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In many industrial inspection systems, it is required to have a high-precision three-dimensional
measurement of an object under test. A popular technique is phase-measuring profilometry. In this paper,
we develop some phase-shifting algorithms (PSAs). We propose a novel smoothness constraint in a reg-
ularization framework; we call this the R-PSAmethod and show how to obtain the desired phasemeasure
with an iterative procedure. Both the simulation and experimental results verify the efficacy of our al-
gorithm compared with current multiframe PSAs for interferometric measurements. © 2011 Optical
Society of America
OCIS codes: 110.6880, 150.3040, 120.6660.

1. Introduction

Measuring the surface profile of an object is a very
useful procedure in inspection systems as it often
sheds light on whether there exists defects or misa-
lignments or even potential connection problems in
the forthcoming manufacturing steps. This is parti-
cularly challenging when applied to integrated
circuit (IC) packages due to two conflicting require-
ments: a small feature size requiring high precision
and the need to a high throughput [1]. There are
several general approaches to optical noncontact
three-dimensional reconstruction, namely shape
from shading (SFS), confocal imaging, stereo, and
structured light reconstruction. Not all of them are
appropriate when we restrict our attention on recon-
structing the surfaces only. The SFS technique in-
volves heavy computations and is intrinsically ill
posed, and it has been argued that most of the as-
sumptions are inappropriate for reconstructing sur-
faces [2]. Confocal imaging can statically reconstruct

an object profile with high accuracy without occlu-
sion [3] but is not suitable for high-speed measure-
ment due to its sequential acquisition nature.
Area-based stereo allows us to obtain a dense surface
map, but multiple cameras are needed, and this ap-
proach fails at occluded regions or within featureless
regions [4].

So far, methods based on structured light and com-
bined with a triangular setup are the most appropri-
ate for surface profilometry. Specially designed
patterns are projected on the object; these patterns
can be coded in many ways for different considera-
tions such as resolution, speed, and robustness. For
instance, laser triangulation projects a dot or a line
on the surface of the object. To get an accurate sur-
face profile, a high-resolution laser light source and a
high-resolution camera are both needed. However,
this method is slow since it involves scanning the
whole surface point by point or line by line. An im-
provement can be made if we project grayscale
stripes, color stripes, or dot matrix patterns, where
the more sophisticated approaches mean we can re-
duce the number of images needed to reconstruct the
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three-dimensional profile [5]. In fact, projecting a
sinusoidal pattern is perhaps the most common
scheme, where efficient reconstruction methods
exist, namely Fourier transform profilometry and
phase-measuring profilometry (PMP) based on Four-
ier transform and analysis [6]. The latter has
attracted much interest particularly because it can
deliver a high-precision reconstruction [7].

Meanwhile, projecting binary stripes temporally or
spatially represents another interesting advance in
optical projection technology [8,9]. These binary pat-
terns allow the reconstruction to be insensitive to
quantization error and noise from the camera. For
example, using a Hamming error-correcting code,
we can perform robust surface reconstruction with
some error correction capability [10]. The reconstruc-
tion needs an additional interpolation step to obtain
a smooth surface of the object due to the discrete nat-
ure of the patterns. For us to obtain sufficient sample
points for better interpolation, we either need to ac-
quire more images or use higher-resolution patterns.
The second option is sometimes not realistic because
high-resolution binary patterns are blurred after
passing through a diffraction-limited optical system,
and they also bring additional difficulties in estab-
lishing the correspondence in the decoding stage.

In this paper, we focus on techniques that use
structured light for three-dimensional reconstruc-
tion and particularly on the phase-shifting algo-
rithms (PSAs) in PMP. Our primary application is on
semiconductor die inspection, although the scheme
can be applied to other application areas as well.
In certain inspections, such as measuring the height
of wafer bumps, explicit three-dimensional recon-
struction is not needed, and various efficient meth-
ods have been proposed. For example, a biplanar
disparity matrix measure was developed to compute
the height based on a specially designed lighting set-
up [11]. Also, binary patterns were projected on the
surface of the IC samples in order to obtain more
sampled profile data [12]. However, if a more com-
plete profile information is needed, such as in surface
inspection and volume measurement, we need ways
to reconstruct the full height profile.

2. Model for PMP

Figure 1 shows the setup of the three-dimensional
phase reconstruction system. Light is projected
through the sinusoidal grating, reflected on the ob-
ject surface, and received by the camera. If the object
were absent, the camera would have captured light
emanating from point C on the reference plane, but
in this case, the light reflected from point D is cap-
tured instead. Accordingly, the phase of the sinusoi-
dal pattern received at the sensor varies with the
height of the surface. With the triangular optical set-
up, when the projecting and imaging systems are
both telecentric, the relationship between the surface
height h�x; y� (where x and y denote the coordinates
on the base plane of the object) and the correspond-
ing phase offset ϕh�x; y� can be modeled as

ϕh�x; y� �
2π�tan α� tan β�

P
h�x; y�; (1)

where α and β are the incident angles of the projector
and the camera, respectively, and P is the pitch of the
grating on the reference surface [13].

This phase offset, when added to a reference sur-
face phase ϕr�x; y�, becomes the total phase of the
sinusoidal signal, denoted ϕ�x; y�. Thus, we have

ϕ�x; y� � ϕr�x; y� � ϕh�x; y�: (2)

Now if we assume B�x; y� is the background intensity
and F�x; y� is the fringe contrast, the captured image
I1�x; y� is given by

I1�x; y� � B�x; y� � F�x; y� cos ϕ�x; y� �N1�x; y�; (3)

where N1�x; y� is additive noise. The subscript “1” is
there because this is the first image we would obtain.
In this equation, we have three variables, namely
B�x; y�, F�x; y�, and ϕ�x; y�. Therefore, we need at
least three images to solve for them. In practice, it
is common to use four, with phase shifts at π∕2 apart.
We therefore have the following four acquired
images, i.e.,

Ik�x; y� � B�x; y� � F�x; y� cos �ϕ�x; y�
� �k − 1�π∕2� �Nk�x; y�; (4)

where k � f1; 2; 3; 4g.
In the absence of noise, the above equations imply

that

tan ϕ�x; y� � I4�x; y� − I2�x; y�
I1�x; y� − I3�x; y�

; (5)

and therefore we have

ϕh�x; y� � arctan
�
I4�x; y� − I2�x; y�
I1�x; y� − I3�x; y�

�
− ϕr�x; y�: (6)

The surface height is then recovered with Eq. (1).

Fig. 1. (Color online) Setup for the three-dimensional phase
reconstruction system.
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This analytical solution allows for high-speed
phase reconstruction. However, in reality, errors due
to spurious reflection, intensity fluctuations, phase-
shift error, system vibration, camera noise, quanti-
zation error, and image blurring often cause this
algorithm to fail. Many extensions of the above for-
mulation have been made over the years. For exam-
ple, Ai and Wyant investigated the effect of spurious
reflection on phase-shifting interferometry [14],
while Brophy considered the effect of the intensity
fluctuations on the PSA based on Taylor expansion
[15]. Subsequently, de Groot analyzed the effect of
the mechanical vibrations and phase-shift error
based on Fourier analysis [16]. Meanwhile, to im-
prove the accuracy and the robustness of the four-
frame algorithm, researchers have proposed various
extensions, such as five-frame algorithms [17]. With
more images, they can further explore the statistical
properties and the interframe correlation of the
images. However, acquiring more images slows down
the whole system and complicates the optical design.

In what follows, we argue that the fringe contrast
F�x; y� is a key factor in accurate phase reconstruc-
tion. Since it is coupled with the phase as in Eq. (3),
when the fringe contrast is small, the reconstructed
phase will be unstable and inaccurate. For instance,
in the low signal-to-noise ratio (SNR) regions such as
the dark background regions, which can include the
substrate regions in our IC packaging application
and the occluded regions, the fringe contrast is small
due to low reflectivity. The situation is more serious
after blurring because the fringe contrast will be
reduced further. However, surface reconstruction at
the low fringe contrast region is often important such
as for surface defect inspection and volume mea-
surement. Therefore, a tilted optics system has been
designed to improve the image quality [18]. In this
paper, we improve the accuracy and robustness
for the surface profile from a signal processing point
of view by solving a constrained optimization
problem.

3. Regularized Multiframe PSA

A. Optimization Formulation

Let us generalize the derivation above and consider
an n-frame PSA, where each frame Ik�x; y� is cap-
tured with a shift sk (for k � 1;…;n). The four-frame
algorithm earlier would correspond to n � 4 and
sk � �k − 1�π∕2. Let Ek�x; y� be the residual error of
the model, i.e.,

Ek�x; y� � Ik�x; y� − fB�x; y�
� F�x; y� cos�ϕ�x; y� � sk�g: (7)

We aim to find B�x; y�, F�x; y�, and ϕ�x; y� for each
pixel location �x; y� in the following optimization fra-
mework by minimizing

E�x; y� �
Xn
k�1

E2
k�x; y�: (8)

However, due to nonlinearity, it is difficult to obtain
the global optimal solution ϕ�x; y�, and we may be
trapped in local optimal solutions instead.

B. Change of Variables

We let Fc�x; y� � F�x; y� cos ϕ�x; y� and Fs�x; y� �
F�x; y� sin ϕ�x; y�. As such, if we consider B�x; y�,
Fc�x; y�, and Fs�x; y� as variables, the cost function
in Eq. (8) is quadratic, and we can obtain the global
optimization using convex optimization [19]. How-
ever, this change of variables comes with some cost:
there must be an additional constraint to impose on
the variables.

We rewrite Eq. (7) by expanding on the triono-
metric function as

Ek�x; y� � Ik�x; y� − fB�x; y� � Fc�x; y� · �cos sk�
� Fs�x; y� · �− sin sk�g: (9)

Consider a specific point �x0; y0�. If we let

M0 �

2
666664

1 cos s1 − sin s1
1 cos s2 − sin s2

..

. ..
. ..

.

1 cos sn − sin sn

3
777775
;

d0 �

2
666664

I1�x0; y0�
I2�x0; y0�

..

.

In�x0; y0�

3
777775
; and v0 �

2
64

B�x0; y0�
Fc�x0; y0�
Fs�x0; y0�

3
75; (10)

then solving for the minimum of

E�x0; y0� � ‖M0v0 − d0‖2
2 (11)

is equivalent to the optimization problem presented
in Eq. (8). Note that the matrix M0 does not depend
on the pixel location, and therefore it can be stored
once for a specific set of translations fskg.
C. Four-Frame Example

To elucidate the methodology further, let us consider
the four-frame capture with sk � �k − 1�π∕2. The
matrix M0 is then

M0 �

2
664
1 cos 0 − sin 0
1 cos π

2 −sin π
2

1 cos π − sin π
1 cos 3π

2 −sin 3π
2

3
775�

2
664
1 1 0
1 0 −1
1 −1 0
1 0 1

3
775: (12)

Furthermore, if we treat Eq. (11) as an uncon-
strained optimization problem, we can in fact com-
pute the solution via the analytical formula
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v0 � �MT
0M0�−1MT

0 d0; (13)

which yields

B�x0; y0� �
1
4
�I1�x0; y0� � I2�x0; y0� � I3�x0; y0�

� I4�x0; y0��; (14)

cos ϕ�x0; y0� �
I1�x0; y0� − I3�x0; y0�

2F�x0; y0�
; (15)

sin ϕ�x0; y0� �
I4�x0; y0� − I2�x0; y0�

2F�x0; y0�
: (16)

We can then recover the phase ϕ�x0; y0� in the range
�−π; π� from cos ϕ�x0; y0� and sin ϕ�x0; y0�.
D. Analyses and Refinements

It may not seem to be much of a difference if we com-
pare Eqs. (15) and (16) with Eq. (5); after all, both
expressions are derived for a noiseless case, and
the former implies the latter. However, there are
actually several advantages to use the optimization
formulation.

• It allows for a general shifting strategy. In a
real system, the captured images may not be located
at the designed shift values due to motion error, and
some real-time processes, such as defect analysis,
may cause the fringe images to be captured at
uneven shift values. A situation such as s1 � 0,
s2 � π∕8, s3 � 13π∕8, s4 � 15π∕8 would not be atypi-
cal. In the optimization setting, we can still obtain
the global optimal solution at these phase shifts.
• With a matrix formulation, we can analyze the

numerical stability resulting from various phase
shifts. For example, the even shift in the earlier
example gives a M0 with a condition number of

���
2

p
≈ 1.4; this can be compared with the uneven shift

mentioned in the previous paragraph, where the con-
dition number of M0 is increased to 13.2. Figure 2
shows the corresponding reconstruction results. In
this simulation experiment, we synthesize the back-
ground intensity at value 100, fringe contrast at
value 50, and ground truth phases from −π∕2 to
π∕2, under independent identically distributed zero-
mean Gaussian noise with a standard deviation of
15. As predicted by the condition numbers, the even
shift outperforms the uneven case, and the standard
deviations of the error are 0.19 rad and 0.95 rad,
respectively.
• Equations (15) and (16) also help to shed light

on the role of F�x; y�. In the low-SNR region, F�x; y� is
small, and therefore small errors or fluctuations in
its reconstruction magnify the error of the recon-
structed phase. This situation becomes worse after
optical blurring because the fringe contrast of the si-
nusoidal signal is reduced. To show this, we synthe-
size the intensities with the fringe contrast value as
above and compare the reconstruction results before
and after blurring with the ground truth where the
zero-mean Gaussian noise has a standard deviation
of 10. Figure 3 shows one of the experimental results
in which the fringe contrast becomes 40% of the
original. The standard deviation of the error after
blurring is increased from 0.14 to 0.38 rad.
• An optimization framework allows us to incor-

porate prior knowledge, which can help to increase
the accuracy of the reconstruction. In many applica-
tions, if the materials on the surface are locally
homogeneous, the fringe contrast F�x; y� is locally
smooth. We can introduce a regularization on
F�x; y� when formulating the phase reconstruction
problem. Accordingly, Eq. (8) is modified to

E�x; y� �
Xn
k�1

E2
k�x; y� � λ1R1�x; y� � λ2R2�x; y�; (17)

where we use two regularization terms based on the
local smoothness assumption on F�x; y� along x and y

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

x

z

Ground truth
Shift 1
Shift 2

Fig. 2. (Color online) Reconstruction results measured in radians
from two sets of four-frame phase shifts. “Shift 1” is
f0; π∕2; π;3π∕2g (displayed in blue), while “Shift 2” is
f0; π∕8;13π∕8;15π∕8g (displayed in red).
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−3

−2

−1

0

1

2

3

x

z

Ground truth
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With blurring and noise

Fig. 3. (Color online) Reconstruction results measured in radians
from the same PSA with and without blurring effect (displayed in
magenta and blue, respectively).
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directions. R1�x; y� and R2�x; y� are given by

R1�x; y� � �F�x� 1; y� − F�x; y��2; (18)

R2�x; y� � �F�x; y� 1� − F�x; y��2; (19)

and λ1 and λ2 control the extent of such regulariza-
tions. Allowing two regularization terms caters for
an anisotropic control of the smoothing in the x and
y directions, which is useful when the imaging
system has different magnifications along these
directions.
• It is very important to note that, with R1�x; y�

andR2�x; y�, we can no longerminimize Eq. (11) point
by point. Instead, we minimize the total energy, i.e.,

ET �
X
x;y

E�x;y�

�
X
x;y;k

E2
k�x;y��λ1

X
x;y

R1�x;y�� λ2
X
x;y

R2�x;y�: (20)

We call this the regularized PSA (R-PSA).

E. Solving the R-PSA

We decompose the nonlinear optimization problem in
Eq. (20) into three subproblems: initial estimation,
regularization, and phase recovery. For each subpro-
blem, we show how to solve it efficiently and ensure a
unique global optimal solution.

1. Estimating the Initial Values for B�x; y�,
F�x; y� and ϕ�x; y�. We approximate the regulariza-
tion terms such that

R1�x; y� ≈ �Fc�x� 1; y� − Fc�x; y��2 � �Fs�x� 1; y� − Fs�x; y��2;
R2�x; y� ≈ �Fc�x; y� 1� − Fc�x; y��2 � �Fs�x; y� 1� − Fs�x; y��2:

�21�

When ϕ�x� 1; y� � ϕ�x; y� and ϕ�x; y� 1� � ϕ�x; y�,
the above expressions can be simplified to Eqs. (18)
and (19). For locally smooth surfaces with homoge-
neous reflectivity, these approximations are suitable
for an initial estimation. Consequently, Eq. (20) is
quadratic in Fc�x; y� and Fs�x; y�, and we can solve
for them efficiently.

In fact, there is an analytical solution. Let M be a
block-diagonal matrix where the diagonal elements
are M0, let v be a vector stacking v0 together by ras-
ter-scanning different �x; y�, and let d be formed from
d0 is a similar fashion. The first term in Eq. (20) is
then ‖Mv − d‖2

2. Moreover, we can form difference
matrices Dx and Dy so that

‖Dxv‖2
2 �

X
x;y

R1�x; y� and ‖Dyv‖2
2 �

X
x;y

R2�x; y�:

(22)

With these quantities, the solution v is given by

v � �MTM� λ1Dx
TDx � λ2Dy

TDy�−1MTd: (23)

In reality, to avoid handling large matrices, v is often
solved using iterative schemes such as the conjugate
gradient method [20].

The solution v provides us the initial estimations
for B�x; y�, F�x; y�, and ϕ�x; y�, where the last term is
obtained from arctanfFs�x; y�∕Fc�x; y�g. However, due
to noise, intensity fluctuation, or blurring, the recon-
structed F�x; y�, especially in the low-SNR region, is
inaccurate and unstable. We fix it in the next step.

2. Regularization on F�x; y�. We use the esti-
mated values for B�x; y� and ϕ�x; y� from the previous
step and leave F�x; y� as the unknown to be found.
Referring back to Eq. (20), the expression is now
quadratic in F�x; y�, and it can be solved efficiently.
In a way very similar to the previous step, we can
express the solution in an analytical form, but in rea-
lity we also solve by iterative schemes.

3. Phase recovery. Using B�x; y� and the regu-
larized F�x; y� as the prior knowledge, we recover
the phase ϕ�x; y� by solving the constrained optimiza-
tion problem:

minimize
P
x;y;k

�Ik�x;y�−fB�x;y��F�x;y�cos�ϕ�x;y��sk�g�2

suchthat cos2ϕ�x;y��sin2ϕ�x;y��1:

�24�

In this subproblem, we can solve cos ϕ�x; y� and
sin ϕ�x; y� by a standard least-square optimization
with a quadratic constraint [21].

In our formulation, we assume that λ1 and λ2 are
positive constants during the initial estimation but
will consider them as functions of �x; y� and update
them while regularizing F�x; y�. In fact, in our imple-
mentation we introduce two other constants, C1 and
C2. The former is a measure of immunity to noise,
which we set to 50 to avoid spurious discontinuities
on F�x; y� [22]. For C2, we set it to be 250, so that the
contrast sensitivity threshold is about 15 gray levels.
They can also be set based on the domain knowledge
of the particular applications and how much regular-
ization is desirable. We then let

λ1�x; y� �
C1

C2 � R1�x; y�
; �25�

such that λ1�x; y�R1�x; y� ≈ C1R1�x; y�∕C2 when
R1�x; y� is small but approachesC1 whenR1�x; y� gets
large. Similarly, we set
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λ2�x; y� �
C1

C2 �R2�x; y�
: (26)

Using the above, we can reduce the dominant effect
of the regularization term on the energy function at
those points where the variations of F�x; y� are large
because the regularization term becomes the con-
stant C1. On the other hand, the regularization
term becomes a convex quadratic cost function
C1R1�x; y�∕C2 [or C1R2�x; y�∕C2 when we consider
λ2] in the smooth region where the variations of
F�x; y� are close to zero.

A summary of the above implementation is shown
in Algorithm 1.

Algorithm 1
Input: (1) multiple images Ik�x; y� and phase shifts
sk, where k � f1;…;ng; (2) parameters C1 and C2 for
the regularization terms.
Initialize the parameters λ1 and λ2:
λ1 � λ2 � C1∕C2.

1. Use the approximation in Eq. (21) to formulate
the cost function ET in Eq. (20) into a standard
positive definite matrix form of the variables B�x; y�,
Fs�x; y�, and Fc�x; y�. We then solve B�x; y�, Fs�x; y�,
and Fc�x; y�.

2. Solve F�x; y� and ϕ�x; y�: F�x; y� ���������������������������������������������
Fs�x; y�2 � Fs�x; y�2

p
and ϕ�x; y� � arctan Fs�x;y�

Fc�x;y�.
3. Update the parameters λ1 and λ2 at the point

�x; y�: λ1�x; y� � C1
C2�R1�x;y� and λ2�x; y� � C1

C2�R2�x;y�.
4. Use the B�x; y�, ϕ�x; y�, λ1�x; y�, and λ2�x; y�

obtained above to formulate the cost function ET
in Eq. (20) into a standard positive definite matrix
form of the variables F�x; y�. Then refine F�x; y� by
minimizing this cost function.

5. Use B�x; y� and the updated F�x; y� to refine
the ϕ�x; y� by solving a constrained optimization
problem in Eq. (24).

6. Solve ϕr�x; y� on a reference plane in a similar
fashion as in steps 1 to 5. Use ϕ�x; y� and ϕr�x; y� to
recover the surface h�x; y� from Eqs. (2) and (1).
Output: the surface profile h�x; y�.

4. Experimental Results

A. Accuracy for Nonuniform Shifts

Our first experiment tests the improvement on accu-
racy of our proposed algorithm. Assuming a land grid

array (LGA) package shown in Fig. 4, we synthesize
the raw intensity images under typical conditions and
compare the reconstruction results from PSAs and
R-PSAs. Since most semiconductor packages are

Fig. 4. (Color online) Typical semiconductor sample called an
LGA. (a) Image of an LGA sample; (b) golden pad in LGA.
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(a) The synthetic background intensity along the profile.
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(b) The synthetic fringe contrast along the profile.
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(c) A cross-section from the substrate to the golden pad.
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(d) Comparison of the results from PSA and R-PSA with
      four images.

Fig. 5. (Color online) Simulation experiments for comparing the
improvement on accuracy between the PSA and the R-PSA. The
reconstruction results are measured in micrometers. (a) Synthetic
background intensity along the profile. (b) Synthetic fringe con-
trast along the profile. (c) Cross section from the substrate to
the golden pad. (d) Comparison of the results from PSA and R-
PSA with four images.

Table 1. Comparison of the Standard Deviation
of the Reconstruction Error

Noise Level

σ � 5 σ � 10 σ � 15 σ � 20

PSA3 13.36 27.78 47.28 71.21
PSA4 10.92 22.33 33.16 45.28
PSA5 9.96 20.16 30.16 42.29
R-PSA3 7.57 9.78 12.97 16.33
R-PSA4 6.10 8.67 11.65 14.92
R-PSA5 5.54 8.37 11.69 15.20

Units in micrometers.
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composed of a nonmetal substrate part and a metal
part (the golden pad) and the reflectivities are locally
homogeneous in the respective regions, we use step
functions to represent the transition in both the back-
ground intensity and the fringe contrast. For the
ground truth height profile, we use the values ob-
tained by measuring a real LGA package in the sub-
strate and the golden pad. We assume nonuniform
phase shifts with s1 � 0, s2 � π∕8, s3 � 13π∕8, and
s4 � 15π∕8 as mentioned in Subsection 3.D, where

the improvement using anR-PSA should bemore pro-
nounced. Accordingly, we synthesize four images
based on the above, then blur them using a Gaussian
filter with a unit standard deviation before adding
some zero-mean Gaussian noise. Finally, we recover
the height profile using a traditional PSAand the pro-
posed R-PSA.

Figure 5 shows one set of the simulation results. In
(a) and (b) we show the synthetic background inten-
sity and fringe contrast; in (c) we have the measured

Fig. 6. (Color online) Error ranges at different noise levels for PSA and R-PSA (units in micrometers). Results from (a) PSA3, (b) R-PSA3,
(c) PSA4, (d) R-PSA4, (e) PSA5, (f) R-PSA5.
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ground truth height profile. The latter is duplicated
in (d), while we overlay the reconstruction results of
the PSA and the R-PSA. It is evident that the R-PSA
matches more closely with the ground truth than the
PSA, not only in the high-SNR region (the golden
pad) but also in the low-SNR region (the substrate).
Numerically, the standard deviations of the errors
have been reduced from 26.2 to 10.4 μm in the former,
and from 111.8 to 26.0 μm in the latter.

B. Robustness with Noise Levels

Next we investigate the sensitivity of the general
multiframe PSAs to additive noise at different levels.
Here we assume uniform phase-shift values, i.e., sk �
�k − 1�π∕2 (for k � 1;…;n), where n is the number of

images. We experiment with n � 3, n � 4, and n � 5,
labeling the results from the PSAs as PSA3, PSA4,
and PSA5, respectively; likewise, the reconstruction
results from the R-PSAs are R-PSA3, R-PSA4, and R-
PSA5, respectively. We synthesize a randomly tilted
plane and use this plane as the ground truth for com-
parison. First, we generate two random numbers
within �0; 10� and �0; 360�, respectively, as the inclina-
tion and azimuth angles in the spherical coordinate
system for synthesizing the normal vector of this
plane. We then retain only the center 20 × 20 pixels
around the origin as the reconstruction region. Final-
ly, we normalize the height profile within this region
from −250 to 250 μm to form the ground truth height.
Meanwhile, the fringe contrast value F�x; y� is a

Fig. 7. (Color online) Surface reconstruction of a golden pad in an LGA sample. (a) Image of a golden pad. (b) Projected fringe image.
(c) Fringe contrast image. (d) Profile from PSA3. (e) Profile after smoothing. (f) Profile from R-PSA3.
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constant (80 out of 256 levels) with a normally dis-
tributed additive noise (with standard deviation
σ � 5), and the background intensity value B�x; y�
is set similarly (at 100 with σ � 5). We then generate
the images according to the model described in
Section 2. The noise level ranges from a standard de-
viation of σ � 5 to σ � 20, and for each case we test
the surface reconstruction 100 times for different
height profiles.

The results of these tests are summarized in Fig. 6
and in Table 1. The former gives a graphical view of
the error range (1 standard deviation wide in each
direction) for different methods under various noise

levels, and the thick dots represent the averages of
the reconstruction errors. The symmetry of these fig-
ures suggests that there is no bias in both PSAs and
the R-PSAs. More importantly, by looking at the
standard deviation of the resulting errors, we can ob-
serve that they increase substantially with respect to
the noise level for PSAs, and the increase is more
drastic with fewer images. While a similar trend is
also observed in the R-PSA, the error range stays
small even with a higher noise level, and reducing
the number of captured images from five to three
does not have much effect in reducing the robustness
especially at a high noise level. At a low noise level,

Fig. 8. (Color online) Surface reconstruction of a DPAK sample. (a) Image of a DPAK sample. (b) Profile from PSA4. (c) Profile after
smoothing. (d) Profile from R-PSA4. (e) Comparison of the cross section on the column at x � 13.

1 January 2012 / Vol. 51, No. 1 / APPLIED OPTICS 41



more images still make better R-PSA results, as seen
in Table 1.

C. Application Using a Real Semiconductor Package

Figure 7 shows an experimental result involving a
golden pad in an LGA sample. In the green substrate
region, which has a low SNR, the fringe pattern is
weak as shown in (b), so it is challenging to obtain
an accurate height profile. However, since the mate-
rials are homogenous, the fringe contrasts are locally
smooth, as shown in (c). If we do not make use of this
assumption, using a traditional PSA3 reconstruc-
tion, we obtain the noisy profile in (d). We can apply
a smoothing filter to suppress the noise, as shown in
(e); however, the abrupt height change from the sub-
strate to the golden pad becomes more gradual, and
the outliers on the left boundary of the golden pad
cause deformation on the profile.

On the other hand, incorporating the smoothness
regularization in both the substrate and the golden
pad regions, we can achieve better profile results.
This is shown in Fig. 7(f). Not only do we reduce the
noise, but we also keep the sharp transition in height
from the substrate to the golden pad. The resulting
profile is more realistic and is insensitive to outliers.

Figure (8) shows another reconstruction result,
this time with a typical discrete package (DPAK)
sample. The result from the PSA is noisy, as shown
in (b). Again, if we apply an averaging filter directly
on the result, noise can be reduced at the expense of
deformation in the shape of the metal lead and the
boundary of the DPAK, shown in (c). With regulari-
zation, we simultaneously suppress the noise and
keep sharp transitions, as depicted in (d).

5. Conclusion

In this paper, we investigate the PSA from an opti-
mization point of view and incorporate a smoothness
constraint as regularization. Thus, we not only use
the interframe correlation but also explore the spa-
tial correlation on the surface. We call this the R-
PSA and show experimentally that it outperforms
the PSA in terms of accuracy and robustness.

This work is supported in part by ASM Assembly
Automation Limited and by the University Research
Committee of the University of Hong Kong under
project 10208648.
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