
Title
A new noncontact method for the prediction of both internal
thermal resistance and junction temperature of white light-
emitting diodes

Author(s) Tao, X; Chen, H; Li, SN; Hui, SYR

Citation IEEE Transactions on Power Electronics, 2012, v. 27 n. 4, p.
2184-2192

Issued Date 2012

URL http://hdl.handle.net/10722/155738

Rights IEEE Transactions on Power Electronics. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37976352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 4, APRIL 2012

A New Noncontact Method for the Prediction of Both
Internal Thermal Resistance and Junction

Temperature of White Light-Emitting Diodes
Xuehui Tao, Huanting Chen, Si Nan Li, and S. Y. Ron Hui, Fellow, IEEE

Abstract—Although critical to the lifetime of LED, the junction
temperature of LED cannot be measured easily. Based on the gen-
eral photoelectrothermal theory for LED systems, the coefficient
for the reduction of luminous efficacy with junction temperature
is first related to the characteristic temperature of the LED. Then,
a noncontact method for estimating the internal junction temper-
ature Tj and junction-case thermal resistance Rjc of LED from
the external power and luminous flux measurements is presented
and verified practically. Since these external measurements can be
obtained easily, the proposal provides a simple tool for checking
Tj in new LED system designs without using expensive or sophis-
ticated thermal monitoring equipment for the LED junctions. The
proposed method has been checked with measurements on LED
devices from three different brands with both constant and non-
constant Rjc . The theoretical predictions are found to be highly
consistent with practical measurements.

Index Terms—Light-emitting diodes (LED) system theory,
lighting.

I. INTRODUCTION

D ESPITE the good acceptance of light-emitting diode
(LED) technology in decorative, display, signaling, and

signage applications, its applications in general or public light-
ing are still somewhat restricted. In the panel discussion of
the International Forum in Shanghai 2009 [1], some of these
problems were concluded as eye discomfort caused by the high
color temperature (>6000 K) of LEDs involved, vulnerability to
lightning and short lifetime of electronic LED drivers, gradual
degradation of luminous output as the LED fixtures warm up,
gradual loss of cooling effects of heat sink due to dust deposition
and birds’ excretion. LEDs with high color temperature tend
to have higher luminous efficacy. The imminent requirement
of using warm-colored LEDs (with lower color temperature)
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signifies the importance of optimal design of the entire LED
system, including the right choice of LED devices, the use of
highly reliable LED drivers (preferably with lifetime exceeding
ten years and high robustness against extreme weather condi-
tions such as lightning and wide temperature range), appropriate
thermal management [2]–[6], and proper mechanical design of
the lighting fixture. While the mechanical fixture design against
dust deposition and bird’s excretion is beyond the scope of this
study, this project focuses on the extension of the general pho-
toelectrothermal (PET) theory that links up the relationships of
light, power, and heat [7]. This steady-state PET theory pro-
vides a useful guidance for choosing the LEDs with lowest
junction-to-case thermal resistance Rjc and determining the re-
quired thermal resistance for the optimal thermal management.
The offline passive LED driver [8] that does not require con-
trolled power switches, electrolytic capacitors, auxiliary power
supply, and control integrated circuits offers a reliable solution
to meet the long-lifetime requirements. However, one aspect
of LED system that is often neglected by design engineers is
the prediction of the operating junction temperature Tj and the
junction-case thermal resistance Rjc . It has been shown that
about 85–90% of LED power is dissipated as heat [9]. In addi-
tion, it is not an easy task to measure Rjc [10]. While Tj cannot
be measured easily unless using sophisticated method such as
laser or expensive equipment like TeraLED Transient Thermal
Tester (T3ster) system [11], [12], it is critical to the lifetime of
the LED device and, therefore, the entire LED product. LED
manufacturers usually provide typical Rjc values in their data
sheets based on the rated power, rather than the actual portion of
LED power dissipated as heat. Without any theoretical tool for
predicting Tj and Rjc , LED system designers cannot optimize
their products easily.

Several methods [13]–[15] have been proposed to estimate
the internal junction temperature for white LEDs. Among
them, the authors in [15] propose a “noncontact” method
based on 1) the measurements of the ratio of the total radi-
ant energy and radiant energy within the blue emission and on
2) the assumption that the thermal resistance of the LED pack-
age is constant (using Rjc in the data sheets). This breakthrough
provides a convenient way to monitor the internal junction tem-
perature Tj without using direct monitoring equipment. Based
on the general PET theory for LED systems [7], new equa-
tions for predicting both Tj and Rjc based on external luminous
flux measurements and LED power are presented in this paper.
While the basic concept was briefly described in a conference
paper [16], this paper further develops the theory behind this new

0885-8993/$26.00 © 2011 IEEE
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Fig. 1. Simplified steady-state thermal equivalent circuit with N LEDs
mounted on the same heat sink [7].

noncontact method, with new equations using easily accessible
variables and parameters and without the assumption that Rjc is
always constant. [Note that Rjc may or may not be a constant
depending of the package structures.] Since it is easy to measure
luminous flux and LED power externally, this noncontact ap-
proach offers a simple method for estimating internal variables
and parameters such as Tj and Rjc so that LED system designers
can check if their LED system design will operate within the
LED safe operating conditions or not in the design stage before
mass production. Practical Tj and Rjc measurements of several
types of LEDs (with both constant and nonconstant Rjc ) obtained
from the TeraLED T3ster system are used to compare with the
theoretical predictions based on external power and luminous
flux measurements. Good agreements with measurements and
predictions have been obtained.

II. REVISIT OF THE PET THEORY

The general PET theory is first revisited briefly before it is
extended to derive the new equations for predicting Tj and Rjc .
Assuming a general LED system with N LED devices mounted
on a heat sink, Fig. 1 shows a simplified thermal equivalent
circuit. In practice, heat sink compound or equivalence may be
used between the LEDs and the heat sink to ensure good thermal
contact. The thermal resistance of such thermal compound is
smaller than 0.0045 ◦C-in2 /W [18], [19] and is relatively small
when compared with Rjc of LEDs (typically in the order of
several ◦C/W) and is neglected in the following analysis.

The total luminous flux φv of an LED system consisting of N
identical LED devices can be expressed as

φv = N × E × Pd (1)

where E is the luminous efficacy (lm/W) and Pd is the real
power of one LED (W). The emission intensity (I) of LEDs
decreases with increasing temperature. Near room temperature,
the emission intensity follows an exponential decay function
[17]:

I = I|25 ◦C exp
−(Tj − 25 ◦C)

T1
(2)

where T1 is the characteristic temperature.
The exponential curve of (2) within this practical range of

operating temperature is fairly linear and will be approximated
as

E = Eo

[
1 − 1

T1
(Tj − To)

]
(3a)

E = Eo [1 + ke (Tj − To)] forTj ≥ To and E ≥ 0 (3b)

where Eo is the rated efficacy at the rated temperature To (typ-
ically 25 ◦C in some LED data sheets). The derivation of (3a)
from (2) is given in the Appendix. It should be noted that ke is
the relative rate of reduction of luminous efficacy with increas-
ing temperature. Comparison of (3a) and (3b) shows that the
coefficient ke used in the PET theory is

ke = − 1
T1

. (4)

Based on the model in Fig. 1, the steady-state heat sink tem-
perature can be expressed as

Ths = Ta + Rhs (NPheat) = Ta + Rhs (NkhPd) (5)

where Ta is the ambient temperature.
From Fig. 1 and (5), the junction temperature of each LED is

therefore

Tj = Ths + RjckhPd = Ta + (Rjc + NRhs) khPd. (6)

Combining (6) and (3b) gives

E = Eo [1 + ke (Ta − To) + kekh (Rjc + NRhs) Pd ] . (7)

The total luminous flux φv is

φv = NEPd

φv = NEo{ [1 + ke (Ta − To)] Pd

+kekh (Rjc + NRhs) P 2
d }. (8)

In summary, (6) in the original PET theory provides the equa-
tion for the internal junction temperature of the LED package.
It must, however, be stressed that while ke is given in some
LED data sheets or can be obtained from (4), kh is usually not
available and Rjc is not a constant even though it is assumed as
constant in data sheets. Therefore, the practical procedures for
determining kh and Rjc are essential before Tj can be estimated
accurately. In the next section, we focus on such procedures
with the emphasis that Tj can be obtained based on externally
measurable variables and parameters.

III. REARRANGING EQUATIONS FOR Rjc , kh , AND Tj

A. Determination of kh

The LED power can be defined as Pd = Vd × Id , where Id is
the diode current and Vd is the diode voltage. But only part of
the power will be dissipated as heat. Thus, the heat generated in
one LED is defined as

Pheat = khPd (9)

where kh is less than 1.
The heat dissipation coefficient kh can be determined by using

the thermal measurement method detailed in [9]. Such method
provides accurate results but takes a fairly long time to obtain all
the results because, for each measurement, the silicon oil takes
a few hours to reach its steady-state temperature. A second
method is described here as an alternative.

The wall-plug efficiency ηw indicates the useful portion of
the electrical power and it is defined as the ratio of optical
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power Popt to electrical power Pd . For LED, both the junction
temperature Tj and electrical power Pd affect the optical power
Popt . So, ηw is a 2-D parameter [14]

ηw =
Popt

Pd
. (10)

The heat dissipation coefficient can be related to the wall-plug
efficiency as

kh =
Pheat

Pd
=

Pd − Popt

Pd
= 1 − ηw . (11)

The polynomial method [20] can be applied to solve the ηw

equation, which is a function of both Tj and Pd . First, the
dependence of ηw on Tj is established. By keeping Pd at a
constant value of Pd0 , experiments can be conducted to plot the
wall-plug efficiency ηw expressed as a function of the Tj

ηw (Tj , Pd0) = αTj + β (12)

where the coefficients α and β are constant values that can be ob-
tained from the plots of measurements (as will be demonstrated
in Section IV).

It is, however, more convenient to replace Tj with Ths in (12)
because it is easier to measure the heatsink temperature than the
junction temperature. Therefore, it is further proposed in this
paper a new equation for ηw . Using (6), (11), and (12), the wall-
plug efficiency ηw at constant electrical power can be expressed
as

ηw (Tj , Pd0) = αTj + β = α[Ths + RjcPd0(1 − ηw )] + β.
(13)

Rearranging (13) leads to

ηw (Tj , Pd0) =
α(Ths + RjcPd0) + β

1 + αPd0Rjc
. (14)

At a constant electrical power Pd0 , the specific form of
ηw (Tj , Pd0) in (14) can be rearranged in terms of Ths as follows:

ηw (Ths , Pd0) = σThs + τ (15)

where σ = [α/(1 + αPd0Rjc)] and τ = (αRjcPd0 + β)/(1 +
αPd0Rjc). The parameters σ and τ can be practically determined
as demonstrated in Section IV.

Second, the dependence of ηw on Pd is developed. Here,
the heatsink temperature is fixed at Ths0 and measurements of
the wall-plug efficiency ηw are obtained for a range of Pd and
plotted as the following function:

ηw (Ths0 , Pd) = χP 2
d + δPd + γ (16)

where the coefficients χ, δ, and γ are constant values that can
be obtained as shown in Section IV.

The 2-D function of ηw can then be established by combining
(15) and (16) as

ηw (Ths , Pd) =
(σThs + τ)(χP 2

d + δPd + γ)
μ

= (α′Ths + β′)(χP 2
d + δPd + γ) (17)

where μ is a constant, which is the value of ηw at point (Tj0 ,
Pd0), and α′ = σ/μ and β′ = τ/μ [21]. Substituting (17) into

(11), the new kh expression is finally established as

kh = 1 − (α′Ths + β′)(χP 2
d + δPd + γ). (18)

The parameters α′, β′, χ, δ, and γ can be determined practically
as shown in Section IV.

B. Determination of Rjc

If the thermal resistance Rjc is a constant as quoted in the
manufacturers’ data sheets, (6) provides a means to calculate
the internal junction temperature of an LED. However, in some
cases, Rjc is not a constant because heat flow is, in practice,
a 3-D process instead of a 1-D one. In order to estimate Tj

accurately, it is necessary to determine Rjc first.
In order to predict Rjc and Tj , (8) can be rearranged so that

Rjc becomes the subject of the equation as follows:

Rjc =
φv

NEokekh
P−2

d − 1 + ke(Ta − To)
kekh

P−1
d

− NRhs for Pd > 0 (19)

where kh obeys (18).
Because the heat sink temperature can be easily measured by

a thermal sensor in practice, it is more convenient to express
(19) in terms of Ths instead of Rhs and Ta with the use of (6).
The new junction thermal resistance equation can be rearranged
as

Rjc =
φv

NEokekh
P−2

d − 1 + ke(Ths − To)
kekh

P−1
d forPd > 0.

(20)
It can now be seen that (20) gives a new method to estimate the

Rjc in terms of externally measurable parameters and variables.
Here, ke can be obtained from data sheets and kh can be obtained
either from experiment [9] or (18). LED power Pd , luminous
flux φv , and heat sink temperature Ths can all be measured.

C. Determination of Tj

With kh and Rjc determined, (6) can now be used to obtain
Tj :

Tj = Ths + RjckhPd = Ta + (Rjc + NRhs) khPd.

If kh from (18) is used instead of using the method in [9], (6)
can be expressed as

Tj = (Rjc + NRhs)[Pd − (α′Ths + β′)(χP 3
d + δP 2

d + γPd)]

+ Ta. (21)

Equations (20) and (21) will be used in the next section for
calculating the theoretical values of Rjc and Tj , respectively.

IV. PRACTICAL EVALUATION AND VERIFICATION

In order to confirm that Rjc and Tj can be estimated with a rea-
sonable degree of accuracy using externally measured luminous
flux, a TeraLED T3ster system (see Fig. 2) is used to provide
the practical measurements for comparison with the theoreti-
cal predictions. The T3ster system has an actively temperature-
controlled mounting plate for the LED device. This sophisticated
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Fig. 2. Photograph of a TeraLED T3ster system.

TABLE I
PARAMETERS USED FOR CREE LED Rjc AND Tj CALCULATION

LED equipment allows internal variables, such as the junction
temperature and thermal resistance, and also the external vari-
ables, such as the luminous flux and the electric power of an
LED, to be measured. With the help of this TeraLED T3ster
system to provide both the internal and external measurements,
experiments have been set up for several types of LED devices
in order to check if the modified equations offer accurate pre-
dictions of Rjc and Tj or not.

LED devices from Cree, Philips, and Sharp are used as ex-
amples in this evaluation. Individually, each type of LED is
mounted on the cold plate of the T3ster system, and the temper-
ature of the plate is kept constant at 30 ◦C. This means that the
heat sink temperature Ths for the LED is 30 ◦C in the analysis.
The T3ster system is then used to measure Tj , Rjc , φv , and E.
The efficacy Eo used in the calculation is measured by operating
the LED at 25 ◦C for a short time.

A. Cree XR-LED

The parameters used in the analysis for the Cree LED are
listed in Table I. The model number is XREWHT-L1-0000-
007F5.

Under the constant power (Pd0 = 1.06 W), the measured ηw

points and the traced polynomial line versus different LED case
temperature are plotted in Fig. 3; here, the case temperature is

Fig. 3. Measured points and traced line for ηw versus case temperature.

Fig. 4. Measured points and traced line for ηw versus LED power.

equivalent to the heat sink temperature Ths because the temper-
ature of the mounting plate is actively controlled.

Thus, for this case, the wall-plug efficiency in (15) becomes

ηw (Ths , 1.06) = −0.000276 × Ths + 0.207198. (22)

Under the constant case temperature (Ths = 30 ◦C), the mea-
sured ηw points and the traced polynomial line versus different
LED power are plotted in Fig. 4.

Thus, ηw in (16) becomes

ηw (30, Pd) = 0.015299P 2
d − 0.078292Pd + 0.26422. (23)

From (17), the entire 2-D wall-plug efficiency ηw equation is

ηw (Ths , Pd)

=
(−0.000276Ths + 0.207)

(
0.015P 2

d − 0.078Pd + 0.264
)

ηw (30, 1.06)

=
(−0.000276Ths + 0.207)

(
0.015P 2

d − 0.078Pd + 0.264
)

0.2014
.

(24)

Comparing the coefficients of (17) and (24), the coefficients
are found to be

α′ =
−0.000276

0.2014
= −0.0014

β′ =
0.207198
0.2014

= 1.0288

χ = 0.015299, δ = −0.078292, γ = 0.26422. (25)
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Fig. 5. Measured and calculated kh parameters versus power.

Fig. 6. Measured and calculated Rjc of the Cree LED.

Fig. 7. Measured and calculated Tj of the Cree LED.

By submitting these coefficients of (25) into the kh parameter
equation (18), the calculated heat dissipation coefficient kh can
be obtained. The measured and calculated kh parameters are
shown in Fig. 5.

By substituting the calculated kh in Fig. 5 together with the
parameters in Table I into (20), the junction thermal resistance
Rjc can be calculated. Fig. 6 shows the measured and calculated
Rjc . The calculated values derived from the externally measured
φv and Pd are found to be fairly accurate.

With the calculated Rjc , according to (21), Tj can be calcu-
lated and is plotted in Fig. 7 with the measured junction temper-

TABLE II
PARAMETERS USED FOR PHILIP LED Rjc AND Tj CALCULATION

Fig. 8. Measured points and traced line for ηw versus case temperature.

Fig. 9. Measured points and traced line for ηw versus LED power.

ature. It can be seen that the calculated and measured junction
temperature values agree well with each other.

B. Philips LXHL Cool-White LED

LED from Philips with model number LXHL-PW01 is used
to repeat the experiments. Table II tabulates the parameter values
used in the theoretical calculation.

Under the constant power (Pd0 = 1.10 W), the measured ηw

points and the traced polynomial line versus different LED case
temperature are plotted in Fig. 8.

Thus, for this case, the wall-plug efficiency in (15) becomes

ηw (Ths , 1.10) = −0.000188 × Ths + 0.13666. (26)

Under the constant case temperature (Ths = 30 ◦C), the mea-
sured ηw points and the traced polynomial line versus different
LED power are plotted in Fig. 9.

Thus, ηw in (16) becomes

ηw (30, Pd) = 0.01475P 2
d − 0.066037Pd + 0.186311. (27)
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Fig. 10. Measured and calculated kh parameters versus power.

Fig. 11. Measured and calculated Rjc of the Philips LED.

From (17), the entire wall-plug efficiency ηw equation is

ηw (Ths , Pd)

=
(−0.000188Ths + 0.137)

(
0.0148P 2

d − 0.066Pd + 0.186
)

ηw (30, 1.10)

=
(−0.000188Ths + 0.137)

(
0.0148P 2

d − 0.066Pd + 0.186
)

0.13145
.

(28)

Comparing (17) and (28), the coefficients are

α′ =
−0.000188
0.13145

= −0.0014

β′ =
0.13666
0.13145

= 1.0396

χ = 0.01475, δ = −0.066037, γ = 0.186311. (29)

Once these coefficients are found, the kh equation can be
defined easily by submitting the coefficients of (29) into (18).
The measured and calculated kh parameters are shown in Fig. 10.

Putting the calculated kh in Fig. 10 together with the parame-
ters in Table II into (20), the junction thermal resistance Rjc can
be calculated. Fig. 11 shows the measured and calculated Rjc .
The calculated values derived from the measured φv and Pd are
found to be fairly accurate.

Fig. 12. Measured and calculated Tj of the Philips LED.

TABLE III
PARAMETERS USED FOR SHARP GW5BWC15L02 LED

Rjc AND Tj CALCULATION

Fig. 13. Measured points and traced line for ηw versus case temperature.

With the calculated Rjc and using (21), Tj is calculated and
plotted in Fig. 12 with the measured junction temperature. Un-
like the Cree LED, the Rjc of this Philips LED is not a constant.
This illustrates the important fact that the assumption of a con-
stant Rjc [15] is not necessarily valid. It can be seen that the
calculated and measured junction temperature values are con-
sistent with each other.

C. Sharp LED

The same sets of tests are then carried out using the Sharp
GW5BWC15L02 LED. Table III shows the parameters used
in the theoretical calculation. The measured and calculated Rjc
curves based on (20) are plotted in Fig. 16. The measured and
calculated Tj curves based on (21) are shown in Fig. 17. Again,
very good agreements between the measurements and predic-
tions have been obtained.
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Fig. 14. Measured points and traced line for ηw versus LED power.

Fig. 15. Measured and calculated kh parameters versus power.

Fig. 16. Measured and calculated Rjc of the Sharp LED.

Fig. 17. Measured and calculated Tj of the Sharp LED.

Under the constant power (Pd0 = 7.76 W), the measured ηw

points and the traced polynomial line versus different LED case
temperature are plotted in Fig. 13.

Under the constant case temperature (Ths = 60 ◦C), the mea-
sured ηw points and the traced polynomial line versus different
LED power are plotted in Fig. 14.

From (17), the entire 2-D wall-plug efficiency ηw equation is

ηw (Ths , Pd)

=
(−0.00014Ths + 0.15)

(
0.00025P 2

d − 0.013Pd + 0.229
)

0.142
.

(30)

According to (30), the coefficients are

α′ =
−0.000141

0.142
= −0.00099

β′ =
0.150766

0.142
= 1.062

χ = 0.000253, δ = −0.01315, γ = 0.228579. (31)

Putting these parameters in (18), the calculated kh is plotted
in Fig. 15. The theoretical and practical results of the junc-
tion thermal resistance Rjc and junction temperature Tj are in
Figs. 16 and 17, respectively. The good agreements confirm the
validity of the proposed equations that are based on external
measurements.

The practical and theoretical results obtained in these three
types of LED show the validity of the proposed noncontact ap-
proach for estimating the Rjc and Tj . One important observation
is that Rjc is not always a constant. LED manufactures usually
provide a constant value of Rjc measured at its rated power in
their data sheet and do not give the information of Rjc vari-
ation with applied power. This theoretical method provides a
valid tool to estimate the Rjc and its slight variation with power,
which is very important to the research on thermal management
of LED.

V. CONCLUSION

The general PET theory for LED systems has been used to
derive new equations for predicting the thermal resistance and
junction temperature of LED devices based on externally mea-
surable parameters and variables. Unlike previous noncontact
method that relies on the assumption of constant thermal resis-
tance of LED, this new method enables the estimation of both
thermal resistance and junction temperature. For predicting the
internal junction temperature and thermal resistance of the LED
packages, which are critical to the lifetime of the devices, the
proposed approach avoids the need for using sophisticated LED
monitoring equipment. Since the proposed method requires only
the measurements of luminous flux, LED power, and heat sink
temperature that can be obtained easily, it can be adopted as a
simple tool by design engineers to check if the internal tempera-
ture of the LED may exceed its safety limit before finalizing their
designs. This method has been practically verified with LEDs
of different brands with constant and nonconstant thermal re-
sistance. Measurements and theoretical predictions have very



TAO et al.: NEW NONCONTACT METHOD FOR THE PREDICTION OF BOTH INTERNAL THERMAL RESISTANCE AND JUNCTION TEMPERATURE 2191

good agreements, confirming the validity of the new equations
and the accuracy of this method.

APPENDIX

The luminous intensity represents the light intensity of a
source as perceived by the human eye. The luminous intensity
is measured in units of candela (cd). The definition of luminous
intensity is as follows: a monochromatic light source emitting
an optical power of (1/683) W at 555 nm into the solid angle of
1 sr has a luminous intensity of 1 cd. [17]

The luminous intensity I of LEDs decreases with increasing
temperature. Near room temperature, the luminous intensity
follows an exponential decay function [17]:

I = I|25 ◦C exp
−(Tj − 25 ◦C)

T1
(A1)

where T1 is called the characteristic temperature.
The luminous flux represents the light power of a source

as perceived by the human eye. It is defined as follows: a
monochromatic light source emitting an optical power of (1/683)
W at 555 nm has a luminous flux of 1 lm. [17]

By comparing the definitions for the luminous intensity and
the luminous flux, we can draw this conclusion that if an LED
with viewing angle of θ (sr) and luminous intensity of I (cd),
then it will has a luminous flux as

φv =
∫

I · dθ. (A2)

Equation (A2) realized the conversion between the luminous
flux and the luminous intensity. Again, the luminous efficacy
here refers to the ratio of luminous flux to the electrical power.
That is,

E =
φv

Pd
. (A3)

By substituting (A2) into (A3), we can get efficacy expression

E =
∫

I · dθ

Pd
. (A4)

Where I is luminous intensity and in units of lm/sr (cd), θ is
beam angle in unit of steradian (sr), and Pd is the electrical
power in unit of W.

Substituting (A1) into (A4), the relationship between lumi-
nous efficacy and junction temperature can be obtained

E =
∫

I · dθ

Pd
=

∫
I|25 ◦C exp −(Tj −25 ◦C)

T1
· dθ

Pd

=
∫

I|25 ◦C · dθ

Pd
· exp

−(Tj − 25 ◦C)
T1

= E|25 ◦C exp
(
−Tj − 25 ◦C

T1

)
. (A5)

That is,

E = E|25 ◦C exp
(
−Tj − 25 ◦C

T1

)
. (A6)

Then, by the Taylor series expansions of exponential func-
tions [22], the item of exp(−(T − 25 ◦C/T1)) can be expressed
as

exp
(
−Tj − 25 ◦C

T1

)
= 1 +

(
−Tj − 25 ◦C

T1

)

+
(−(Tj − 25 ◦C/T1))

2

2!

+
− (Tj − 25 ◦C/T1)

3

3!
+ · · · (A7)

The characteristic temperature T1 is thousand orders of mag-
nitude for white LED, so the item of T − 25 ◦C/T1 is far less
than 1. Equation (A7) can be simplified as

exp
(
−Tj − 25 ◦C

T1

)
≈ 1 +

(
−Tj − 25 ◦C

T1

)
. (A8)

So, (A6) becomes

E = E|25 ◦C

[
1 − 1

T1
(Tj − 25 ◦C)

]
. (A9)

Equation (A9) gives the relationship of luminous efficacy E
and junction temperature Tj . The procedure from (A1) to (A9)
leads to the conversion from luminous intensity to luminous
efficacy.
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