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New Iterative Framework for Frequency Response
Mismatch Correction in Time-Interleaved ADCs:
Design and Performance Analysis

K. M. Tsui and S. C. Chan, Member, IEEE

Abstract—This paper proposes a new iterative framework for
the correction of frequency response mismatch in time-interleaved
analog-to-digital converters. Based on a general time-varying lin-
ear system model for the mismatch, we treat the reconstruction
problem as a linear inverse problem and establish a flexible iter-
ative framework for practical implementation. It encumbrances a
number of efficient iterative correction algorithms and simplifies
their design, implementation, and performance analysis. In par-
ticular, an efficient Gauss—Seidel iteration is studied in detail to
illustrate how the correction problem can be solved iteratively and
how the proposed structure can be efficiently implemented using
Farrow-based variable digital filters with few general-purpose
multipliers. We also study important issues, such as the sufficient
convergence condition and reconstructed signal spectrum, derive
new lower bound of signal-to-distortion-and-noise ratio in order
to ensure stable operation, and predict the performance of the
proposed structure. Furthermore, we propose an extended itera-
tive structure, which is able to cope with systems involving more
than one type of mismatches. Finally, the theoretical results and
the effectiveness of the proposed approach are validated by means
of computer simulations.

Index Terms—Farrow structures, frequency response mis-
match, iterative methods, performance analysis, time-interleaved
(TT) analog-to-digital converters (ADCs), variable digital filters
(VDFs).

I. INTRODUCTION

ODERN communication systems such as software-

defined radios and other high-speed applications call
for analog-to-digital converters (ADCs) with increasingly high
sampling rate and low power consumption [1]. In general,
the performance of an ADC is limited for a given process
technology, e.g., IC fabrication [2]. In order to stay with the
current technology while meeting the increasing requirements
of modern communication systems, new structures for im-
proving the performance of current signal converters are an
important problem in both research and industrial communi-
ties. One promising approach that is capable of offering high
sampling rate is time-interleaved (TT) ADCs [3], in which an
array of ADCs works in parallel at a fraction of the overall
sampling rate. If the outputs of the ADC array are combined
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appropriately, a much higher sampling rate than that of an
individual ADC can be achieved. However, any small channel
mismatches between sub-ADCs cause a significant degradation
in performance [4], [5]. Therefore, correcting these mismatches
in TI ADCs is of great importance. In particular, the correction
of frequency response mismatches is the major concern of this
paper.

A commonly encountered type of mismatch in TI ADCs is
the time-skew errors between different channel ADCs, which
has received great attention over the last decades. A number of
solutions are now available [6]-[20], [39], [42]. In particular,
the functionally weighted Lagrange interpolation in [16], the
multichannel filter in [17], and the compensation structures
in [18]-[20] are promising approaches for solving the timing
mismatch problem. The former improves the conventional La-
grange interpolation [15] and offers good reconstruction accu-
racy, which increases with the interpolation order. However,
when the timing mismatches change, the interpolation coeffi-
cients need to be recomputed online, which requires consider-
able number of general-purpose multipliers. Moreover, as the
interpolation order increases, the window function for comput-
ing the interpolation coefficients exhibits very large value which
makes fixed-point hardware implementation complicated. For
high-speed applications, the large number of expensive general-
purpose multipliers would increase significantly the hardware
cost and power consumption [43]. The multichannel filter in
[17] suffers from a similar online filter design problem, but it
incorporates the prior knowledge of input spectrum to improve
the accuracy, and the design complexity is low. On the other
hand, the structures in [18]-[20] completely eliminate the need
of expensive online filter design and, therefore, can be realized
more efficiently with reduced implementation cost.

More recently, many research works have focused on the
more general problem of frequency response mismatch, where
the channel ADCs may have distinct magnitude and phase
characteristics [21]-[25], [38], [41]. Among these works, the
structure in [21] and a similar approach in [22] are par-
ticularly attractive for real-time applications because of the
relatively lower reconfigurable complexity as in the timing
mismatch compensation structures in [18]-[20]. In particular,
the authors in [21] developed a system model for describ-
ing the general relationship between the input and output
signals, analyzed the error signal due to frequency response
mismatches, and demonstrated how the accuracy of the system
can be progressively improved by cascading the compensation

0018-9456/$26.00 © 2011 IEEE
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filters. An important advantage of this approach is that its
implementation complexity is independent of the number of
channels.

In this paper, we investigate the problem from another direc-
tion by considering it as an inverse problem of a time-varying
linear system and propose a novel framework and structures
for iterative correction of the frequency response mismatches
in TI ADCs. In order to facilitate real-time implementation,
we focus on the structure which works in a sample-by-sample
manner. This can be viewed as an extension of the approach
[19] for timing mismatch problem to the more complicated
situation of frequency response mismatches. Furthermore, it
will be shown that the compensation structure in [21], [22]
actually corresponds to a classical iterative method, namely,
Richardson iteration (RI), which is a special case of the pro-
posed iterative framework. To further reduce the implementa-
tion complexity, we study in detail a more efficient iterative
method based on Gauss—Seidel iteration (GSI), which, in gen-
eral, has a convergence rate faster than that of the RI. Other
methods such as successive overrelaxation (SOR) can also be
used. Simulation results show that the GSI converges to the
desired solution at a faster convergence rate than the RI. Since
the GSI generally converges in two to three iterations, the
structures of additional iterations can be cascaded for real-time
applications.

Because of the time-varying nature of the frequency response
mismatches, we propose to realize the compensation structure
using variable digital filters (VDFs) [26]. Like the timing
mismatch compensation in [18]-[20], the VDF can be designed
to accommodate frequency response mismatches which are
commonly described by a model with single spectral parameter.
The resulting structure consists of a number of fixed coefficient
subfilters and a few tuning parameters. Major advantages of
the proposed structure are that the VDF coefficients involved
can be varied online to cope with systems with gradually
changing frequency characteristics, and more importantly, it
can be implemented as the well-known Farrow structure with
a limited number of variable multipliers, which are required to
implement the tuning parameters [26], [27]. With the efficient
finite wordlength hardware realization of the Farrow structure
well-studied in [28], the overall reconstruction structure can be
efficiently pipelined with only a few general multipliers for the
tuning parameters.

Based on the proposed compensation structure, we also
demonstrate how systems with timing and frequency mis-
matches can be compensated online. The basic idea is to
compensate these mismatches successively using the proposed
VDF-based structures. This is particularly useful when more
than one type of mismatches, such as timing mismatch, fre-
quency/bandwidth mismatch, etc., occur simultaneously.

Two important issues of the proposed iterative compensation
structures are the condition for convergence and performance
analysis. Such information will ensure their stable operation
and help designers to predict their ultimate performances so as
to select appropriate filter lengths and hardware resources to
meet different design specifications. Owing to the rich theoret-
ical analysis of iterative methods in mathematical communities
[29], [40], we are able to derive useful results, such as sufficient
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conditions for convergence, and investigate the performance
of the proposed iterative framework. Specifically, we derive
expressions for the reconstructed signal spectrum and obtain
a lower bound of signal-to-noise-and-distortion ratio (SNDR)
by means of the classical bifrequency mapping for periodically
time-varying digital filters first introduced in [30], [31]. The
former is useful to quantify the performance of the proposed
iterative structure by means of spurious free dynamic range
(SFDR) and effective number of bits (ENOB). The latter helps
to reveal how the SNDR is affected by the filter approximation
error and convergence rate of the iterative methods. These
results are useful to the performance prediction and evaluation
of practical TT ADCs to be designed.

It should be noted that the proposed iterative framework
extends significantly our previous work in [19], which solves
the timing mismatch problem using the RI instead of the GSI.
Moreover, a new representation of the proposed iterative frame-
work is developed in joint time and frequency domain. It not
only provides a general time-varying system model for better
understanding of the proposed iterative framework but also
facilitates the derivation of the important convergence and per-
formance analyses. Apart from these important contributions,
other issues such as the improved implementation structure
and its extension to the case of multiple mismatches were
also not considered in our previous work in [19]. In summary,
these results and findings serve as a flexible framework for the
development and analysis of other potentially more efficient
iterative reconstruction algorithms such as the GSI considered
in this paper.

This paper is organized as follows. Section II describes
the problem of frequency response mismatches encountered in
TI ADCs. The equivalent time-varying linear model and two
particular examples of the proposed iterative structure, namely,
the GSI and RI, for signal reconstruction, are then presented
in Section III. Section IV is devoted to the realization of the
approximated linear system model using VDFs. The efficient
implementation of the GSI using the Farrow structure is also
discussed. In Section V, the convergence and performance
analyses of the proposed iterative structure are studied. Ex-
tension of the proposed VDF-based iterative structure to the
more general cases of multiple time-varying mismatches, such
as frequency response and timing mismatches, is discussed
in Section VI. Design examples and comparisons with other
conventional approaches are presented in Section VII. Finally,
conclusion is drawn in Section VIII.

II. BACKGROUND

In an M-channel TI ADC, M ADCs are operating in parallel,
and the sampling instants between two adjacent ADCs differ
by one system clock period. Ideally, if the M ADCs are
functionally identical and the channel outputs are combined
appropriately, we obtain an equivalent ADC having the same
precision as the channel ADCs but offering a speed that is M
times faster. However, any small mismatches between the M
ADC:s lead to degraded performance [4], [5].

Fig. 1 shows an M -channel TI ADC with frequency response
mismatches, where s.(t) represents the input continuous-time
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Fig. 1. (a) M-channel TI ADC with channel frequency response mismatches,
(b) its equivalent circuit when all the channel responses are matched to F'(552),
and (c) its DT model.

(CT) signal and F,(j2), for n =0,1..., M — 1, represents
the frequency responses of the channel analog filters. Because
of the periodic sampling, F,,(j€2) can also be treated as an M-
periodic time-varying filter, i.e., F},(jQ2) = Fy,1a(592) for all
n. The multiplexer selects one of the ADC outputs at a rate of
fs = 1/T in a round-robin manner to form the output sequence
y[n]. A typical example of channel frequency response is a
phase shift in timing mismatch [6]-[20], where the sampling
instants deviate slightly from the desired sampling grid due to
clock skew or other imperfections. Most of these imperfections
can be modeled as the channel frequency response F,(j<2).
Usually, timing offset is estimated using, for example, the
methods in [13], [14], [32], whereas the frequency response
can be determined from circuit consideration with appropriate
channel model [24].

Mismatches in the TI ADC occur when at least one channel
frequency response is different from the others. Usually, it is ad-
vantageous to compensate for all channel frequency responses
so that a desired time-invariant frequency response F(jQ) is
obtained, i.e., F},(jQ) = F(jQ) forn =0,1..., M — 1[21].
This results in an equivalent single channel ADC shown in
Fig. 1(b), where s.(t) is filtered by F(jQ) before sampling
to obtain x[n]. As suggested in [21], such frequency distortion
can be compensated, for example, via equalization in commu-
nication systems, which is commonly encountered in the single
channel ADC. Therefore, the problem of correcting frequency
response mismatches in TI ADC can be viewed as computing
the desired x[n] from the mismatched TI ADC output y[n].

To this end, we shall first establish a discrete-time (DT)
model for z[n] and y[n]. Suppose that s.(t) is a band-limited
CT signal with maximum frequency fy.x and the sampling
rate f; = 1/T is greater than the Nyquist rate 2 fy,,.x. Then, the
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equivalent DT relation of s[n] = s.(nT) and y[n] in Fig. 1(a)
can be expressed as

[o.¢]

> slk] - faln—k) Vn 0

k=—00

yln] =

where f,,(no) is the DT impulse response of the time-varying
channel filter F,(e’*) = F,(jf), |w| = |QT| < 7. To estab-
lish the relation of [n] and y[n], we further define the following
M -periodic time-varying filter:

D, (e’) = F,(e/*)/F(e?%) 2)

where F(e/%) = F(jQ), |w| = |QT| < 7, such that F,(e?*)
can be viewed as a cascade of a time-invariant filter F'(e/*)
and a time-varying filter D,,(e’*). Using (2), a DT model of TI
ADC can be obtained, which depicts the relationship between
s[n], x[n], and y[n], as shown in Fig. 1(c). It can be seen
that x[n] is first obtained by filtering s[n] via F(e/*) and is
subsequently fed into D,,(e’*) to produce y[n]. Hence, the
input—output relationship of x[n] and y[n] is given by

o0

> alk]-do(n—k) Vn 3)

k=—o00

yln] =

where d,,(ng) is the DT impulse response of D, (e’*). So
far, we have described the ideal DT model of TI ADC with
frequency response mismatches. Intuitively, we can see from
(3) that x[n] can be found by deconvoluting y[n] with the
known time-varying filter d,,(no). Hence, the process of find-
ing z[n| given d,(no) is an inverse problem. However, such
deconvolution is considerably complicated by the infinite sup-
port and time-varying nature of d,,(ng). To overcome this
problem, we shall discuss hereinafter an efficient and practical
approximation of d,(ng), which forms an important part of
the proposed iterative reconstruction method to be presented in
Section III.

As in many previous works, we assume that s..(¢) is slightly
oversampled so that the DT Fourier transform (DTFT) of s[n]
is zero for ar < |w| < 7, 0 < a < 1. This slight reduction in
operating bandwidth will generally lead to lower implementa-
tion complexity. By definition, the DTFT of z[n] also satisfies
this property. Consequently, the ideal filter D,, (e’*) can be ap-
proximated by a filter with lower complexity, for example, finite
length filter in the frequency band of interest (i.e., 0 < |w| <
am). Let hy[no] and H,(e’*) be the impulse and frequency
responses of this filter. Then, (3) can be approximated as

n+Npy
Z zlk] - hnln — k] Vn “)

k=n—Np2

yn] ~

where Nj; and Ny are positive integers. When both Np,
and Ny are finite, h,,[ng] can be realized as a finite-impulse
response (FIR) filter. On the other hand, if Ny, and/or Ny are
infinite, h,, [no] may alternatively be realized as an IIR filter. For
simplicity, in the rest of this paper, we will mainly focus on the
FIR case.
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In practice, the differences between the two systems in (3)
and (4) can be made arbitrarily small by reducing the approx-
imation error between D,,(¢’*) and H,(e’*). Therefore, for
notation convenience, we shall replace the approximate sign in
(4) by the equality sign subsequently.

III. VERSATILE ITERATIVE FRAMEWORK

Consider the matrix form of (4) as follows:

y= Az (5)
where Y= [y[_OOL ceey y[oo]]T’ T = [CE[—OOL ceey (E[OO]]T,
and [A], k= ani = hpn—kl, n,k=...,-1,0,1,.... The

problem at hand is to recover the uniform sequence x, given
its mismatched output y. In other words, we want to solve the
system of linear equations in (5). For the sake of presentation,
{y[n]} and {z[n]} are assumed to be DT signals with finite and
sufficiently large number of samples N forn =0,1,..., N —
1. Thus, y and @ are now (N X 1) vectors, and Aisa (N x N)
matrix. Also, hy,[ng] is assumed to be noncausal. For practical
implementation, it can be easily made causal by introducing
appropriate delays.

For high-speed applications, directly inverting A to find «
is undesirable due to excessive arithmetic complexity. In this
paper, we propose to solve the inverse problem using iterative
methods. For efficient implementation, we are interested in
those which can be realized in a sample-by-sample manner.
Most of them take the form of

Bzt = cz™ 1y (6)

where B — C = A and (™) denotes the solution in the mth
iteration.

The iterative framework in (6) is very flexible in the sense
that we can choose different B and C' for different iterative
algorithms. For example, substituting B=Iand C =1 — A
into (6), one gets the RI as follows:

2 = (I — A)z™ +y. 7

After a careful examination, it is noticed that the compensation
structures in [21] and [22] actually belong to the RI. On the
other hand, other iterative methods such as Jacobi iteration,
GSI iteration, and SOR can also be used to achieve different
tradeoffs between implementation complexity and convergence
rate. Thus, (6) provides a general framework for solving the
reconstruction problem using iterative methods, which greatly
extends the previous works in [21] and [22].

In this paper, we consider the following GSI because of its
faster convergence rate over the RI:

2"t = (D-L)'Uz"™ +(D-L)'y (¥

where B=D — L, C = U, D is the diagonal of matrix A,
and L and U are the negatives of the strictly lower and upper
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LD )

Fig. 2. General signal flow of the proposed iterative structure.

triangular parts of matrix A, respectively. The equivalent time
domain representation of (11) can be written as

x(erl)[n] h ( Z x(erl [n B k]
k=n— Nhg
n+Np1
— Z x nln— k]),
k=n-+1
n=0,...,N—1. 9)

It can be seen that, apart from the addition of {y[n]}, the
new iterate {x("+1)[n]} is obtained from the convolution of
{hn[no]} with {("™)[n]} and the past samples of {z(™* 1D [n]}.

Now, we want to represent the matrix form of (6) in joint
time and frequency domain for better understanding of the
proposed iterative framework. In the context of time-varying
system, the generalized frequency response of h., [ng] in (4) can
be expressed as [33]

Nhn2
Hu(e?) = > hnlngle 7. (10)
no=—Nn1
For the Rl in (7), H,(e’*) is split as B, (¢’“) =1 — H,,(e/*)

and C,(e?“) =1, whereas, for the GSI in (8), H,(e'¥)
is split as B, (e7*) = Y o hn[nole " and C,(e/¥) =
— > o <0 hnlnole 7m0, Since B, (/%) and C,,(e’*) can be
treated as time-invariant filters at time instant n[34], the RI and
GSI as well as any other iterative methods under the framework
of (6) can be represented as

Bn(ejw)X£m+1)(€jw
Bn(ejw) —

)= Cn (/) XM (1) +Y,, (%) (11a)
Cn(e)=H,(e7¥) (11b)

where X" (e7%) and Y, (e’*) are, respectively, the time-
varying frequency responses of (") [n] and y[n] at time instant
n. Analogous to conventional linear time-invariant system,
(11a) can be rewritten as
XD () = Gule3) X () + Un(e02) Yo ()
(12)

where  Gp(e?) = B, (e’*)Cp(e’*)  and  Up(e?) =
B, 1(e’). Fig. 2 shows the signal flow graph of the proposed

iterative algorithm which consists of M -periodic time-varying
filters G,,(e’*) and U, (¢7%).

IV. IMPLEMENTATION USING VDF

In this section, we will illustrate how {h,[no]} in (9) can be
implemented as VDFs so that the reconstruction problem can be
realized as a process of digital filtering. The time-varying nature
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Fig. 3.

of hy,[no] naturally prompts us to consider the use of VDFs,
which are able to vary their characteristics online by adjusting
a tuning or spectral parameter ¢. The basic idea to realize
hn[no] using the VDF is to represent its impulse response as
a polynomial in ¢

L-1

> alno] - ¢!

=0

hn[no] = hlno, ¢]|4—y, = (13)

P=dn

where h[ng, @] is the impulse response of the VDF under
consideration, in which the spectral parameter ¢ can be adjusted
to ¢, to realize the time-varying nature of h,[ng], L is the
number of subfilters, and ¢;[no] is the impulse response of the
Ith subfilter. Here, we assume that h,,[ng] contains one type of
time-varying mismatch which is characterized by the parameter
¢ in (13). The extension to the case of multiple time-varying
mismatches will be discussed in Section VI. Furthermore, the z
transform of the VDF can be expressed as

L—-1 L-1 N2
H(z,¢)=ZCl(z>¢l=Z[ D algz "¢ (14)
=0 =0 Lno=—Np1

where Cj(z) is the z transform of the [th subfilters. Hence, the
time-varying frequency response in (10) and that of the VDF in
(14) are related by H,,(e7“) = H(e?¥, ¢,,). Also, (14) suggests
a famous Farrow structure for implementation as shown in
Fig. 3. It can be seen that the Farrow structure consists of
digital subfilters with fixed coefficients and a limited number
of multipliers to implement the tuning parameter ¢. Its efficient
hardware implementation has been addressed in several related
applications [20], [28].

We now consider the efficient implementation of the GSI
using the Farrow structure mentioned earlier. First of all, with
(13), we rewrite (9) as

x(m+1)[n] = h

10,60 (yln] = 5" 0] = 55 [n]) - (15)

where sl [] and

Zk n—Npo x(m+1)[k,] : h[n - kv (bn]
sy [n) = SRt k] Bln — k, ¢, Tt s

ng) [n] can be obtained by feeding 2(™*V[n] into
a VDF Vi(z,¢) =3[ 0 Viu(z)-¢' with appropriate
values of ¢,, where V;;(z) = f?foﬂcl[no] " is the [th
subfilter of Vj(z,¢). As for sém)[n], the corresponding
VDF is given by Va(z,¢) =3[0 Vaui(2)-¢', where
Vai(z) = Z;i:me ¢i[no]z~™. Fig. 4(a) shows the resulting

seen that
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Viz4)= Z{Zc[n]} V() = z[ :i;,[nolz’"}¢’
Gauss-Seidel Iteration
FEAEREEEE @ messs > VDF
+ 5" [n] Vi(z.4)
x‘””[n] VDF ng)[nl B x(m+1)[n]
| V) j{ » f
h,'[0]
yn]
(a)
y[n] . . X(MH)[W]‘
Q ,}f >
)+ 2] 10
‘m)
L 720G —D—] o) [ —

(b)

Fig. 4. (a) VDF-based correctors in the mth GSI. (b) Equivalent implementa-
tion structure with reduced number of tuning parameters.

TABLE 1
IMPLEMENTATION COMPLEXITIES OF THE RI AND GSI IN ONE
ITERATION. SUBFILTER LENGTH: P = Ny + Npo + 1;
SUBFILTER NUMBER: L

Nl{mber of non-\t{l\{lal 4, 0. 41
subfilter filter coefficients
GSI L(N, +Nyy) L-1 1
RI LP L-1 N/A

VDF-based structure for implementing the mth iteration of the
GSI reconstruction algorithm. To further minimize the number
of tuning parameters, the outputs of subfilters of V;(z, ¢) and
Va(z, ¢) can be combined as shown in Fig. 4(b).

As mentioned earlier, the structures in [21] and [22] belong
to the RI. In particular, we can see from the RI in (7) that
2™ [n] is fed into a VDF with transfer function Vg;(z, ¢) =
1 — H(z,¢). Therefore, the difference between RI and GSI is
in the way of utilizing the VDF H (z, ¢). Table I summarizes
the implementation complexities of the RI and GSI in one
iteration, where we assume that the subfilter length of the VDF
isdenoted by P = Np1 + Npo + 1. We can see that the GST has
a complexity comparable to that of the RI. On the other hand,
as will be demonstrated in Section VII, the GSI generally offers
faster convergence rate than the RI, which leads to lower overall
implementation complexity for pipelined operation.
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V. CONVERGENCE AND PERFORMANCE ANALYSES
A. Sufficient Condition for Convergence

An important issue of iterative methods is the conditions for
convergence. It is well known that the iteration in (6) converges
for any f and () if and only if the spectral radius of G =
B7'C is less than one [29]. However, due to large value of
N and time-varying coefficients h,[no] in A, it is difficult to
derive analytically a necessary and sufficient condition based
on the spectral radius of G. Therefore, we consider a simple
sufficient condition which states that the iteration will converge
for any (9 if and only if A is a strictly diagonal dominant
matrix [29], [41]. That is, [ann| > 37, 25 [ankl. for all n,
which is equivalent to [, [0]| > 3, " |hn[no]|, for all n. The
latter condition can be tested numerically. Interested readers are
referred to Appendix A for the proof of the sufficient condition
for convergence of the GSI. Also, it is shown in Appendix B
that the GSI should usually converge faster than the RTif A is a
strictly diagonal dominant matrix. To test whether the diagonal
of A is strictly dominant, we define

A= min ¢ [An[0] = > [halno]]
no7#=0

(16)

and check if A is positive. This convergence condition can be
readily checked, since hy,[ng] = h[ng, 5] in the form of VDF
is known in practice after the design of the VDF H (/| ¢,,) to
approximate D,, (e7).

It is remarked that the choice of F(e/“) plays an important
role on the performance of iterative methods. A simple way is
to choose F'(e/*) such that D,, (/%) = F,,(e%)/F(e/*) in (2)
is close to one. This serves two main purposes. First, if D,, (/%)
is well approximated by H,,(e’*), then A becomes more diag-
onally dominant, and hence, the aforementioned convergence
condition can be easily guaranteed. Second, the diagonal domi-
nant matrix A will enhance the convergence rate of the iterative
algorithm in (6) according to Appendix B. Therefore, the
implementation complexity can be reduced with less number of
iterations. This also agrees with the suggestion in [21], wherein
F(e’%) is chosen as the average response of F},(e/*) through
the analysis in frequency domain. However, it should be noted
that the resulting spectrum after iterative correction would be
close to X (/%) = F(e7*)S (%) instead of the original input
spectrum S(e’“) as illustrated in Fig. 1(b). Consequently, an
additional compensation filter may be needed to compensate for
F(e/%), if such frequency distortion cannot be tolerated. In this
regard, one may alternatively choose F(e/*) =1 to directly
recover S(e’“) in exchange for increased number of iterations
and, hence, implementation complexity.

Another point worth mentioning is the effect of usable
bandwidth on the implementation complexity of the proposed
approach. If one wishes to reconstruct the signal spectrum very
close to w = m, the condition number of the system matrix A
deteriorates, and hence, more accurate approximation of the
VDF and more iterations for reconstruction would be required.
This, in turn, translates into higher implementation complexity,
which is also an inherent problem of most other reconstruction
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algorithms. When the maximum sampling rate increases, the
implementation complexity of the proposed approach only
depends on the percentage of usable bandwidth (for example,
longer filter length and more iterations will be needed) and is
independent of the number of channels, although the data rate
will be higher. Fortunately, since, unlike most other approaches,
most of the multipliers in the proposed structure are fixed, the
increase in the percentage of usable bandwidth would not intro-
duce too much design and implementation burden particularly
when the system changes due to variations in analog circuits.

Apart from the aforementioned convergence condition, it
is also important to predict the ultimate performance and
convergence rate of the general iterative algorithm in (6). In
the following two sections, we shall analyze thoroughly the
performance of the proposed iterative algorithm in joint time
and frequency domain.

B. Spectrum of Reconstructed Signal and ADC Resolution

First of all, we denote Z[n| as the solution of (5) upon
convergence. In other words, (™) [n] will approach &[n] as m
increases, and thus, we have y[n] = ZZI;V "Ny LKL R, [0 —
k] eventually. Similar to the relation between (6) and (11a), the
time-varying frequency response of y[n] at time instant n can
be established as

Y, (e79) = Hy(e7%) X, (%) (17)
where Y}, (e/%), H,(e’*), and X, (e*) are all M-periodic
time-varying frequency responses by definition. On the other
hand, for the ideal TT ADC system model, (3) can also be
written in joint time and frequency domain as

Y, (e7%) = D, (e7) X (e7%). (18)
From (17) and (18), we can see that if the approximation error
between H,,(¢7*) and D,, (/%) is small, then X,, (/%) will be
close to X (e/%).

As mentioned earlier, the iteration should converge for any
initial guess once the sufficient condition is satisfied. Therefore,
as in practical implementation, we select 2()[n] = y[n] and
hence

X)) = Ya(e). (19)
By substituting this in the recursion in (12), we obtain
XD (i)
0
= |GPHE?) + Y Gr(e)UL ()| Ya(e?)  (20)
k=m

where G (¢7“) denotes the kth power of G, (e’*). Further
substituting (18) into (20), one gets
XD (1) = AT () X (e7) 2D

where AT (eiw) = [GmHL (e3w) +
S GE (&)U, (/)] D,y (7). We note that X,Smﬂ)(ej“’)
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can be considered as the output of the periodically time-
varying system AL (e7¢) with X (/) as its input. Using
the concept of bifrequency mapping in [30] and after some
manipulations, the output spectrum of z(™+1[n] can be
expressed as

M-1
XU (er) = 30T () X (k) 22)
k=0

where Wy, = e727/M and A" (e7%) and T\ (i)
are related by the following discrete Fourier transform pair
owing to the periodicity of AL (e7¢) (ie., ALY (e1¥) =

1 jw Y-
Ag:fjru)(ej )):
M-1
AT () = 30 T eyt
k=0
(m+1) Jjw 1 M (m+1) Jjw nk (23)
Fk‘ (e ) = i 20 An (6 )W]\/[ .
Similar to perfect reconstruction filter banks [34], I‘émH) (e7%)

should be close to one so as to retain the input spectrum
X(e7), while TV (ei%), k=1,2..., M — 1, should be
close to zero so as to attenuate the aliasing components. As
mentioned in Section II, owing to the approximation error be-
tween H,(e’*) and D,,(e/*) in practice, perfect reconstruction
can only be achieved approximately in the frequency band of
interest.

As discussed in [2], an effective measure to quantify the
performance of ADCs is the SFDR, which is the ratio of the
single-tone signal amplitude to the largest nonsignal component
within the spectrum of interest. Using (22) and (23), the worst-
case SFDR after (m + 1) iterations is given by

SFDR(M = min 20log; ™ (e79) o ()
W,
(24)

for w € [—am,an] and k =1,2..., M — 1. The correspond-
ing ENOB after (m + 1) iterations, denoted by ENOB(™+1),
can be approximated as [2]

ENOB™) = SFDR"™ /6.02 bits. ~ (25)

Next, we will investigate how the filter approximation error
affects the reconstruction accuracy of the solution. It should
be noted that a different performance analysis was introduced
in [21], which focus only on the RI, whereas this paper is
applicable to any iterative methods in the form of (6) and takes
into account the effect of filter approximation error.

C. SNDR

In this section, we shall derive a lower bound of SNDR
of the TI ADC after frequency response mismatch correction.
It gives insightful interpretation on the ultimate performance
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and convergence rate of the proposed iterative algorithm. The
SNDR after (m + 1) iterations is given by

SNDR(m+1) _ Hsz

o= et

B ST X ()] dw (26)
T X (e3) — X)) (e39)] dw

where ||z || denotes the Euclidean norm of x. Note that we have
used Parseval’s theorem for periodically time-varying signal.
The proof is not difficult, and interested readers are referred to
[35] for more details. It is shown in Appendix C that the lower
bound of SNDR after (m + 1) iterations is given by

SNDR(M+D
M

> (27)
S [T |Pa(ed®) + Gt () Qu(er)] dw
n=0

where P, (e’*) =1— D,(e’*)H,; (e?“) and Q,(e’*) =
D, (e’*)[H, (e?*) —1]. We can see that P,(e’*) rep-
resents the filter approximation error between H,,(e/*)
and D, (e¥), which affects the SNDR due to the use
of practical filter. Also, G,(e*) is the only function
that determines the characteristics of the iterative meth-
ods under the framework in (9). For example, G, (e’*) =
(=2 ng<0Pn [k]e*jw"")/(znozo hy[k]e=3“m0) for the GSI,
whereas G, (¢7“) = 1 — H,,(¢7) for the RI. In fact, G,,(¢7)
indicates how fast the iteration converges. More precisely, the
smaller it is, the faster convergence rate the iterative method can
achieve. The requirement of small G, (¢*) also coincides with
the sufficient condition considered in Section V-A.
Furthermore, if the iteration does converge, then we have

lim G™(ed%) = 0. (28)

m—00
As a result, the ultimate SNDR for any iterative algorithms
under the framework in (12) is eventually governed by P, (e/*),
i.e., the approximation error between the designed and desired
filter responses and its lower bound is given by

M
SNDRult >

M-1 (29)

> [0 | Pa(e7)]? dw
n=0

The aforementioned analysis provides valuable information
for system designers to evaluate and estimate the achievable
performance of the general iterative method in (6).

VI. EXTENSION TO CASCADE OF MULTIPLE
TIME-VARYING SYSTEMS

As mentioned earlier, various types of mismatches exist in T1
ADCs, such as the commonly encountered timing mismatch,
bandwidth mismatch, etc. Very often, more than one type of
mismatch may occur simultaneously. Assuming that each of
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them can be modeled as a linear time-varying system, the ideal
system in (18) can be expressed as

I
V(€)= [[ Dni(*) X (e7) = Du(e?) X (/) (30)

i=1

where [ is the number of the time-varying systems. If we
directly apply the proposed iterative algorithm to find X (e/),
the resulting VDF will become a multidimension function char-
acterized by one frequency variable and I tuning parameters.
Therefore, the reconstruction will become very complicated
due to the high design and implementation complexities of
high-dimension VDF for large I. In this section, we will
propose an efficient structure based on our structure developed
in Sections III and IV to deal with this scenario.

Following the approaches in Sections III and IV, we ap-
proximate each ideal time-varying systems D, ;(¢’“) by a
practical filter H, ;(e/*) for i =1,2,...,1 in the frequency
band of interest. The overall system can therefore be expressed

in matrix form as
I
i=1

where the nth row of A; relates to the impulse response of
H,, i(€7%), hy, i[no], as in (5). The system in (31) can be further
partitioned as

€2y

w;—1 :A{U)Z, = 172771 (32)
where we define wy = y and w; = «. Assuming that the sys-
tem matrix A; satisfies the sufficient condition for convergence,
the proposed iterative algorithm in (6) can be employed to solve
w; by the following recursion:

Biw" ) = Ciw™ 1w, (33)
where A; = B; — C,. Its time-varying frequency response at
time instant n is given by
WD () = G )W ()

n,i

+ Un,i(ejw)Wn,ifl<ejw) (34)

whete  Gog(e) = B (e°)Coi(eh),  Upi(e™) =

B, \(e7?), and H,, ;(e’*) = By i(e7*) — C, :(e/). Suppose
that K, denotes the number of iterations used for the
reconstruction of the ith time-varying system, the proposed

approach starts with an initial guess 'wgo)
. . (K1)
1terations, w;

=1y, and after K;

is obtained as the solution of the first system

Yy =wy = Alwl. Then, ngl)

of the next system 'w(lK1

is used as the initial guess

) = Aswsy. The process is repeated

until the last system w(IIf{‘l) = Ajwrj is iteratively solved to

find ngI), which should be close to x if K;,1=1,2,...,1,
is sufficiently large. Fig. 5 illustrates an example for [ = 2,
where the target system is formed by a cascade of two time-
varying channel frequency responses and the corresponding
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Discrete-time model of TI ADC
ﬂ D,,(e’) |—>| Dn‘z(e/”’)l—M;
D,(e’)
N
nl v .

wOrn WDy,
Dt

—IUn'Z(e””) >
(K1) Y D (K5-1) Y x(&2)
T e < L AL e,

Fig. 5. (Upper figure) DT model of TI ADC with a cascade of two types
of channel frequency responses, and (middle and lower figures) the general
iterative reconstruction structures for the first and second systems.

reconstruction structure consists of two consecutive iterative
algorithms.

Similar to the discussions in Section V, we can derive
the output spectrum and the lower bound of SNDR for the
aforementioned algorithm. Since the derivation of the former
is straightforward, we only focus on the analysis of the SNDR
performance due to page limitation. Without loss of generality,
we consider the overall reconstruction structure shown in Fig. 5.
First of all, we define w; and &, respectively, as the ultimate
solutions of the systems y = Ajw; and ng‘) = Asx so that
their time-varying frequency responses satisfy

Yn<€jw) :Hn,l(ejw)w7171(ejw) (35)

Wéﬁ” (e’) =H, 5 (ej“’)f(n(ej“’).

(36)

Moreover, according to the earlier discussions, the initial guess
to the second system is
jw K jw
XO () = Wi (e, (37)
Similar to (A10) in Appendix C, Wéﬁl)(ej“’) can also be
expressed as

WY =W, - GE (38)

T n,

11(Wn,1 - Kz)

Note that, for notation simplicity, we have dropped the fre-
quency argument (¢/“). From (38), we can see that Wr(,ﬁl)
approaches the ultimate solution VAVnJ if G,,1 is small and
fo’ } becomes negligible for sufficiently large K. Otherwise,
such residue will propagate to the second system, as we shall
consider in the following. Using (30) and (35)—(38) and after
some manipulations, (A8) in Appendix C can be written as

R = (¥ - %, 4 685 £, - X0

= [P+ GE1Qua + GR3Qu2] X 39)
where P, =1—D,H 1H. . Qni=(H,}—1)H, 5D,,
and Q2 = (1 — Hy2)(1 — P, — G Qn.1). To highlight the
difference with (A8) in Appendix C, the superscript (K1, K5)

is used here to represent that R;KI’KZ) is obtained by applying
K iterations to the first system, followed by K iterations to
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GSI, 2 iterations, (Nh’ L)=(22,4)
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(a) Uncompensated output spectrum. (b) Output spectrum obtained using the RI after two iterations. (c) Output spectrum obtained using the GSI after

two iterations. (d) Output spectrum obtained using the GSI after two iterations, and a VDF of lower filter order and fewer subfilters are used in the first iteration.

the second system. Finally, we obtain the lower bound of SNDR
after (K1, K») iterations as
SNDRK1-HK2)

> M . 40)

M—-1 2
S P+ GEiQu + GR3Qu | dw
n=0

Again, for sufficiently large K; and Ko, we notice that the
ultimate SNDR is eventually governed by F,,, which depends
solely on the filter approximation errors for the two time-
varying systems.

VII. DESIGN EXAMPLES
A. Example 1: Compensation of Bandwidth Mismatch

In this section, we shall investigate the performance of the
proposed iterative structure by means of computer simulations.
For comparison purpose, we shall also consider the promising
compensation structure proposed in [21]. As we mentioned in
Section III, this structure can be regarded as the RI.

We shall consider bandwidth mismatches in an M -channel
TI ADC. The corresponding channel frequency response is
given by

1 1— ef(Q;TJerT)

Fn(]Q) = 1—{—]% 1 — e (QuT+iMQT)

(41)

where 2¢ is a time-varying cutoff frequency. Interested readers
are referred to [21] and [24] for more details of this model. We
assumed that the parameters €2¢ have been estimated and the
desired frequency response is chosen as

1
L+ )77

F(jQ) (42)

which approximates the average response of F,(e’“) as dis-
cussed in Section V. According to the DT model of TT ADC in
Fig. 2, we express the ideal frequency response D,, (/) as

Fo(e?¥)  1+4j%
F(ei*) 1+ jpeyy 1 — e l0+onmrid]
(43)

, 1 — o+ mtio]
Dn(e]w) _ &

where ¢, = QST /m — 1. We can see that the response
D,,(e?*) varies with a single spectral parameter ¢,,, and there-
fore, it can be expressed as a function of frequency and spec-
tral parameter, i.e., D(e/*, ¢,) = D,(e’*). As discussed in
Section IV, we employ a VDF H (e/, ¢) in the form of (14)
to approximate D(e’“, ¢) by solving the following minimax
problem:

min max ‘H(ejw,(/)) - D<ejwv¢)’

44
(w,a)eW “44)

where WU collectively denotes the frequency and tuning range
of interest. Once it is solved, we obtain the VDF subfilter
coefficients ¢;[ng] in (13) and establish the linear model in (4)
with h,, [ng] = h[no, ¢]. Using this model, we can iteratively
find z[n| given y[n]. In the simulation hereinafter, we consider
a five-channel TI ADC (i.e., M = 5). Also, we choose €2, =
[1,0.94,1.1, —1.1,1.04]n /T, and hence, the spectral parameter
of D(e%, ¢,,) is given by ¢, = [0, —0.06,0.1, —0.1, 0.04]. As
an illustration, we assume that z[n] = >5_, cos(nwy) with
[wi,...,we] =[0.075,0.225,0.45,0.625, 0.85, 0.9]7. Fig. 6(a)
shows the uncorrected output spectrum, i.e., the spectrum of
y[n]. It can be seen that the largest aliasing component is about
—29 dB.

According to the maximum input frequency and ¢,, defined
earlier, U in (44) is chosen as w € [—0.97,0.97] and ¢ €
[—0.1,0.1]. A VDF is designed using the method in [36] with
the following specifications: Np1 = Npo = Np, = 22 and the
number of subfilters L = 4. Given the VDF so obtained, the
cost function A in (16) is 0.82, which implies that the sufficient
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Fig. 7. (a)-(d) System responses F](cm) (e?*), k=0,1...
dropped in the figures for notation simplicity.

condition is satisfied. Fig. 6(b) and (c) shows, respectively, the
compensated spectra obtained using the RI (i.e., the structure
in [21]) and the GSI after two iterations. It can be seen that the
largest spurs are reduced to —70.21 and —99.83 dB for the RI
and GSI, respectively. This suggests the superiority of the GSI
over the RI for a comparable implementation complexity.

Up to now, the VDFs used in all iterations are assumed to
be identical, which is merely a particular configuration of our
general iterative framework. In fact, it is possible to use VDFs
with lower filter order and/or fewer subfilters in the first few
iterations, so as to further reduce the overall implementation
complexity. We notice that similar observation was considered
in [21]. Here, we have extended this idea to various iterative
methods, including the GSI, in a more general framework con-
sidered in this paper. Fig. 4(d) shows the compensated spectrum
obtained using the GSI with two different VDFs, for which the
VDF parameters used in the first iteration are (N, L) = (12, 3)
and those in the second iteration are kept as (Np, L) = (22,4).
It can be seen that such configuration has similar performance
as compared with the result in Fig. 6(c) while offering lower
implementation complexity.

Using the results in (22) and (23), Fig. 7(a)—(d) shows the
equivalent system frequency responses, F,S'”H)(ej“’), which
produce the output spectra shown in Fig. 6(a)-(d), respectively.
As expected, the reduction of the largest aliasing component is

in line with the maximum attenuation due to F(m+1) (e7%).

B. Example 2: Study of the SNDR Performance

In this example, we study how the SNDR is improved as the
number of iterations increases. The reconstruction performance
is assessed using the SNDR as defined in (26). For simplicity,
we consider the same TI ADC settings as in Example 1,
except that 2[n] is obtained from a white noise sequence band-
limited in the frequency region w € [—0.97, 0.97]. Fig. 8 shows
the SNDR performances of the RI and GSI algorithms. As
expected, the SNDRs of these two algorithms improve with
the number of iterations. Also, it can be seen that the GSI
and RI converge in nearly two and four iterations, respectively.
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Fig. 8. Performances of the GSI and RI (i.e., conventional structure in

[19]) for a band-limited white noise sequence. The dotted lines represent the
estimated (Est.) SNDR lower bounds of the GSI and GI.

Note that both algorithms offer the same ultimate SNDRs
upon convergence, which are mainly restricted by the filter
approximation error, as discussed in Section V-C.

To further verify the theoretical results presented earlier, the
lower bound of the SNDR derived in (27) is also plotted as
dotted lines in Fig. 8. It can be seen that the performance of
both RI and GSI can be well predicted by the theoretical lower
bound. Therefore, it is useful to practical designers to predict
and evaluate the final SNDR performance and the minimum
number of iterations required by the iterative algorithms under
the general framework in (6).

Next, we study the effect of filter approximation error on
the SNDR performance. In VDF design problem, it is well
known that the filter approximation error is mainly determined
by subfilter length, subfilter number, and frequency and tuning
range of interest [36]. More precisely, the SNDR will improve
with the following: 1) increased filter length; 2) increased num-
ber of subfilters; 3) reduced passband width; and 4) reduced
tuning range of the VDF. While the latter two depend on the
ADC specifications at hand, we can freely choose the subfilter
length and number to achieve arbitrary SNDR. Due to page
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Fig. 9. Performance comparison (SNDR versus filter length) of the GSI and
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limitation, we only focus on the effect of subfilter length. In
particular, we consider the set of subfilter lengths given by
P =13,17,...,61. Fig. 9 shows the SNDR performance of
the RI and GSI with different numbers of iterations versus the
filter length. It can be seen that the GSI outperforms the RI
in the sense that the former generally needs fewer iterations
to achieve higher SNDR. Moreover, it is worth noting that
all the SNDR curves exhibit similar characteristics. At the
beginning, the SNDR for a given number of iterations increases
linearly because the filter approximation error decreases as the
filter length increases. In this region, if the iterative algorithm
converges, then it reaches the ultimate SNDR which mainly
depends on the filter approximation error. This fact can be
observed in the SNDR curves of the third RI and the second
GSI when the subfilter length is less than 29. When the subfilter
length is further increased, the SNDR curves eventually level
off because, in this region, the corresponding SNDR is mainly
governed by the convergence rate of the iterative methods, i.e.,
G (e’?) in (27). From the aforementioned results, it is clear
that the GSI converges much faster than the RI. In other words,
the GSI can achieve a given SNDR specification with fewer
iterations and, hence, lower implementation complexity than
the RI, particularly if the system is pipelined.

C. Example 3: Compensation of Multiple Mismatches

In this example, we study the effectiveness of the proposed
algorithm in Section VI when it is applied to multiple time-
varying systems. As an illustration, we consider the following
channel frequency response:

1 1— ef(QflTJerT)
1 +jg§20 1 — e (QT+iMQT)

= Fn 1 (G Fo2(5Q)

where F,, 1(j€2) is defined similarly as the bandwidth mismatch
in (41) and F,, 2(j) = e 9T corresponds to the timing
mismatch. We assume that the bandwidth mismatch charac-
teristic is identical to that in Example 1 for a five-channel TI
ADC, and therefore, we can directly apply the VDF designed in

—iQT oy,

Fn(]Q) =

(&

(45)
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Example 1 for the correction of this mismatch. For the second
system, we assume that the five subconverters exhibit time off-
sets —a, T, n =0, 1,2, 3,4, with respect to the ideal sampling
time ¢t = nT, where «,, = [0,0.01,—0.05, —0.01, 0.05]. Here,
we simply choose F(e/*) =1 so that the ideal frequency
response is given by

Dn’g(ej“) = Dg(ej‘”, an) = e Jwan (46)

where Dy (7% ) = e %% is the corresponding desired DT
frequency response of the VDF with spectral parameter «. In
the literature, it is sometimes referred to as variable fractional
delay digital filter (VFDDF), which finds important applica-
tion of sampling rate conversion in software radio receivers
[31] and timing mismatch correction in TI ADCs [16]-[18].
The parameters of the VDF (or VFDDF) used for the iter-
ative correction of the timing mismatch are summarized as
follows: w € [—0.97,0.97], o € [—0.05,0.05], Npy = Npo =
Np, =23,and L = 4.

Fig. 10(a) shows the uncorrected signal spectrum which is
obtained by applying both types of mismatches to the multico-
sine signal considered in Example 1. As already demonstrated
in Example 1, we first apply the GSI two times to this uncor-
rected signal, resulting in the spectrum shown in Fig. 10(b).
It can be seen that the aliasing components still exist in the
spectrum, which is caused by the timing mismatch. Then, we
employ the VFDDF designed earlier to iteratively correct the
timing mismatch. Fig. 10(c) and (d) shows the spectra after
applying the GSI one and two times, respectively. It can be
seen that the aliasing components are suppressed as the number
of iterations increases and the desired signal up to an accuracy
of nearly 100 dB is successfully recovered in Fig. 10(d) after
(K1, K3) = (2,2) iterations.

VIII. CONCLUSION

A new iterative framework for the correction of frequency
response mismatches in TI ADCs has been presented. It en-
cumbrances the conventional RI and other efficient iterative
correction algorithms such as the GSI and simplifies their de-
sign, implementation, and performance analysis. The efficient
GSI is studied in detail, and a Farrow-based VDF structure is
developed for its implementation, which requires few general-
purpose multipliers. Important advantages of the proposed
iterative structure are the following: 1) The implementation
complexity is independent of the number of channels, and only
a few iterations are required for convergence; and 2) the use
of VDFs enables the online adaptation of the possibly changing
channel mismatch errors with low complexity. Also, the conver-
gence and performance are analyzed. These results are useful
to the performance prediction, design, and evaluation of such
TI ADCs to meet different design specifications. Moreover, the
proposed iterative structure is extended to cope with systems
involving more than one type of mismatches using a cascading
approach. Simulation results further showed that the proposed
method has better performance than conventional structures
using RI.
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(a) Uncompensated output spectrum in two cascaded time-varying systems, one is for bandwidth mismatch and the other is for timing mismatch. Output

spectrum obtained using the GSI after (b) (2,0) iterations, (c) (2,1) iterations, and (d) (2,2) iterations. (K1, K2) indicates that the output signal is obtained by first
applying K1 iterations to solve the first system and then K7 iterations to solve the second system.

Finally, this paper is concluded by pointing out two possi-
ble ways of extending the proposed approach. The first one
is its possible application to online calibration of TI ADCs,
which involves the process of simultaneously estimating and
compensating for the channel mismatches [7], [8], [13], [14],
[38]. For instance, in [38], a reference signal, which is provided
by an extra low-resolution ADC, is employed to estimate the
coefficients of the time-varying compensation filter by means
of least mean square algorithm. In this paper, we consider only
the compensation part where the channel models are assumed
to be known or accurately estimated. On the other hand, it
is possible to utilize the proposed compensation structure as
a part of calibration process. We expect that the proposed
compensation structure enables efficient online calibration with
few adaptation parameters because most of its multipliers are
fixed. To do so, appropriate measure is needed to relate the
estimation error with the spectral parameters in the proposed
structure, and it is minimized for the adaptive update of the
spectral parameters.

Another possible direction is to incorporate the prior knowl-
edge of input signal in the design procedure, so as to further
improve the performance of the proposed approach. It was
shown in [42] that realistic knowledge of input signal would
lead to reduced implementation complexity in the conventional
filter bank compensation structure. For the proposed approach,
we need to include this extra knowledge in the performance
measures, such as system spectrum, SFDR, and SNDR, for the
design of VDFs.

APPENDIX A
SUFFICIENT CONDITION FOR CONVERGENCE OF THE GSI

According to [40, Th. 5.11], it can be shown that the worst
case error in (9) for the GSI satisfies

ool - 550 <l 5 0
(A

where e(™ =2 —2(™ and |e(™)| . = max, [e")[n]|.
Therefore, if A is a strictly diagonal dominant matrix, i.e.,
|h [0]] > Zno<0 |hn [nOH + Zn0>0 |hn [no]|, then we have

o< 3l 3 Bl o)
np<0 nog>0
This implies that [le(™ V| < [le™)]« < <[],
and hence, the GSI is convergent.
APPENDIX B

COMPARISON OF THE GSI AND RI

Similar to (A1), it can be shown that the worst case error of
the RI in (7) is given by

2]

<He(m)Hm<|1—|hn[O]|l+Z [halnoll+ 3 hn[non).

np<0 no>0
(A3)
Deﬁning 0n7L = Zn0<0 |hn[n0] 4 gn,R = an>0 ‘h [’17,0}
77131 = |1 — [h,[0]]] + On.1. + On. R, and 'YSSI

O,/ (|hn]0]] — Gn r) derived in (Al), we want to prove
that vS5T < ARTif A is a strictly diagonal dominant matrix,
i.e., |h,[0]] > GH,L + 05 R.

Given |h,[0]] > 0,1, + 0., R, it is easy to show that

en,L + gn,R
[7n[0]]
Also, it can be seen that the more dominant the diagonal of A

(i.e., |h[0]]), the more rapid the convergence should be. Now,
consider

GSI

Vo < Yn = (A4)

[1= P [O]] Fon [0} + (1o [O]| = 1) (O, 2.+ O, )
[ [0]] '

'Yn —Tn=
(A5)
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Using the inequality |k, [0]| > 6, 1, + 0, g again, we have

RI (|1 B hn[OH + ‘hn[OH B 1) (Gn,L + an,R)
771 — Tn > .
|hun [O]]
(A6)
Since |1 — h,[0]| + |hy[0]] — 1 > 0 for all h,[0], we finally

obtain

GSI

Y < < (A7)

This suggests that the GSI should usually converge faster than
the RI if A is a strictly diagonal dominant matrix.

APPENDIX C
DERIVATION OF THE LOWER BOUND OF THE SNDR

First of all,
R{mHD (e7)

we want to derive an expression for
= X(e7*) — X5™ ™) (39) in terms of X (el®)
for the denominator of (26) at time instant n. To investigate

the effect of practical filters, we further rewrite R\ )(eJ “) as
follows:

R () = [ X (1) = X (e)]
n [Xn(ej“’) - X,(Lm“)(ej”)} (A8)

where the term in the first square bracket represents the error
due to filter approximation and the second one represents the
error in the (m + 1)th iteration. Because of (11b) and (17),
X, (e7*) also satisfies

B () X, (e7%) = C(e7°) X, (e7%) + Yy (e7%).  (A9)

Subtracting (11a) from (A9) yields

K (€7) = X[ (1) =G () X (€)= X (e2)]

=G [ Ku(e) - XD (]
(A10)

Consequently, with (17)—(19) and (A10), (A8) can be
expressed as

R7(1m+1)(ejw) _ [Pn(ejw) + Gnm+1(ejw)Qn(ejw)} X(ejw)

(A11)
where P,(¢) = 1 D,(e) 1 (¢) and Qu(c7) =
D, (e’*)[H,,*(e?*) — 1]. Using again the bifrequency mapping
as in (22), we have

M-—1
ROMD (i) = 3 G (W) X (W) (AL2)
k=0

where V"V (e7) = (1/M) 0L
V,,(m+1)(€jw) _ Pn(ej“’)—i—

Vém+l)(ejw)W1\7}Ik and
GM 1 (ed)Q, (e7%). Substituting
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(A11) into the denominator of (26) gives
7 2
/ ’R(mﬂ)(ew)‘ dw

1 M—-1 M- ) 2
8 T eyt

Mil r . 2

_ / [Vim o e9) % (¢5) d
:0

SM/|Xe]w dwz / ‘Vm'H ejw)‘ dw
—QT

(A13)

Note that the second equality in (A13) is derived from the fact
that

/ Vi) (e wiy) - X (ej“’W]’\“/[)rdw

—Tr

]‘V;m>(ejw) ~X(ej“’)’2dw

/ ’V,Sm)(ej“’)~X(ej‘“)‘2dw

—QTm

for k=0,1,..., M — 1. Substituting (A13) into (26), we ob-
tain the desired lower bound of SNDR after (m + 1) iterations
as (27)

SN DR+

>
— M-1 2
S [TV (639 | dw
n=0
M

= . (Al4)
S [T | Pa(ed) + Gt (e59)Qn (e3%)| *dw
n=0
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