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Compact Metallic RFID Tag Antennas With a
Loop-Fed Method

Peng H. Yang, Yan Li, Lijun Jiang, Member, IEEE, W. C. Chew, Fellow, IEEE, and Terry Tao Ye

Abstract—Several compact, low profile and metal-attachable
RFID tag antennas with a loop-fed method are proposed for UHF
RFID systems. The structure of the proposed antennas comprise
of two parts: (1) The radiator part consists of two shorted patches,
which can be treated as two quarter-wave patch antennas or a
cavity. (2) A small loop printed on the paper serves as the feeding
structure. The small loop provides the needed inductance for the
tag and is connected to the RFID chip. The input impedance of
the antenna can be easily adjusted by changing loop dimensions.
The antenna has the compact size of 80 mm X 25 mm X 3.5 mm,
and the realized gain about—3.6 dB. The measured results show
that these antennas have good performance when attached onto
metallic surfaces.

Index Terms—Compact antenna, feeding network, low profile,
metallic surface, RFID tag antenna.

I. INTRODUCTION

ADIO FREQUENCY identification (RFID) tag has been

widely used recently in supply chain and logistics appli-
cations to identify and track goods. Tag antenna is one of its key
technologies. In order to reduce the cost, most existing RFID
systems use modified dipole antennas as tags; these dipole-type
antennas can be printed on paper or plastic materials and then
pasted on products. They have the merits of small size and are
easy to fabricate. However, dipole-type antennas are sensitive to
the environment due to their omni-directional radiation charac-
teristics [1], [2]. For example, dipole antennas often show high
performance when pasted on paper or plastic boxes, but they do
not work when pasted on metal surfaces or bottles with liquid
in it.

Microstrip antenna is a good choice for metal-attachable
RFID tags because of the ground plane in its structure. In [3],
the author investigated the performance of microstrip-type tag
antennas using the cheapest dielectric FR4 as substrate. These
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antennas are easy to fabricate but are large in size. Hence,
it is unsuitable for RFID tag applications. In [4], a compact
microstrip antenna with some slots loaded is proposed. Also, a
simple feeding structure is used and the input impedance can be
adjusted easily by changing the length of the feeding line alone.
However, this structure requires a via-hole to connect the patch
and the ground, which increases the fabrication cost. In [5], [6],
patches are fed by a small loop. The merit of this inductively
coupled feeding technique is that the imaginary part of the
input impedance can be easily changed by tuning the loop size
and the distance between the loop and the patches. In order to
further reduce the size, the planar inverted-F antenna (PIFA)
is also proposed for RFID tag antenna designs [7]. However,
because PIFA antennas often need coaxial probe feedings, this
type of structure requires embedding the RFID chip vertically
between the ground plane and the radiation patch. Hence, it is
difficult to fabricate. In [8], [9], the authors proposed to use a
slot or aperture antenna as the radiator. A RFID chip is put on
the center of the slot as the feeding source. In [10], the RFID
chip is connected to a small dipole as a coupling source of
the slot. The input impedance of this tag can be adjusted by
changing the location of the small dipole. The shortcomings of
these slot-type antennas are their size seem still large for RFID
tags.

Recently, many people consider using artificial magnetic con-
ductor (AMC) or electronic band gap (EBG) structures for tag
antenna designs. Because these new artificial structures have the
character of zero-reflection phase, the dipole-type tag antenna
can be put very close to them. In [11], a dipole is putona 5 x 3
AMC plate as the tag antenna. This antenna has the advantage
of the high gain (about 4.5 dB) but the drawbacks of large size
and high cost. It is suitable for reader antennas instead of tag
antennas. There are some other compact and low-profile AMC
structures [12], but the complicated structures and narrow band-
width (just a few megahertz) limit its application.

Most RFID tags are disposable, which is acceptable for
dipole-type antennas because of their low cost. However, for
microstrip-type antennas, disposable designs will lead to a big
waste. The microstrip-type antennas introduced above have
relatively higher cost compared to dipole-type tags. Mean-
while their structures are unchangeable, implying that a fixed
structure can only be used for one RFID chip. If we want to
replace the chip, the entire antenna must be re-designed and
re-fabricated. Therefore, a simple, reusable microstrip antenna
is attractive for low-cost metal-attachable RFID systems.

In [13], we have proposed an idea for the reusable microstrip
tag antenna design. This antenna shows good performance when
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attached on metallic objects. But the physics of its feeding struc-
ture was not very clear and the size was relatively large. In this
paper, several compact structures are proposed, analyzed and
tested. In Section ILthe motivation and principle of the design
are introduced. Then, in Section III, several key parameters of
the structure are analyzed and discussed. In Section IV, proto-
types are fabricated and tested. This kind of designs is summa-
rized in Section V.

II. ANTENNA DESIGN

Two issues motivated us to design a flexible feeding structure
for low cost metallic RFID tags: First, unlike conventional
50 Ohms antennas, RFID tag antenna has complex input
impedance because it should be a conjugate match to the RFID
chip. There is no unified standard for RFID chips. Different
chips have different impedance. It is impossible to design an
antenna that can match all kinds of chips. Second, most tag
antennas are disposable design because the information in the
chip is unique for a certain product. If the chip is integrated into
the antenna, the antenna can be used only once.

For the reasons mentioned above, we propose to design the
feeding network and the radiator separately. The radiator con-
sists of two symmetrical patches, which are mounted on a di-
electric substrate. One edge of the patch is shorted to the ground,
and there is a gap between the two patches. This gap is the ra-
diating slot. The radiator part can be seen as two quarter-wave
patch antennas sharing a common radiating slot, or a cavity with
a slot loaded. For traditional patch antennas, whose radiating
slots are on the side edges of the patch, the ground is usually
larger than the patch. The advantage of our design is to move
the radiating slots from the edge to the center, which can reduce
the total size of the antenna effectively.

The coaxial probe can be put at a proper location of one of the
two patches to feed this structure [14], [15]. Then this patch is
regarded as the primary patch. Another one is the parasitic patch.
This is the simplest feeding method. Unfortunately, it is not suit-
able for the RFID tag antenna. Another problem is that the para-
sitic patch has a phase delay compared to the primary patch due
to the asymmetric feeding. To feed two patches simultaneously,
we can connect the two patches directly by a RFID chip [8], [9],
[16], [17]. This is straightforward but has some drawbacks, such
as the inflexibility and difficulties of impedance matching.

A feeding method of putting a small dipole on the top of the
gap is proposed to feed the structure [10], [13]. The length of the
dipole is far less than the operating wavelength of the antenna.
To couple more energy into the cavity, the dipole should be put
very close to the slot (d < Ag). This structure can be regarded
as a cavity-backed slot antenna. If the dimension of the cavity is
designed properly, TM;( mode will be excited and resonate in
the cavity. The dipole and the cavity have a strong coupling at
the resonant frequency, and then the energy can be transformed
from the dipole to the cavity through the slot.

Usually, the input impedance of a RFID chip has a small real
part and a large negative imaginary part (capacitive). Hence, for
conjugate matching, a loop (inductive) antenna is preferred than
the small dipole as the feeding network. The geometry of the
proposed loop-fed antenna is shown in Fig. 1(a).
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Fig. 1. A small loop put on a pair of shorted patches. (a) The geometry. (b)
Equivalent circuit with R = 0.3 ohms, L = 24 nH, C' = 0.02 pF, ', = 0.15
pE C,, = 0.2 pF, R, = 850 ohms, C. = 7.7 pFand L. = 4 nH. (c) Antenna
parameters and current distribution on the patches with L, = 39, W, = 25,
g=5,L,=16,W, =12, w =4,d = 0.5 and h = 3. The strip width of
the loop is 1 (all dimensions are in mm).

Fig. 1(b) shows the equivalent circuit of the antenna. To
model the small loop, a capacitance C' is put in parallel with
resistance R and inductance L. The capacitance C' accounts for
the distributed capacitance between the sides of the loop. Note
that a loop with an uniform current distribution would have no
capacitance, since there would be no charge along the conductor
of the loop. For the loop-fed structure, if the loop is extremely
small, the x component current on the loop have the same
magnitude but opposite directions so they cancel each other.
Hence, the cavity cannot be excited in this case. However, when
the loop becomes larger and larger, the  component current
have different magnitude and opposite directions. Hence, there
is a net current along the x axis. This net current looks like an
electric dipole and can be used as the excitation source. The
resistance R and inductance L of the small rectangular loop
can be estimated approximately by [1], [21]

P 4
R = 2072 <X> (P < )\/3) 1))
2L W,

where P is the perimeter of the loop and s is the width of the
loop strip.

Because the thickness & of the cavity is very thin, according
to the cavity model [18], [19], the two quarter-wave patch an-
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tennas (or cavity) can be represented as two parallel circuits.
The capacitance C. of the patch can be estimated roughly by
using the parallel plate wave guide model [2]

L, h
E = Zparallel plate = UW 3)
c p

where ) = \/p/e is the intrinsic impedance of the medium
between the parallel plates. Because the resonant frequency is
w, = 1/y/L.C., we can obtain

W,  2:W, 1,

Ce = 7h

b “4)

here we suppose that L, = A,/4 and ), is the guided wave-
length in the cavity. Through (3) and (4), the equivalent capac-
itance C. and inductance L. of each patch are 7.7 pF and 4.0
nH, respectively. The radiation resistance R, of single patch can
also be estimated using cavity model. Since the energy is cou-
pled from the gap into the cavity, the location of feeding point
in cavity model should be chosen close to the gap (the radiation
edge). The estimated resistance R, is about 850 ohms.

The capacitance C,,, can be estimated approximately by [20]

W, B\ 2 2h
Co= 2 025+ (=) | +ZLtan"t [ = (5)
2w g h g

If the width of the gap g = 5 mm, then C,,, = 0.14 pF. Note that
these parameters are just approximate values. When the small
loop is put close to the patches, these values would change due to
the coupling between the loop and the patches. It is very hard to
determine these values analytically if coupling effects are taken
into consider. But they can be extracted by comparing the re-
sults of circuit model and full wave method (Volume Surface
Integral Equation codes developed by our group). After a little
bit tuning, the precise values of C' and C,,, as well as the cou-
pling capacitance C; can be determined and the results of circuit
model can match well to the full wave results. The ultimate pa-
rameters of these lumped elements and the antenna are given in
Fig. 1(b) and (c), respectively. The input impedance of full wave
method and equivalent circuit models are shown in Fig. 2. Good
agreement is achieved.

To evaluate the performance of the proposed antenna when
mounted on metallic objects, we pasted this loop-fed tag antenna
on a 200 mm x 200 mm metallic plate. The dielectric has a rel-
ative permittivity of 4.2 and loss tangent of 0.02. The medium
between the small loop and the cavity was set as air to simplify
the simulation. Fig. 3(a) is the gain pattern of the antenna. The
simulated maximum realized gain is about —0.7 dB near 915
MHz, which is enough for most low-cost RFID tags. The current
distribution on the loop and the patches are shown in Fig. 3(b).
Note that the current at point “a” and point “b” are not symmet-
rical. Just as the current direction shown in Fig. 1(c), at point
“a”, the x component of the current have the opposite direction.
Hence they cancel each other. However, at point “b”, the current
have the same direction then add together.
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Fig. 2. Simulation results of full wave method and equivalent circuit model for
the loop-fed antenna.

(b)

Fig. 3. Performance study of the proposed loop-fed antenna. (a) Gain pattern
of the proposed antenna at 915 MHz. (c) Current distributions at 915 MHz.

III. PARAMETERS STUDY

In this section, we focus on several key parameters of the
structure to see their effects to the performances of the antenna.
These parameters include: The loop size Ly x W, the distance
w between the loop and the edge of the patches and the gap
g between the two patches. In all simulations, the tags were
supposed to be mounted on a 200 mm x 200 mm metallic plate.

A. Loop Size Ly x W,

Our goal is to design a separable feeding network which can
match different RFID chips by changing the size or structure
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Fig. 4. Input impedance and S1; for different loop size. (a) Input impedance.
(b) S11. The blue line to match the RFID chip with impedance of 6 — j127 at
915 MHz, the red line to 13 — j140, the black line to 7 — j170 and the pink line
to 30 — j200. Other parameters are: L, = 39, W, = 25, g =5,d = 0.5 and
h = 3. The strip width of the loop is 1 (all dimensions are in mm).

of the feeding network while keeping the radiator part un-
changed. To simplify the problem, we fixed others parameters
and adjusted the loop size Ly x W, only. Four types of RFID
chips were chosen to do the simulation. Around 915 MHz, their
impedance are: 6 — j127 [22], 13 — j140 (Alien-H2), 7 — j170
[23] and 30 — j200 (Alien-H3). To make this tag work in the
north American frequency range (from 900 MHz to 930 MHz)
with these chips, we can change the loop size Lj x Wi, the
results are shown in Fig. 4.

Fig. 4(a) are the input impedance of the tag with different loop
size: The blue line is to match the RFID chip with impedance
of 6 — j127 at 915 MHz, the red one is to 13 — j140, the black
oneisto 7 — j170 and the pink one is to 30 — j200. It was found
that with the perimeter of the loop becomes larger and larger,
the resonance becomes stronger. Also, the resonant frequency
tends to become lower because big loop will induce a large net
current along the = axis, which is equal to the increase of the
coupling capacitance Cs. From circuit theory, it will decrease
the resonant frequency. Fig. 4(b) shows the S1;. It can be seen
that all of the four RFID chips can be matched well within the
operating frequency range.

4457

200 T . :

~ 150

£

=

e

8

= 100 - —&— w=0 mm

§ —@— W=2 mm

E —¥— w=4 mm

3 ~—h— W=6 mm

£ 50| —4—w=8mm
—¢— w=10 mm

0.8 0.85 0.9
Frequency (GHz)

0.95 1

Fig. 5. Input impedance for different value w. The loop size was fixed at 14
mm X 14 mm. The parameter w was changed from 0 mm to 10 mm.

250

200

100

luput Impedance (Ohm)

0.8 0.85 0.9
Frequency (GHz)

Fig. 6. Inputimpedance for different g. The loop size was fixed at 14 mm X 14
mm. The parameter ¢ was changed from 2 mm to 10 mm.

It is worth to say that in this example, to change the input
impedance, we only adjusted the loop size. Hence, the freedom
is very limited. To add more freedoms into the feeding network,
more complex feeding network structures, such as the T-mach
or Gamma-match [1] can be designed, and then more RFID
chips might be matched.

B. The Distance w Between the Loop and the Edge of the
Patches

In all of the aforementioned examples, the loops were put
at the center of the slot. In fact, the location of the loop is not
sensitive to the input impedance. To approve this, we fixed the
loop size Ly x Wi, at 14 mm x 14 mm, other parameters were
the same to last example except w. Then w was changed from
0 mm to 10 mm. It is clear to see from Fig. 5 that the parameter
w will not affect the input impedance.

C. The Gap g Between the Two Patches

In this example, we analyzed the effects of parameter g to the
input impedance. Similar, we fixed the loop size at 14 mm x 14
mm, other parameters are the same to last two examples except
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Fig. 7. The fabricated prototype of the loop-fed double patches antenna, the
total dimension is 80 mm X 25 mm X 3.5 mm.
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Fig. 8. The input impedance and .S1; of the loop-fed double patch antenna
(Type A). The antenna was put on a 200 mm x 200 mm metallic plate.

g. It is found in Fig. 6 that with the value of g decreases, the res-
onant frequency becomes lower. The reason can be explained
as follow: The center of the antenna can be regarded as a vir-
tual ground and the capacitance C,,, can be seen as the sum of
two open ended capacitances (the capacitance between the radi-
ating edge of the patch and the virtual ground). The length L,, of
the patch will be a little bit shorter than quarter-wave dielectric
length because the open ended capacitance effects. When g de-
creases, the two open ended capacitances will increase. It means
for the same resonant frequency, the patch length L,, looks more
shorter, or, for the same length L,,, the resonant frequency looks
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Shorting edge

(b)

Fig.9. The loop-fed single patch antenna. The total dimension is 45.5 mm X 20
mm X 3.5 mm. (a) The geometry. (b) The prototype.

more lower. Though small value of g can reduce the total size of
the antenna, it will also decrease the gain because of the strong
mutual coupling between the two patches. Hence, g cannot be
set too small.

IV. FABRICATION AND MEASUREMENTS

The advantage of the proposed idea is that the feeding net-
work and the radiator can be designed separately. From the dis-
cussion above, the working mode of the antenna is determined
by the resonant mode of the cavity. If we choose the size of
the cavity properly, the antenna can work well at the TM;jq
mode. On the other hand, the feeding structures can be used
as the excitation and impedance matching network. Different
feeding structures will affect the input impedance significantly.
This gives us an inspiration to design a disposable feeding net-
work for tag antennas. This feeding structure should be simple,
easy for fabrication and low cost.

In the aforementioned examples, in order to simplify the sim-
ulation, we use the air as the substrate between the feeding net-
work and the patches. In practice, we should find a proper ma-
terial as the substrate. Paper is a good choice because it is very
cheap and easily available. The most important point is that it
is easy to print feeding circuits on the paper by using the con-
ductive ink or copper foil. In our designs, we use some common
paper, such as those used for name cards, as the substrate. The
estimated relative permittivity constant of the paper is around
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Fig. 10. The input impedance and S1; of the loop-fed single patch antenna
(Type B). The antenna is put on a 200 mm X 200 mm metallic plate.

3.2-3.5 [24], and the loss tangent is about 0.08. The drawback
of paper is its high loss. But it is acceptable for tag antennas
because the read range requirement of most passive RFID tag
applications are just few meters.

A. Loop-Fed Double Patch Tag Antenna (Type A)

The loop-fed double patch antenna was fabricated and tested.
The fabrication prototype is shown in Fig. 7. The antenna used
the Alien’s RFID chip, whose impedance is about 30-200;j at
915 MHz. The dielectric in the cavity is FR4. Its measured
permittivity is about 4.2 and loss tangent is about 0.02 [10],
[17]. The parameters of the antenna are (all in mm): L, = 35,
W, =25,9g=10, Ly =14, Wy, =12, w = 5,d = 0.5 and
h = 3. The strip width of the loop is 1 mm. With the method
proposed in [25], [26], the antenna was measured through the
Agilent’s four ports vector network analyzer. Fig. 8 shows the
input impedance and S1; of measured results. This tag antenna
was mounted on a 200 mm X 200 mm metallic plate. It is clear
to see that the antenna can match well around 920 MHz.

B. Loop-Fed Single Patch Tag Antenna (Type B)

The antenna proposed above has a symmetrical structure: The
cross section (yz plane) at the center of the antenna can be seen
as a perfect electric conductor (PEC), see Fig. 1. Hence, it is
possible to split the antenna along yz plane to reduce the total
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Fig. 11. The loop-fed single patch antenna with slots loaded. The total dimen-
sion is 30 mm X 20 mm X 3.5 mm. (a) The geometry. (b) The prototype.

dimension. Fig. 9(a) shows the geometry, where L, = 45.5,
W, =20,9g=75 Ly =17,Wr =11,d =05and h = 3
(all in mm). The width of the loop strip is 1 mm. Fig. 9(b) is the
prototype. Fig. 10 is the measured input impedance and S1; of
this antenna when mounted on a 200 mm X 200 mm metallic
plate. Here the FR4 has a relative permittivity about 4.2 and
loss tangent about 0.04. The paper is the same as Type A. It
can match well around 925 MHz by adjusting the parameters
carefully.

C. Loop-Fed Single Patch Tag Antenna With Slots Loaded
(Type C)

In order to further reduce the size of the tag, two slots were
added on the patch. These slots can bend the patch surface cur-
rent paths to achieve a lower fundamental resonant frequency.
The geometry and prototype of the compact tag antenna are
shown in Fig. 11(a) and (b), respectively. The parameters in
Fig. 11(a) are: L, =24, W, =20, g =6, Ly = 16, L; = 15,
Wy =9.25 Wy =55 W =10,s =1,d=0.5and h = 3
(all in mm). The width of the loop strip is | mm. The parameters
of FR4 and paper are the same as Type B. The measured results
of the compact antenna mount on a 200 mm X 200 mm metallic
plate are shown in Fig. 12. From the results we can see that it
can match well around 915 MHz.
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Fig. 13. The simulated realized gain of the three type tag antennas (The an-
tennas are put on a 200 mm X 200 mm metallic plate).

D. Read Performance and Comparisons With Other Tags

The realized gains of these tags were also investigated and
the results are shown in Fig. 13. The maximum gain within the
operating frequency rang are —3.6 dB, —6.9 dB and —11.8 dB
for Type A, Type B and Type C, respectively. The main reason
for the low gain is due to the high loss of the paper we used.

The read ranges of these prototypes were tested using Impinj
reader IPJ-R1000. The operating frequency hops from 900 MHz
to 930 MHz. We fixed the output power to 30 dBm and measured
the read distances of these tags (summarized in Table I). These
antennas have a good performance when mounted on metallic
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TABLE I
READ RANGE OF THE PROPOSED ANTENNAS

Ref. Ref

Type A | Type B | Type C [17] 27]

Free 3m 14m | 0.5m — —
space

Metallic | g 1 55 | im | 30m | 7m
objects

objects but poor performance in free space because the small
ground will lead to a large back radiation. Also, the resonant fre-
quency in free space would be lower than the case when they are
mounted on a large metallic plate. Finally, we compared our tags
with other designs. In [17], the structure is very similar to ours
but with a direct feeding method. The gain of [17] is about —6.4
dB and the maximum read range is 3.1 meter when mounted on
a0.5A x 0.5\ x 0.01\ metallic sheet. In [27], the maximum read
range of the commercialize tag can reach 7 meter when mounted
on a 300 mm x 300 mm metallic plate. The performance of [27]
is very good but also with the drawback of large assembled size:
945cmx72cmx 1 cm.

V. CONCLUSION

A type of loop-fed compact UHF band RFID tag antennas
for metallic objects is presented in this paper. These antennas
use the quarter-wave patch structure (or a cavity) as the radiator
and a small loop as the feeding network. The cavity determines
the resonant mode while the feeding part is adjustable to match
the required input impedance. The feeding network and the ra-
diator are designed separately. The feeding part is simple with
the low cost. It can be printed on paper using some copper foil
or conductive ink. Hence, it is a disposable design. Thanks to
the separable idea, the radiator part (the quarter-wave structure)
can be used many times for different RFID chips or feeding net-
works, which will lower the total cost of metallic tag antennas.
Three designs are proposed. The smallest one has the size of 30
mm X 20 mm X 3.5 mm, which is just 1/10 wavelength in free
space. The merits of their compact, low cost, and metal-attach-
able properties make the proposed antennas well suitable for
packaging RFID applications with metallic objects.
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