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On the Steady States of Uncertain
Genetic Regulatory Networks

Graziano Chesi

Abstract—This correspondence addresses the analysis of the steady
states of uncertain genetic regulatory networks (GRNs). The uncertainty
is represented as a vector constrained in a given set that affects the
coefficients of the mathematical model of the GRN. It is shown how regions
containing all possible steady states can be estimated via an iterative
strategy that progressively splits the concentration space into smaller sets,
discarding those that are guaranteed not to contain equilibrium points of
the considered model. This strategy is based on worst case evaluations of
some appropriate functions of the uncertainty via linear matrix inequality
optimization.

Index Terms—Genetic regulatory network (GRN), robustness, steady
state, uncertainty.

I. INTRODUCTION

It is well known that genetic regulatory networks (GRNs) play a
key role in living organisms. Various types of models are used to study
GRNs, in particular, discrete models (such as Boolean models, which
mainly aim to characterize qualitative behaviors), continuous models
(which mainly focus on quantitative behaviors), and hybrid models
(which are obtained by combining discrete and continuous models).
GRNs are also classified depending on the time representation (e.g.,
continuous time or discrete time, possibly via Markov chains), the
nature of the signals (e.g., deterministic or stochastic), the nature of
the methods adopted for their study (e.g., analytic or via simulations
as with Monte Carlo methods), etc., e.g., [1]–[6].

An important problem consists of determining the steady states of
GRNs. In fact, knowledge of the steady states provides qualitative and
quantitative information about the temporal evolution of messenger
ribonucleic acid (mRNA) and protein concentrations. Moreover, this
knowledge is often required in fundamental studies, such as stability
analysis; see, e.g., [7]. Determining the steady states amounts to
solving a system of nonlinear equations since the temporal derivative
of the mRNA and protein concentrations is a nonlinear function of
these concentrations, and this operation is nontrivial since there do
not exist techniques that guarantee to find all solutions of a generic
nonlinear system, e.g., [8]–[10].

The problem, however, is even more difficult in practice. In fact,
mathematical models of GRNs are not exactly known. This is due to
various reasons, in particular, to the fact that the experimental data
used to identify the coefficients of the model are unavoidably affected
by noise and measurement errors. Moreover, researchers have often
to consider not only a specific mathematical model but also a family
of mathematical models in order to analyze and synthesize a class
of GRNs. This means that mathematical models of GRNs contain
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uncertain parameters, e.g., [11] and [12]. These uncertain parameters
affect the steady states that, as a result, are uncertain as well. Clearly,
one might think of repeating the determination of the steady states
for all possible uncertainties, but this solution would require to solve
a system of nonlinear equations an infinite number of times. It is
worth mentioning that uncertain GRNs may present also steady states
that are independent of the uncertainty depending on their structure,
e.g., [13].

This correspondence addresses the analysis of the steady states of
uncertain GRNs. Specifically, regulation functions of various types
are considered through a generalized model that includes the standard
case of Hill functions. The uncertainty is represented as a vector
constrained in a given set that affects the coefficients of the math-
ematical model of the GRN via polynomial functions. It is shown
how regions containing all possible steady states can be estimated
via an iterative strategy that progressively splits the concentration
space into smaller sets, discarding those that are guaranteed not to
contain equilibrium points of the considered model. This strategy is
based on worst case evaluations of some appropriate functions of the
uncertainty via linear matrix inequality (LMI) optimization and allows
one to select the tradeoff between conservatism of the found regions
and computational time. The proposed strategy is illustrated through
various numerical examples. It is worth mentioning that systematic
approaches for investigating the steady states of uncertain GRNs have
not been proposed yet in the literature.

This correspondence is organized as follows. Section II introduces
some preliminaries on GRNs. Section III describes the proposed strat-
egy. Section IV presents some numerical examples. Lastly, Section V
concludes with some final remarks.

II. PRELIMINARIES

Let us introduce the notations used throughout this correspondence:
R is the space of real numbers, R+ is the space of nonnegative real
numbers, 0n is a null vector of size n× 1, and Z′ is the transpose of
matrix/vector Z.

The author considers GRNs expressed by

{
ṁ(t) = A1m(t) +Bb (p(t)) + c
ṗ(t) = A2p(t) +A3m(t)

(1)

where the vectors m and p ∈ R
n
+ contain the mRNA and protein

concentrations, A1, A2, and A3 are diagonal matrices, B and c are
a matrix and a vector, and the function b(p) is obtained by satura-
tion functions, i.e., functions f(p1), . . . , f(pn) where f : R+ → [0, 1]
with f(0) = 0, limz→∞ f(z) = 1, and f(z) monotonically increas-
ing. In the case of Hill functions, one has

f(pl) =
pαl

βα + pαl
, l = 1, . . . , n (2)

for some α and β ∈ R+. The GRN (1) can be rewritten in compact
form

ẋ(t) = Ex(t) +Gg (x(t)) + h (3)

where x ∈ R
N , E and G are matrices, h is a vector, and g(x) is

composed of Hill functions. Indeed, (3) coincides with (1) by simply
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defining

x =

(
m

p

)
E =

(
A1 0
A3 A2

)
G =

(
B

0

)

h =

(
c

0

)
g(x) = b(p). (4)

In this correspondence, the author considers the model (3) affected by
parametric uncertainty, in particular

ẋ(t) = E(θ)x(t) +G(θ)g (x(t)) + h(θ) (5)

where θ ∈ R
r is an uncertain vector constrained according to

θ ∈ Θ (6)

where the set Θ is expressed as

Θ = {θ ∈ R
r : al(θ) ≥ 0, l = 1, . . . , na} (7)

for some polynomials al(θ). The functions E(θ), G(θ), and h(θ) are
assumed polynomial, with E(θ) invertible for all θ ∈ Θ. Each entry
of g(x) is assumed to be either one or a product of the functions
f(x1), . . . , f(xn) (with each xi appearing in not more than one entry),
e.g.,

g(x) = (f(x1), f(x2)f(x3))
′ . (8)

The problem addressed in this correspondence consists of estimating
the set of steady states of (5), i.e.,

S =
{
x ∈ R

N
+ : E(θ)x+G(θ)g(x) + h(θ) = 0n

for some θ ∈ Θ} . (9)

Remark 1: The considered framework allows one to consider GRNs
with time delays. Indeed, in such a case, (5) can be rewritten as

ẋ(t) =E(θ)x(t) +G(θ)g (x(t)) + h(θ)

+

nτ∑
l=1

(El(θ)x(t− τl) +Gl(θ)g (x(t− τl))) (10)

where τl is the lth time delay and El(θ) and Gl(θ) are analogous to
E(θ) and G(θ). At the equilibrium, one has that x(t) and x(t− τl)
coincide, i.e.,

lim
t→∞

x(t) = lim
t→∞

x(t− τl) ∀ l (11)

and hence, the set of steady states for the time-delay system is obtained
by simply replacing E(θ) and G(θ) with E(θ) +

∑nτ

l=1
El(θ) and

G(θ) +
∑nτ

l=1
Gl(θ), respectively. See, e.g., [14] for more informa-

tion about models of GRNs with time delays.
Remark 2: The derivative ẋ in (5) is expressed as a sum of a

linear term in x [i.e., E(θ)x], a nonlinear term [i.e., G(θ)g(x)], and
a constant [i.e., h(θ)]. Let us observe that each entry of the nonlinear
term G(θ)g(x) is allowed to be a sum of products of the saturation
functions, e.g.,

G(θ)g(x) = (θ2f(x1),−f(x1) + θ1f(x2)f(x3))
′ . (12)

See, e.g., [15] for more information about structural properties of
GRNs.

Remark 3: The uncertainty description introduced in (5) includes
several cases of interest. For instance, one can consider the standard
case where the coefficients are linear or quadratic functions of θ.
Moreover, the vector θ can be constrained in standard sets such as
boxes, polytopes, and ellipsoids.

III. ESTIMATING THE STEADY STATES

This section describes the proposed strategy. The idea consists of
shrinking the concentration space via a fixed-point algorithm that guar-
antees not to lose any admissible steady state. Then, the shrunk set is
divided into subsets of appropriate form, and the algorithm is reapplied
to each of them. Hence, the procedure is repeated for a chosen number
of times, which determines the accuracy of the estimates.

Specifically, let us denote with H a hyperrectangle in R
N
+ , and

define the function

A(H) =
{
x ∈ R

N
+ : xi ∈

[
q−i , q+i

]}
(13)

where q−i and q+i are any quantities satisfying

q−i ≤ min
x∈ver(H)

min
θ∈Θ

ui(x, θ)

q+i ≥ max
x∈ver(H)

max
θ∈Θ

ui(x, θ) (14)

where ver(H) is the set of vertices of H and ui(x, θ) is the ith entry
of the vector

u(x, θ) = −E(θ)−1 (G(θ)g(x) + h(θ)) . (15)

Theorem 1: The function A(H) satisfies

p ∈ H ∩ S ⇒ p ∈ A(H) (16)

H ∩A(H) = ∅ ⇒H ∩ S = ∅. (17)

Evaluating the function A(H) requires the computation of the
quantities q−i and q+i . The author will explain how this step can
be addressed after Theorem 3. From A(H), the author defines the
following function.

Theorem 2: Let H be a hyperrectangle in R
N
+ , and define the

algorithm B(H) as follows.

Step B1) Set H(0) = H and j = 0.
Step B2) Set B1 = H(j) ∩ A(H(j)).
Step B3) If B1 = ∅, set B(H) = B1 and exit.
Step B4) If B1 = H(j), set B(H) = B1 and exit.
Step B5) If j = jmax, set B(H) = B1 and exit.
Step B6) Set j = j + 1 and H(j) = B1, and go to Step B2.

Then, B(H) provides either the empty set, a point, or a hyperrect-
angle. Moreover

B(H) ⊆H (18)

p ∈ H ∩ S ⇒ p ∈ B(H). (19)

Observe that the algorithm B(H) stops whenever B1 is empty, B1 is
the hyperrectangle H(j) found at the previous iteration, or a maximum
number of iterations (denoted by jmax) are reached. From B(H), the
author derives the algorithm for the computation of the sought set S as
follows.

Theorem 3: Let H be a hyperrectangle in R
N
+ , and let k be a

nonnegative integer. Let us define the algorithm C(H, k) as follows.

Step C1) If k = 0, set C(H, k) = H and exit.
Step C2) If k = 1, set C(H, k) = B(H) and exit.
Step C3) If B(H) is either the empty set or a point, set C(H, k) =

B(H) and exit.
Step C4) Divide B(H) into disjoint hyperrectangles H1, . . . ,Hs

such that ⋃
i=1,...,s

Hi = B(H). (20)
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Step C5) Set

C(H, k) =
⋃

i=1,...,s

C(Hi, k − 1) (21)

and exit.

Then, the set S is estimated by calling the algorithm C(RN
+ , k) (i.e.,

choosing as initial hyperrectangle the set RN
+ ). Indeed, for all k ≥ 0,

one has that

S ⊆ C
(
R

N
+ , k + 1

)
⊆ C

(
R

N
+ , k

)
. (22)

Observe that the algorithm C(RN
+ , k) stops after k divisions of the

current hyperrectangle in subhyperrectangles. The number of subhy-
perrectangles can be freely chosen, and a simple choice consists of di-
viding each side of the current hyperrectangle into two equal segments.

Concerning the numerical complexity of this algorithm, let us ob-
serve that this depends on the GRN dimension N through the number
of vertices of the hyperrectangles which determines the number of
evaluations in A(H). Although this number grows quickly with N ,
the overall computational time of the procedure is alleviated by the
fact that numerous hyperrectangles are typically discarded in Step B3
owing to the properties of B(H).

Next, let us address the construction of the quantities q−i and
q+i . These quantities can be found by solving convex optimization
problems with LMIs. Specifically, for any x ∈ ver(H), let us define

w−(θ) =num (ui(x, θ))− γden (ui(x, θ))

−
na∑
l=1

sl(θ)al(θ)

w+(θ) = den (ui(x, θ)) γ − num (ui(x, θ))

−
na∑
l=1

sl(θ)al(θ) (23)

where num(ui(x, θ)) and den(ui(x, θ)) are the numerator and de-
nominator of ui(x, θ), respectively, and sl(θ) represents free poly-
nomials. One has that, for any degree of sl(θ), q

−
i and q+i can be

chosen as

q−i = max
γ,sk(·)

γ s.t.

{
w−(θ) is SOS
sl(θ) is SOS ∀ l = 1, . . . , na

q+i = min
γ,sk(·)

γ s.t.

{
w+(θ) is SOS
sl(θ) is SOS ∀ l = 1, . . . , na

(24)

where “SOS” means “sum of squares of polynomials.” In fact, con-
sider, e.g., q−i . One has that w−(θ) and sl(θ) are SOS and hence
nonnegative. Therefore, from the definition of w−(θ), one gets that,
for all θ ∈ Θ

0 ≤w−(θ)

=num (ui(x, θ))− γden (ui(x, θ))−
na∑
l=1

sl(θ)al(θ)

≤num (ui(x, θ))− γden (ui(x, θ)) (25)

i.e., γ ≤ ui(x, θ). Establishing whether a polynomial is SOS is
equivalent to an LMI feasibility test; see, e.g., [16] and [17] for
details. Hence, the constraints in (24) can be expressed via LMIs, and
therefore, (24) amounts to solving two convex optimization problems
with LMIs.

IV. ILLUSTRATIVE EXAMPLES

This section presents some illustrative examples where the proposed
strategy is adopted to estimate the steady states of uncertain GRNs.

A. Example 1

Let us start by considering a simple example with an uncertain GRN
described by⎧⎪⎨

⎪⎩
ṁ1(t) = −m1(t) + θ (1− f (p2(t)))
ṁ2(t) = −m2(t) + 2.5 (1− f (p1(t)))
ṗ1(t) = −2p1(t) +m1(t)
ṗ2(t) = −p2(t) + 0.5θm2(t)

(26)

where f(·) is the Hill function in (2) with α = 2 and β = 1 and the
uncertain parameter θ is constrained according to

θ ∈ [1, 2]. (27)

This GRN is characterized by the fact that TF 1 is a regressor of
gene 2 and TF 2 is a regressor of gene 1. The uncertain parameter
θ affects the coefficients of the GRN.

Let us consider the problem of estimating the set S . To this
end, the author uses the algorithm described in Theorem 3. With
k = 1, the set R

+
N is shrunk via the function B(·), and for the

p-components, the author obtains the rectangle shown in Fig. 1(a).
With k = 2, this rectangle is divided into four equal rectangles, and
B(·) is reapplied to each of them. This provides the three rectangles
shown in Fig. 1(b): Observe, in fact, that one rectangle has been
shrunk to the empty set. Proceeding in this way, the author obtains the
estimates shown in Fig. 1(c) (with k = 3) and Fig. 1(d) (with k = 4).

B. Example 2

Let us consider the system (28), shown at the bottom of the page,
where M denotes an mRNA concentration while P0, P1, P2, and
PN denote protein concentrations. This system summarizes the model
proposed in [18] for investigating dynamical behaviors in Drosophila
period protein (PER). The model is based on multiple phosphoryla-
tion of PER and on the negative feedback exerted by PER on the
transcription of the period gene. The author considers the case where
some coefficients are fixed while others are uncertain. In particular, the
fixed coefficients are chosen as n = 1, vs = 2, vm = 0.8, vd = 1.2,
V4 = 2.6, ks = 0, k1 = 2, k2 = 1, Kd = 0.5, Ki = 0.5, and ai = 1
for all i, while the uncertain coefficients are

V1 ∈ [1, 3] V2 ∈ [1, 2] V3 = [2, 5]. (29)

Hence, θ = [V1, V2, V3]. The author estimates the steady states via the
algorithm C(RN

+ , k), obtaining the results shown in Fig. 2 (where the

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ṁ(t) = vs
Kn

1
Kn

1
+PN (t)n

− a1M(t)− vm
M(t)

Km+M(t)

Ṗ0(t) = ksM(t)− a2P0(t)− V1
P0(t)

K1+P0(t)
+ V2

P1(t)
K2+P1(t)

Ṗ1(t) = V1
P0(t)

K1+P0(t)
− a3P1(t)− V2

P1(t)
K2+P1(t)

− V3
P1(t)

K3+P1(t)
+ V4

P2(t)
K4+P2(t)

Ṗ2(t) = V3
P1(t)

K3+P1(t)
− V4

P2(t)
K4+P2(t)

− (a4 + k1)P2(t) + k2PN (t)− vd
P2(t)

Kd+P2(t)

ṖN (t) = k1P2(t)− (a5 + k2)PN (t)

(28)
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Fig. 1. Example 1. Estimates of the steady states with (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 4.

Fig. 2. Example 2. Projections of the estimates of the steady states with (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 4.
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projection of the estimates on the 3-D space with coordinates P0, P1,
and P2 is reported).

From a biological point of view, the found estimates provide bounds
to the equilibrium values of the concentrations in (28) that are guar-
anteed for all admissible parameters. These bounds are useful for a
number of studies, for instance, in order to provide information about
the evolution of the concentrations.

V. CONCLUSION

The author has proposed an iterative strategy for estimating the
steady states of uncertain GRNs. This strategy is based on worst
case evaluations of some appropriate functions and provides a region
containing all possible steady states. This algorithm can be useful
in numerous tasks since knowledge of the steady states is typically
required when studying stability of GRNs. Future work will consider
the possibility of extending the proposed strategy in order to estimate
limit cycles.

APPENDIX

Proof of Theorem 1: Let y ∈ S . One has that, for some θ ∈ Θ, y =
−E(θ)−1(G(θ)g(y) + h(θ)). Moreover, if y belongs to H, one has
that

yi ∈
[

min
x∈ver(H)

ui(x, θ), max
x∈ver(H)

ui(x, θ)

]

since each entry of −E(θ)−1(G(θ)g(y) + h(θ)) is monotonic due to
the structure of g(y). This implies that

yi ∈
[
q−i , q+i

]

and hence, (16) holds. Then, suppose for contradiction that H ∩A(H)
is empty but H ∩ S is not. Let y be in H ∩ S . Then, from (16), one
has that p ∈ A(H), but y belongs also to H, hence contradicting that
H ∩A(H) is empty. Therefore, (17) holds.

Proof of Theorem 2: Let us observe that the output of B(H) can be
either the empty set (Step B3), a point (Step B4), or a hyperrectangle
(Steps B4–B6). Then, (18) follows from the fact that B(H) is a
subset of H(0) = H. Lastly, (19) holds since B(H) is a sequence of
applications of the function A(·) for which (16) ensures that no point
of H ∩ S can be lost.

Proof of Theorem 3: Observe that C(H, k) is either H (Step C1) or
the union of the output sets of the function B(·) applied to subsets
of H (Steps C2–C5). Each of these output sets is included in the
corresponding input set due to (18). Therefore, (22) holds.
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