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Superimposed Training-Based Channel Estimation
and Data Detection for OFDM Amplify-and-Forward

Cooperative Systems Under High Mobility
Lanlan He, Yik-Chung Wu, Shaodan Ma, Tung-Sang Ng, and H. Vincent Poor, Fellow, IEEE

Abstract—In this paper, joint channel estimation and data detec-
tion in orthogonal frequency division multiplexing (OFDM) am-
plify-and-forward (AF) cooperative systems under high mobility
is investigated. Unlike previous works on cooperative systems in
which a number of subcarriers are solely occupied by pilots, par-
tial data-dependent superimposed training (PDDST) is considered
here, thus preserving the spectral efficiency. First, a closed-form
channel estimator is developed based on the least squares (LS)
method with Tikhonov regularization and a corresponding data
detection algorithm is proposed using the linear minimum mean
square error (LMMSE) criterion. In the derived channel estimator,
the unknown data is treated as part of the noise and the resulting
data detection may not meet the required performance. To address
this issue, an iterative method based on the variational inference
approach is derived to improve performance. Simulation results
show that the data detection performance of the proposed itera-
tive algorithm initialized by the LMMSE data detector is close to
the ideal case with perfect channel state information.

Index Terms—Amplify-and-forward, orthogonal frequency divi-
sion multiplexing (OFDM), time-varying channels.

I. INTRODUCTION

C OOPERATIVE communications has attracted much at-
tention recently due to its advantages in enhancing link

reliability and increasing channel capacity [1]–[5]. Since or-
thogonal frequency division multiplexing (OFDM) transmis-
sion has been adopted as the transmission technology for next
generation broadband wireless standards [such as IEEE 802.16
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and long term evolution (LTE)], this results in the need to de-
velop receiver algorithms for OFDM based cooperative com-
munications [3]–[5]. On the other hand, another important goal
for the next generation of wireless broadband systems is to sup-
port high user mobility. With high mobility, the time-variation
of the channel within one OFDM symbol cannot be ignored and
channel responses vary sample by sample, whichmakes channel
estimation challenging. Moreover, high mobility destroys the
orthogonality among subcarriers and induces intercarrier inter-
ference (ICI), which also complicates data detection [6]–[9]. As
a result, channel estimation and data detection for OFDM coop-
erative systems under high mobility is very challenging.
Channel estimation and data detection for cooperative com-

munications with time-invariant channels has been studied in
[1]–[5]. Specifically, channel estimation is studied in [1] and
[2] under the assumption of time-invariant flat fading chan-
nels. Targeting OFDM transmission, training sequence based
channel estimation is investigated in [3] and [4], and data de-
tection performance analysis is considered in [5] by assuming
perfect channel state information. However, algorithms appli-
cable to time-varying channels cannot be obtained through di-
rect extension of these previous works. Recently, channel esti-
mation for cooperative OFDM systems with time-varying chan-
nels has been studied in [10], in which the amplify-and-forward
(AF) scheme is adopted due to its low complexity and minimal
delay. By exploiting a time-frequency representation of the re-
ceived signals, channel estimation algorithms are proposed for
two different scenarios. In the first scenario, the corresponding
channels are individually estimated at the relay and destination,
whereas in the second one, the cascaded source-relay-destina-
tion channel is jointly estimated at the destination. Semiblind
(i.e., only certain subcarriers are occupied by pilots) channel es-
timation with unknown data estimated by methods proposed for
time-invariant channels is considered, which may lead to severe
modeling errors and performance degradation. Moreover, only
one relay is considered in [10] and the extension to multiple re-
lays using the time-frequency representation framework is by
no means straightforward.
In this paper, an OFDM-based AF cooperative system with

one source, multiple relays and one destination is considered.
In order to reduce the computational load on relays and time
delay of the whole system, no channel estimation is performed
at the relays, which corresponds to the second scenario in [10].
Unlike previous works in which subcarriers are occupied by ei-
ther pilots or data [10], [11], here partial data-dependent super-
imposed training (PDDST) [8] is adopted for channel estima-
tion and data detection. Notice that superimposed training (ST)

1053-587X/$26.00 © 2011 IEEE
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based channel estimation and data detection have been widely
investigated in point-to-point systems [8], [12]–[14]. This su-
perimposed training is even more practical for systems over
time-varying channels. Otherwise, a number of subcarriers in
each OFDM symbol need to be assigned to pilots for channel es-
timation purpose, which would result in low spectral efficiency
[10], [11].
The contributions of this paper are as follow. First, based

on the generalized complex exponential basis expansion model
(GCE-BEM), the system model is reformulated in a nontrivial
way to obtain an expression similar to that for a conventional
point-to-point OFDM system. After that, a closed-form channel
estimator is developed based on the least squares (LS) method
with Tikhonov regularization [15] and a corresponding data de-
tection algorithm is proposed using the linear minimum mean
square error (LMMSE) criterion. In the LS-based channel esti-
mator, since the unknown data is treated as part of the noise, the
resulting system performance may not meet the requirements.
To address this issue, an iterative method based on the varia-
tional inference approach is derived to improve performance.
The variational inference approach is useful in cases when di-
rect access or maximization of the posterior distribution of pa-
rameters to be estimated is difficult, if not impossible. In par-
ticular, the variational inference approach constructs a distribu-
tion similar to that of the true posterior but with a tractable form
[16]. Since it is basically a Bayesian framework, statistical in-
formation (such as channel statistics, power of data and noise)
is exploited to aid the estimation. Finally, computer simulations
are performed to demonstrate the effectiveness of the proposed
channel estimation and data detection algorithms.
The rest of the paper is organized as follows. The channel

and system model for OFDM cooperative systems is introduced
in Section II. The system model is then reformulated using the
GCE-BEM in Section III. In Section IV, a channel estimator
is developed based on the LS method with the Tikhonov
regularization and a corresponding data detection algorithm is
proposed using the LMMSE criterion. In Section V, based on
the variational inference approach, an iterative enhancement
algorithm is developed. Simulation results are presented in
Section VI to demonstrate the effectiveness of the proposed
algorithms. Finally, conclusions are drawn in Section VII.
Notation: Boldface uppercase and lowercase letters are used

for matrices and vectors, respectively. Superscripts , and
denote transpose, Hermitian, and pseudo-inverse, respectively.
The symbol denotes the identity matrix. The symbol

signifies the diagonal matrix with vector on its di-
agonal and represents the norm of . and
are the trace and the determinant of a square matrix , respec-
tively. Symbols and denote the expectation and the
real part of the operand in the brackets, respectively. The symbol
denotes convolution. The matrix denotes the fast Fourier

transform (FFT) matrix with and
rounds to the nearest integer greater than or equal to .

II. SYSTEM MODEL

In this paper, we consider a cooperative system with a source
, a destination , and relays scattered between and .
Each of these elements is equipped with a single antenna. De-
note the channels from the source to the th relay and from

the th relay to the destination as and ,
respectively. There is no direct link between source and des-
tination. It is assumed that the relays are stationary but the
source and destination are moving at high speed. Thus the prop-
agation channels are modeled as multi-path time-varying chan-
nels. Specifically, the source-relay channel has in-
dependent taps with the average power of the th tap denoted
by . The autocorrelation of the th tap follows the clas-
sical Jakes’ model [6] given by

, where is the sample of
the th tap at time ( is the sample interval), rep-
resents the zero-order Bessel function of the first kind, and is
the maximal Doppler shift between source and the relays. Sim-
ilarly, the relay-destination channel has indepen-
dent taps with the average power of the th tap denoted by .
The autocorrelation of the th tap is

, where is the sample of the
th tap at time , and represents the maximal Doppler shift
between the relays and destination.
Transmitted Signal at the Source: In an OFDM system, the

source data in the frequency domain
is modulated onto parallel subcarriers to obtain the time do-
main signal . In this paper, we consider partial data-de-
pendent superimposed training [8], which is a general descrip-
tion on the placement of pilots and data. The th element of is
given by

otherwise
(1)

where , with cardinality , is the index set of subcarriers on
which both data and pilots are transmitted. Therefore the trans-
mitted symbol at the th subcarrier is a linear combination
of a pilot symbol and a data symbol. The total power for the th
subcarrier is . Further-
more, without loss of generality, it is assumed that the average
power of is . From (1), we have

(2)

where is a diagonal matrix with

otherwise
(3)

is a matrix collecting columns of with indices in , and
and denote pilot and data vectors, respectively.
From (1), it is noticed that the PDDST includes the following

three cases:
• When , the data component at each subcarrier

is . In this case, both data and pilots are
transmitted on subcarrier set .

• In the case , the data component at each subcarrier
is nulled, and the PDDST reduces to the semi-blind

case in which subcarriers are uniquely occupied by pilots
or data. This case is also referred to as data-dependent su-
perimposed training (DDST) [13].

• In the case , the PDDST reduces to traditional super-
imposed training [12], and becomes the training in the
frequency domain while the data remains intact.

Upon transmission, a cyclic prefix (CP) of length longer
than is inserted at the beginning of the
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time domain OFDM signal to prevent intersymbol interference
(ISI) at the destination .
Signal Processing at Relays: The signal received at the th

relay is given by ( is omitted from the time index for
notational simplicity)

(4)

where denotes additive white Gaussian noise (AWGN)
with average power . Upon reception, the th relay
simply amplifies the incoming signal . The transmitted
signal from the th relay is thus written as [3]

(5)

where

(6)

with being the transmission power at the relay and is
the average power of .
Received Signal at the Destination: The received signal at

the destination is a superposition of the signals from relays
and is given by

(7)

After removing the CP, the received signal vector
is

(8)

where ,
is an channel matrix given by

(9)
and denotes an AWGN vector with
average power . Furthermore, according to (4) and (5), the
signal vector can be compactly expressed as

(10)

where is an channel
matrix given by

(11)
characterizes the effect of the CP

with being the last columns

of the identity matrix, and denotes an AWGN vector
. Based on (8),

(10) and , the received signal vector is

(12)

III. REFORMULATION WITH THE BASIS EXPANSION MODEL

Channel state information is generally required for data de-
tection. It is clear from (9) and (11) that the number of unknown
channel parameters in channel matrices and are
and , respectively, which are much larger than
the number of received samples . This makes direct channel
estimation impossible. However, due to the fact that the time-
varying channel is time-correlated, the GCE-BEM [6] can be
adopted to represent the channels, and the number of unknown
channel parameters can be significantly reduced. With GCE-
BEM, the matrix in (11) can be approximated by

(13)

where with being the oversampling
factor in the Doppler domain,

(14)
and

(15)

with denoting the BEM coefficient characterizing the
source-relay channel . Here the oversampling factor
is an integer adjusting the Doppler range sampled by the BEM
and the number of basis vectors used to represent the time-
varying channel. Similarly, the matrix in (9) can be approx-
imated by

(16)

where with (similar to ) being the
corresponding oversampling factor

(17)

and

(18)

with denoting the BEM coefficient characterizing the
relay-destination channel .
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Substituting (13) and (16) into (12), it follows that

(19)
Clearly from (19), and are unknown and must
be estimated. Notice that, from the point of view of data de-
tection, only the combined channels are needed. Therefore, in
the following, by exploiting the Toeplitz structure of and

, it is proved in Appendix A that (19) can be equivalently
written as

(20)
where

with being the least common
multiple of and , collects the first

columns of , and

. From
(20), it is clear that all the channel effects are summarized in

.
Notice that, from the definition of , different

combinations of may result in the same diag-
onal matrix , i.e., when

. Combining those terms in (20) with
the same and denoting the number of distinct matrices

as , the received signal vector (20) can be rewritten
as

(21)

where denotes a distinct diagonal matrix with
and . Our aim

is to estimate the data (contained in ) based on (21), while
is also unknown and required to be estimated.

In particular, substituting into (21), we
have

(22)

with . This equation can be used
to estimate the unknown data if has been estimated.
On the other hand, for the convenience of estimating , it

will be more efficient to put in a linear relationship with
. Based on (21), reversing the positions of and and
writing the summation into matrix form gives

(23)

with
.

The unknown can be estimated by using only the subcarriers
containing pilots, which is detailed in the next section.

IV. CHANNEL ESTIMATION AND DATA DETECTION

Based on (23) and , taking the FFT and
stacking all the received samples corresponding to the subcar-
rier set (where PDDST is located) gives

(24)

where collects rows of corresponding to the subcarrier set
.
According to the definition of the matrix operator
in (23), it is composed of a number of submatrices

which differ only in . Since

and ,

for different values of turn out to be quite similar to each
other, which would result in columns of being similar
and lead to the problem being ill conditioned. Thus if LS were
directly applied to estimate , the estimate would be far away
from the true value. Moreover, unlike a rank deficient problem
which can be solved via truncated singular value decomposition
with a determined numerical rank, for an ill-conditioned matrix,
the singular values decay gradually to zero with no significant
gap, and therefore, there is no notion of a numerical rank [15].
To deal with this ill-conditioning problem, we hereby employ
the Tikhonov regularization method [15] to estimate in (24).
By treating as an effective noise, the estimation problem
using LS with Tikhonov regularization can be stated as

(25)

where denotes a regularization matrix and is chosen according
to different criteria (e.g., an identity matrix for minimum energy,
a banded matrix for maximal flatness), the variable signifies
the regularization parameter that balances the minimization of
the two terms in (25). For a given , based on the LS criterion,
the solution for (25) is readily obtained as

(26)

Notice that in (26), the value of could significantly affect
the estimation performance by either over-regularization or
under-regularization. It is therefore crucial to choose an appro-
priate . An intuitive approach to design has been developed
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based on the concept of the L-curve [15], which are curves of
the smoothing norm versus the corresponding residual
norm for different . Following this
approach, the regularization parameter is chosen as the value
corresponding to the point with the maximal curvature on the
curve [15].
After the estimate of is obtained, data can be detected based

on the system model (22). Using the assumptions that the noise
is AWGN and independent from the channels, and the channel
responses are independent from tap to tap, it is easy to verify
that

(27)

Based on (22) and (26) and treating as the effective noise [1],
[3], the approximate LMMSE solution of is then given by

(28)

Finally, is a data estimator, where de-
notes the hard decision of the operand in the brackets.
Remark 1: The complexity of the LMMSE scheme is

dominated by one matrix inversion on
shown in (26) and

one matrix inversion on
shown in (28). For an matrix, the complexity of
inversion is . Therefore, the complexity of the LMMSE
scheme is .

V. THE VARIATIONAL INFERENCE APPROACH TO ITERATIVE
CHANNEL ESTIMATION AND DATA DETECTION

In the previous section, the unknown data is treated as noise
(refer to (24)) and it becomes a bottleneck for channel esti-
mation, which in turn affects the data detection performance.
In this section, and will be jointly estimated to improve
performance. Moreover, unlike the Tikhonov regularization
method discussed above, we solve the ill-posed problem in a
Bayesian framework. Specifically, our aim is to estimate and
, which maximize the posterior probability density function

(pdf) . However, the computation of
is complicated due to the discrete nature of the data, not to
mention the maximization of with respect to . To
overcome this problem, we consider the variational inference
approach which looks for a parameterized distribution
to closely represent the posterior pdf [17]. Once

is found, estimates of and are simply obtained
by maximizing .

To derive closest to , we minimize the
following free energy function defined as in [16]:

(29)

Minimizing the free energy function is equivalent to minimizing
the difference between and . A simpli-
fication can be made by factorizing into a product
form (also known as a mean-field approximation) [18], i.e.,

, which is equivalent to assuming
that and are independent conditioned on . Then a simple
expression for the variational free energy in (29) is given by

(30)

A. Free Energy Function

According to (30), the computation of the free energy func-
tion requires the likelihood function and the prior
statistics and . With and based
on (23), the likelihood function is then given by

(31)

With respect to the prior statistics, we let be complex
Gaussian with zero mean and covariance matrix , i.e.,

[17], where is a diagonal matrix with
diagonal elements depending on the average power of . Note
that instead of defining a discrete distribution over the signal
constellation,we havemade aGaussian approximation of ,
which will lead to a linear detector. On the other hand, the statis-
tics of are difficult if not impossible to derive. However, it can
be shown that and the covariance matrix can be
obtained in closed-form (shown in Appendix B). Therefore,
can be approximated as being Gaussian distributed with pdfx

(32)

Besides specifying the likelihood function and prior statistics
above, the forms of and need to be fixed. In view
of the discrete nature of the data, a close approximation is [17]

(33)

where denotes a vector Dirac delta function with the prop-
erties and
for any smooth function . For convenience in maximization,

is chosen to be a Gaussian pdf

(34)
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with and being the posterior mean and covariance ma-
trix of , respectively.
With (31), (32), (33), (34), and , the five

terms in (30) can be, respectively, computed as

(35)

(36)

(37)

(38)

(39)

Substituting (35)–(39) into (30) and dropping constant terms,
we have

(40)

Notice that, after integration, the free energy function depends
only on , and .

B. Iterative Minimization of the Free Energy Function

The remaining task is to obtain by minimizing
. After that, a data estimate can be obtained by

maximizing given . Accordingly, is an estimate
of . Similarly, a channel estimate can be acquired by max-
imizing given and . Notice that, since
is designed to be a complex Gaussian pdf, it is maximized at

, which can be considered as a maximum a poste-
riori probability (MAP) channel estimator. For minimization of
the free energy given in (40) with respect to , it is
found that, given , there exist closed-form solutions for
and . On the other hand, given and , we can derive a

closed-form solution for . Therefore, is mini-
mized iteratively, starting with an initial value of .
The update at the iteration follows as:
Updating and Given : By setting the first-order

derivative of the free energy (40) with respect to to zero, we
have the estimate of as

(41)

Similarly, by setting the first-order derivative of the free energy
with respect to to zero, we have the estimate of as

(42)

Updating Given and : Notice that the free energy
given by (40) depends on in a non-linear way. To obtain
a closed-form solution for , we first transform (40) into a

linear function of . Given the eigen-decomposition of

, we have

(43)

Putting (43) into (40), minimizing the free energy given by (40)
with respect to is equivalent to minimizing

(44)

Due to the fact that the right-hand side (RHS) of (22) is equiv-
alent to that of (23), we have

, which still holds when is replaced by and is
replaced by any vector having compatible dimensions with ,

and . Therefore, (44) can be rewritten as
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(45)

Although in (45) is a quadratic form of , strictly
speaking, minimizing with respect to is still a multi-
dimensional search problem due to the discrete nature of . To
overcome this problem,we first relax to be continuous, which
leads to a low-complexity linear solution. By setting the first-
order derivative of with respect to to zero, we have

(46)

Then constellation mapping is carried out to obtain the estimate
of as .
In summary, the proposed iterative algorithm alternates

among (41), (42), and (46) until is smaller than a
threshold . Within the framework of the variational inference
approach, the proposed algorithm will approach an approxima-
tion of the desired posterior pdf. In the case that the mean field
algorithm is adopted to approximate as the product of

and , the convergence guarantee is retained [18].
The iterative minimization of the free energy function is then
guaranteed to converge to at least a local minimum [17]. Note
that an initialization is required for this iterative algorithm,
and the algorithm developed in Section IV can provide one.
Therefore, we set given in (28).
Remark 2: The complexity of each iteration is domi-

nated by one matrix inversion on
shown in (41), an eigen-de-

composition of the matrix and one
matrix inversion on

shown in (46). For an matrix, the complexity
of eigen-decomposition is . Therefore, the complexity
for each iteration of the variational inference approach is

. Each iteration of the variational infer-
ence approach has approximately the same complexity as the
LMMSE scheme since it is dominated by the term , and the
overall complexity depends on the number of iterations.

VI. SIMULATION RESULTS

In this section, computer simulation results are presented to
demonstrate the performance of the proposed channel estima-
tion and data detection algorithms. Unless otherwise specified,
the simulation setting is given as follows. An OFDM AF coop-
erative system with one source, two relays and one
destination is considered. Each OFDM symbol has 128 subcar-
riers and the length of the CP is . The
carrier frequency is and the sampling interval is

. The normalized maximal Doppler shifts are set as
(corresponding to a speed of 105.5 km/h) and
(corresponding to a speed of 316.4 km/h), re-

spectively. The source-relay channels have and
, and the relay-destination channels have and

, respectively, all following exponential power
delay profiles normalized to unity. The pilot subcarriers are lo-
cated on the frequencies that are multiples of [8]. The pi-
lots are generated as zero-mean complex Gaussian random vari-
ables and data are modulated by quadrature phase-shift keying
(QPSK) with unit power. The average training-to-signal power
ratio is defined as

The corresponding oversampling factors in the Doppler domain
are and . The regularization matrix is chosen
as such that the regularization term represents
the energy of . The transmission power at the source is nor-
malized to unity across different scenarios without loss of gen-
erality. For illustration, the noise powers at the relays and des-
tination are set to be the same, i.e., .

The signal-to-noise ratio (SNR) is defined as [1].
The unit power is equally allocated among the relays, namely

and . The threshold is

set to 0.0001. Each point in the following figures is obtained by
averaging the results over 10 000 runs.
Fig. 1 presents the bit error rate (BER) performance of

LMMSE data detection using the regularized LS channel
estimator under different choices of in order to investigate
the effects of the PDDST. As can be seen, the data detection
performance improves significantly as increases from 0 to
0.8, since the interference from unknown data to training re-
duces as increases, which benefits the channel estimation and
accordingly the data detection. However, that is not the case
when reaches 0.9, where data transmitted on the subcarrier
set is severely distorted by training and difficult to recover.
To offer a balance between limited interference for channel
estimation and data integrity, is taken as an example in
the following simulations.
To investigate the effects of regularization on the system per-

formance, the performance of LMMSE data detection using un-
regularized/regularized LS channel estimators is presented in
Fig. 2. Data detection assuming perfect channel state informa-
tion is also shown for comparison. As can be seen, data de-
tection with the unregularized LS channel estimator performs
poorly. The incorporation of regularization improves the per-
formance considerably, although there still exists a significant
performance gap compared with the ideal case.
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Fig. 1. Performance of LMMSE data detection using the regularized LS
channel estimator for different values of .

Fig. 2. Performance comparison of LMMSE data detection with unregularized
and regularized LS channel estimators.

Fig. 3. Convergence of the proposed variational inference approach.

Fig. 3 shows the convergence performance of the proposed
variational inference approach with , 20, and 30 dB.
It can be seen that the BERs improve significantly in the first
iteration and they converge to stable values after about eleven

Fig. 4. Performance improvement obtained via the proposed variational infer-
ence approach.

Fig. 5. Performance comparison with different Doppler spreads.

iterations for the considered SNR range. Fig. 4 further shows
the performance achieved by the proposed variational inference
approach versus SNR. The proposed LMMSE data detection
scheme using the regularized LS channel estimator is adopted
for initialization. As can be seen, the BER performance im-
proves significantly when the number of iterations increases,
and after convergence, it is very close to the ideal case. Simula-
tions using longer channel lengths have been conducted leading
to similar conclusions. In fact, the proposed LMMSE scheme
with regularized LS employed for initialization is a nonitera-
tive method and significant performance gain can be further
achieved by the proposed iterative algorithm.
In Fig. 5, the effects of different Doppler spreads are studied

by comparing the case with and
(which corresponds to the scenario in which the source is

moving and the destination is static) to the case with
and . Accordingly, we set the oversampling

factors and for the former case. As can be seen,
for the LMMSE data detector, the case with and

performs much better than that with
and . However, for the proposed variational in-
ference approach, after convergence, these two cases show only
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Fig. 6. .

a slight performance gap, which demonstrates the effectiveness
and robustness of the proposed variational inference approach
to different Doppler spreads.

VII. CONCLUSION

In this paper, an OFDM-based AF cooperative system with
one source, multiple relays and one destination has been con-
sidered with partial data-dependent superimposed training. In
the first part of the paper, a closed-form channel estimator has
been developed based on the LS method with Tikhonov regular-
ization and a corresponding data detection algorithm has been
proposed using the LMMSE criterion. In the second part, an it-
erative method based on the variational inference approach has
been derived for performance improvement. Simulation results
have demonstrated that, after convergence, the performance of
the proposed iterative algorithm initialized by the LMMSE data
detector is close to the ideal case with perfect channel state in-
formation.

APPENDIX A
PROOF OF (20)

For the matrix (shown graphically in Fig. 6), the
upper rows are identical to the last rows, and the
lower matrix denoted by (the cross-hatched part
in Fig. 6) is a circulant matrix. Therefore

(47)

as the effect of multiplying by from the left is to

copy the last rows and stack them on the top of .
Through direct computation

(48)

where and

has the same structure as but with the

first row being

. Using (47) and (48), the first term
on the RHS of (19) is rewritten as

(49)

where the second equality is derived similarly to
(47) and is a circulant matrix with the first

column being

. Accordingly, (19) is equivalent to

(50)

Since both and are circulant matrices, the
product is also a circulant and is characterized by

(51)

The length of is . Applying the result
in (50) leads to

(52)

Notice that

. There must

be integers and with being the least common

multiple of and . Denoting

and combining

the relay signals together, (52) can be expressed as

(53)

where collects the first columns of
and .

APPENDIX B
DERIVATION OF THE MEAN AND COVARIANCE MATRIX OF

The received signal at the th sampling interval is given by

(54)
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(59)

where the noise is ignored for simplicity, as our interest here is in
the statistics of channels but not the received signals. Denoting

, (54) can be rewritten as

(55)

Noticing that , (55) is equivalent to

(56)

where can be considered as the equivalent cascaded
channel of multiple relays. The received OFDM symbol

then can be expressed as the
convolution of the time domain data and the equiva-
lent channel vector with

.
Since both and in have zero

means and are independent of each other, we have .
With respect to the covariance of , since the taps of
and are also independent, it follows that:

(57)

Furthermore, when , we have

(58)

with given as (59), shown at the top of the page.
On the other hand, according to (23), with GCE-BEM the th

sample of the received signal is

(60)

with being the th element of . Comparing (56)

and (60), we have and there-
fore, stacking into a vector gives

(61)

where collects the BEM basis vectors with the th column

being and is given by

. Similarly to [11], we can easily
derive that

(62)

and

.
(63)

With (62) and (63), the mean and covariance matrix of are,
respectively, given by and

(64)

with (here Matlab nota-
tion is used).
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