
Title Flexible flow shop scheduling with stochastic processing times:
A decomposition-based approach

Author(s) Choi, SH; Wang, K

Citation Computers and Industrial Engineering, 2012, v. 63 n. 2, p. 362-
373

Issued Date 2012

URL http://hdl.handle.net/10722/155962

Rights

NOTICE: this is the author’s version of a work that was accepted
for publication in Computers and Industrial Engineering.
Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it
was submitted for publication. A definitive version was
subsequently published in Computers and Industrial
Engineering, 2012, v. 63 n. 2, p. 362-373. DOI:
10.1016/j.cie.2012.04.001

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/37976573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Flexible Flow Shop Scheduling with Stochastic Processing Times:

A Decomposition-Based Approach

S.H. Choi
a
 and K. Wang

b

Abstract

Flexible flow shop scheduling problems are NP-hard and tend to become more complex

when stochastic uncertainties are taken into consideration. Although some methods have been

developed to address such problems, they remain inherently difficult to solve by any single

approach. This paper presents a novel decomposition-based approach (DBA), which

combines both the Shortest Processing Time (SPT) and the Genetic Algorithm (GA), to

minimizing the makespan of a flexible flow shop (FFS) with stochastic processing times. In

the proposed DBA, a neighbouring K-means clustering algorithm is developed to firstly

group the machines of an FFS into an appropriate number of machine clusters, based on their

stochastic nature. Two optimal back propagation networks (BPN), corresponding to the

scenarios of simultaneous and non-simultaneous job arrivals, are then selectively adopted to

assign either SPT or GA to each machine cluster for sub-schedule generation. Finally, an

overall schedule is generated by integrating the sub-schedules of machine clusters.

Computation results show that the DBA outperforms SPT and GA alone for FFS scheduling

with stochastic processing times.

Keywords: flexible flow shop; scheduling; stochastic processing times; decomposition;

neighbouring K-means clustering; back propagation network

a
 Department of Industrial and Manufacturing Systems Engineering,

The University of Hong Kong, Pokfulam Road, Hong Kong.

Email: shchoi@hku.hk

b
 Department of Management Science and Engineering,

Economics and Management School, Wuhan University, Wuhan, China.

Email: kai.wang@whu.edu.cn

2

1. Introduction

Production scheduling is a decision-making process to allocate limited resources, such as

machines, material handling equipment, operators, and tools, to tasks or jobs to achieve

certain objectives (Pinedo, 1995). Research efforts on production scheduling generally

consider a static environment with a fixed number of jobs, deterministic processing times,

and no unexpected events that would influence job processing when the schedule is executed.

Real manufacturing is, however, dynamic and subject to a wide range of stochastic

uncertainties, such as machine breakdown, stochastic processing times, rush order, etc.

Therefore, production scheduling under uncertainty has indeed attracted much attention in

recent years.

Three fundamental ways (Vidal, 2004; Aytug et al., 2005), including the completely

reactive approach, the robust approach, and the predictive-reactive approach, have been

employed to tackle production scheduling under uncertainty. The completely reactive

approach can change decisions during execution when necessary. Although its computation

cost is low, it uses only local information to generate a schedule which may not be globally

optimal in nature. The robust approach constructs solutions by modelling uncertainties

(O’Donovan et al., 1999; Liu et al., 2007) or optimizing the performance under different

scenarios (Kouvelis et al., 2000). Such an approach can be viewed as a form of under-

capacity scheduling in order to maintain the robustness under different scenarios. The

predictive-reactive approach is a two-step process. First, a predictive schedule is generated

over the time horizon considered. This schedule is then rescheduled during execution in

response to unexpected disruptions.

Since each of these three approaches has its own strength and weakness, some early

studies on comparative analysis of approaches in dynamic environments have been conducted.

It was found that the completely reactive approach and the predictive-reactive approach were

complementary. Lawrence and Sewell (1997) studied the static and dynamic applications of

heuristic approach to job shop scheduling problems with uncertain processing times.

Experiment results indicated that the predictive-reactive approaches based on global

information were highly likely to perform better than the completely reactive approaches in

an environment with little uncertainty. However, with increasing level of uncertainty, the

global information might become invalid. As a result, the predictive-reactive approaches tend

to give poorer results than the completely reactive approaches. Sabuncuoglu and Bayiz (2000)

tested the reactive scheduling approaches under machine breakdown in a classical job shop

3

system. They showed that online scheduling rules degraded less than offline scheduling

algorithms in a stochastic environment. This conclusion was consistent with that of Lawrence

and Sewell’s (1997).

In order to handle a complex environment, it is imperative to take advantage of mixing

these three approaches to deal with uncertainty. Matsuura et al. (1993) developed a predictive

approach on a periodic basis, called switching. The system switched to a dispatching rule for

the remaining operations when the deviation between the predictive schedule and the realized

one exceeded a certain level. A search of available literature reveals that few research works

have been reported on solving complex scheduling problems by combined approaches.

In this paper, we aim to minimize the makespan of a flexible flow shop (FFS) scheduling

problem with stochastic processing times. The FFS scheduling problem has been proven NP-

hard in nature which is particularly difficult to solve (Garey, 1979; Gupta, 1988).

Consideration of stochastic processing times further aggravates its complexity. Enlightened

by the works of Matsuura’s (1993) and Lawrence’s (1997), we propose a decomposition-

based approach (DBA) that combines two complementary approaches, namely the

completely reactive approach and the predictive-reactive approach, to deal with stochastic

processing times.

In the proposed DBA, a neighbouring K-means clustering algorithm firstly groups the

machines of an FFS into several machine clusters based on their stochastic nature. Then,

either the predictive-reactive approach or the completely reactive approach, determined by

the process of approach assignment, is employed to generate a sub-schedule for each machine

cluster. Finally, these sub-schedules are integrated to give an overall one. Thus, by combining

two different scheduling approaches, DBA explores a new direction for future research in the

field of scheduling under uncertainty.

The remaining part of this paper is organized as follows. The next section briefly reviews

the literature on FFS scheduling under uncertainty. Section 3 is devoted to problem

description. Section 4 describes the framework of DBA and explains it in details. To evaluate

the effectiveness of DBA, simulation is conducted and the computation results are analyzed

in Section 5. Finally, conclusions are summarized and some directions of future work are

discussed in Section 6.

2. Literature review

Ever since the flexible flow shop (FFS) scheduling problem was identified in 1970’s

4

(Arthanari and Ramamurthy, 1971), it has attracted considerable attention during the past

decades (Wang, 2005). An FFS, also called a hybrid flow shop (HFS), consists of a series of

production stages, each of which has several functionally identical machines operating in

parallel. All the jobs released to an FFS have to visit all the stages in the same order.

Corresponding to the approaches to production scheduling under uncertainty, the study of

FFS scheduling under uncertainty can be classified into the same three categories, namely the

completely reactive approach, the robust approach, and the predictive-reactive approach.

The completely reactive approach is characterized by its capability of real-time decision

making. In this approach, no schedule is generated in advance, and decisions are made locally

and can be changed during execution when necessary. The dispatching rule is a typical

completely reactive approach, in which jobs are selected by sorting them according to

predefined criteria. As the dispatching rule can find a reasonably good solution in a relatively

short time, it plays a significant role in solving scheduling problems with dynamic nature.

Hunsucker and Shah (1994) compared dispatching rules in a constrained multiprocessor

flow shop, and concluded that the Shortest Processing Time (SPT) algorithm was superior for

the makespan and mean flow time criteria. Similarly, Rajendran and Holthaus (1999) studied

the performance of dispatching rules in dynamic flow shops and job shops with stochastic job

arrivals and stochastic processing times. The performance of a variety of dispatching rules

was evaluated with respect to criteria related to flow time and tardiness of jobs. Experiment

results implied that no single dispatching rule dominated in all criteria. In order to minimize

the mean and the standard deviation of flow time, Andres et al. (2006) compared several

dispatching rules in a dynamic FFS, in which jobs were assumed to arrive continuously and

setup times were sequence-dependent. They found that the dispatching rules had relatively

little impact on the mean and the standard deviation of flow time, compared to the number of

simultaneous jobs and the configuration of batch size.

Although dispatching rules tend to be simple and fast, they cannot optimize the overall

performance of a system. Therefore, the research focus of dispatching rules has been shifted

from a single dispatching rule to a set of dispatching rules.

Tang et al. (2005) examined the dynamic FFS scheduling problem to minimize the average

flow time, the average tardy time, and the percentage of tardy jobs. The arrival times of jobs

were unknown in advance and job arrivals were assumed to follow a Poisson process. He

developed a neural network approach to generating schedules. Experiment results indicated

that the neural network approach consistently performed better than a single traditional

dispatching rule, although it did not always perform best. Singh et al. (2007) introduced a

5

multi-criteria methodology by swapping dispatching rules in a shop with dynamic nature. The

swapping of dispatching rules was determined by the worst performance criteria in the

performance measures. It was evaluated in the presence of machine breakdown and had been

demonstrated to improve the system performance.

The robust approach is another possible way to address the FFS scheduling problem under

uncertainty. It aims to generate a schedule to minimize the effect of disruptions when the

schedule is implemented.

Wang et al. (2005a) presented a class of hypothesis-test-based genetic algorithms to

address flow shop scheduling problems with stochastic processing times. In the proposed

algorithm, solutions were generated by the Genetic Algorithm (GA) and evaluated by

multiple independent simulations. In order to improve the effectiveness of exploring the

search space, the hypothesis test was performed to discard the solutions with no significant

difference. They demonstrated the effectiveness of the proposed algorithm by comparison

with the traditional GA. For the same problem, Wang et al. (2005b) also proposed a genetic

ordinal optimization algorithm to combine ordinal optimization and optimal computing

budget allocation. Such combination could achieve not only a better solution quality, but also

the robustness of solutions to stochastic optimization problems.

Gholami et al. (2009) proposed a heuristic to solve FFS scheduling problems with

sequence-dependent setups and stochastic machine breakdown. This method employed the

random key genetic algorithm to identify the optimal solution. A simulator, using event-

driven policy and right-shift heuristic approach, was incorporated into the genetic algorithm

to evaluate the expected makespans. The robustness of the algorithm was analyzed using the

Taguchi parameter design. The number of jobs, the number of stages, the mean-time-

between-failure, and the population size were found to have significant impact on the

robustness of the algorithm. Furthermore, the mean-time-to-repair was an adjustment factor

that had significant impact on the mean makespan.

In response to unexpected disruptions, the predictive-reactive approach is by far the most

studied to reschedule dynamic manufacturing systems. Two issues, when and how to react to

disruptions, have to be addressed.

For the first issue, three policies, namely periodic, event driven, and hybrid, have been

introduced in the literature (Church and Uzsoy, 1992; Vieira et al., 2003). The periodic policy

updates the schedule for a fixed interval based on the status of the shop. For the event driven

policy, rescheduling is trigged by the disruptions instead of by time intervals. A hybrid policy

reschedules periodically as well as when a disruption arises. Vieira et al. (2000) investigated

6

the performance of three rescheduling strategies for parallel machine systems with machine

failure. They found that although all the three strategies exhibited similar performance, the

hybrid strategy decreased flow time slightly for it performed rescheduling more often.

To address the second issue, the most common rescheduling methods include the

completed scheduling, the right-shift schedule repair, and the partial schedule repair

(Abumaizar and Svestka, 1997; Sabuncuoglu and Bayiz, 2000; Vieira, et al., 2003). The

completed scheduling regenerates a completely new schedule for all the unprocessed

operations. The right-shift schedule repair postpones the remaining operations by the amount

of time needed to make the schedule feasible. The partial schedule repair only reschedules the

operations that are affected by the disruption. Akturk and Gorgulu (1999) proposed a match-

up scheduling approach to scheduling a modified flow shop. They rescheduled the initial

schedule between the disruption and match-up time when machine breakdown occurred.

Although the completed scheduling can construct a better solution in theory, it is rarely

applied in practice due to its high computation burden and increasing scheduling instability

(Sabuncuoglu and Kizilisik, 2003; Liu, et al., 2007). Conversely, the right-shift schedule

repair yields the least scheduling instability with the lowest computation effort, while the

partial schedule repair is a moderate one in this regard.

It can be said that the techniques reported in available literature on FFS scheduling under

uncertainty were mostly based on a single approach, yielding some initial yet limited

performance. This paper therefore attempts to further address this issue with an integrated

approach that combines and takes advantage of the completely reactive approach with the

predictive-reactive approach.

3. Problem description

Machines of an FFS are arranged into stages in series. At each stage, a number of

functionally identical machines operate in parallel, and a job has to be processed on one of

these machines. In a real manufacturing environment, the processing times might be highly

uncertain due to quality problems, equipment downtime, tool wear, and operator availability

(Lawrence and Sewell, 1997).

The stochastic processing time can be described as the sum of the expected processing

time E(P) and the standard deviation σ. The coefficient of processing time variation (CPTV),

defined as  CPTV E P , can be used as an indicator to processing time uncertainty; it

equals 0 when the processing times are deterministic, and increases with the uncertainty. The

7

CPTV is applied to model stochastic processing times in this study.

In order to simplify a typical FFS scheduling problem with stochastic processing times,

the following assumptions are made: (1) Preemption is not allowed for job processing; (2)

Each machine can process at most one operation at a time; (3) All jobs are released

simultaneously at the first stage; (4) All machines are available when jobs are released to the

FFS; (5) There is no travel time between machines; (6) There is no setup time for job

processing; (7) Infinite buffers exist for machines; (8) For the same job, the expected

processing time at any parallel machine at a stage is identical; (9) The actual processing time

of a job on a machine is uncertain, and it can be longer or shorter than the expected one; (10)

As parallel machines in a stage are functionally identical, they lead to the same CPTV when

processing any jobs, but the CPTV may be different for the machines at other stages; (11) The

actual processing time of a job on any machines at a stage follows the gamma distribution. Its

mean value is the expected processing time, E(P), and the standard deviation is

 CPTV E P   ; (12) Except for stochastic processing times, there are no other types of

uncertainties to disturb job processing.

The FFS scheduling objective under consideration is to determine the processing sequence

of operations on each machine such that the makespan, which is equivalent to the completion

time of the last job to leave the FFS, is minimized without violating any of the assumptions

above. This FFS scheduling problem can also be described as follows:

min{max[] }t jC

 (1)

Subject to the following constraints:

1

1 1 1
1

, 0
m

j j ij
i

C P if U


 
(2)

  
1 1

2 1 2 1 2 2

2

1 1 1 1 1

1 1 1

, 0
m mn

j ij j j j ij

i j i

C B C P if U
  

    
(3)

  -1
1

, 1 & 0
km

kj kj kijk j
i

C C P if k U


   
(4)

   2 1 2 1 22

2

2

-1
1 1

1

max{ , } ,

 1 & 0

k

k

m n

kj kij j kj kjk j
i j

m

kij

i

C B C C P

if k U

 



  

 





(5)

0kijST 

(6)

        
1 2 1 2,ki j ki j kj kE P E P E P i i M  ，

(7)

8

   2 211 ki j ki jk i j
ST ST P


 

(8)

 1 2 2 2 1 1
[()] [()]kij kij kij kij kij kijST ST P or ST ST P    (9)

Where

k: stage index, 1 ≤ k ≤ t

mk: number of parallel machines at stage k

Mk: set of parallel machines at stage k

i, i1, i2: machine index, 1 ≤ i, i1, i2 ≤ mk

j, j1, j2: job index, 1 ≤ j, j1, j2 ≤ n

Ckj: completion time of Job j at stage k

1 2kij jB : Boolean variable, 1 if Job j2 is scheduled immediately after Job j1 on machine

i at stage k, and 0 otherwise

Ukij: Boolean variable, 1 if Job j is the first job on machine i at stage k, and 0

otherwise

E(Pkj): expected processing time of Job j at stage k

E(Pkij): expected processing time of Job j on machine i at stage k

Pkj: stochastic processing time of Job j at stage k

Pkij: stochastic processing time of Job j on machine i at stage k

STkij: start time of Job j on machine i at stage k

For the first stage, constraints (2) and (3) give the completion time of the first job and that

of each subsequent job on the machines, respectively. Similarly for all other stages,

constraints (4) and (5) determine the completion time of the first job and that of each

subsequent job on the machines, respectively. While constraint (6) ensures non-negative start

time of job processing, constraint (7) stipulates that each of the parallel machines at a stage

takes equal time to process the same job. Lastly, constraint (8) requires the processing

sequence of each stage to satisfy the processing time, and constraint (9) guarantees that each

machine can process only one job at a time.

4. The proposed decomposition-based approach (DBA)

4.1 The framework of DBA

The predictive approaches are likely to perform better than the completely reactive

approaches in a low stochastic environment, but they may lead to poor result in one with a

high stochastic nature (Lawrence and Sewell, 1997; Sabuncuoglu and Bayiz, 2000). Based on

9

this observation, a decomposition-based approach (DBA) is proposed to provide better

performance for FFS scheduling problems in any stochastic environment.

As shown in Figure 1, the DBA framework consists of two modules. An original FFS

scheduling problem is firstly broken down into sub-problems. A sub-problem, termed as a

cluster scheduling problem, aims to schedule the machines within a machine cluster and

abides by the same assumptions for the FFS scheduling problem. After generation of cluster

scheduling problems, either the predictive-reactive approach or the completely reactive

approach is selectively assigned to solve these problems. The solutions are subsequently

integrated to provide an overall schedule. The major feature of DBA is its decomposition

strategy – combining and taking advantage of different approaches to generate a better result

when scheduling in any stochastic environment.

[Insert Figure 1 here]

Figure 2 shows a typical decomposition result of an FFS with 7 stages and 3 parallel

machines at each stage. Geometric figures with the same shape represent parallel machines in

a stage. The FFS is decomposed into three machine clusters. One of the two approaches, the

predictive-reactive approach or the completely reactive approach, is selected to schedule the

machines in each machine cluster.

[Insert Figure 2 here]

4.1.1 Generation of cluster scheduling problems

Cluster scheduling problems are generated by decomposing an FFS with a clustering

algorithm into machine clusters, each of which contains a number of machines sharing a

similar stochastic nature during job processing. As the actual processing times of jobs on a

machine may be uncertain, the processing time uncertainty is used to describe the stochastic

nature of a machine.

Clustering is the classification of objects into different groups, such that the objects in

each group would share some common traits. Quite a few algorithms, such as K-means, fuzzy

C-means, and self-organization maps etc, have been proposed to perform classification.

Among these clustering algorithms, K-means (MacQueen, 1967) is relatively simple and

widely used in data mining, in that it groups n observations into k clusters in which each

http://en.wikipedia.org/wiki/Statistical_classification

10

observation belongs to the cluster with the nearest mean. For this reason, K-means is further

developed to form a neighbouring K-means clustering algorithm to decompose an FFS.

After decomposition of an FFS, machines in the same machine cluster share a similar

stochastic nature and can be scheduled by the same approach. A machine cluster with a low

stochastic nature is solved by the predictive-reactive approach, while one with a high

stochastic nature is scheduled by the completely reactive approach.

4.1.2 Solving cluster scheduling problems and solution integration

The cluster scheduling problems, produced by decomposition of an FFS, need to be solved

with appropriate approaches. Due to their better performance and being widely used, GA and

SPT are identified as the predictive-reactive approach and the completely reactive approach,

respectively. GA tends to give poorer result than SPT when scheduling machines with a high

stochastic nature.

In order to assign an appropriate approach to a machine cluster, it is essential to establish

an effective model to estimate the makespan difference (MDSG) of the schedules generated

by SPT and GA. Artificial neural networks (ANNs) have been widely used in various areas

due to its capability of identifying complex nonlinear relationships between input and output.

The back propagation network (BPN) is a commonly used ANN structure and has been

successfully applied for system modelling, prediction, and classification (Lin and Hwang,

1999). It is therefore adopted to estimate the MDSG for each machine cluster, and the

positive or negative sign of the MDSG determines the approach to be assigned to the machine

cluster.

After approach assignment above, the sub-schedule for each of the machine clusters can be

generated by either GA or SPT, and subsequently integrated into an overall schedule.

4.2 Details of the DBA

4.2.1 FFS decomposition

To decompose an FFS scheduling problem, the machines of an FFS are grouped into a few

machine clusters in which machines share a similar stochastic nature. The stochastic nature of

a machine results from the uncertainties which occur during job processing and when a

schedule deviates from the planned one. Since the CPTV represents processing time

uncertainty, it is adopted to describe the stochastic nature of machines. As assumed in Section

3 that the CPTV is identical for all parallel machines at the same stage, a stochastic vector Ui

11

can be formed to describe the stochastic nature of parallel machines at Stage i, giving

 i iU CPTV

(10)

where CPTVi is the CPTV of the parallel machines at Stage i. A machine with a larger CPTV

indicates a high stochastic nature of job processing.

Based on the stochastic vector Ui, we can measure the difference of the stochastic nature

(DSN) between two stages of parallel machines by computing the distance of their stochastic

vectors. As the Euclidean distance is one of the most commonly used methods to measure

the distance between a pair of data, it serves to define the DSN between two stages of parallel

machines, which is calculated as follows:

    
2

2
,i j i j i jD U U U U CPTV CPTV    (11)

where Ui and Uj are the stochastic vectors of parallel machines at Stages i and j, respectively,

and  ,i jD U U is the DSN between Ui and Uj. For the parallel machines at Stages i and j, the

larger the  ,i jD U U , the more is their dissimilarity and the less likely of their being in the

same machine cluster.

Although  ,i jD U U

is useful for traditional clustering, it is not sufficient for decomposing

an FFS into machine clusters. In this study, a machine cluster is a group of machines which

share a similar stochastic nature. As illustrated in Figure 2 in Section 4, a machine cluster

exhibits two basic characteristics, namely:

 Parallel machines at a stage are allocated to the same machine cluster since they have

the same CPTV during job processing;

 Stages in the same machine cluster are in series.

Such two characteristics make the decomposition of an FFS different from the traditional

clustering problem. For the traditional clustering problem, data objects can be clustered based

only on their similarity distance and no other rules would need to be followed. Therefore, the

traditional K-means clustering algorithm might not be able to group the machines of an FFS

into appropriate machine clusters simply based on  ,i jD U U .

Indeed, there are two problems in applying the traditional K-means clustering algorithm to

decompose an FFS, namely (1) how to group the machines into machine clusters, in addition

to considering  ,i jD U U , and (2) how to choose a suitable machine cluster number. To

address these two problems, a neighbouring K-means clustering algorithm, involving both a

machine allocation algorithm and weighted cluster validity indices, is proposed.

12

For the first problem, a machine allocation algorithm is developed to allocate machines to

each machine cluster. As the parallel machines at the same stage are assumed to have the

same CPTV, each machine cluster centre is a set of parallel machines at a stage represented

by the stage ID of the parallel machines. The set of machine cluster centres is defined as C =

{S1, … , Sk, … , Sn}, where Sk is the stage ID of the k
th

 machine cluster centre. The machine

cluster centres of set C are sequenced in ascending order of their stage IDs. Based on the

concept of machine cluster centre, the machine allocation algorithm, which can group

machines in accordance with the characteristics of a machine cluster, is outlined in Table 1.

[Insert Table 1 here]

The machine allocation algorithm aims to allocate the parallel machines between two

neighbouring machine cluster centres to one of them. In order to identify the optimal

allocation, each possible allocation is measured by the total DSN, which is defined as the sum

of all the DSNs from stages of parallel machines to their allocated machine cluster centres,

and the allocation result with the minimal total DSN is the optimal one.

For the second problem, we propose an approach based on weighted cluster validity

indices, which measure the intra-distances and the inter-distances between machine clusters,

for choosing an appropriate machine cluster number. Traditionally, neither a small cluster

number nor a large one can offer a satisfactory classification of the data objects. Recently,

cluster validity indices (CVIs) have attracted much attention as an approach to determining

the optimal cluster number. A validity index indicates how well the clustering algorithm

classifies a given data set. In order to evaluate the clusters, most CVIs are defined by

combining the intra-cluster distances and inter-cluster distances. The intra-distance measures

the distances of objects within a cluster to represent its compactness. The inter-distance

computes the distance between two different clusters; it is an indicator of cluster separability.

Therefore, a good clustering algorithm should have small intra-cluster distances and large

inter-cluster distances.

Kim and Ramakrishna (2005) classified the CVIs into two categories, namely the ratio

type and the summation type. The ratio type is the ratio of the intra-cluster distance (IntraDis)

to the inter-cluster distance (InterDis) or vice versa. Dunn (Dunn, 1973) and DB (Davies and

Bouldin, 1979) are two typical approaches of the ratio type, which can be formulated

as Validity InterDis IntraDis and as Validity IntraDis InterDis , respectively. The

13

summation type is the weighted sum of the intra-cluster distance and the inter-cluster distance.

It can be described as Validity IntraDis InterDis   . Examples of this kind include Vsv

(Kim et al., 2001) and DVI (Shen et al., 2005). Any one of these four types of CVIs in Table

2 can be applied to evaluate the decomposition result of an FFS. A small value of DB, Vsv

and DVI indicates a good clustering, while Dunn prefers a large value for a good clustering.

[Insert Table 2 here]

Since we aim to schedule neighbouring machine clusters by different approaches, a good

clustering algorithm should encourage large inter-cluster distances between neighbouring

machine clusters rather than that between non-neighbouring machine clusters. For this

purpose, we give the weight Wij to the inter-distance between two machine clusters, which is

described as:

  
1

i j

ij
F F

W



(12)

where Fi is the first stage of i
th

 machine cluster. Taking Figure 2 as an example, F1, F2, and F3

equal 1, 3, and 6, respectively.

Based on the weight Wij, the weighted inter-distance between machine clusters i and j can

be computed as    , ,i j i jijWeightedInterDis C C InterDis C CW  . Accordingly, integrated with the

weighted inter-distance, four weighted Dunn, DB, Vsv and DVI (denoted by W-Dunn, W-DB,

W-Vsv and W-DVI, respectively) are proposed in Table 2. The weighted Dunn and DB can be

described as Validity IntraDis WeightedInterDis and as Validity WeightedInterDis IntraDis

respectively, while the weighted Vsv and DVI can be formulated

as Validity IntraDis WeightedInterDis   .

In Table 2,  ,i jInterDis C C represents the inter-distance between cluster i and j;

 kIntraDis C denotes the intra-distance of cluster i; iC and ic represent the cluster i and its

cluster centre, respectively; nc is the number of clusters; kn is the number of data in cluster k,

while N is the total number of data; K is the pre-defined upper bound number of the clusters.

Having addressed the two problems in applying the traditional K-means clustering

algorithm, we now propose a neighbouring K-means clustering algorithm in Table 3, which

incorporates the machine allocation algorithm and the weighted CVI, to decompose an FFS

into machine clusters without predefining the machine cluster number.

14

[Insert Table 3 here]

The neighbouring K-means clustering algorithm involves two steps: decomposition of an

FFS and evaluation of the decomposition results. Firstly, an FFS is decomposed into different

number of machine clusters by the K-means clustering algorithm, in which each machine is

assigned to its nearest machine cluster centre by the machine allocation algorithm, rather than

simply on their distance. The optimal decomposition result is obtained by searching for the

optimal weighted CVI, which means its minimum value for the weighted DB, Vsv, or DVI,

and its maximum value for the weighted Dunn.

4.2.2 The back propagation network for approach assignment

After decomposition of an FFS, the machine clusters can be scheduled either by SPT or by

GA. The assigned approach for each machine cluster is determined by the makespan

difference of the schedules generated by SPT and GA (MDSG), giving

  _ _SPT S GA S GAMDSG M M M 

(13)

where MSPT_S and MGA_S are the makespans with stochastic processing times generated by

SPT and by GA, respectively, while MGA is the makespan with deterministic processing times

generated by GA.

A positive MDSG reveals that the makespan by SPT is longer than that by GA, implying

the machines are with a low stochastic nature and are more suitable to schedule by GA. On

the other hand, a negative MDSG indicates that the makespan by SPT is shorter than that by

GA, implying the machines are with a high stochastic nature and are more suitable to

schedule by SPT.

In order to accurately estimate the MDSG for each machine cluster, the back propagation

network (BPN) is adopted in this study. Under the assumptions we made in Section 3 for the

FFS scheduling problem, jobs are released simultaneously at the first stage. At the subsequent

stages, jobs are allocated by the first-in-first-out (FIFO) rule and may not arrive

simultaneously. Therefore, two scenarios have to be considered when establishing models to

predict the MDSG. The first scenario assumes the jobs to be released simultaneously, while

the other one allows the jobs arrive non-simultaneously.

Accordingly, two types of BPNs, each corresponds to a scenario, are needed to be

established. Their architectures are identical, as illustrated in Figure 3. The details of BPN

15

establishment for each scenario are as follows:

 Inputs: four parameters, namely CPTV, stage size, job size, and parallel machine size,

are found to affect the performance of MDSG significantly according to the experiment

results in Section 5. The first input is the mean of the CPTVs for all the machines in a

machine cluster. All the four inputs are normalised in the range of [0, 1] for input into a

BPN.

 Number of single hidden layers: Generally one hidden layer is capable of

approximating any function with a finite number of discontinuities (Ripley, 1996;

Chang et al., 2008). Therefore, a BPN only consists of one hidden layer.

 Number of hidden neurons: 2-20. In engineering applications, the optimal numbers of

hidden neurons vary with the problems to be solved. There is no concrete rule to find

the optimal number. If inadequate hidden neurons are adopted, it may introduce a

greater risk of modelling the complex data poorly. If too many hidden neurons are used,

the network may fit the training data well but would perform poorly on new and unseen

data. For these reasons, the number of hidden neurons is determined experimentally by

trial and error. As the number of hidden neurons is usually not recommended to be more

than twice the input layer size (Priddy and Keller, 2005), it is intentionally chosen from

the interval [2, 20] in this study. For each scenario, the BPNs with different number of

hidden neurons are generated and evaluated by the minimum mean square error (MSE),

and the one that corresponds to the number of hidden neurons that give rise to the least

minimum MSE is termed the optimal BPN.

 Output: MDSG. For the same FFS scheduling problem with stochastic processing times,

GA and SPT are used to obtain the makespan by the simulation, respectively. The

MDSG is subsequently computed by Equation (13).

 Number of epochs per replication: 10000.

 Number of replications: 100. The performance of a BPN is sensitive to the initial

network conditions. Therefore, for a specific number of hidden neurons, 100 BPNs with

different initial conditions will be trained and evaluated respectively. Among these

BPNs, only the one with minimum MSE is kept for the purpose to further identify the

optimal BPN.

 Training examples: For each scenario, training examples are generated from

experimental FFS scheduling problems (to be presented in Section 5.2.1) to establish

the BPNs.

16

Both the number of epochs per replication and the number of replications are selected

empirically to ensure generation of BPNs with satisfactory performance within an acceptable

training time.

 [Insert Figure 3 here]

After training, validating and testing the BPNs with different number of hidden neurons, the

optimal one for each scenario can be identified and used to determine the MDSG. The optimal

BPN generated in the scenario of simultaneous job arrivals is used to compute the MDSG of

the first machine cluster, while the optimal BPN established in the scenario of non-

simultaneous job arrivals is adopted to estimate the MDSG of all other machine clusters. If the

MDSG of a machine cluster is predicted to be positive, GA is allocated to address the

scheduling problem of the machine cluster. Otherwise, SPT is used to generate the schedule for

the machine cluster.

However, the neighbouring K-means clustering algorithm cannot avoid the possibility that

two neighbouring machine clusters are to be solved by the same approach. Therefore, it is

reasonable to conduct a cluster merging process (CMP) to integrate neighbouring machine

clusters, if necessary, using the following steps: (1) Identify the two neighbouring machine

clusters which are to be solved by the same approach; (2) Merge the two neighbouring machine

clusters and determine the approach for the new machine cluster by optimal BPNs; (3) Repeat

Steps 1 and 2 until any two neighbouring machine clusters are allocated with different

approaches.

Integrating with CMP, the complete process of approach assignment is summarized as

follows: (1) Generate the training examples for both scenarios; (2) Establish the BPNs with

different number of hidden neurons for both scenarios, and identify the optimal one for each

scenario; (3) Estimate the MDSG for each machine cluster by optimal BPNs; (4) Assign either

GA or SPT to each machine cluster according to the positive or negative sign of its estimated

MDSG, respectively; (5) Conduct CMP.

4.2.3 Cluster scheduling

After decomposition and approach assignment, schedules are generated by either GA or SPT

for all machine clusters and then integrated into an overall solution.

SPT performs better with low computation cost when the machines in a machine cluster

17

have a high stochastic nature. It consists of the following two main steps: (1) Determine the job

sequence based on the SPT rule for the first stage; (2) Allocate the finished job from the

previous stage to the current stage by the FIFO rule until all the jobs are processed at each

stage.

GA is used prior to the dispatching rules when scheduling a machine cluster with a low

stochastic nature. Similar to the GA proposed by Jungwattanakit (2008), the overall structure of

the GA in this study is briefly described as follows: (1) Coding: The job sequence is widely

used as the chromosome for the FFS scheduling problem. Integer coding scheme is adopted for

chromosome representation. For example, job sequence [2, 3, 5, 1, 4, 9, 8, 6, 7, 10] is a

chromosome with ten jobs in an FFS; (2) Objective function evaluation: For the purpose of

minimizing the makespan, the fitness function is formulated as
max

fitness C , where Cmax is the

maximum completion time of jobs at the last stage in an FFS. (3) Selection strategy: Roulette

wheel selection is applied to reproduce the next generation; (4) Crossover and mutation

operations: Order preserved crossover (OPX) and shift move mutation (SM) are adopted; (5)

Crossover and mutation rates: The crossover rate and the mutation rate are analyzed by setting

different values on the same FFS scheduling problem. A crossover rate of 0.8 and a mutation

rate of 0.2 are found to give good performance in this study; (6) Termination criterion: The

algorithm continues until 200 generations have been examined. This value is chosen

empirically.

4.2.4 Rescheduling strategies of SPT, GA, and DBA

The performance of SPT, GA, and DBA are compared with consideration of processing time

uncertainty in this study. In order to handle the job processing delay caused by stochastic

processing times, rescheduling strategies of these three approaches are needed to be identified

respectively.

SPT is a completely reactive approach and the job allocation follows an initial sequence at

the first stage and FIFO rule at all other stages. Therefore, there is no need to establish a

reschedule scheme for SPT. For GA, in order to reduce computation effort while not increasing

schedule instability significantly, the right-shift schedule repair is used to deal with job

processing delay. The operations affected are postponed without changing the job sequence in

comparison with that of the schedule with deterministic processing times. In the proposed DBA,

the right-shift schedule repair is adopted for machine clusters to be solved by GA, while FIFO

rule is applied to those by SPT.

18

5. Computational results and analysis

5.1 Design of experiments

Three experiments are designed and conducted for performance evaluation of the proposed

DBA. The first experiment generates optimal BPNs for the MDSG estimation. The second

experiment compares the proposed weighted CVIs to find out which one is the most suitable to

decompose an FFS. After these two experiments, the proposed DBA is well-prepared to

optimize an FFS scheduling problem, and lastly the third experiment analyzes its performance

based on makespan criterion. All these experiments have been implemented in Java and run on

a PC with Intel Pentium 4 2.80GHz processor and 1.00GB of RAM.

In the experiments above, the expected processing times of operations are generated

uniformly in the time unit interval [1, 20] and their average value equals 10 time units, while

the actual processing times are uncertain and follow the gamma distribution. We use CPTV,

defined as  CPTV E P , to indicate the degree of processing time uncertainty. For instance,

if the expected processing time of a job E [P] = 30 time units and CPTV = 0.3, σ is 9 time units.

Thus, the standard deviation of actual processing time from E [P] is 9 time units.

The second and the third experiments are conducted on a test-bed containing 27 FFS

scheduling problems with different stages, jobs, and parallel machines, as shown in Table 8.

The number of jobs is chosen to be 20, 30, and 40. The stage can be 6, 10, and 15. The number

of parallel machines ranges from 2 to 4. For each FFS scheduling problem, ten instances with

different expected processing times of operations are randomly generated and the simulation is

iterated 50 times for each instance.

5.2 Experiment results and discussion

5.2.1 Experiment I: generation of optimal BPNs

In order to train, validate, and test the BPNs, it is necessary to generate training examples

first. With regard to the two scenarios of simultaneous and non-simultaneous job arrivals, two

sets of training examples are generated. The levels of four possible BPN inputs used in the

experiments, including CPTV, stage size, job size, and parallel machine size, are shown in

Table 4.

[Insert Table 4 here]

19

For each combination of BPN inputs, two experimental FFS scheduling problems to

minimize makespans with stochastic processing times, corresponding to the two scenarios of

simultaneous and non-simultaneous job arrivals, are generated, in each of which all the parallel

machines share the same CPTV. The two experimental FFS scheduling problems are solved by

GA and SPT, respectively. Subsequently, the MDSG, which is the output of BPN, can be

obtained by Equation (13) for each problem. Thus, training examples can be generated by

covering all the possible combinations of BPN inputs and their corresponding outputs. This

results in a total of 3,600 (10×10×6×6 = 3,600) training examples.

For a better analysis of the factors that affect the MDSG, we analyze the training examples

by means of a multi-factor Analysis of Variance (ANOVA) technique, using a 5% significance

level. A standard ANOVA table contains columns for the sums of squares (SS), degrees-of-

freedom (DF), mean squares (MS=SS/DF), F-ratio (MS/MS residual), and P-values. Based on

DF and F-ratio, P-value can be derived from the F-distribution. If the P-value of a factor is

smaller than the significant level (5%), we can conclude that the factor significantly affects the

MDSG.

Tables 5 and 6 list the statistical results generated by ANOVA for the scenarios of

simultaneous and non-simultaneous job arrivals, respectively. From these tables, it is obvious

that all the P-values are less than 0.05, indicating that the MDSG are significantly influenced

by all the four factors in both scenarios. Therefore, it is reasonable to adopt these four factors

as BPN inputs.

[Insert Tables 5 and 6 here]

Based on the data of the training examples, scatter plots are generated to help visualize the

relationship between the MDSG and the four BPN inputs, including CPTV, stage size, job size

and parallel machine size. As shown in Figure 4, circles and squares represent the results

derived for the scenarios of simultaneous and non-simultaneous job arrivals, respectively. For

a specific x-value in Figure 4, the y-value is the mean of MDSGs of all the corresponding

training examples. Accordingly, the following two observations can be made from the scatter

plots:

 In general, the MDSG is approximately linearly proportional to CPTV, stage size, and

job size, while it firstly decreases and then increases with increasing parallel machine

size.

http://mathworld.wolfram.com/P-Value.html

20

 The MDSG is different for the two scenarios of simultaneous and non-simultaneous job

arrivals. Hence, two BPNs, each corresponds a scenario, are needed to estimate the

MDSG.

It should be pointed out that the scatter plots in Figure 4 illustrate only the general trend of

the average MDSGs of the training examples with various BPN inputs, and they should not be

interpreted as to indicate whether SPT is superior to GA, or otherwise. Indeed, these scatter

plots should not be used to predict the MDSG and determine the approach for machine clusters

of a specific FFS scheduling problem in a particular scenario. Instead, the BPNs should be

used for such purpose.

[Insert Figure 4 here]

Now, two types of BPNs, corresponding to the two scenarios of simultaneous and non-

simultaneous job arrivals, can be obtained on the basis of the training examples. In order to

identify the optimal BPN for each scenario, we establish BPNs with different number of hidden

neurons and measure their prediction accuracy by MSE. Figure 5 shows the relationship of the

minimal MSE with the number of hidden neurons for the two scenarios. It can be seen that the

numbers of hidden neurons that give rise to the least MSEs for simultaneous and non-

simultaneous job arrivals are 12 and 14, respectively. Accordingly, the two BPNs

corresponding to these two numbers of hidden neurons are optimal ones and used to estimate

the MDSGs.

[Insert Figure 5 here]

5.2.2 Experiment II: weighted CVI analysis

After the two optimal BPNs are established, either SPT or GA can be assigned to a machine

cluster according to its estimated MDSG. Integrated with W-Dunn, W-DB, W-Vsv, and W-DVI

respectively, the neighbouring K-means clustering algorithm is evaluated to determine which

CVI can offer good clustering for all the problems of the test-bed. Table 7 gives the ratios of

the average makespan of various CVIs to that of Dunn. It is obvious that each weighted CVI

gives a smaller makespan than its corresponding CVI. Among the four weighted CVIs, W-DB

achieves the best performance; it is thus recommended for FFS decomposition.

21

[Insert Table 7 here]

5.2.3 Experiment III: DBA analysis

In order to evaluate the effectiveness of the proposed DBA, SPT, GA, and DBA are

analyzed in a stochastic environment in which CPTVs are uniformly distributed in the interval

[0.1, 1]. The experiment results of these three approaches with stochastic processing times

(denoted by SPT_S, GA_S and DBA_S respectively) are shown in Table 8. The results of SPT

and GA with deterministic processing times (denoted by SPT_D and GA_D respectively) are

also given. All the results are the ratios of the average makespan of various scheduling

algorithms to that of GA.

[Insert Table 8 here]

From the experiment results, the following conclusions can be made: (1) SPT_S is superior

to GA_S. The reason for such poor performance of GA lies in using the right-shift schedule

repair when job processing delay occurs; (2) DBA_S performs better than SPT or GA in most

cases. Compared with SPT_S and GA_S, the DBA_S reduces the makespan by about 3% and

13%, respectively. The better performance of DBA is due to its decomposition strategy, which

combines the strengths of GA and SPT to deal with stochastic processing times.

6. Conclusion

A decomposition-based approach (DBA), which combines and takes advantage of the

characteristics of SPT and GA, has been proposed to minimize the makespan of a flexible flow

shop (FFS) scheduling problem with stochastic processing times. In this proposed approach, a

neighbouring K-means clustering algorithm, involving the machine allocation algorithm and

weighted CVIs, is developed to decompose an FFS without predefining the number of machine

clusters. After decomposition of an FFS, either GA or SPT, determined by the optimal BPNs, is

employed to generate the schedule for each machine cluster.

The effectiveness of DBA has been validated with experiment results. For most problems in

the test-bed, DBA is found to be superior to either GA or SPT alone. The better performance of

DBA is due to the decomposition strategy – to schedule with GA in a low stochastic

environment and with SPT in a high stochastic environment. Using this strategy, DBA

inherently yields good solutions when addressing FFS scheduling problems in any stochastic

environment.

22

Although the development of DBA has been motivated by addressing the FFS scheduling

problem with stochastic processing times, the generality of the decomposition strategy makes it

possible to apply the DBA to deal with other types of uncertainty, such as machine breakdown.

In order to extend the DBA, new stochastic vectors for machine clustering, and hence the

difference of stochastic nature between machines, may have to be investigated.

References

Abumaizar, R. J., Svestka, J. A., 1997. Rescheduling job shops under random disruptions.

International Journal of Production Research 35 (7), 2065-2082.

Akturk, M. S., Gorgulu, E., 1999. Match-up scheduling under a machine breakdown. European

Journal of Operational Research 112 (1), 81-97.

Andres, C., Gomez, P., Garcia-Sabater, J. P., 2006. Comparing dispatching rules in dynamic

hybrid flow shops. In: Proceedings of 2006 IEEE International Conference on Emerging

Technologies and Factory Automation, Prague, Czech Republic, pp. 233-239.

Arthanari, T. S., Ramamurthy, K. G., 1971. An extension of two machines sequencing problem.

Opsearch 8, 10-22.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., Uzsoy, R., 2005. Executing production

schedules in the face of uncertainties: A review and some future directions. European Journal

of Operational Research 161 (1), 86-110.

Chang, I. C., Hwang, H. G.., Liaw, H. C., Hung, M. C., Chen, S. L. and Yen, D. C., 2008. A

neural network evaluation model for ERP performance from SCM perspective to enhance

enterprise competitive advantage. Expert Systems with Applications 35(4), 1809-1816.

Church, L. K., Uzsoy, R., 1992. Analysis of periodic and event-driven rescheduling policies in

dynamic shops. International Journal of Computer Integrated Manufacturing 5 (3), 153-163.

Davies, D.L., Bouldin, D.W., 1997. A cluster separation measure. IEEE Transactions on Pattern

Analysis and Machine Intelligence 1 (4), 224–227.

Dunn, J. C., 1973. Fuzzy relative of the isodata process and its use in detecting compact well-

separated clusters. Journal of Cybernetics 3 (3), 32-57.

Garey, M. R., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, New York.

Gholami, M., Zandieh, M., Alem-Tabriz, A., 2009. Scheduling hybrid flow shop with

sequence-dependent setup times and machines with random breakdowns. The International

Journal of Advanced Manufacturing Technology 42 (1), 189-201.

23

Gupta, J. N. D., 1988. Two-stage, hybrid flowshop scheduling problem. Journal of the

Operational Research Society 39 (4), 359-364.

Hunsucker, J. L., Shah, J. R., 1994. Comparative performance analysis of priority rules in a

constrained flow shop with multiple processors environment. European Journal of Operational

Research 72 (1), 102-114.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F., 2008. Algorithms for

flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria.

The International Journal of Advanced Manufacturing Technology 37 (3), 354-370.

Kim, D. J., Park, Y. W., Park, D. J., 2001. A novel validity index for determination of the

optimal number of clusters. IEICE Transactions on Information and Systems E84-D(2), 281-

285.

Kim, M., Ramakrishna, R. S., 2005. New indices for cluster validity assessment. Pattern

Recognition Letters 26 (15), 2353-2363.

Kouvelis, P., Daniels, R. L., Vairaktarakis, G., 2000. Robust scheduling of a two-machine flow

shop with uncertain processing times. IIE Transactions 32 (5), 421-432.

Lawrence, S. R., Sewell, E. C., 1997. Heuristic, optimal, static, and dynamic schedules when

processing times are uncertain. Journal of Operations Management 15 (1), 71-82.

Liu, L., Gu, H. Y., Xi, Y. G., 2007. Robust and stable scheduling of a single machine with

random machine breakdowns. The International Journal of Advanced Manufacturing

Technology 31 (7), 645-654.

Lin, D. Y., Hwang, S. L., 1999. Use of neural networks to achieve dynamic task allocation: a

flexible manufacturing system example. International Journal of Industrial Ergonomics 24 (3),

281-298.

Matsuura, H., Tsubone, H., Kanezashi, M., 1993. Sequencing, dispatching, and switching in a

dynamic manufacturing environment. International Journal of Production Research 31 (7),

1671-1688.

MacQueen, J. B. 1967. Some methods for classification and analysis of multivariate

observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability, Vol. 1, University of California Press, 281–297.

O’Donovan, R., Uzsoy, R., McKay, K. N., 1999. Predictable scheduling of a single machine

with breakdowns and sensitive jobs. International Journal of Production Research 37 (18),

4217-4233.

Pinedo, M., 1995. Scheduling Theory, Algorithms, and Systems. Prentice Hall, New Jersey,

USA.

24

Priddy, K. L., Keller, P. E., 2005. Artificial Neural Networks: An introduction. Bellingham,

Washington: SPIE Press.

Rajendran, C., Holthaus, O., 1999. A comparative study of dispatching rules in dynamic

flowshops and jobshops. European Journal of Operational Research 116 (1), 156-170.

Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press,

Cambridge.

Sabuncuoglu, I., Bayiz, M., 2000. Analysis of reactive scheduling problems in a job shop

environment. European Journal of Operational Research 126 (3), 567-586.

Sabuncuoglu, I., Kizilisik, O. B., 2003. Reactive scheduling in a dynamic and stochastic FMS

environment. International Journal of Production Research 41 (17), 4211-4231.

Shen, J., Chang, S. I., Lee, E. S., Deng, Y., Brown, S. J., 2005. Determination of cluster number

in clustering microarray data. Applied Mathematics and Computation 169 (2), 1172-1185.

Singh, A., Mehta, N., Jain, P., 2007. Multicriteria dynamic scheduling by swapping of

dispatching rules. The International Journal of Advanced Manufacturing Technology 34 (9),

988-1007.

Tang, L., Liu, W., Liu, J., 2005. A neural network model and algorithm for the hybrid flow

shop scheduling problem in a dynamic environment. Journal of Intelligent Manufacturing 16

(3), 361-370.

Vidal, T., 2004. The many ways of facing temporal uncertainty in planning and scheduling. In:

Proceedings of 14th IEEE International Symposium on Temporal Representation and

Reasoning, Tatihou, France, pp 9-10.

Vieira, G. E., Herrmann, J. W., Lin, E., 2000. Predicting the performance of rescheduling

strategies for parallel machine systems. Journal of Manufacturing Systems 19 (4), 256-266.

Vieira, G. E., Herrmann, J. W., Lin, E., 2003. Rescheduling manufacturing systems: A

framework of strategies, policies, and methods. Journal of Scheduling 6 (1), 39-62.

Wang, H, 2005. Flexible flow shop scheduling: optimum, heuristics and artificial intelligence

solutions. Expert Systems 22 (2), 78-85.

Wang, L., Zhang, L., Zheng, D. Z, 2005a. A class of hypothesis-test-based genetic algorithms

for flow shop scheduling with stochastic processing time. The International Journal of

Advanced Manufacturing Technology 25(11), 1157-1163.

Wang, L., Zhang, L., Zheng, D. Z, 2005b. Genetic ordinal optimisation for stochastic flow shop

scheduling. The International Journal of Advanced Manufacturing Technology 27(1), 166-173.

25

Figure 1: The framework of the proposed decomposition-based approach (DBA)

Figure 2: Machine clusters in a flexible flow shop (FFS)

Figure 3: The architecture of a back propagation network (BPN)

Decompose an FFS into machine clusters

Assign an approach to each of the machine clusters

Generate and integrate sub-schedules of machine clusters

Generation of cluster

scheduling problems

Solving for cluster scheduling

problems and solution

integration

Input layer Hidden layer Output layer

MDSG

Job size

Parallel machine size

Stage size

CPTV

 Stage

1

Stage

 2

Stage

3

Stage

4

Stage

5
Stage

6

Stage

7

Machine

cluster 1

Machine

cluster 2

Machine

cluster 3

Predictive-

reactive

Predictive-

reactive

Completely

reactive

Job

release

Job

finish

26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Coefficient of Processing Time Variation (CPTV)

M
a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 (

M
D

S
G

)

Non-simultaneous Job Arrivals

Simultaneous Job Arrivals

1 2 3 4 5 6 7 8 9 10
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

Stage Size

M
a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 (

M
D

S
G

)

Non-simultaneous Job Arrivals

Simultaneous Job Arrivals

 (a) MDSG against CPTV (b) MDSG against stage size

20 25 30 35 40 45
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Job Size

M
a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 (

M
D

S
G

)

Non-simultaneous Job Arrivals

Simultaneous Job Arrivals

2 3 4 5 6 7
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Parallel Machine Size

M
a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 (

M
D

S
G

)

Non-simultaneous Job Arrivals

Simultaneous Job Arrivals

 (c) MDSG against job size (d) MDSG against parallel machine size

Figure 4: Scatter plots of makespan difference (MDSG)

2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Number of hidden neurons

M
in

im
u
m

 M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S

E
)

2 4 6 8 10 12 14 16 18 20

3

3.5

4

4.5

5

5.5

6

6.5
x 10

-4

Number of hidden neurons

M
in

im
u
m

 M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(M
S

E
)

 (a) Simultaneous job arrivals (b) Non-simultaneous job arrivals

Figure 5: Relationship of minimum mean square errors (MSEs) with number of hidden neurons

27

Table 1: The proposed machine allocation algorithm

For k=1 to N-1 (N = number of machine cluster centres)

For i= Sk to Sk+1

Allocate the machines between Sk and i
th
 stage to k

th
 machine cluster centre, and compute

the sum of DSNs from stages of parallel machines to their allocated machine cluster

centres, using the formula:

 ,
k

k

i

j S

j S

D U U



 ;

Allocate the machines between (i-1)
th
 stage and Sk+1 to (k+1)

th
 machine cluster centre, and

compute the sum of DSNs from stages of parallel machines to their allocated machine

cluster centres, using the formula:

 
1

1

1

,
k

k

S

j S

j i

D U U




 


;

Compute the total DSN of the allocation using the formula:

   
1

1

1

, ,
k

k k

k

Si

j S j S

j S j i

D U U D U U




  

  ;

Compare the total DSN with the previous one, and keep the minimal total DSN and its

corresponding result of machine allocation;

 End

 Allocate the machines according to the recorded result;

End

If S1 is not the first stage

 Allocate the machines before S1 to the first machine cluster centre;

If SN is not the last stage

 Allocate the machines after SN to the last machine cluster centre.

28

Table 2: Cluster validity indices (CVI)

CVI Original Algorithm Modified Algorithm

Dunn

 
 1,..., 1,...,

1,...,

,
min min

max

i j

nc
i nc j i nc

k
k nc

InterDis C C
D

IntraDis C  



  
    

    

where

   
,

, min ,
i j

i j
x C y C

InterDis C C d x y
 

 ,

     
,
min ,

k

k k
x y C

IntraDis C diam C d x y


  .

 
 

,

1,..., 1,...,

1,...,

,
min min

max

i j i j

nc
i nc j i nc

k
k nc

WeightedInterDis C C
D

IntraDis C  



  
    

    

 where

   ,
,

, min ,
i j

i j i j
x C y C

WeightedInterDis C C W d x y
 

  ,

     
,
min ,

k

k k
x y C

IntraDis C diam C d x y


  .

DB

   
 1

1
max

,

n
i j

i j
i i j

IntraDis C IntraDis C
DB

n InterDis C C


 
 
 
 

 ,

where

   , ,i j i jInterDis C C d c c ,

   
1

,
k

k k

x Ck

IntraDis C d x c
n 

  .

   
 1

1
max

,

n
i j

i j
i i j

IntraDis C IntraDis C
DB

n WeightedInterDis C C


 
 
 
 

 ,

where

   ,, ,i j i j i jWeightedInterDis C C W d c c  ,

   
1

,
k

k k

x Ck

IntraDis C d x c
n 

  .

Vsv

   uN oNVsv v nc v nc  , where

   
1

1 1
,

i

nc

u i

i x Ci

v nc d x c
nc n 

 
   

 
  ,  

min

o

nc
v nc

d
 ,

 min min ,i j
i j

d InterDis C C


 ,

   , ,i j i jInterDis C C d c c .

 uNv nc and  oNv nc are min-max

normalized versions of  uv nc and  ov nc

   uN oNVsv v nc v nc  , where

   
1

1 1
,

i

nc

u i

i x Ci

v nc d x c
nc n 

 
   

 
  ,  

min

o

nc
v nc

d
 ,

 min min ,i j
i j

d InterDis C C


 ,

   ,, ,i j i j i jInterDis C C W d c c  .

 uNv nc and  oNv nc are min-max

normalized versions of  uv nc and  ov nc

DVI

 

 1,...,
min

i K

IntraRatio i
DVIIndex

InterRatio i

  
  

  

,where

 
 Intra i

IntraRatio i
MaxIntra

 ,  
 Inter i

InterRatio i
MaxInter

 ,

 
2

1

1

j

i

j
j x C

Intra i x c
N  

   ,

  
1,...,

max
i K

MaxIntra Intra i


 ,

 
  
  

  

2

,

2

1
1

,

,

1

,

k j k j

k j k j

i

i
k k jj

Max InterDis C C
Inter i

Min InterDis C C

InterDis C C








 
 
 
 




,

 ,i j i jInterDis C C c c  ,

  
1,...,

max
i K

MaxInter Inter i


 .

 

 1,...,
min

i K

IntraRatio i
DVIIndex

InterRatio i

  
  

  

,where

 
 Intra i

IntraRatio i
MaxIntra

 ,  
 Inter i

InterRatio i
MaxInter

 ,

 
2

1

1

j

i

j
j x C

Intra i x c
N  

   ,

  
1,...,

max
i K

MaxIntra Intra i


 ,

 
  
  

  

2

,

2

1
1

,

,

1

,

k j k j

k j k j

i

i

k
k jj

Max WeightedInterDis C C
Inter i

Min WeightedInterDis C C

WeightedInterDis C C









 
 
 
 




,

  ,,i j i j i jWeightedInterDis C C W c c   ,

  
1,...,

max
i K

MaxInter Inter i


 .

29

Table 3: The proposed neighbouring K-means clustering algorithm

For k=2 to Kmax (Kmax = number of stages/2)

 Choose k as the number of machine clusters;

Randomly pick up k machine cluster centres from all the stages in an FFS,

and each machine cluster centre is the parallel machines at a stage;

Allocate the parallel machines of each stage to the machine cluster centres

by the machine allocation algorithm;

 Compute the new machine cluster centres;

Until the allocation result remains constant or a predefined number of

iterations have been reached (As more iterations increase computation

burden and may not greatly improve the performance, we fix it as 100

empirically.)

Re-allocate the parallel machines of each stage to the machine cluster

centres by the machine allocation algorithm;

Re-compute the new machine cluster centres;

 End

 Compute the weighted CVI of decomposing an FFS into k machine

 clusters;

End

Return machine clusters at k where the weighted CVI is optimal over all k.

Decomposition

Evaluation

30

Table 4: Back propagation network (BPN) inputs and their levels

Factors Levels

CPTV 10 levels (0.1, 0.2, …, 1)

Stage size 10 levels (1, 2, …, 10)

Job size 20, 25, 30, 35, 40, 45

Parallel machine size 2, 3, 4, 5, 6, 7

Table 5: ANOVA for MDSG generating from the scenario of simultaneous job arrivals

Factor SS DF MS F-ratio P-value

CPTV 86.404 9 9.600450 3410.830 <0.001

Stage size 4.923 9 0.546950 194.320 <0.001

Job size 1.497 5 0.299410 106.370 <0.001

Parallel machine size 3.396 5 0.679260 241.330 <0.001

Residual 10.051 3571 0.002815

Total 106.274 3599

Table 6: ANOVA for MDSG generating from the scenario of non-simultaneous job arrivals

Factor SS DF MS F-ratio P-value

CPTV 21.220 9 2.357790 1681.110 <0.001

Stage size 1.416 9 0.157310 154.300 <0.001

Job size 1.270 5 0.253930 249.070 <0.001

Parallel machine size 0.932 5 0.186480 182.910 <0.001

Residual 3.641 3571 0.001020

Total 28.479 3599

Table 7: Comparison of ratios of average makespans of various cluster validity indices (CVI)

Ratio = Average makespan of CVI / Average makespan of Dunn

Traditional K-means Clustering Algorithm
The proposed Neighbouring K-means

Clustering Algorithm

Dunn DB Vsv DVI W-Dunn W-DB W-Vsv W-DVI

1.000 0.999 1.001 1.002 0.998 0.985 0.995 0.998

31

Table 8: Comparison of ratios of the average makespan of various scheduling algorithms

Problem size

No. of jobs x

no. of stages

No. of parallel

machines at

each stage

Ratio = Average makespan / Average makespan of GA

Deterministic processing

times

Stochastic processing

times

SPT_D GA_D SPT_S GA_S DBA_S

20×6 2 1.170 1.000 1.318 1.384 1.257

20×6 3 1.202 1.000 1.345 1.395 1.276

20×6 4 1.220 1.000 1.396 1.557 1.350

20×10 2 1.120 1.000 1.321 1.450 1.305

20×10 3 1.165 1.000 1.296 1.409 1.277

20×10 4 1.119 1.000 1.302 1.504 1.292

20×15 2 1.144 1.000 1.290 1.413 1.255

20×15 3 1.114 1.000 1.265 1.459 1.246

20×15 4 1.083 1.000 1.170 1.295 1.158

30×6 2 1.099 1.000 1.246 1.358 1.212

30×6 3 1.165 1.000 1.309 1.415 1.246

30×6 4 1.163 1.000 1.341 1.535 1.271

30×10 2 1.135 1.000 1.320 1.459 1.298

30×10 3 1.153 1.000 1.287 1.425 1.249

30×10 4 1.121 1.000 1.279 1.504 1.280

30×15 2 1.157 1.000 1.291 1.404 1.261

30×15 3 1.159 1.000 1.284 1.475 1.255

30×15 4 1.125 1.000 1.295 1.499 1.279

40×6 2 1.134 1.000 1.242 1.265 1.199

40×6 3 1.129 1.000 1.257 1.354 1.188

40×6 4 1.139 1.000 1.296 1.514 1.291

40×10 2 1.165 1.000 1.314 1.375 1.249

40×10 3 1.158 1.000 1.326 1.508 1.256

40×10 4 1.086 1.000 1.266 1.528 1.252

40×15 2 1.147 1.000 1.297 1.402 1.255

40×15 3 1.116 1.000 1.265 1.472 1.237

40×15 4 1.118 1.000 1.276 1.538 1.272

Average 1.141 1.000 1.292 1.441 1.258

