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Conferring Robustness to Path-Planning for
Image-Based Control

Graziano Chesi, Senior Member, IEEE, and Tiantian Shen, Student Member, IEEE

Abstract—Path-planning has been proposed in visual servoing
for reaching the desired location while fulfilling various con-
straints. Unfortunately, the real trajectory can be significantly
different from the reference trajectory due to the presence of
uncertainties on the model used, with the consequence that some
constraints may not be fulfilled hence leading to a failure of the
visual servoing task. This paper proposes a new strategy for
addressing this problem, where the idea consists of conferring
robustness to the path-planning scheme by considering families of
admissible models. In order to obtain these families, uncertainty in
the form of random variables is introduced on the available image
points and intrinsic parameters. Two families are considered, one
by generating a given number of admissible models corresponding
to extreme values of the uncertainty, and one by estimating the
extreme values of the components of the admissible models. Each
model of these families identifies a reference trajectory, which
is parametrized by design variables that are common to all the
models. The design variables are hence determined by imposing
that all the reference trajectories fulfill the required constraints.
Discussions on the convergence and robustness of the proposed
strategy are provided, in particular showing that the satisfaction
of the visibility and workspace constraints for the second family
ensures the satisfaction of these constraints for all models bounded
by this family. The proposed strategy is illustrated through sim-
ulations and experiments.

Index Terms—Eye-in-hand, path-planning, robustness, uncer-
tainty, visual servoing.

I. INTRODUCTION

V ISUAL servoing consists of automatically positioning a
robot end-point via closed-loop control by using visual in-

formation, typically the view of a camera mounted on the robot
end-point. The control law has to ensure that the camera reaches
a desired location which is identified by the image projections of
some object features. Various control laws have been proposed
to address this task, starting from the pioneering image-based
visual servoing (IBVS), position-based visual servoing (PBVS),
and 2 1/2 D visual servoing. See for instance [1]–[3].

Path-planning has been introduced in order to fulfill physical
constraints and optimize a desired performance. Typically this
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strategy determines a reference trajectory that the camera at-
tempts to follow by using a trajectory tracker. This has been
proposed in several ways, e.g., by exploiting repulsive poten-
tial fields [4], [5], screw-motion trajectories [6], interpolation
of the collineation matrix [7], homography-based partial pose
estimation [8], helicoidal paths [9], modulation of the control
gains [10], polynomial parametrizations [11], and search trees
in camera and joint spaces [12].

Unfortunately, the real trajectory followed by the camera can
be significantly different from the reference trajectory due to
the presence of uncertainties on the model used in the plan-
ning phase. As a consequence, by using existing path-planning
schemes it may happen that the real trajectory does not opti-
mize the considered performance, and even worse, does not ful-
fill some of the required constraints hence leading to a failure of
the visual servoing task. The reader is referred to [13]–[15] for
effects of uncertainties on visual servoing.

This paper proposes a new strategy for conferring robustness
to path-planning for image-based control. The idea consists of
considering families of admissible models rather than a model
only in the planning phase. In order to obtain these families, un-
certainty in the form of random variables is introduced on the
available image points and intrinsic parameters. Two families
are considered, one by generating a given number of admissible
models corresponding to extreme values of the uncertainty, and
one by estimating the extreme values of the components of the
admissible models. Each model of these families identifies a ref-
erence trajectory, which is parametrized by using polynomials
in the trajectory abscissa and by introducing design variables
that are common to all models. The design variables are hence
determined by imposing that all the reference trajectories fulfill
the required constraints and guarantee a worst-case cost of the
considered performance. Once the reference trajectory is com-
puted, its image projection is tracked by using image-based con-
trol. Discussions on the convergence and robustness of the pro-
posed strategy are hence provided, in particular showing that
the satisfaction of the visibility and workspace constraints for
the models in the second family ensures the satisfaction of these
constraints for all models bounded by this family. Simulations
and experiments illustrate the proposed strategy. A preliminary
version of this paper appeared in [16].

This paper is organized as follows. Section II introduces the
notation and some preliminaries. Section III describes the mod-
eling of the uncertainty and the parametrization of the trajectory.
Section IV explains the estimation of the admissible models and
the computation of the trajectory. Section V illustrates the pro-
posed approach through some examples. Last, Section VI con-
cludes this paper with some final remarks.

1063-6536/$26.00 © 2011 IEEE
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II. PRELIMINARIES

The notation is as follows: w.r.t.: with respect to; : real
number set; : set of rotation matrices in ; : null
vector/matrix (size specified by the context); : vector/matrix
with all entries equal to 1 (size specified by the context); : iden-
tity matrix (size specified by the context); : th column of the
identity matrix (size specified by the context); : transpose
of vector/matrix ; : 2-norm of vector/matrix ; :
infinity norm of vector/matrix ; : skew-symmetric matrix
of vector , i.e.,

Let and denote two camera
frames expressed w.r.t. an absolute frame , where ,

define the orientations and , de-
fine the origins of and . Let be 3-D
points expressed w.r.t. . Assuming the case of projective
camera models, we have that projects onto the image planes

of and at the points and

defined by

(1)

where , are the depths of the points w.r.t. and
, and is the upper-triangular matrix containing

the camera intrinsic parameters. We then define

(2)

The visual servoing task is as follows. The camera is po-
sitioned at and the image projections of are
recorded in . Then, the camera is moved to another location,
denoted by , and the image projections of the same points
are recorded in . The task consists of steering the camera
from to by exploiting , . This task is performed in
closed-loop, and is progressively replaced by the vector of
image features seen from the current location of the camera.

Path-planning methods have been developed for addressing
constraints satisfaction and performance optimization in visual
servoing. These methods typically determine a reference trajec-
tory that the camera attempts to follow by exploiting image-
based control. This reference trajectory is computed on the basis
of the available model, which consists of the estimates , ,

of the quantities , , .

III. UNCERTAINTY MODELING AND TRAJECTORY

PARAMETRIZATION

A. Uncertainty Modeling

Our idea is to plan a reference trajectory in the image that
satisfies the required constraints and optimizes the considered
performance for a family of admissible estimates , , .
This family can be generated by introducing uncertainties on

, , . Here we consider the specific case of uniform ad-
ditive uncertainties for clarity of presentation (this case is also
one of those typically used for modeling uncertainties), but one
can consider also different cases. Let us express and as

(3)

where , are random variables representing the
image noise. It is assumed that these random variables are
bounded according to

(4)

where depends on the intensity of the image noise. Sim-
ilarly, we express as

(5)

where are the intrinsic parameters and
are random variables satisfying, for some

bounds

(6)

The difficulty we have to face is that different values of the un-
certainties , , lead to different estimates of the camera
pose between and , and hence to different reference tra-
jectories. In order to address this problem, we parametrize each
possible reference trajectory through an admissible estimate of
the camera pose and through design variables that are common
to all the reference trajectories as explained in the sequel.

B. Trajectory Parametrization

In order to simplify the description, let us suppose without
loss of generality that coincides with , hence implying
that and . Let us parametrize the reference
trajectory from to a generic location with frame ex-
pressed w.r.t. , where and . We denote
the camera frame along the reference trajectory as ,
where is the trajectory abscissa, with and

indicating the initial and the desired locations. We hence
have

(7)

The camera frame is expressed as

(8)

where the functions and de-
fine the orientation and the origin which depend on , , .
From (7), these functions satisfy

(9)
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We express via quaternion, and hence write

(10)

where is a nonzero vector and is given by

(11)

Indeed, for any . Moreover,
for any , there exists satisfying
(10). See, e.g., [15], [17], [18] for uses of quaternion. We indi-
cate such a vector as , where is a
suitable function. From (9) it follows that satisfies:

(12)

Next, we parameterize the functions and via
polynomials. In particular, we use polynomials of degree and

for and , respectively

(13)

where and . The conditions (9) are
satisfied if and only if

(14)

where and are free matrices.
Therefore, the camera frame along the reference tra-
jectory is parameterized by the trajectory abscissa , the desired
location with frame , and the matrices and .

IV. ADMISSIBLE MODELS, TRAJECTORY COMPUTATION, AND

VISUAL SERVOING

A. Estimating Admissible Models

Given the true values of , , , the camera pose between
and can be recovered in the case of non-coplanar fea-

tures with through the essential matrix algorithm or
through the homography matrix algorithm relative to a virtual
plane. If the features are known to be coplanar with ,
the camera pose can be computed through the homography ma-
trix algorithm. See for instance [17], [19], [20] and references
therein. These procedures provide a normalized translational
component if no additional information is available but , ,

because, in such a case, the translation can be computed only
up to a scale factor which stands for the unknown distance be-
tween the origins of and . We indicate the estimate re-
turned by any of these algorithms as

(15)

However, , , are unknown, and according to (3)–(6)
one has a family of admissible camera poses corresponding to
triplets , , in the set

(3) and (5) hold for some

(16)

where is the set of admissible triplets , , given by

(17)
Let us denote with the set of vertices of , i.e.,

(18)
Let be a set of triplets in , and let us denote the
th triplet as . Then, we define the camera

pose associated with as

(19)

The camera poses are a family of ad-
missible models which has been obtained by considering ex-
treme values of the uncertainties on the image points and in-
trinsic parameters.

In addition, we introduce a reconstruction of the scene points
associated with the camera pose , which we

denote as

(20)

Each of the reconstructions in the set can be found by
solving a triangulation problem with 2 views, which amounts to
determining the SVD of a 4 4 matrix whenever the standard
algebraic criterion is adopted (see for instance [21] and refer-
ences therein for triangulation with different criteria). Such re-
constructions are normalized if the translations are
computed only up to a scale factor.

Hence, we define the estimated family of admissible models
as

(21)

B. Estimating Extreme Admissible Models

A problem with the family introduced in Section IV-A
is that it may not contain the extreme admissible models, i.e.,
the admissible models with extreme values of the model com-
ponents. However, let us observe that computing such models is
not trivial, as one should:

• repeat the computation of the camera pose and object re-
construction for all the triplets , , in the set , i.e.,
an infinite number of times;

• or attempt to solve several nonconvex optimization prob-
lems where the decision variables are the components of
the uncertainty and the cost functions are the model com-
ponents.
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Another problem with the family is that ensuring the sat-
isfaction of the physical constraints for all the models in this
family does not ensure the satisfaction of these constraints for
all models bounded by this family (i.e., for the “intermediate”
models) given its generic structure.

In order to cope with these problems while requiring a reason-
able computational effort, we build a special family of estimates
of the extreme admissible models starting from the family .
Specifically, the idea is to determine the extreme values for each
component of the camera pose and object reconstruction in the
set of admissible models. In particular, let us define the extreme
values for the rotation matrix as

th entry of

th entry of (22)

where , . Similarly, we introduce the extreme values
for the translation vector as

th entry of

th entry of (23)

and for the set of object reconstructions as

th entry of

th entry of (24)

where . Hence, we estimate the extreme values for
the model components via

its th entry lies in
(25)

for the rotation

its th entry lies in (26)

for the translation, and

its th entry lies in (27)

for the object reconstruction.
The sought family of model estimates is hence given by

(28)

Before proceeding it is worth making some observations
about the family . First, the models of this family corre-
spond to the vertices of a hyperrectangle in the space of , ,

, . This will allow us to derive robustness properties for the
planned path as it will be explained in Section IV-D.

Second, the family contains also matrices that are not
rotation matrices. This conservatism is the cost to pay for ob-
taining a simple estimate of the set of admissible rotation ma-
trices. An alternative can be to set the th entry of the ro-
tation matrices in equal to a constant value if the range for
such an entry is smaller than a chosen threshold. Also, one can

define the set by using only one rotation matrix (in partic-
ular the one given by the estimates , , ) in order to avoid
to include non-rotation matrices.

Another observation concerns the matrices of the intrinsic pa-
rameters in . In fact, since these matrices will be used in the
computation of the trajectory only for imposing the visibility
constraint, one can equivalently redefine by keeping only
the matrices of the intrinsic parameters with the largest focal
lengths. Indeed, since it is reasonable to suppose that the prin-
cipal point in these matrices lies inside the image, then one has
that the visibility constraint is satisfied for all admissible focal
lengths whenever it is satisfied for their maximum values.

C. Trajectory Computation

For clarity of description, let us denote with a generic
estimate of the camera pose, and with a generic estimate of
the th scene point (in the sequel we will replace these generic
quantities with the estimates previously obtained).

The visibility constraint along the camera trajectory can be
expressed as

where is the projection of onto , and
are the screen limits. We have that

(29)

Hence, the visibility constraint is fulfilled whenever
for all , where is the set of polynomials

(30)

Let us consider now the workspace constraint. This constraint
imposes that the camera origin remains in an allowed region of
the scene, that we describe w.r.t. as

(31)

where are polynomials. Clearly, this
description cannot easily handle complicated workspace rep-
resentations such as occupancy grids, nevertheless one can
enlarge the variety of considerable workspace representations
by increasing the degree and the number of polynomials

. Since the origin of w.r.t. is given by
, the workspace constraint is ful-

filled if and only if for all , where

(32)

Last, let us consider the joint constraint (also known as kine-
matic constraint), and let be the -th joint depending
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on the location of the end-point . This function has to sat-
isfy

(33)

for all locations along the camera trajectory and for all
, where and are the limits for the th joint

and is the number of joints. This is equivalent to impose that
for all , where

(34)

In the case that the function is non-
polynomial, one can replace it with a truncated Taylor expan-
sion, whose approximation error can be reduced by increasing
the degree of the expansion. Then, in the case that the inverse
kinematic is not available, one can obtain the trajec-
tory of the joints from the trajectory of the camera pose through
integration as proposed in [4].

A reference trajectory that satisfies the required constraints
and optimizes a cost of interest (e.g., visibility margin, trajec-
tory length, etc.) is obtained as

subject to

(35)

where is the total set of constraints given by

(36)

and is the set of admissible models considered, either
defined in Section IV-A, or defined in Section IV-B. The
polynomials in typically do not have an explicit represen-
tation, but they can be constructed through simple algorithms
from the problem data according to the definitions (29)–(34). In
Section IV-D we will discuss the solution of problem (35). Be-
fore proceeding it is useful making the following observations.

First, the use of polynomials in the proposed strategy is mo-
tivated by the fact that polynomials can approximate arbitrarily
well continuous functions on bounded domains, which is rea-
sonably the case of visual servoing, and by the fact that es-
tablishing the positivity of some functions as required in (35)
is easier if such functions are polynomial rather than transcen-
dental.

Second, similarly to visibility, workspace, and joint con-
straints, one can consider also occlusion constraints in the
planning phase. Specifically, this can be done by imposing that
the camera does not enter certain regions of the scene (i.e.,
through an additional workspace constraint) or by imposing
that the image features along the trajectory do not get too close
to certain image areas (corresponding to objects between the
camera and the reference points). Details on these extensions
are omitted for conciseness.

D. Trajectory Tracking, Convergence and Robustness

Problem (35) can be solved in several ways, for instance by
adopting standard nonlinear optimization tools such as the sim-
plex algorithm or modified1 Newton’s algorithm. When using
such tools, the satisfaction of the constraints at each iteration can
be simply decided by computing the roots of univariate poly-
nomials thanks to the introduced parametrization of the trajec-
tory. Let us observe that convergence to a minimizer is
typically guaranteed by the tools previously mentioned. Clearly,
this minimizer is in general only local, i.e., it is possible that the
found minimizer is not global: let us observe, however, that this
is not necessarily a problem, in the sense that any local mini-
mizer ensures satisfaction of the constraints, and the difference
with a global minimizer consists of providing a sub-optimal
value of the cost function (which is reasonably less important
than satisfying the constraints). Also, polynomial constraints
such as those in the optimization problem (35) can be han-
dled via LMI optimizations, see for instance [11] and the recent
survey [22], which have the advantage to be free of local-only
minimizers (details are omitted for conciseness).

After solving (35), one builds the trajectory of the image fea-
tures determined by the found pair . Specifically, the tra-
jectory of the -th image point is given by where

is the camera pose corresponding to the available esti-
mates, i.e.,

(37)

An image-based trajectory tracker is then used to follow this
trajectory following the idea introduced in [4]. Indeed, let us
gather the image points into a vector , and
let be a similar vector built with the image points in the current
camera frame. The computed trajectory can be tracked via the
control law

(38)

where is the camera velocity, is the pseudoinverse
of the interaction matrix between and , and , are
any positive scalars. Observe that can be easily computed
analytically since is parametrized via polynomials, and
that the expression of ensures exponential convergence of the
trajectory abscissa to its final value (other expressions can be
chosen). See also [23] about visual tracking.

Let us consider the convergence properties of the camera
under the tracking law (38). We have that the camera converges
to the desired location with the same convergence properties of
IBVS. In fact, in (38) can be expressed as

(39)

where is the standard IBVS control law, which is given
by

(40)

1In order to ensure positive definiteness of the Hessian matrix and decrease
of the cost function.
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Fig. 1. Example 1. (a) Problem definition. (b) Some admissible desired locations. (c) 3D path obtained by tracking the planned path. (d) Camera view (“�”: initial
view; “�”: desired view). (e) Translation evolution (dashed line: limit for joint � ). (f) Rotation evolution.

and is the remaining part of which satisfies

(41)

Indeed, as increases, the trajectory abscissa approaches 1,
i.e., the desired location, and approaches 0 since con-
verges to a finite value and is continuously differentiable.

Last, let us consider the robustness of the proposed strategy.
As previously mentioned, considering the set of admissible
models in the optimization problem (35) provides some
robustness to the planned trajectory in the sense that the sat-
isfaction of the constraints are ensured for any quadruplet

in this set, while existing strategies ensures the
satisfaction of the constraints only for the nominal model

. However, nothing can be said in general about
the satisfaction of the constraints for the admissible models not
considered in . Instead, as previously announced, the set of
admissible models allows one to say something more about
this point. Indeed, if the visibility and workspace constraints

of the optimization problem (35) are satisfied for the models
in , then they are also satisfied for all intermediate models
bounded by those in , i.e., for all models in the set

(42)

where denotes the convex hull. In other words, the set
contains all models where the entries of , , , are allowed
to vary within the extremes present in . This result is due to
two reasons. First, the visibility and workspace constraints are
multilinear functions of the quantities , , , , i.e., they are
linear functions of any of these quantities whenever the others
are fixed. Second, the set is an hyperrectangle in the space
of , , , , and a multilinear function is positive in a hyper-
rectangle whenever it is positive at its vertices, which holds for
the models in . Let us observe that this conclusion cannot
be obtained for the joint constraint in general since it is not de-
scribed by a multilinear function, but typically by a more com-
plicated one.
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Fig. 2. Example 2. (a) Problem definition. (b) Worst-case positions for camera center and object points. (c) 3-D path obtained by tracking the planned path. (d)
Camera view (“�”: initial view; “�”: desired view). (e) Translation evolution (dashed line: limit for joint � ). (f) Rotation evolution.

V. EXAMPLES

In this section we present some illustrative examples of the
proposed strategy. The trajectory tracker (38) is implemented
by using the current value of the interaction matrix (computed
with an estimate of the point depths at the desired location). This
choice may allow to follow the planned trajectory more closely
than by using a constant interaction matrix, though this latter
solution requires less computations.

A. Simulation Results: Example 1

Let us consider the situation in Fig. 1(a) where the camera
observes 9 large dots of three dices. The problem is to reach
from while avoiding collisions with and occlusions due to
the sphere, and keeping the joints within their limit (we con-
sider the constraint cm, where represents the
vertical coordinate of the camera). The relative position of the

obstacle with respect to the desired location is supposed known.
The CAD model of the object is unknown.

In order to reproduce conditions typical of real experiments,
we add image noise to each entry of each image feature through
random variables with uniform distribution in pixels, in-
trinsic calibration errors by choosing and its estimate as

and extrinsic calibration errors by choosing the camera-robot
transformation and its estimate as

cm
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Fig. 3. Example 3. (a) Initial view. (b) Desired view. (c) 3-D path. (d) Camera view (“�”: initial view; “�”: desired view). (e) Translation evolution. (f) Rotation
evolution.

Let us use the proposed approach for planning a robust refer-
ence trajectory. We introduce the uncertain model (3)–(5) with

pixel

hence considering uncertainty up to pixel on each compo-
nent of the image features, and up to on each intrinsic pa-
rameter of the camera.

The next step is to estimate the admissible camera poses. We
consider the family of admissible models that we obtain
by selecting and computing the camera poses
in (19) through the essential matrix algorithm. Fig. 1(b) shows
some admissible desired locations provided by these camera
poses. Hence, we solve the robust path-planning problem (35)
for minimizing the trajectory length via the sim-
plex algorithm, and from the found matrices and we de-
termine the trajectory in the image domain, which is tracked by
using the trajectory tracker (38). Fig. 1(c)–(f) show the obtained
results.

For comparison, we attempt to solve the same problem with
our previous approach in [11], where only one camera pose is

considered: it follows that the final trajectory followed by the
camera does not fulfill the joint constraint (the maximum value
of is 5.61 cm). For completeness, we also consider the classic
PBVS and IBVS: with PBVS all the points leave the field of
view, while with IBVS the joint constraint is not fulfilled (the
maximum value of is 8.62 cm).

B. Simulation Results: Example 2

Here we consider the situation shown in Fig. 2(a) where the
problem is to reach avoiding collisions with the vertical
plane indicated by the grid, which may represent either a joint
constraint or a workspace constraint (the plane equation is

, where represents the -coordinate of the camera).
We introduce the uncertain model (3)–(5) as done in Ex-

ample 1, and we consider this time the family of admissible
models obtained by selecting . Fig. 2(b) shows
the estimated uncertain regions for the translation (represented
by the camera center) and the object points, i.e., the hyperrect-
angles and (which are defined in the frame of the initial
camera). Fig. 2(c)–(f) show the obtained results by solving the
robust path-planning problem (35). As shown by the obtained
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Fig. 4. Example 4. (a) Initial view. (b) Desired view. (c) 3D path. (d) Camera view (“�”: initial view; “�”: desired view). (e) Translation evolution. (f) Rotation
evolution.

results, the constraint is fulfilled in spite of the present uncer-
tainties.

C. Experimental Results: Example 3

Let us consider the experiment shown in Fig. 3. The problem
consists of reaching the desired location avoiding collisions with
an obstacle, which is represented by the blue bar in the initial and
desired views shown in Fig. 3(a) and (b). The camera is roughly
calibrated.

In order to show robustness of the proposed strategy against
image noise and intrinsic calibration errors, we have placed
the obstacle particularly close to one of the two extreme loca-
tions of the camera (specifically, the initial location). Observe in
fact that uncertainties on the image points and intrinsic param-
eters unavoidably lead to errors on the estimated camera pose
and, hence, on the estimated position of the obstacle with re-
spect to the path of the camera. This fact is also explained by
Fig. 1(b) which shows several desired locations produced by
typical values of these uncertainties.

Hence, we introduce the family of admissible models
generated as in Example 1. We solve the robust path-planning
problem (35) by modeling the obstacle as a box expanded in

the -direction in order to avoid that it could remain between
the camera and the object points hence generating occlusions.
Fig. 3(c)–(f) show the obtained results, in particular the 3-D
path, the image trajectory and the evolution of the camera co-
ordinates. As we can see, the camera successfully reaches the
desired location avoiding collisions with and occlusions from
the obstacle in spite of its vicinity to the initial location.

D. Experimental Results: Example 4

Fig. 4 considers another real experiment with a different con-
figuration. Again the problem consists of reaching the desired
location avoiding collisions with the obstacle. As in the exper-
iment of Example 3, we have placed the obstacle particularly
close to one of the two extreme locations of the camera (in this
case, the desired location). This makes non-trivial for path-plan-
ning methods to fulfill the required constraints in the presence
of image noise and intrinsic calibration errors.

VI. CONCLUSION

Path-planning is a useful strategy for visual servoing, how-
ever the planned reference trajectory is unavoidably affected by
the presence of uncertainties on the used model. This paper has
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proposed a new strategy for computing a robust reference trajec-
tory, which consists of parametrizing a family of admissible ref-
erence trajectories via common design variables, and imposing
the required constraints on all the parametrized reference trajec-
tories.
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