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Close-packed micro-lenses with dimensions of the order of wavelength have been integrated onto

the indium-tin-oxide (ITO) layer of GaN light-emitting diodes employing nanosphere lithography.

The ITO lens arrays are transferred from a self-assembled silica nanosphere array by dry etching,

leaving the semiconductor layer damage-free. An enhancement of up to 63.5% on optical output

power from the lensed light-emitting diode (LED) has been observed. Lens-patterned LEDs are

also found to exhibit reduced emission divergence. Three-dimensional finite-difference

time-domain simulations performed for light extraction and emission characteristics are

found to be consistent with the observed results. VC 2012 American Institute of Physics.

[doi:10.1063/1.3684505]

It is well-known that the light extraction efficiency of

GaN-based light-emitting diodes (LEDs) is severely re-

stricted due to total internal reflections at the nitride-air inter-

face.1 One approach for enhancing optical performance of

LEDs is the employment of micro-lenses to facilitate extrac-

tion of light.2 Apart from contributing to light extraction,

micro-lenses can also be used for modifying directionality of

the emitted light.3 Conventional micro-lens fabrication tech-

niques, such as thermal resist reflow or inkjet printing, allow

the formation of micro-lenses of the order of microns.4–6

Apart from feature dimensions, the packing density of the

lens array is also limited since the reflow step requires suffi-

cient spacing between photoresist pedestals of the same scale

as the minimum feature sizes.7 To overcome the limitations

of dimension and packing density, nanosphere lithography

(NSL) is demonstrated in this work to be capable of pattern-

ing close-packed sub-micron lens arrays with scalable

dimensions. NSL is also potentially suitable for mass pro-

duction due to its low set-up costs and high throughput, com-

pared with electron beam or nano-imprint lithography.8

Previously, monolithic integration of microlenses on the sap-

phire surface of flip-chip LEDs has been demonstrated.3 For

p-side-up LEDs, processing lenses directly on the p-GaN

contact layer may induce plasma damage during dry etching,

invariably degrading electrical characteristics of the device;9

this can be overcome by forming the lenses onto the indium-

tin-oxide (ITO) current-spreading layer.

In this letter, we report on the fabrication and characteri-

zation of blue InGaN LEDs with integrated ITO lenses

whose dimensions are of the order of wavelength or sub-

wavelength, patterned by NSL. A monolayer of self-

assembled nanospheres serves as an etch mask for pattern

transfer onto the ITO layer, resulting in the formation of a

hexagonally close-packed ITO lens array after etching. The

optical and electrical performances of the packaged devices

are evaluated. The finite-difference time-domain (FDTD)

method is employed to simulate the optical effects of incor-

porating ITO lenses with different dimensions to the LEDs.

The LEDs are fabricated according to the process flow

illustrated in Figure 1. The InGaN LED wafers are grown on

c-plane sapphire substrate by metal-organic chemical vapor

deposition (MOCVD), with embedded InGaN/GaN multi-

quantum wells designed for emission at around 460 nm. A

200 nm transparent ITO current spreading layer is sputter-

deposited. NSL patterning begins with the formation of a

self-assembled hexagonal closed-packed monolayer of silica

nanospheres by spin coating. The optimized coating condi-

tions have previously been reported.10 The mean diameters

of the spheres used in the work are 195 nm, 310 nm, and

500 nm. For the 195 nm and 310 nm nanospheres, the array

directly serves as an etch mask for pattern transfer onto the

ITO layer by inductively coupled plasma (ICP) etching. The

FIG. 1. (Color online) Schematic diagrams showing the fabrication process

flow: (a) silica spheres are coated onto the starting LED wafer by spin-coating;

(b) additional RIE etching for 500 nm lens to reduce sphere size longitudinally;

(c) pattern transfer to ITO layer using ICP etching; (d) mesa definition by pho-

tolithography; (e) exposure of n-GaN region by dry etching; (f) metal pads

deposition by e-beam evaporation.

a)Author to whom correspondence should be addressed. Electronic mail:
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coil power and platen power are set to 500 W and 135 W,

while the chamber pressure is maintained at 5 mTorr, using a

Cl2 based plasma. The etch duration for all samples is fixed

at 180 s so that a 50 nm-thick ITO layer remains beneath the

lenses for low-resistivity current spreading. During etching,

the spheres themselves shrink both laterally and vertically,

transferring onto the ITO layer to become convex lenses.

However, with the larger 500 nm spheres, the waists of the

spheres remain largely unchanged after 180 s of etching de-

spite a significant reduction in height due to the direction-

dependent selectivity, whereby etch rates in the longitudinal

direction are much faster than that in the lateral direction,

resulting in the formation of GaN pillars with vertical side-

walls. An additional process is thus required prior to ICP

etching to shrink the silica spheres longitudinally without

etching the GaN layer; this is achieved by selective reactive-

ion etching (RIE) using a CHF3-based plasma under low rf

power. At an optimized RIE etch duration of 16 min, the

spheres are shaped into olives, whilst remaining closed-

packed. The olive-shaped nanospheres can now be transferred

onto ITO to become convex lenses. After photolithographic

patterning to define a 600� 300 lm2 mesa, the samples are

dry etched to expose the n-GaN layers. The contact pad

regions are defined by yet another photolithographic step,

followed by e-beam evaporation of the p-pads and n-pads.

For comparison, an LED with an un-patterned ITO surface is

fabricated alongside. Figures 2(a)–2(c) show surface morphol-

ogies of the lenses imaged by atomic force microscope

(AFM). Field-emission scanning electron microscopy (FE-

SEM) images, as illustrated in Figures 2(d)–2(f), offer a wider

view of the same lenses. The heights of the lens structures

with diameters of 195 nm, 310 nm, and 500 nm are evaluated

to be approximately 100 nm, 150 nm, and 150 nm, respec-

tively. The height of the smallest lens has been intentionally

trimmed down to maintain a near-spherical profile and to

retain 50 nm of ITO beneath the lenses.

The electrical and optical properties of the lens-pat-

terned LEDs are measured. Figure 3(a) shows the current-

voltage (I-V) characteristics of LEDs with and without ITO

lenses. The forward voltages for the LEDs with 500 nm,

310 nm, and 195 nm lenses and the unpatterned LED are

3.26 V, 3.24 V, 3.19 V, and 3.19 V, respectively. The series

resistances, namely the slopes of the I-V curves in linear

region, are almost unchanged. The I-V curves substantiate

that structuring of the ITO layer has not degraded the electri-

cal properties of the devices, which would unnecessarily

incur resistive losses. Figure 3(b) plots the light output power

of LEDs. The light output power of each LED has been

measured using a 2� 2 cm2 Si-photodiode placed 2 cm

above the emission plane of the LEDs. Compared with the

FIG. 2. (Color online) AFM images

showing nano-lens with diameter of (a)

195 nm, (b) 310 nm, and (c) 500 nm; FE-

SEM images showing nano-lens array in

good packing order with diameter of (d)

195 nm, (e) 310 nm, and (f) 500 nm.

FIG. 3. (Color online) (a) I-V characteristics and (b) light output power as a

function of injection current of nano-lens LEDs and as-grown LED; (c) 3D-

FDTD constructed nano-lens LED model with diameter of 500 nm; (d) con-

tour map of refractive index with lens profiles; (e) FDTD simulated light

output power of nano-lens models and as-grown model.
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unpatterned LED, the output powers of LEDs with ITO

lenses of 500 nm, 310 nm, and 195 nm diameters have been

enhanced by 63.5%, 35.2%, and 22.1% at injection currents

of 100 mA, respectively.

To investigate the propagation of light wave in the pat-

terned ITO layer, a three-dimensional FDTD simulation, rig-

orously solving Maxwell’s equation, is carried out. The

simulated LED structure emitting at 460 nm is simplified to

consist of 200 nm thick ITO/150 nm thick p-GaN/30 nm

thick MQWs/1000 nm thick GaN over an area of 4� 4 lm2.

The refractive index of ITO and GaN is set to 2.05 and 2.44.

Close-packed plano-convex lenses with diameters of

500 nm, 310 nm, and 195 nm are modeled onto the ITO layer

according to the fabricated dimensions, as illustrated in Fig-

ure 3(c). A contour map of refractive index for the three

modeled lenses is also shown in Figure 3(d). According to

the fabricated lens structures, the lens curvatures are not

identical. A point radiating source at the center of MQWs is

excited continuously so that the light output in all directions

can be assumed constant. Only transverse electric (TE)-

polarized light is taken into consideration since light emitted

from a quantum well sandwiched between two dielectric

layers would have a similar polarization.11 Additionally, ex-

perimental results show that TE polarization dominates in

GaN-based LEDs.12 To strike a compromise between com-

putation load and accuracy, the FDTD grid size is set to less

than 1/20 of the wavelength, while the time step is set to

0.033 fs to satisfy the Courant stability condition. To calcu-

late all powers extracted from the top of the LED, a large

monitor is located closed to the top boundary of the LED

model. Figure 3(e) plots the simulated time-dependent light

output powers of LED models with and without ITO lenses.

All ITO patterned models exhibit enhancement of light out-

put. The largest enhancement of more than 2-fold is

observed from the 500 nm lens model. The trend of the simu-

lated results correlates well with that of experimental results,

confirming that the 500 nm lens offers better performance

than the smaller lenses. The deviation of measured data from

the LED with 195 nm lenses may be attributed to non-uni-

formity of sphere dimensions and loose packing order, since

the roughness of the ITO surface becomes comparable to the

diameters of the smaller spheres, inducing more point and

line defects across the self-assembled sphere array.

Figure 4(a) shows the angular emission profiles of the

lens-patterned LEDs operated at 10 mA, measured by rotat-

ing a fiber probe coupled to an optical spectrometer around

the upper hemisphere of an LED in the range of 0� to 90� in

steps of 1�, maintaining a fiber-LED separation of 5 cm. As

determined from the normalized polar plots, the full-width-

at-half maximum (FWHM) of emission divergence for LEDs

with 500 nm, 310 nm, and 195 nm lenses and the unpatterned

LED are 94.4�, 111.2�, 114.6�, and 121.2�, respectively. The

LED with 500 nm lenses is found to produce the most signifi-

cant focusing effect with respect to the unpatterned LED,

demonstrating a divergence reduction of 26.8� (FWHM),

while the changes in divergence from the LEDs with 310 nm

and 195 nm lenses are nearly negligible. A three-dimensional

FDTD simulation is also conducted to predict the angular

emission characteristics of the lens-patterned LEDs. Based

on the constructed LED models, point monitors are added to

record the intensity distribution, in steps of 5� in the angular

range of 0�–90�; the fixed distance between light source and

detector is shortened to �10 lm in order to reduce the com-

putation load. The data collected at each monitor are used to

plot the angular emission profiles of the LED models, as

shown in Figure 4(b). The simulated results are consistent

with the measured data, indicating that only the 500 nm

lenses produce a pronounced focusing effect.

To understand this phenomenon, FDTD simulations on

individual lenses are conducted. Conventional ray-tracing

methods based on Snell’s law lose their validity here, since

the geometrical dimensions of the lens are of the order of

wavelength or even sub-wavelength. In order to depict the

focusing behavior clearly, a bundle of parallel rays is

employed. Figures 4(c)–4(e) compare the propagation of

electromagnetic waves passing through individual lenses of

different dimensions; again, the 500 nm lens exhibits the

most distinct converging effect. As the lens dimension

reduces, the lens focusing effect tends to be weaker, becom-

ing too weak to be observed for the 195 nm lens. The inten-

sity at the focal point of the 195 nm lens is also found to be

1.35 times lower than that from the 500 nm lens. For analysis

of lenses with dimensions of the order of wavelength, wave-

like features such as interference and diffraction must be

taken into consideration. The focusing behavior of lenses

with diameters approaching wavelength is a combination of

diffraction of waves through lens aperture, diffraction at the

lens edges, and complicated interference of waves within the

lens itself.13 As the lens dimension decreases towards sub-

wavelength, the extremely high curvature results in a much

more tortuous wave pathway than larger lenses to match the

phase of the wave within the lens and that outside. It conse-

quently produces a very weak focusing effect and a short

focal distance. Additionally, as light emitted from the

MQWs of an LED is non-parallel, the converging effect for

sub-wavelength lenses becomes even more negligible. Con-

sequently, even though NSL is capable of producing very

FIG. 4. (Color online) (a) Measured and (b) calculated emission pattern of

as-grown LED and nano-lens LEDs (normalized); FDTD simulation results

of wave propagating through single lens, k¼ 460 nm, (c) D¼ 500 nm,

H¼ 150 nm, (d) D¼ 310 nm, H¼ 150 nm, (e) D¼ 195 nm, H¼ 100 nm.
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small lenses, the minimum dimensions of lenses should not

be sub-wavelength.

In summary, the fabrication of GaN LED with ITO

lenses via a NSL process has been demonstrated. Significant

improvements on light extraction of the lensed LEDs have

been observed of up to 63.5% over the bare LED. The LED

with 500 nm lenses exhibits a 26.8� reduction in emission

divergence (FWHM) compared with the bare LED. The

measured data is fully supported with 3D-FDTD simulations

on both light extraction and emission characteristics.

This work was supported by a GRF grant of the

Research Grant Council of Hong Kong (Project No. HKU

7117/11 E).
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