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Abstract—A new method for direction finding with partly cali-
brated uniform linear arrays (ULAs) is presented. It is based on
the conventional estimation of signal parameters via rotational in-
variance techniques (ESPRIT) by modeling the imperfections of
the ULAs as gain and phase uncertainties. For a fully calibrated
array, it reduces to the conventional ESPRIT algorithm. More-
over, the direction-of-arrivals (DOAs), unknown gains, and phases
of the uncalibrated sensors can be estimated in closed formwithout
performing a spectral search. Hence, it is computationally very at-
tractive. The Cramér–Rao bounds (CRBs) of the partly calibrated
ULAs are also given. Simulation results show that the root mean
squared error (RMSE) performance of the proposed algorithm is
better than the conventional methods when the number of uncal-
ibrated sensors is large. It also achieves satisfactory performance
even at low signal-to-noise ratios (SNRs).

Index Terms—Direction-of-arrival (DOA), estimation of signal
parameters via rotational invariance techniques (ESPRIT), partly
calibrated arrays, uniform linear array (ULA).

I. INTRODUCTION

S ENSOR array processing using antenna arrays has been
successfully applied to many engineering fields including

wireless communications and radar systems. In particular, the
theoretical as well as applied aspects of direction finding have
received great research interest during the last decades [1], [2].
Given an ideal antenna array without any uncertainties,
direction-of-arrivals (DOAs) can be estimated with high
accuracy using high- or super-resolution methods such as
multiple signal classification (MUSIC) [3], root-MUSIC [4],
estimation of signal parameters via rotational invariance
techniques (ESPRIT) [5], and maximum likelihood (ML) al-
gorithm [6]. However, antenna arrays in practice usually suffer
from imperfections such as unknown or misspecified mutual
coupling, imperfectly known sensor positions and orientations,
gain, and phase imbalances [2].
It has been shown that conventional high- or super-resolution

direction finding techniques are sensitive to array model errors,
which will considerably degrade the performance of these tech-
niques [2], [7]–[9]. A number of calibration methods have been
proposed to deal with these problems, and the performances
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of conventional methods may be significantly improved by
taking these antenna array uncertainties into account [10]–[16].
Theoretically, fully calibrated antenna arrays are preferred
since high- or super-resolution direction finding techniques
can be applied directly. Nevertheless, antenna arrays in some
practical applications may be incompletely calibrated. Hence,
the response of some sensor elements is poorly known or even
unknown. This class of arrays is usually referred to as partly
calibrated arrays, and a number of DOA estimation methods
have been devoted to these arrays [17]–[24]. For instance, direc-
tion finding with partly calibrated arrays was addressed in [18]
using the ML algorithm. This method requires the number
of calibrated sensors to be larger than the number of signals.
In [19], an algorithm for estimating the DOAs and the gains and
phases of the uncalibrated sensors was proposed by minimizing
a certain cost function. It has been shown that this method
can achieve a satisfactory performance. However, due to the
requirement of line searches and iterations, its complexity may
be high, and the convergence to the global minimum cannot be
guaranteed [19]. More recently, the approach in [20] extended
the ML criterion used in fully calibrated arrays and employed
a particle swarm optimization (PSO) algorithm to solve the
problem of direction finding in partly calibrated arrays. Simu-
lation results showed that it has a better performance than the
approach in [19]. However, its complexity is high because the
searching process is random in nature.
In addition, the problem of DOA estimation using partly

calibrated arrays containing multiple subarrays has been
studied [21]–[24]. This is of great interest since in large sub-
array-based systems, it may be difficult to calibrate the whole
array, though each subarray can be well calibrated [17]. A
well-known class of methods is the rank-reduction (RARE)
estimator proposed in [21]–[24]. The root-RARE algorithm
in [21] and [22] is computationally efficient, but the subarrays
are required to be linear identically oriented, and the interele-
ment spacings should be integer multiples of a known shortest
baseline. For more general cases where the geometries of sub-
arrays are arbitrary, a spectral-RARE algorithm was proposed
in [23] and [24]. However, the sensor number , subarray
number , and source number have to satisfy the condition

. Compared to the root-RARE algorithm, the
complexity will be higher since an additional one-dimensional
spectral search is needed. It is worth noting that although RARE
algorithms are based on multiple subarrays, their applications
to some common arrays such as uniform linear arrays (ULAs)
are straightforward. However, there may exist some limitations
when these methods are applied to ULAs, as we will show later
in Section IV.

0018-926X/$26.00 © 2011 IEEE
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In this paper, we consider the problem of direction finding
with partly calibrated ULAs, which occurs in a number of prac-
tical applications [17]–[20]. A simple but efficientmethod based
on the conventional ESPRIT algorithm is proposed. It is well
known that the conventional ESPRIT algorithm generally re-
quires the array to be fully calibrated and the subarrys be identi-
cally oriented. Unfortunately, as mentioned, the arrays available
in practice may only be partly calibrated, and hence the ESPRIT
algorithm is not directly applicable. In this study, the array man-
ifold of the partly calibrated ULAs is modeled so that the con-
ventional ESPRIT algorithm can be extended to this class of
arrays by taking the imperfections into account. The proposed
method does not require any spectral search, and the DOAs as
well as the gains and phases can be jointly estimated in closed
form.
The rest of this paper is organized as follows. The models

of ideal and partly calibrated ULAs are first introduced in
Section II. The proposed method for DOA estimation using
partly calibrated ULAs is presented in Section III. An analysis
of the proposed method and the Cramér–Rao bounds (CRBs) of
the partly calibrated ULAs are given in Section IV. Numerical
examples are conducted in Section V to evaluate the perfor-
mance of the proposed method. Finally, Section VI concludes
the paper.

II. ARRAY MODELS

A. Ideal ULA Model

To begin with, we consider an ideal ULA with isotropic
sensors impinged by uncorrelated narrowband source sig-
nals, , from far field. The array output observed at
the th snapshot consists of the outputs of the sensors and
can be written as

(1)

where is the steering vector corresponding to the
DOA of the th source, i.e., , and the array geometry, is the

steering matrix

(2)

is the vector of the
signal waveforms, and is the sensor noise vector
that is commonly assumed to be additive white Gaussian
noise (AWGN) vector with zero mean and covariance ma-
trix , where and denote the noise variance and
identity matrix, respectively. For the cases of ideal ULAs, the
steering vector is given by

(3)

with , , and denoting the carrier wavelength, intersensor
spacing, and DOA, respectively. From (1), the array covariance
matrix of the array output is

(4)

where is the signal covariance matrix, and
denotes the statistic expectation.

B. Partly Calibrated ULA Model

We now consider the case where only part of the ULA is
calibrated. Without loss of generality, it is assumed that the
first sensors of the array are calibrated, whereas the last

sensors are uncalibrated with uncertainties modeled
as unknown, direction-independent gains and phases. Let and
represent the array gain and phase vectors, respec-

tively. Then, we have

(5a)

(5b)

where denotes an vector with all elements equal to
one, and and are the unknown
sensor gains and phases of the uncalibrated sensors,
respectively. Taking these unknown uncertainties into account,
the steering vector of the partly calibrated ULAs can be written
as

(6)

where denotes the Schur–Hadamard product

(7)

and is an diagonal ma-
trix. Hence, the array covariance matrix becomes

(8)

where is the steering matrix of the partly cali-
brated ULA. The eigenvalue decomposition (EVD) of (8) can
be written as

(9)

where is an diagonal matrix consisting of largest
eigenvalues and is an diagonal matrix
consisting of smallest eigenvalues. is the
signal subspace matrix containing the eigenvectors with the
largest eigenvalues, while is the noise

subspace matrix containing the eigenvectors with the
smallest eigenvalues. In cases of finite snapshots, the

array covariance matrix and its EVD can be computed as

, where is
the total number of snapshots. The problem we are interested in
is to estimate the DOAs as well as the unknown gains

and phases from array observations.

III. DOA ESTIMATION

We now proceed to estimate the DOAs as well as the un-
known gains and phases of the partly calibrated ULAs. Sim-
ilar to the conventional ESPRIT algorithm, we divide the partly
calibrated ULA into two overlapping subarrays. The first one
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comprises the first sensors, while the second one com-
prises the last sensors. The steering matrices of these two
subarrays can be written as

(10a)

(10b)

where and denote the nominal steering matrices of the
subarrays, and they are equivalent to the first rows and last

rows of , respectively. and denote the
gain and phase vectors of these two subarrays, and

(11a)

(11b)

It can also be noted that and satisfy

(12)

where is an diagonal matrix of the phase delays of the
first and second subarrays for the sources, and it is given by

(13)
Since the signal subspace spans the same space as the

steering matrix , i.e., , there
exists an nonsingular matrix satisfying

(14)

Inspired by the conventional ESPRIT algorithm, let consist
of the first rows of and represent the signal subspace
of the first subarray, and consist of the last rows
of and represent the signal subspace of the second subarray.
Consequently, we have

(15a)

(15b)

Since the matrices , , and are nonsingular, one can
substitute (12) into (15) and get

(16)

where the matrix is given by

(17)

and with
being an vector as

(18)

Here, we note that the first elements of are equal to one,
i.e., , . It can be found in (17) that
and are similar matrices. Therefore, the eigenvalues of

must be equal to the diagonal elements of , and the columns of

are the eigenvectors of [5]. In order to show the relationship
between , the DOAs, and the unknown gains and phases of
the partly calibrated ULA, we let be the eigen-
values of . Hence, the DOAs can be estimated as

(19)

where . Furthermore, given the vector in (18),
the unknown gains and phases can be obtained as

(20)

where .
Since and are still unknown, we propose to estimate them

in the finite samples case according to (16) and (18) by solving
the following optimization problem:

s. t. (21)

where denotes the Frobenius norm. In order to solve this
problem, we first minimize the objective function with respect
to . This gives the least squares solution as follows:

(22)

Substitute this back to (21), and after some manipulation as
shown in the Appendix, the problem in (21) can be finally re-
formulated as

s. t. (23)

where is given by

(24)

and . Note that the formulation
in (23) is derived based on the setting that the first sensors
are calibrated. In fact, it can be applied to any partly calibrated
ULAs with arbitrary placements of the calibrated sensors, pro-
vided that there is at least one pair of consecutive calibrated sen-
sors. For instance, if the th and th sensors are calibrated,
then the constraint in (23) should be replaced by .
We now proceed to solve the optimization problem in (23)

and estimate the DOAs and the unknown gains and phases using
the Lagrange multiplier method. First, we note that the con-
straint in (23) can be represented as

(25)

where is an matrix given by

(26)
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Hence, the problem can be rewritten as

s. t. (27)

To solve this problem using the Lagrange multiplier method, we
form the Lagrangian function associated with (27) as follows

(28)

where is the Lagrange multiplier. By setting the partial deriva-
tive of (28) with respect to to zero, one gets the first-order
necessary condition for optimality as , which
leads to the optimal solution

(29)

By substituting (29) back to the constraint (27), one can deter-
mine the Lagrange multiplier , and hence the final solution
to (29) as follows:

(30)

Consequently, the matrix , DOAs , gains
and phases can be estimated according to (19), (20),
and (22).
It should be noted that a sufficient condition for the existence

of (30) is that is nonsingular. However, in the infinite samples
case, is singular. One possible way to handle this problem
is to employ diagonal loading as suggested in [17], [24], [26],
and [27]. More precisely, a small multiple of the identity matrix
is added to to form the diagonally loaded matrix
. It is worth noting that in these robust algorithms, especially

robust beamforming algorithms discussed in [26] and [27], the
loading level is usually required to be optimally selected. For-
tunately, in our case, we only require being nonsingular, and
hence can be chosen as a small value. In fact, a large may
degrade the accuracy of estimating as well as other unknown
parameters. Moreover, it is found by extensive experiments that,
in finite sample cases, the matrix is always nonsingular, and
hence there is no need for diagonal loading in general.

IV. COMPARISONS AND CRAMÉR–RAO BOUNDS

A. Comparisons

From the derivation in the previous section, it can be seen
that the proposed method is similar to the conventional ESPRIT
algorithm. Therefore, it is computationally efficient since the
DOAs as well as the gains and phases can be estimated from (19)
and (20) at the cost of an EVD, and no spectral search is re-
quired. Compared to ESPRIT, a more general case of partly cal-
ibrated ULAs is tackled. In [22], a root-RARE estimator was
developed for partly calibrated subarray-based arrays with un-
known vector translations. Since it generalizes the conventional
root-MUSIC algorithm, it can be directly applied to fully cali-
brated ULAs. However, its extension to the case of partly cali-
brated ULAs is not straightforward. On the other hand, the spec-
tral-RARE estimator derived in [24] allows the array geometry

to be arbitrary, and it can be directly applied to the partly cali-
brated ULAs by letting the first calibrated sensors be the first
subarray and the other subarrays be of a single sensor.
Therefore, the total number of subarrays is . Ac-
cording to the spectral-RARE estimator, the sensor number ,
subarray number , and source number must sat-
isfy , i.e.,

(31)

This indicates that the number of calibrated sensors in a ULA
should be larger than the source number. For instance, the cal-
ibrated sensors in a ULA should be no less than four when the
sources number is three. As a result, this method is not appli-
cable when . However, in the proposed method, we
only require the number of calibrated sensors to be no less than
two. In fact, this is the basic property of a partly calibrated ULA
because when there are no calibrated sensors in a ULA, the
array should be an uncalibrated rather than partly calibrated one.
A number of works have studied the problem of sensor array
processing with uncalibrated arrays [10]–[16]. For instance, an
ESPRIT-based technique has been proposed for spatial signa-
ture matrix, but not DOA estimation with uncalibrated ULAs,
in [16]. Different from this method, in our proposed method,
we aim to estimate the DOAs as well as unknown array gains
and phase in closed form by taking advantage of the calibrated
sensors.
A special case of the proposed method occurs when the ULA

is fully calibrated, i.e., . In this case, we have
and . Consequently, the constrained problem

in (21) is reduced to an unconstrained problem as follows:

(32)

and its solution is given by

(33)

Apparently, this is the solution of the conventional ESPRIT al-
gorithm. In other words, the proposed method can be regarded
as a generalized version of the conventional ESPRIT algorithm.
It is interesting to note that another generalized version of the
ESPRIT algorithm has been studied in [25]. Different from our
proposed method, this method is proposed to deal with arrays
where any sensor of the first subarray and the corresponding
sensor of the second subarray are displaced by different dis-
placement vectors.

B. Cramér–Rao Bounds

In this section, closed-form expressions for the CRBs of
partly calibrated ULAs with zero mean and statistically
independent Gaussian random vectors are given. The un-
known vectors of DOAs , gains , and phases are given
by , , and
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, respectively. The CRB for DOA
estimation is given by [10], [19]

(34)

where denotes the real part of and

(35)

since . The CRB for the gain estimation is given
by [19]

(36)

where and
is an matrix with its th entry being

if
otherwise.

(37)

Based on the derivations of CRBs for phase estimation of un-
calibrated ULAs in [10] and gain estimation of partly calibrated
ULAs in [19], the CRB for phase estimation of partly calibrated
ULAs can be similarly derived and given by

(38)

It should be noted that the unknown phases are modeled to be
direction-dependent in [19] and direction-independent in this
paper. Hence, the CRB for phase estimation given in (38) is
different from that in [19].

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed method,
computer simulation of a partly calibrated ULA with
sensors separated by half a wavelength was performed. In all

examples, the unknown gain and phase uncertainties are con-
sidered to be direction-independent and time-invariant. Three
uncorrelated narrowband signals with identical power impinge
on the array from the far field, and hence . The DOAs of
them are assumed to be 10 , 10 , and 20 , respectively. The
background noise is assumed to be AWGN.

A. Example I

In the first example, the first five sensor are assumed to be cal-
ibrated, i.e., , while the last five sensors are uncalibrated
with unknown gain and phase uncertainties given by ,

, , , and .

Fig. 1. RMSE of DOA estimation versus SNR. The number of snapshots
, and the number of calibrated sensors .

At first, the performance of the proposed method is evalu-
ated at different SNRs. The determinant-based spectral-RARE
algorithm [24] was also tested for comparison. Moreover, the
results of MUSIC using the first five calibrated sensors and
MUSIC using the whole array with known uncertainties were
also obtained. A total of 200 Monte Carlo experiments are run
at each SNR, and the number of snapshots in each experiment
is . The following root mean squared error (RMSE) of
DOA estimation is used as the performance measure:

where is the number of Monte Carlo experiments, and is
the estimated DOA of the th signal in the th experiment. In all
examples, we let .
In Fig. 1, the RMSEs of the DOA estimates obtained by dif-

ferent methods versus SNR are compared, and the CRB is also
displayed. Overall, it can be seen that, in the cases of partly
calibrated ULAs, the proposed method can give better perfor-
mance than the spectral-RARE algorithm and the MUSIC algo-
rithm using the calibrated sensors.Moreover, it can be noted that
the RMSEs of DOA estimated by all methods, except MUSIC
with known uncertainties, cannot reach the CRB even at large
SNRs. One possible explanation is that the performances of
thesemethods are significantly dependent on the number of cali-
brated sensors. This will be shown in the last example, where we
can see that the performances of these methods will be greatly
improved with increasing number of calibrated sensors . For
example, for a large , the RMSEs are close to the CRB even
when the SNR is 5 dB.
Fig. 2 shows the success probability of DOA estima-

tion. Here, the success probability is defined as ,
where is the number of experiments in which all of the



LIAO AND CHAN: DIRECTION FINDING WITH PARTLY CALIBRATED ULAs 927

Fig. 2. Success probability of DOA estimation versus SNR. The number of
snapshots , and the number of calibrated sensors .

Fig. 3. Bias magnitude of DOA estimation of the third signal versus SNR. The
number of snapshots , and the number of calibrated sensors .

DOA estimate bias magnitudes are smaller than 0.5 , i.e.,
. Apparently, we

notice that the proposed method can achieve the highest DOA
estimation accuracy when the uncertainties are unknown. Even
at low SNRs, the proposed method is able to successfully
estimate all of the DOAs within the given bound with a high
probability. This suggests that the proposed method is useful
especially when the signals are seriously contaminated by
noise.
Fig. 3 illustrates the magnitude of DOA estimation bias of

the third signal, which is defined as . We
can find that even at a small SNR, the bias magnitude is rather
small. When the SNR is larger than 0 dB, the estimation bias
magnitude tends to be very small, whereas such a performance
can only be obtained by the other methods with SNR larger than
10 dB.

Fig. 4. RMSE of DOA estimation versus SNR. The number of snapshots
, and the number of calibrated sensors and .

TABLE I
ESTIMATED GAIN AND PHASE, BIAS MAGNITUDE, RMSE, AND CRB FOR THE
FIRST UNCALIBRATED SENSOR AT DIFFERENT SNRS USING THE PROPOSED

METHOD. TRUE VALUES ARE AND (rad)

In order to evaluate the performance of the proposed method
in gain and phase estimation, the estimated gains and phases,
bias magnitudes, and RMSEs are obtained by the proposed
method with 200 experiments. The CRBs for gains and phases
estimation are also calculated based on (36) and (38) for com-
parison. Table I shows the averaged gain and phase estimates,
bias magnitude, RMSE, and CRB for the first uncalibrated
sensor at different SNRs. Since the estimation results of the
other four uncalibrated sensors obtained by the proposed
method are similar to those of the first uncalibrated sensor, they
are omitted for simplicity.

B. Example II

In this example, we will evaluate the effect of the number
of calibrated sensors in a ULA on DOA estimation. First,
we follow the settings in the previous example, but the cal-
ibrated sensors are assumed to be seven, i.e., . The
unknown gains and phases of the uncalibrated sensors are
identical to those in Example I, i.e., , ,
and . Fig. 4 shows the RMSEs of DOA estimation
when . Moreover, the results of obtained
in Example I are also displayed for comparison. It can be
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Fig. 5. The RMSE of DOA estimation versus the number of calibrated sensors
. The number of snapshots , the .

noted that the performances of the methods, especially the
spectral-RARE algorithm and the MUSIC algorithm using cal-
ibrated sensors, are greatly improved by reducing the number
of uncalibrated sensors.
Next, we set 5 dB to and the number of snapshots to

and evaluate the performance of the proposed method with dif-
ferent number of calibrated sensors. More precisely, the RMSE
is calculated for . It should be noted that the
gain and phase vector is chosen to be

when there are calibrated sensors, where is defined
as the following 1 8 vector:

Fig. 5 shows the RMSEs versus the number of calibrated sen-
sors . We remark here that both spectral-RARE and MUSIC
using calibrated sensors are not applicable when the number
of calibrated sensors is less than four, i.e., , because
these two algorithms require the number of calibrated sensors
be larger than the number of sources in the case of ULA.
From Fig. 5, we can see that the performance of each method

can be improved by increasing the number of calibrated sensors.
It is worth noting that when the number of calibrated sensors is
10, i.e., the ULA is fully calibrated without imperfections, the
proposed method will reduce to the conventional ESPRIT algo-
rithm, whereas both the spectral-RARE algorithm and MUSIC
using calibrated sensors will reduce to the conventional MUSIC
algorithm. This is the reason why the spectral-RARE algorithm
achieves a better performance when .

VI. CONCLUSION

A new direction finding method for partly calibrated ULAs
is presented. It extends the conventional ESPRIT algorithm
by modeling imperfections of the ULAs as unknown gains

and phases. For a fully calibrated array, the proposed method
reduces to the conventional ESPRIT algorithm. The DOAs
and unknown gains and phases can be estimated in closed
form without performing a spectral search. Thus, the pro-
posed method is computationally attractive. The CRBs of the
partly calibrated ULAs are also presented. Simulation results
show that the proposed method outperforms the conventional
methods especially when the number of uncalibrated sensors
is large, and satisfactory performance can be achieved even at
low SNRs.

APPENDIX

In this appendix, we briefly give the derivation of the problem
in (23).
Substituting (22) into (21), the objective function can be

rewritten as

(39)

where is an
projection matrix. It is known that

and for any matrix and
matrix , then (39) can be rewritten as

(40)

where the property is utilized. Moreover, based
on the following identity [28]:

(41)

where and are matrices, ,
and , the objective function (40)
can be further simplified to

(42)

Hence, the problem in (21) becomes

s. t. (43)

which is identical to (23).
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