended signatures and as
H takes all elements in aNm,q such that a(H) # 0 when o(a) =1, gives all (K, 7g)-

homogeneous Poisson structure on K/T.
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An explicit formula for 7y, is given in [Lud| as

0

1 1
o — Px = Xa A Ya s
"H, PeTic 5 ( 2 1 —o(a)eedH) )

a€[Ss|NE 4

where p : K — K/T is the natural projection, and the second term on the right hand
side is the K-invariant bi-vector field on K /T whose value at e = €T is the expression
given in the parenthesis. The fact that these are all the (K, mx)-homogeneous Poisson
structures on K /T up to K-equivariant isomorphisms is also proved in by a
different method. Namely, we show in [Lud] that every such Poisson structure comes
from a solution to the Classical Dynamical Yang-Baxter Equation [E-V]]. In [Cud],
we also study some geometrical properties of these Poisson structures such as their
symplectic leaves, modular vector fields, and moment maps for the T-action.

Recall from Proposition [.7] and Notation [(.§ that when (5, Nt = t, the normalizer
subgroup Ng(lgs) of Iy, in K lies in the normalizer subgroup of t in K, and we have

Nk(lgo)/T = Wy = {we W, 1wy, =%, wH = H}.

When Wy, is trivial, the Poisson manifold (K/T, 7y ) embeds into (Lo, II) as a Pois-
son submanifold. When Wy, is not trivial, it follows from Proposition that action
of Wy, on K/T from the right defined by

(K/T)x Wy, — K/T : (kT,w) — kwT

is by Poisson isomorphisms. Thus, the group Wy, gives symmetries of the Poisson

structure. As we mentioned in Remark [.9, this group can be calculated case by case.

Remark 7.12 If H € a is regular in the sense that it is not fixed by any Weyl group
element, then Wy, is trivial for any . On the other hand, Borel and de Siebenthal
showed that every nontrivial signature o corresponding to the trivial diagram auto-
morphism can be put in a form such that o(cy) = —1 for exactly one simple root ay
[B-deg or [O-3], Appendix. In particular, the group W, , contains the Weyl group of

a maximal Levi subgroup, so for Wy, to be trivial, H cannot be fixed by any element

in a maximal Levi subgroup, so in particular, H can lie in at most one wall.
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Example 7.13 We can compute the Poisson structure II on Ly explicitly for the case
of g = s1(2,C). In this case, it follows from [D-P]| that £y can be G = PSL(2,C)-
equivariantly identified with RP?, regarded as the projectivization of the space H of

2 x 2 Hermitian matrices, where the action of G on H is by
goX = gXg', g¢ge€G,XcH.
The R-matrix R € g A g (see Section R.2) is explicitly given by

1
R = —i(z’h/\h—Xa/\iEaﬂLYa/\Ea)a

1 1 0 1/0 1 10 4
=aalo L) xma () mes ()

and E, = $(X, — iY,). Denote by v : g — x'(H) the Lie algebra anti-homomorphism

where

defined by the above action of G on H, where x*(H) is the space of vector fields on H.

Then IT = 1v(R) is a Poisson structure on H. Write an element of H as

X:<:): . u+w>
u—1 Yy

with x,y,u,v € R. Then the Poisson brackets for II are given by
1 1

{LE, y} =0, {LE, u} - _iyv7 {5(77 U} - Zyu

1

{y, up = iy% {y, v} = —%yu, {u, v} = gy(y—x)-

Note that

o =x+y and ¢ = ay — u? — v

are two Casimir functions. Hence all SU(2)-orbits are Poisson submanifolds. Since
this Poisson structure is quadratic, it gives rise to one on RP3, which is the Poisson
structure IT on L. It can be checked that by looking at the SU(2)-orbits through the

points in RP? corresponding to
b 0
(O 1>,beR,b7A1

we get all the (K, mx)-homogeneous Poisson structures 7y, on SU(2)/S, up to K-
equivariant isomorphisms, as discussed in Section [.4. By identifying SU(2)/S* with
S? = {(2,y,2) € R*: 22 + y?> + 22 = 1}, these Poisson structures are given by

1 1 1
{z,y} = Z(a: +2a—1)z, {y,z}= Z(:Ejt 2a — Dz, {z,2}= Z(x + 2a — 1)y,

20



for a € R. Note that the antipodal map is a symmetry for the case when a = %
This corresponds to the fact that the stabilizer subgroup in SU(2) of the point in RP3

) has two connected components.

. 10
corresponding to ( 0 —1
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