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Efficient Simulation and Analysis of Quantum
Ballistic Transport in Nanodevices With AWE

Jun Z. Huang, Weng Cho Chew, Fellow, IEEE, Min Tang, Member, IEEE, and Lijun Jiang, Member, IEEE

Abstract—Quantum–mechanical modeling of ballistic transport
in nanodevices usually requires solving the Schrödinger equation
at multiple energy points within an energy band. To speed up the
simulation and analysis, the asymptotic waveform evaluation is in-
troduced in this paper. Using this method, the wave function is only
rigorously solved at several sampled energy points, whereas those
at other energies are computed through Padé approximation. This
allows us to obtain the physical quantities over the whole energy
band with very little computational cost. In addition, the accuracy
is controllable by a complex frequency hopping algorithm. The
validity and efficiency of the proposed method are demonstrated
by detailed study of several multigate silicon nano-MOSFETs.

Index Terms—Asymptotic waveform evaluation (AWE),
complex frequency hopping (CFH), local density of states
(LDOS), multigate MOSFET, nanodevices, quantum transport,
Schrödinger equation.

I. INTRODUCTION

S INCE the dimensions of nanodevices have shrunk to be
comparable to electron wavelength, quantum–mechanical

modeling of electron transport through these nanodevices is
indispensable to capture their wave-physics features. Several
quantum transport models have been developed with differ-
ent levels of approximations [1]. To calculate ballistic cur-
rent through ultrasmall nanostructures, a widely used scheme
is to solve the coupled Schrödinger–Poisson system self-
consistently, either directly [2]–[4] or by using a nonequilib-
rium Green’s function (NEGF) approach [5]–[7].

Both methods essentially generate the same results. In terms
of computational burden, the former approach usually requires
less computer time than the latter one, because the wave
function is directly computed for each mode coming from the
contact and the number of modes with energy below Fermi level
is usually very small. However, the NEGF approach is quite
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convenient since all the modes in the contacts are automatically
taken into account in the Green’s function and all the physical
quantities are expressed in very compact forms.

Solving the self-consistent Schrödinger–Poisson system is
computationally intensive, as it requires solving the open
boundary Schrödinger equation for each energy point, each
incoming mode, each iteration, and each bias. There are sev-
eral efficient models developed over the past years to reduce
the complexity of the large matrix inversion, including the
quantum transmitting boundary methods [2], the coupled (and
uncoupled) mode space approach [3], [5], the scattering matrix
method [8], the recursive Green’s function method [9], the
contact block reduction method [10], [11], and the R-matrix
method [12]–[14]. However, solving the Schrödinger equation
repeatedly at every energy point is still time consuming, and
there is a need to find approximate solutions that can efficiently
simulate the energy response over a wideband.

Asymptotic waveform evaluation (AWE) combined with the
CFH technique is a very popular frequency sweep method in
high speed circuit analysis and computational electromagnetics
[15], which has been verified to be able to reduce the com-
puter time by over one order of magnitude. In this paper, this
technique is employed for efficient simulation and analysis of
quantum electron transport in nanodevices. It will be shown that
this method considerably speeds up the simulation while good
accuracy can be maintained. In Section II, quantum ballistic
transport equations will be reviewed first, and then the idea
of AWE and CFH will be presented and incorporated into the
simulation flow. In Section III, the new method is applied to
simulate and analyze several multigate silicon MOSFETs; the
accuracy and simulation time are compared with traditional
approach. Some conclusions are drawn in Section IV.

II. METHOD DESCRIPTION

A. Quantum Ballistic Transport Problem

A general 2-D quantum device is illustrated in Fig. 1. The
solution domain we are interested in can be divided into two
parts, namely, the device region ΩD and the contact regions Ωα

(α = 1, 2, and 3). ΩD is a finite region with a boundary denoted
by ΓD; Ωα is a semi-infinite region with a boundary denoted by
Γα. Denote the intersection of ΩD and Ωα by ΓD,α, then the
rest of ΓD is ΓD,0, and the rest of Γα is Γα,0.

The device region is characterized by space varying po-
tential VD(x, y) and effective mass m∗

D(x, y). Since the po-
tential and effective mass inside the contact region should
be independent of the position along the contact although it
may have a complicated transverse structure [2], the potential

0018-9383/$26.00 © 2011 IEEE
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Fig. 1. Geometry of a generalized 2-D quantum device with three semi-
infinite leads.

Vα(ξα, ηα) = Vα(ξα) and m∗
α(ξα, ηα) = m∗

α(ξα), where ξα

and ηα are respectively the transverse position and the longi-
tude position inside each contact. Therefore, our major prob-
lem is [2]:

Given: (1) the potential and effective mass in every region:
VD(x, y), m∗

D(x, y), Vα(ξα), and m∗
α(ξα) and (2) amplitude

for each wave incoming from contact α with mode n and
energy E,

Find: ψα,n
D (x, y,E) ∈ C2(ΩD), which satisfies the follow-

ing stationary Schrödinger equation:

−�
2

2
∇ ·

[
1

m∗
D(x, y)

∇
]

ψα,n
D (x, y)

+ VD(x, y)ψα,n
D (x, y) = Eψα,n

D (x, y), (x, y) ∈ ΩD (1)

and boundary conditions:

ψα,n
D = ψα on ΓD,α (2)

∇ψα,n
D · ⇀

nΓD,α
= ∇ψα · ⇀

nΓD,α
on ΓD,α (3)

ψα,n
D = 0 on ΓD,0 (4)

ψα = 0 on Γα,0 (5)
ψα bounded as ηα → ∞. (6)

Once the wave function is obtained by solving (1) –(6), all the
physical quantities can be obtained. For example, the electron
density is given by

n(x, y) = 2
∑
α

∑
n

+∞∫
0

|ψα,n
D (x, y,E)|2

× fFD(E − μα)
dk

dE

dE

2π
(7)

where k is the wavenumber, fFD is the Fermi–Dirac distribution
function, and μα is the Fermi level associated to contact α.
Note that incoming wave of different modes or contacts are
uncorrelated, so they are independently calculated and added
up [16]. The terminal current can be obtained through trans-
mission function by the Landauer–Büttiker formula

Iα =
2q

h

∑
α�=α′

+∞∫
0

Tαα′(E)

×
[
fFD(E − μα) − fFD(E − μα′

)
]
dE (8)

Tαα′(E) =
∑

n

∑
m

kα
m

kα′
n

∣∣∣ψα′,n
D (x, y,E)† · χα

m(ξα)
∣∣∣2 (9)

where χα
m(ξα) is the mth normalized eigenmode of the

contact α, which will be defined later on.
It should be mentioned that the potential distribution for (1)

is usually determined by a self-consistent procedure, which
requires solving the Poisson equation with the charge density
obtained from (7), i.e.,

∇ · [ε(x, y)∇VD(x, y)] = q [n(x, y) − Nd(x, y)] (10)

where ε is the dielectric constant, Nd is the doping density,
and q is the electron charge. The boundary conditions for the
Poisson equation will be specified later for the specific device.

B. Numerical Solution

To obtain the wave function in the device region, we first
write down the solution in the contact regions for one incoming
mode as the summation of incident and scattered waves. Thus

ψα(ξα, ηα) = aα
nχα

n(ξα) exp (−ikα
nηα)

+
Nα∑

m=1

bα
mχα

m(ξα) exp (ikα
mηα) (11)

where aα
n and bα

m are the amplitudes of incident wave and scat-
tered wave, respectively. Here, χα

m(ξα) is the mth normalized
eigenmode of the contact that satisfies the following eigenvalue
problem (suppose m∗

α(ξα) is constant in the contacts) and
boundary condition (5):

− �
2

2m∗
α

∂2

∂ξ2
α

χα
m(ξα) + Vα(ξα)χα

m(ξα) = Eα
mχα

m(ξα) (12)

which can be numerically solved. Here, kα
m is the longitudinal

wavenumber, and

kα
m =

√
2m∗ (E − Eα

m)/�. (13)

It should be noted that kα
m can be either real or imaginary,

which corresponds to travelling wave or evanescent wave in
the contact. Here, Nα should be truncated to include enough
number of evanescent waves.

According to the orthogonality of the eigenmodes, we can
evaluate bα

m as

bα
m =

∫
χα

m(ξα)ψα(ξα, ηα = 0) dξα − aα
nδmn. (14)

Substituting the above expression back to (11) and using bound-
ary condition (2), we have

ψα(ξα, ηα) = −2iaα
nχα

n(ξα) sin (kα
nηα)

+
Nα∑

m=1

(∫
χα

m(ξα)ψα,n
D (ξα, 0)dξα

)
χα

m(ξα) exp (ikα
mηα) .

(15)

This is the solution in the contact region in terms of the
unknowns at the interface; it is subsequently utilized to express
the boundary conditions for the device region.
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Next, applying the finite-difference method to discretize the
2-D Schrödinger equation (1), we can obtain the following
matrix equation:[

EI − H −
∑
α

Sα(E)

]
Ψα,n

D (E) = vα
n(E) (16)

where I is the identity matrix, H is the isolated device Hamil-
tonian matrix, Sα(E) is the energy dependent self energy
matrix that represents the boundary condition, and vα

n(E) is
the vector that represents the incident wave from the contact.
Sα(E) and vα

n(E) only have nonzero elements in the parts that
have coupling to the contacts, which can be derived from (15)
and are given in Appendix I.

Equation (16) can then be solved by various matrix solvers.
It must be pointed out that, for multiple incoming modes from
multiple contacts that share the same energy, they have the same
Hamiltonian matrix that only needs to be inverted once.

C. AWE

It is obvious from (7) and (8) that (16) needs to be repeatedly
solved within the energy range of interest so as to obtain the
integral. In particular, when the wave function rapidly changes
with energy, the energy grid must be very fine so as to achieve
convergence. In addition, sometimes we need to plot the spec-
trum of the electron density or the transmission coefficients
over the energy range to analyze the device physics and guide
the design process. These can be very time consuming for large
problems.

To obtain the solution of (16) over a wide energy band,
following the steps in [15], we rewrite (16) as

A(E)Ψ(E) = v(E) (17)

and expand Ψ(E) in terms of Taylor series at E0, i.e.,

Ψ(E) ≈
Q∑

n=0

mn(E − E0)n. (18)

Similarly, we expand A(E) and v(E) in terms of Taylor series
at E0 with coefficients A(n) and v(n). Matching the coefficients
of equal powers on both sides of (17) leads to the following
recursive algorithm for mn:

m0 =A−1(E0)v(E0) (19)

mn =A−1(E0)

[
v(n)(E0)

n!
−

n∑
i=1

A(i)(E0)mn−i

i!

]
, n≥1.

(20)

A wider bandwidth can be obtained by approximate Ψ(E)
with a rational Padé approximant of order [L/M ], i.e.,

Ψ(E) ≈
∑L

i=0 ai(E − E0)i

1 +
∑M

j=1 bj(E − E0)j
(21)

where L + M = Q. The elements of unknown coefficient vec-
tors ai(0 ≤ i ≤ L) and bj(1 ≤ j ≤ M) can be calculated by

equating the right-hand sides of (18) and (21), multiplying
both sides with the denominator of the Padé approximant, and
matching the coefficients of equal powers of E − E0, which
results in⎡

⎢⎢⎢⎢⎣
mL mL−1 mL−2 · · · mL−M+1

mL+1 mL mL−1 · · · mL−M+2

mL+2 mL+1 mL · · · mL−M+3

...
...

...
. . .

...
mL+M−1 mL+M−2 mL+M−3 · · · mL

⎤
⎥⎥⎥⎥⎦

• [ b1 b2 b3 · · · bM ]T

= −[ mL+1 mL+2 mL+3 · · · mL+M ]T (22)

and

ai =
i∑

j=0

bjmi−j , 0 ≤ i ≤ L. (23)

Equation (22) is first solved to obtain bj , which is then substi-
tuted into (23) to calculate ai.

Once coefficient vectors ai and bj are evaluated, the wave
function at any energy (within the bandwidth of accuracy) can
be found by (21). Note that if we do LU decomposition of
sparse matrix A, then (19) and (20) can be efficiently solved
with forward and backward substitutions. The implementation
is simple, since the derivatives of A only have nonzero elements
in the self-energy parts, and they have very simple analytical
forms as can be derived from (A.5) and (13). Similarly, the
derivatives of v only have nonzero elements in the layer that
couples to the contact, and they are also analytical.

In addition, for multiple incoming modes from multiple
contacts, we need to evaluate the asymptotic form (21) for each
mode. Note that the LU decomposition of A can be reused, and
the computational cost is slightly increased since we need to do
more forward and backwards substitutions.

D. Complex Frequency (Energy) Hopping

Since the bandwidth of Padé approximation is limited, multi-
ple points’ expansion is necessary to obtain an accurate solution
over the whole energy band. The locations of the energy points
can be selected by the CFH technique, as described in the
following.

Given an energy band [E1, μ + 4kBT ], where E1 is the eigen
energy of the incoming wave, μ is the Fermi level, kB is the
Boltzmann constant, and T is the temperature in Kelvin, and
a maximum error tolerance ε for the wave function Ψ, the
following process is observed.

1) Let Emin = E1 and Emax = μ + 4kBT .
2) Do AWE at Emin and Emax, obtain Ψ1(E) and Ψ2(E).
3) Calculate Ψ1(Emid) and Ψ2(Emid), respectively, at mid-

dle energy Emid = (Emin + Emax)/2.
4) If max|Ψ1(Emid) − Ψ2(Emid)| < ε, stop. Otherwise, do

AWE at Emid and repeat the above steps for subregions
[Emin, Emid] and [Emid, Emax].

However, a numerical difficulty arises in the above process
because the derivatives reach singularities at subband edges
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Fig. 2. Two-dimensional view of the n-type double-gate silicon MOSFET.
The structure is infinite in the Z direction. Gate length is denoted by Lg ; source
and drain extension lengths are denoted by Ls and Ld, respectively; silicon
channel thickness is Wch; and oxide thickness is Wox.

Fig. 3. (Top) Three-dimensional view, (bottom left) Y Z cross section view,
and (bottom right) XY cross section view of the n-type triple-gate silicon
MOSFET. Gate length is denoted by Lg ; source and drain extension lengths
are denoted by Ls and Ld, respectively; silicon channel thickness is Tx and
Ty ; and oxide thickness is To.

E = Eα
m, as shown in (13). In order to avoid the singularities,

several small intervals should be skipped from the expansion
region.

Suppose there are N subbands within region [E1, μ +
4kBT ], the subband edge energies of which are

E1 < E2 < · · · < EN < μ + 4kBT. (24)

Then, we divide the whole region into several subregions

(E1+σ,E2−σ), (E2+σ,E3−σ), . . . , (EN +σ, μ+4kBT )
(25)

where σ is a small value, e.g., 5 × 10−4 eV. In each subregion,
the CFH algorithm is employed as described above.

III. NUMERICAL RESULTS AND DISCUSSION

The above proposed method is applied to simulate several
2-D and 3-D multigate silicon MOSFETs, as shown in Figs. 2
and 3. They are very promising candidates for the next genera-
tion nanotransistors.

For the Poisson equation, the Dirichlet boundary condition
is enforced at the gate region, whereas the floating boundary
condition, i.e., the normal derivative is zero, is applied at the
remaining boundary. This can be used to maintain the charge
neutrality at the source and drain extensions [17]. In addition,

Fig. 4. Currents of the double-gated MOSFET as a function of drain bias
for different gate voltages (VG = 0.3, 0.4, 0.5 V): comparison between results
calculated by AWE and the results of nano-MOS.

Fig. 5. Two-dimensional plot of the (top) potential and (bottom) electron
density distributions at VG = VD = 0.3 V.

the Gummel iterative scheme is adopted to speed up the con-
vergence of the coupled Schrödinger–Poisson system [3].

A. Two-Dimensional Double-Gate MOSFET

As shown in Fig. 2, the device parameters are Lg = 10 nm,
Ls = Ld = 4 nm, Wch = 5 nm, and Wox = 1 nm; doping den-
sity is N+ = 1026/m3; longitudinal and transverse effective
mass are m∗

l = 0.91me and m∗
t = 0.19me; work function of

gate metal is 4.25 eV; affinity of silicon is 4.05 eV; permittivity
of silicon is 11.9; and permittivity of SiO2 is 3.8. Temperature
T = 300 K. The grid spacing is 0.1 nm in both x and y
directions. The source Fermi level is set to be 0 eV. In the
following simulation, we use Padé approximant of order [4/4]
and set the error tolerance of CFH to be 2 × 10−2 × max|χα

n|.
At first, we verified our code by comparing the I–V curve

with that generated by the nano-MOS tool [18], which is a
program using mode space NEGF formalism. It is shown in
Fig. 4 that good agreement is obtained at every bias point.

The self-consistent potential and electron density distribution
are plotted in Fig. 5. It is shown that the electron density is
very high at the source and drain extensions, and thus, charge
neutrality should be achieved because of the heavy positive
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Fig. 6. LDOS along the center of the silicon layer. VG = VD = 0.3 V.
Conduction band edge is also shown in white line.

Fig. 7. Transmission and reflection coefficients defined in the Landauer
formula for the electrons coming from the source. VG = VD = 0.3 V.

doping density. The homogeneous Neumann boundary condi-
tion makes the potential constant along the transport direction
at the source and drain ends.

The local density of states (LDOS) along the center of the
silicon layer is depicted in Fig. 6. It is observed that the
interference of incoming wave and reflected wave leads to a
standing-wave-like phenomenon. In addition, some high energy
electrons coming from the source side may go into the channel
and eventually escape to the drain side, but the electrons coming
from the drain can hardly go to the source side due to a large
potential barrier. Therefore, current is formed with a direction
from right to left.

Transmission and reflection coefficients are plotted in Fig. 7.
We notice that the transmission coefficient is continuous,
whereas the reflection coefficient jumps when a new mode
starts to propagate. This is because when an electron mode
starts to propagate, most of it will be reflected back. However,
the summation of transmission and reflection coefficients is al-
ways equal to the number of propagating modes of that energy,
which is an integer. The jumps of coefficient from 0 to 2, 2 to
4, and 8 to 10 correspond to the increase in propagating modes
of the electrons with heavy effective mass in the confinement
direction; their valley degeneracy is 2. Conversely, the jump of

Fig. 8. LDOS at the center of the drain end; both reference and AWE results
are plotted. VG = VD = 0.3 V.

Fig. 9. Absolute error of the potential energy along the center of the silicon
layer with VG = VD = 0.3 V.

coefficient from 4 to 8 corresponds to the propagating mode of
electrons with light effective mass in the confinement direction;
their valley degeneracy is 4.

To investigate the accuracy of the proposed method, we
take the results of the direct method (calculating the values at
each energy point) with a very fine energy grid (energy step:
0.001 eV) as the reference. Fig. 8 gives the LDOS in the middle
of the drain end; it is shown that our method can produce almost
the same results as the reference one. Fig. 9 plots the absolute
error of the potential along the center of the silicon layer; it is
shown that the error can be controlled below 10−4 V, which is
very accurate.

We then investigate the performances of various orders of
Padé approximant with different CFH tolerances, in compari-
son with the direct method (energy grid: 0.001 eV). The number
of energy points (for AWE, it should be understood as the
expansion points) of the last Poisson–Schrödinger iteration,
total CPU time, and drain current for one bias point (VG =
VD = 0.3 V) are summarized in Table I (matrix solver: sparse
LU decomposition with permutation matrices P and Q using
UMFPACK routines). Compared with the direct method, our
method reduces the inversion points by over one order of
magnitude. More accurate results can be obtained by reducing
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TABLE I
LIST OF THE ENERGY POINTS, CPU TIME, AND CURRENT

Fig. 10. Two-dimensional plot of the (top) potential and (bottom) electron
density distributions at VG = 1.5 V and VD = 0 V.

the CFH tolerance but at the cost of more computer time
since more expansion points are needed. To achieve the same
accuracy, higher order Padé approximant takes more computa-
tional cost, although the number of expansion points decreases
with increasing order. This is because higher order needs more
forward and backward substitutions. When ε = 4 × 10−2, the
drain currents obtained are still accurate enough, and it is over
seven times faster.

B. Two-Dimensional Double-Gate (Underlapped) MOSFET

To further demonstrate the advantage of AWE, we analyze
the same structure as Fig. 2, but this time, the gate length is
reduced to 4 nm (note that the channel length is 10 nm), which
means it is underlapped. The other device parameters are the
same as those in Section A, except that Wch = 3 nm.

The self-consistent potential and electron density distribu-
tions are plotted in Fig. 10. It is shown that the potential in the
middle part of the channel is significantly lowered by the large
gate bias, whereas the potential at the end parts of the channel is
less affected by the gate bias, and correspondingly, the electron
density only concentrates at the middle part of the channel.

We further plot the LDOS and conduction band edge along
the center of the silicon layer in Fig. 11; it is obvious that the
wave can penetrate through the potential barriers. In addition,
because of the two potential barriers formed at the channel
ends, there exist some resonant states inside the channel. The
transmission and reflection coefficients are plotted in Fig. 12.
It shows several sharp peaks corresponding to the resonant
tunneling behavior. These sharp peaks are well captured by our

Fig. 11. LDOS along the center of the silicon layer. VG = 1.5 V, VD = 0 V.
Conduction band edge is also shown in white line.

Fig. 12. Transmission and reflection coefficients defined in the Landauer
formula for the electrons coming from the source. VG = 1.5 V, VD = 0 V.

method, which is hard to obtain by the direct method because it
requires very fine energy grids.

C. Three-Dimensional Triple-Gate MOSFET

A triple-gate silicon MOSFET is simulated in this example,
as shown in Fig. 3. The device parameters are Lg = 10 nm,
Ls = Ld = 4 nm, To = 1 nm, and Ty = Tz = 3 nm. Due to
the small cross section of the silicon nanowire, the effective
masses are chosen as those in [19], which are extracted from
sp3d5s∗ tight binding calculation of the E − k dispersion. The
other parameters are the same as those in Section A. The grid
spacing is 0.2 nm in all x, y, and z directions.

The potential and electron density distributions are plotted
in Figs. 13 and 14, respectively. It is shown that the potential
in the XY plane is asymmetrical, whereas the potential in the
XZ plane is symmetrical due to the tri-gate structure. We also
observe that the electron density is mainly confined in the center
of the silicon channel due to the ultrasmall channel thickness.

The LDOS and conduction band edge along the center of the
silicon layer are illustrated in Fig. 15. The wave phenomenon is
evident. In addition, compared with Fig. 6, the conduction band
edge in the channel part is relatively flat. This suggests that the
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Fig. 13. Two-dimensional plot of the potential distribution in (top) XY plane,
(middle) XZ plane, and (bottom left) Y Z plane at the source end, (bottom
middle) channel center, and (bottom right) drain end. VG = VD = 0.3 V.

Fig. 14. Two-dimensional plot of the electron distribution in (top) XY plane,
(middle) XZ plane, and (bottom left) Y Z plane at the source end, (bottom
middle) channel center, and (bottom right) drain end. VG = VD = 0.3 V.

Fig. 15. LDOS along the center of the silicon layer. VG = VD = 0.3 V.

Fig. 16. Transmission and reflection coefficients defined in the Landauer
formula for the electrons coming from the source. VG = VD = 0.3 V.

TABLE II
LIST OF THE ENERGY POINTS, CPU TIME, AND CURRENT

potential in the channel is mainly modulated by the gates, and
the short-channel effect due to drain-induced barrier lowering
is effectively suppressed.

Transmission and reflection coefficients are plotted in
Fig. 16. Again, our approach produces very accurate results
(note that the summation of transmission and reflection is an
integer) over the entire energy band interested.

The comparison of various orders of Padé approximant with
different CFH tolerances for this 3-D case is summarized in
Table II (matrix solver is the same as the 2-D case). The
reference is the direct method with energy grid 0.001 eV. The
bias is VG = VD = 0.3 V. It is observed that the number of
inversion points is reduced by over one order of magnitude with
our method. The accuracy is mainly determined by the CFH
tolerance. More accurate results can be obtained by minimizing
the CFH tolerance but at the cost of more computer time since
more expansion points are needed. To achieve the same accu-
racy, higher order Padé approximant takes less computational
cost as it requires less expansion points. When ε = 4 × 10−2,
the drain currents obtained are still very accurate, and it can be
over eight times faster.

IV. CONCLUSION

In this paper, quantum ballistic transport of multiter-
minal devices has been modeled by the self-consistent
Schrödinger–Poisson system. The AWE integrated with the
CFH technique is proposed to accelerate the solution of the
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Schrödinger equation in a wide energy range. Numerical results
show that this method can reduce by over eight times the
computer time, and the precision can be controlled to an ac-
ceptable level. The characteristic parameters of the device, such
as the spectral density, LDOS, and transmission (reflection)
coefficients at any energy are readily accessed by this method.

As a general method for wideband simulation, this algorithm
can be incorporated to the finite-element method [2], [6] in a
similar way. In addition, it can be combined with the coupled
(uncoupled) mode space approach [3], [5] to further improve
the efficiency. To extend this work to include inelastic scat-
tering, however, is nontrivial, since a full NEGF simulation is
required. The implementation of AWE to the Green’s function
is obviously more expensive, and the scattering self energy is
not analytical in most cases. Extension to the tight-binding and
the first principle model can be realized if the derivatives of the
contact self energy can be obtained.

APPENDIX

DERIVATION OF THE MATRICES

Consider a typical case where there are two contacts
(contact 1 and contact 2) and the directions ξα and ηα (α =
1, 2) are the same as x and y. We apply a second-order central
difference method to discretize the 2-D Schrödinger equation
(1) by using the following formulas:

∇ ·
[

1
m∗(x, y)

∇ψ

]
x=xi,y=yj

≈ 1
Δx2

(
ψi+1,j − ψi,j

m∗
i+1/2,j

− ψi,j − ψi−1,j

m∗
i−1/2,j

)

+
1

Δy2

(
ψi,j+1 − ψi,j

m∗
i,j+1/2

− ψi,j − ψi,j−1

m∗
i,j−1/2

)
(A.1)

where ψi,j = ψ(xi, yj) and m∗
i±1/2,j±1/2 = m∗((xi +

xi±1)/2, (yi + yi±1)/2), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny .
Δx and Δy are the uniform grid spacing in the x and y
directions.

It is apparent that when i = 1 (i = Nx is similar), we have to
specify the values ψ0,j for j = 1, 2, . . . , Ny . These values are
directly obtained from the solution in contact 1 (15) as

ψ0,j = −2ia1
nχ1

n(yj) sin
(
k1

nΔx
)

+
N1∑

m=1

(∫
χ1

m(y)ψ(x1, y)dy

)
χ1

m(yj) exp(ik1
mΔx)

(A.2)
= −2ia1

nχ1
n(yj) sin

(
k1

nΔx
)

+
N1∑

m=1

⎛
⎝ Ny∑

j′=1

χ1
m(yj′)ψ1,j′Δy

⎞
⎠ χ1

m(yj) exp(ik1
mΔx)

(A.3)

where the integration is replaced by a summation using trape-
zoid rule. Similarly, using the solution in contact 2, we can
obtain the values ψNx+1,j for j = 1, 2, . . . , Ny .

Writing the discretized equations with matrix form, we have
(16). Matrix H for the isolated device is

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1 T†
12 0 · · · 0

T12 H2 T†
23

. . .
...

0
. . .

. . .
. . . 0

...
. . . TN−2,N−1 HN−1 T†

N−1,N

0 · · · 0 TN−1,N HN

⎤
⎥⎥⎥⎥⎥⎥⎦
(A.4)

where Hi is the tri-diagonal Hamiltonian matrix for layer i (i =
1, 2, . . . , Nx), and Tij is the diagonal matrix that represents the
coupling between adjacent layers. Matrix S for self energy is

S =

⎡
⎢⎢⎢⎢⎢⎣

S1 0 0 · · · 0

0 0 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 0 0

0 · · · 0 0 S2

⎤
⎥⎥⎥⎥⎥⎦ (A.5)

where the nonzero elements are

Sα
j,j′ = − �

2Δy

2m∗
1/2,jΔx2

Nα∑
m=1

χα
m(yj′)χα

m(yj) exp (ikα
mΔx) ,

α ∈ {1, 2}, and (j, j′) ∈ {1, . . . , Ny}. (A.6)

Vector v is

v =
{

[v1 0 0 · · · 0 ]T , wave from the left
[ 0 · · · 0 0 v2 ]T , wave from the right

(A.7)

where the nonzero elements are

vα
j

=
�

2

2m∗
1/2,jΔx2

2iaα
nχα

n(yj) sin (kα
nΔx) ,

α ∈ {1, 2}, and j ∈ {1, . . . , Ny}. (A.8)
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