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process robustness in optical lithography
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Abstract: Optical lithography has enabled the printing of progressively
smaller circuit patterns over the years. However, as the feature size shrinks,
the lithographic process variation becomes more pronounced. Source-mask
optimization (SMO) is a current technology allowing a co-design of the
source and the mask for higher resolution imaging. In this paper, we
develop a pixelated SMO using inverse imaging, and incorporate the
statistical variations explicitly in an optimization framework. Simulation
results demonstrate its efficacy in process robustness enhancement.
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1. Introduction

Optical lithography has served the semiconductor industry for decades as the predominant mi-
crolithography technology. This is attributed to the continuous technology development for
shorter exposure wavelength and larger numerical aperture (NA) to achieve smaller minimum
printed feature size [1]. In addition, resolution enhancement techniques (RETs) are developed
and become essential for maintaining good printed image quality. Nowadays, as the optical
lithography has entered the low-k1 regime [2], printed feature dimensions are highly sensitive
to process variations. Traditional RETs are inadequate for the dual task of printing small fea-
tures and providing enough process margins, which triggers the emergence of more aggressive
techniques with new computational strategies. In particular, optimization and image processing
techniques participate in more advanced optical proximity correction (OPC) and illumination
modification approaches to enrich the lithographers’ arsenal [3].

The objective of OPC is to compensate the undesired distortions on printed images by delib-
erately introducing pre-distortions on the mask geometrical shapes. An approach under active
research is inverse lithography technology (ILT), which promises to deliver superior perfor-
mance by enlarging the search space for the mask pattern, using computational techniques such
as gradient-based mask optimization [4] and the level-set method [5, 6]. The methods can work
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Fig. 1. Illustration of an optical projection lithography system [1, 3].

on binary and phase-shifting masks (PSMs) [7, 8], and can increase the robustness of the result-
ing design [9, 10]. Meanwhile, another RET known as illumination modification collects more
diffraction orders by adjusting the illumination shapes [1], resulting in designs beyond tradi-
tional circular or annular shapes. Early work includes determining the optimal configuration
using the diffraction orders of regular contact arrays [11], and choosing important source areas
for image contrast enhancement using Hopkins partially coherent imaging equations [12].

Recently, source design and the reticle pattern optimization have been integrated and opti-
mized together. Rosenbluth et al. [13] decomposed the source by arcs, and developed a set of
constraints to compute the optimum source and mask with the maximum exposure latitude.
Fühner et al. [14] adopted a more flexible meshpoint illumination representation defined by
track/sector in their genetic optimization framework with the consideration of different pro-
cess conditions. Currently, customized diffractive optical element (DOE) realizes a pixelated
source, where the intensity and shape can be freely adjusted, therefore providing more degrees
of freedom for optimization [15]. Together with the pixelated mask, the so-called free-form
source-mask optimization (SMO) fits well into the inverse lithography framework [16, 17]. A
gradient-based SMO algorithm was shown to improve the pattern fidelity at the specified imag-
ing conditions [18], while another scheme implicitly considered dose sensitivity [19], yet the
main focus is still the pattern fidelity at the best process conditions, and their results are obtained
from two separate optimization steps: source optimization and the successive mask optimiza-
tion. In the SMO framework proposed by Peng et al. [20], process robustness is considered by
incorporating only one defocus condition rather than the dose-focus matrix.

In this paper, we design robust free-form source and mask patterns with respect to process
variations using inverse imaging. To achieve this, we develop a cost function that incorporates
not only the pattern fidelity but also the aerial image intensity distribution. We then build a
statistical SMO framework and solve it by alternating optimizations of the source and the mask.

2. Lithography imaging model

An optical lithography imaging system is depicted in Fig. 1. The reticle, or the photomask, is
illuminated by a light source through a condenser lens L1. The projection optics then forms
an image of the photomask onto the wafer. Due to diffraction and different optical aberra-
tions, however, this is necessarily a distorted image; the goal of inverse lithography is to de-
sign, through mathematical modeling and computations, the mask pattern — and sometimes the
source as well — so as to achieve a desired printed image.

Detailed analysis of the lithography imaging system model has been developed over the
years. Here, our focus is to introduce to the readers how the image on the wafer is distorted from
the mask pattern. Let the former be I(x,y) and the latter be M(x,y). It is also useful to define
the frequency domain representation of the mask; hence, we denote the mask pattern spectrum
by M̂( f ,g), where f and g are normalized frequency variables [21, p. 67]. Two other quantities
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are also important to describe the lithography system. The first is the optical transfer function
denoted by Ĥ( f ,g), where its inverse Fourier transform, called the point spread function, is
H(x,y). The second is the effective light source Ĵ( f ,g) (the Fourier transform of the mutual
intensity), which arises because lithography systems involve partially coherent imaging. With
these quantities, the intensity distribution at the wafer can be described by [21, Eq. 4.35]

Ia(x,y) =

∞∫
· · ·
∫

−∞

Ĵ( f ,g)Ĥ( f + f ′,g+g′)Ĥ†( f + f ′′,g+g′′)M̂( f ′,g′)M̂†( f ′′,g′′)

×e−i2π[( f ′− f ′′)x+(g′−g′′)y] d f dg d f ′ dg′ d f ′′ dg′′, (1)

where † denotes complex conjugate. The six-fold integration can be simplified to

Ia(x,y) =
∫ ∞

−∞

∫ ∞

−∞
Ĵ( f ,g)

∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
Ĥ( f + f ′,g+g′)M̂( f ′,g′)e−i2π( f ′x+g′y) d f ′ dg′

∣∣∣∣
2

d f dg

≈ ∑
f ,g

Ĵ( f ,g) |M(x,y)∗H(x,y; f ,g)|2 , (2)

where the approximation is needed for computation in the discrete domain.
The above accounts for the light intensity arriving at the image plane, also known as the

aerial image, but this is not what is printed on the wafer. Light reacts with the photoresist,
which either increases its development rate with exposure (positive resists) or decreases its rate
(negative resists). An image is formed at a particular location when the development is beyond
a certain threshold. Thus, I(x,y) is the binarized version of Ia(x,y). For numerical considera-
tions, however, we often avoid using a hard threshold in computing I(x,y). Instead, a smooth
transition is preferred. A frequently used model is with the sigmoid function, given by

I(x,y) = sig{Ia(x,y)}= 1

1+ e−α(Ia(x,y)−t)
, (3)

where t is the threshold and α controls the steepness of the transition. Combining Eq. (2) and
(3), the lithography imaging model is therefore

I(x,y) = sig

{
∑
f ,g

Ĵ( f ,g) |M(x,y)∗H(x,y; f ,g)|2
}
. (4)

3. Source mask optimization framework

With a fixed optical setup, we can observe from Eq. (4) that the resulting image on the wafer is
controlled by two variables: the mask pattern M(x,y), and the source, which governs the mutual
intensity function Ĵ( f ,g). In principle, to determine if a pattern can be printed at all, and if so,
what the proper light source and mask pattern should be, we should investigate all combinations
to see if we can arrive at the desired Ī(x,y). This is the rationale behind SMO.

Unfortunately, we also observe from Eq. (4) that the image is nonlinear in M(x,y) and Ĵ( f ,g).
Practically, we allow errors in the resulting printed image from our desired pattern; we are
content if they do not cause intolerable changes in the resulting circuit’s behavior. Let us denote
the desired pattern with Ī(x,y). Furthermore, assume that we are designing a binary mask, so
M(x,y) can either be zero or one at any location. We can let it take on other values if we are
interested in designing PSMs. Thus, we solve the following optimization problem

minimize D{I(x,y), Ī(x,y)}
subject to M(x,y) ∈ {0,1}

Ĵ( f ,g)≥ 0.

(5)
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Fig. 2. Relationship among intensity distributions, threshold, and the binarized image.

The operator D{a,b} measures dissimilarity between a and b. Various formulas have been
proposed for different specifications [22, 23]. Here, we define it to consist of four terms, i.e.,

D{I(x,y), Ī(x,y)}= T {I(x,y), Ī(x,y)}+ γ1RTV{Ia(x,y)}+ γ2Raerial{Ia(x,y), Ī(x,y)}
+ γ3Rcontrast{Ia(x,y), Ī(x,y)}.

(6)

The first term, T {a,b}, ensures pattern fidelity, while the rest are regularization terms con-
trolled by γ1,γ2 and γ3 respectively. We explain each of them below.

3.1. Pattern fidelity

The pattern fidelity term T {a,b} is used to count the errors, or mismatches, between a and
b, summing over all locations. By putting this as a penalty in the optimization, the printed
contour deviation from the desired one is minimized to achieve the smallest accumulated edge
placement error (EPE) over the image.

For mathematical convenience, the �1 and the square of the �2 norms are frequently used, i.e.,

(�1 norm) T {I(x,y), Ī(x,y)} = ∑
x,y

|I(x,y)− Ī(x,y)| (7)

(�2 norm) T {I(x,y), Ī(x,y)} = ∑
x,y
[I(x,y)− Ī(x,y)]2. (8)

In principle, we can use a weighted norm, where the weight is proportional to the extent that
an error is allowed at the location. For example, we want to severely penalize any location
that may result in bridging two disjoint areas, but an error in an isolated region may often be
acceptable. However, this requires further image understanding and analysis and possibly some
understanding of the underlying circuit design, and is generally difficult to accomplish. For the
experiments described in this manuscript, we use the �2 norm.

3.2. Smoothing

While the pattern fidelity criterion above is concerned with the binarized image printed on the
wafer only, we need to take into account the aerial image, Ia(x,y), in the optimization process
as well. One important reason is due to process variations. Consider Fig. 2, which plots two
possible intensity distributions as a function of the spatial locations. With the same threshold
(t1), the resulting binarized images are identical. However, suppose there exists variations in
the exposure, and consequently the threshold is now at t2. This causes little change in the
printed image for (a), where the transition is sharp, but a significant deviation for (b), which the
transition is gradual. Thus, it is desirable to have sharp transitions to make the design robust.
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Fig. 3. Demonstration of TV regularization. The red and green curves represent aerial image
intensity and target design, respectively. The dotted line marks the threshold t.

To quantify this, we argue that Ia(x,y) should be piecewise smooth with sharp edges at the
transition regions, and therefore the mathematical operation called total variation (TV) is the
appropriate metric to use. It is now a common tool in image reconstruction and restoration, and
is known to suppress the small-scale noise while preserving the large-scale features [24, 25].
The TV norm is given by

‖Ia(x,y)‖TV = ∑
x,y

|∇Ia(x,y)|, (9)

where ∇Ia(x,y) denotes the gradient of Ia(x,y). In numerical implementations, this gradient is
approximated by finite difference. Let

∇xIa(x,y) =
Ia(x+1,y)− Ia(x−1,y)

2
and ∇yIa(x,y) =

Ia(x,y+1)− Ia(x,y−1)
2

, (10)

the gradient ∇Ia(x,y) is then given by

∇Ia(x,y)≈
√

[∇xIa(x,y)]
2 +[∇yIa(x,y)]

2. (11)

Fig. 3 shows a one-dimensional example, with real data, to illustrate the effect of TV regular-
ization. This pattern (in green) includes three tightly-packed areas and a relatively isolated one.
Without TV regularization, the aerial image intensity (in red) plotted in (a) has many locations
with substantial signals where there should be no pattern; consequently, the error margin with
the threshold is small. If the threshold reduces somewhat, we would observe spurious areas in
the resulting binarized image. We can compare this with (b), where, with TV regularization,
such “noise” is significantly reduced.

Nevertheless, such TV regularization also comes with some drawbacks. In this example, the
signal content of the four features is also reduced, and thus also compromising the robustness
of the resulting design, because if the threshold is increased, some features may be lost. In
other words, the contrast of the aerial image is reduced. To ameliorate this, we design a weight
matrix W (x,y) that mediates the TV function. It takes small values around the transition areas,
and large values elsewhere. Mathematically, the transition areas are given by our design pattern,
Ī(x,y). We extract its edge by morphology, where the result, E(x,y), is given by

E(x,y) = [Ī(x,y)⊕S(x,y)]− [Ī(x,y)	S(x,y)]. (12)

Here, ⊕ and 	 denote dilation and erosion, respectively, and S(x,y) is a 3×3 structure element
with all one’s. Morphological dilation expands the shape of the input binary image (Ī(x,y)
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Fig. 4. The weight function W (x,y) for TV regularization and its effect. The blue curve in
(a) plots the weight function, and the red curve in (b) plots the aerial image intensity by
using this weighted TV regularization. The green curve denotes the target design in both
figures.

in this case), while erosion functions in the opposite way. These two operations are common
approaches for binary image boundary extraction. Detailed mathematical description of them
can be found in [26]. The weight matrix W (x,y) is then given by

W (x,y) = [1−E(x,y)]∗G(x,y), (13)

where G(x,y) is a blurring function. Consequently, the first regularization term in Eq. (6) is
then given by

RTV{Ia(x,y)}= ∑
x,y

W (x,y) · ∣∣∇Ia(x,y)
∣∣. (14)

In our experiments we let G(x,y) to be a 5× 5 Gaussian kernel. This allows a smooth tran-
sition from penalty to no penalty, and vice versa. Referring to the earlier example, the weight
function is given in Fig. 4(a). In (b) the resulting aerial image intensity curve by applying this
weighted TV regularization is shown. The background intensity is smoothed similarly as in
Fig. 3(b), while the aerial image contrast at transitions is better preserved.

3.3. Aerial image and contrast

With the above regularization, how are we going to control the area near the transition areas?
In addition, what should be the control? The answer to the first question is straightforward, be-
cause the opposite of the above weight function, i.e., 1−W (x,y), allows us to put the emphasis
on the transition areas. The answer to the second question comes in two expressions.

First, our goal is to push intensity values away from the threshold t as far as possible. At
places where the design pattern Ī(x,y) = 0, we would like Ia(x,y)≈ 0; at places where Ī(x,y) =
1, we would like Ia(x,y)≈ 2t, so the threshold would be mid-way. This is depicted in Fig. 5. We
set the threshold mid-way such that the intensity on each side of the nominal threshold could
be equally regularized to reduce the contour sensitivity to both higher and lower dose changes.

We can consolidate the two requirements in enforcing Ia(x,y) ≈ 2t Ī(x,y). Thus, the second
regularization term in Eq. (6), which can also be viewed as a penalty term, is given by

Raerial{Ia(x,y), Ī(x,y)}= ∑
x,y

[
1−W (x,y)

] · [Ia(x,y)−2t Ī(x,y)
]2
. (15)

Second, we would like the intensity slope to be as sharp as possible, since it is closely related
to exposure latitude [1, p. 61]. The first derivative, which measures the rate of intensity change,
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Fig. 5. Objective of aerial image intensity regularization. The shaded area denotes the vicin-
ity of the target edge.

is the proper quantity to define the slope. A larger magnitude of the first derivative indicates
a sharper image slope, or higher image contrast, and vice versa. The ideal target binary image
has a theoretically infinite first derivative at its edge. To increase the exposure latitude, we force
∇xIa(x,y) and ∇yIa(x,y) to be close to ∇xĪ(x,y) and ∇yĪ(x,y), respectively. This is because
most circuit designs use manhattan-shape features, which contain vertical and horizontal edges
only. Thus the third regularization term Rcontrast in Eq. (6) is

Rcontrast{Ia(x,y), Ī(x,y)}=
∑
x,y

[
1−W (x,y)

] ·{
∣∣∣∇x
[
Ia(x,y)− Ī(x,y)

]∣∣∣+
∣∣∣∇y
[
Ia(x,y)− Ī(x,y)

]∣∣∣
}
. (16)

4. Statistical model for process robustness

Our discussion thus far is based on the assumption of an ideal imaging system without any
process error [27]. We extend this optimization framework to a robust model by explicitly
incorporating process variations, namely, dose variation and focus variation. As a reasonable
assumption, we consider the process variations as independent, normally distributed random
variables [28]. Specifically, dose variation can be accounted for by varying the threshold t;
focus variation, parameterized by β , is modeled by adding a phase term to the optical transfer
function as

˜̂H( f ,g;β ) = Ĥ( f ,g) · eiπβ NA2
λ ( f 2+g2), (17)

where NA is the numerical aperture, λ is the incident light wavelength, and βNA2/λ gives a
normalized defocus quantity. A detailed mathematical description of the defocus model can be
found in Ref. [10].

To compute solutions that are robust to process variations, the average wafer performance is
optimized by minimizing the expectation of D with respect to dose and focus fluctuations. The
problem to be solved is thus described by a statistical model as

minimize E
{
D{I(x,y), Ī(x,y)}}

subject to M(x,y) ∈ {0,1}
Ĵ( f ,g)≥ 0,

(18)

where E{·} takes the expectation operation over t and β . However the expectation integral is
difficult to compute due to the nonlinearity of D . To tackle this problem, we discretize t to take
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Fig. 6. Optimization procedure of SMO.

on a set of values tm with probability p(tm), and discretize β to take on a set of values βn with
probabilities p(βn). The function E

{
D{I(x,y), Ī(x,y)}} is computed as

E
{
D{I(x,y), Ī(x,y)}}≈ ∑

m,n
p(tm)p(βn)

{
D{I(x,y; tm,βn), Ī(x,y)}

}
. (19)

5. Optimization procedure

Given the cost function in Eq. (18), we minimize it by iteratively updating the source function
and the mask pattern. The optimization procedure consists of multiple functional blocks as
shown in the flow diagram in Fig. 6 with labels A to E.

In block A, we initialize the source and the mask. For the former we choose a traditional
annular illumination; for the latter, the target design is the natural choice. Blocks B to D then
form the core of the optimization process. First, the mask is updated by fixing the source (block
B); then, the source is updated by fixing the mask (block C). This generates a new source-mask
pair. Block D then checks if a pre-defined stopping criterion is met. (The simplest criterion can
be a fixed number of steps, which is what we adopt for the simulations in the next section,
but we can also use the value of the objective function D as an indication of when to stop
the iterations.) Blocks B to D are run again if it is not. Otherwise, we perform a final mask
optimization to go along with the source illumination.

Below we explain in details how the mask and source updates are performed. We compute
the updates using the nonlinear Hestenes-Stiefel conjugate gradient method [29, p. 123]; as
such, each update consists of n iterative steps. We use a superscript with brackets to denote the
current step. Also, we omit the designation (x,y) for brevity when no confusion arises.

5.1. Mask update

With the approximate objective function in Eq. (19), we first compute the gradient of

D{I(x,y; tm,βn), Ī(x,y)}, denoted as ∇MD
(0)
m,n. The derivation is found in the Appendix. We

then sum it for all values of m and n to obtain the gradient of E
{
D{I(x,y), Ī(x,y)}}, denoted

by ∇ME(0), as

∇ME(0) = ∑
m,n

p(tm)p(βn)∇MD
(0)
m,n. (20)

We call this the initial mask update, and assign q(0)M = ∇ME(0).
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The rest of the iterations is computed as follows. Assume we have completed the kth step.

The (k+1)th mask update q(k+1)
M is calculated by the following steps:

1. Compute the current mask using the last update q(k)M by

M(k+1) = M(k) + εq(k)M , (21)

where ε is a small constant known as the step size, and is determined empirically in this
work.

2. Calculate the gradient of D{I(x,y; tm,βn), Ī(x,y)} with respect to M(k+1), which we de-

note as ∇MD
(k+1)
m,n , in a way similar to the initial step. Then, as in Eq. (20), we compute

∇ME(k+1) = ∑
m,n

p(tm)p(βn)∇MD
(k+1)
m,n . (22)

3. Compute an update parameter θ (k+1)
M , given by

θ (k+1)
M =

∑
x,y

[
∇ME(k+1) ·

(
∇ME(k+1)−∇ME(k)

)]

∑
x,y

[
q(k)M · (∇ME(k+1)−∇ME(k)

)] , (23)

which correlates the gradient and the previous mask update to the current gradient.

4. Compute q(k+1)
M by

q(k+1)
M =−∇ME(k+1) +θ (k+1)

M q(k)M . (24)

5.2. Source update

The source can be updated with a similar procedure. Note that the effective source Ĵ( f ,g) is a
normalized quantity by its total energy [1, p. 45], i.e.,

Ĵ( f ,g) =
Ĵ′( f ,g)

∑
f ,g

Ĵ′( f ,g)
. (25)

In the following, we use Ĵ′( f ,g) in the updates.
We first compute the gradient of D{I(x,y; tm,βn), Ī(x,y)} with respect to the source, denoted

as ∇Ĵ′D
(0)
m,n. The derivation is again detailed in the Appendix. The initial source update is then

q(0)
Ĵ′ = ∇Ĵ′E

(0) = ∑
m,n

p(tm)p(βn)∇Ĵ′D
(0)
m,n. (26)

The subsequent iterations take the following steps:

1. Compute the current source using the last update q(k)
Ĵ′ by

Ĵ′(k+1)
= Ĵ′(k) +ϕq(k)

Ĵ′ , (27)

where ϕ is again a small constant representing the step size.
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(a) pattern #1 (b) pattern #1 magnified (c) pattern #2 (d) pattern #2 magnified

Fig. 7. Test patterns and critical locations for process window calculation. Color lines mark
critical locations of the two test patterns.

2. Calculate the gradient of D{I(x,y; tm,βn), Ī(x,y)} with respect to Ĵ′(k+1)
, i.e., ∇Ĵ′D

(k+1)
m,n ,

and
∇Ĵ′E

(k+1) = ∑
m,n

p(tm)p(βn)∇Ĵ′D
(k+1)
m,n . (28)

3. Compute an update parameter θ (k+1)

Ĵ′ , given by

θ (k+1)

Ĵ′ =

∑
f ,g

[
∇Ĵ′E

(k+1) ·
(

∇Ĵ′E
(k+1)−∇Ĵ′E

(k)
)]

∑
f ,g

[
q(k)

Ĵ′ · (∇Ĵ′E
(k+1)−∇Ĵ′E

(k)
)] . (29)

4. Compute q(k+1)

Ĵ′ by

q(k+1)

Ĵ′ =−∇Ĵ′E
(k+1) +θ (k+1)

Ĵ′ q(k)
Ĵ′ . (30)

During the source update, symmetry is important to avoid pattern placement error [15]. Usually
a four-fold symmetry is imposed. To meet this specification, we force the gradient with respect
to the source to be four-fold symmetric by averaging its four quarters’ components [30].

6. Results

Here, we demonstrate the robust SMO algorithm in two distinct test patterns. First is a sparse
pattern consisting of two rectangle shapes, as shown in Fig. 7(a). It is represented by a 151×151
matrix with a resolution of 10nm× 10nm per pixel. Second is a dense poly pattern shown in
Fig. 7(c), represented by a 473× 473 matrix with a finer grid of 4nm× 4nm per pixel. The
imaging system parameters are set to be λ = 193nm and NA = 1.35.

We compare the performance of SMO with that of mask optimization under a reference an-
nular source. Certainly, with greater flexibility, the former should deliver better results than the
latter; our objective here is to quantify how it is better, particular when it pertains to robust-
ness. To do so, for each pattern we measure the feature size at a few critical locations, and then
compute the process window according to the measured data. These locations include the main
properties (width and length) of a feature, line-ends that are difficult to print, and the minimum
feature size such as the space between two rectangles. They are marked by color lines (green if
it is inside a feature, pink if outside) in Fig. 7(b) and (d) for patterns #1 and #2, respectively.

The size of the process window can be quantitatively measured by two parameters: exposure
latitude (EL) and depth of focus (DOF). The former is the range of dose variation (% with
respect to the nominal dose) where the feature size is within its tolerance, typically ±10% of
its nominal size, at a certain defocus. The latter measures the largest acceptable defocus range
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(a) Reference source (b) Optimized mask
with source (a)

(c) Magnified output at
best focus

(d) Magnified output at
defocus 85nm

(e) Optimized source (f) Optimized mask
with source (e)

(g) Magnified output at
best focus

(h) Magnified output at
defocus 85nm

Fig. 8. Simulation results of test pattern #1.

(nm) under a fixed dose condition. Detailed descriptions of these quantities can be found in [1,
p. 61–69]. The common method of measuring the process window is to examine how large EL
or DOF can be when the other quantity is fixed. In the following we compare the DOFs by
fixing the EL [31, 32]. Note that a larger DOF indicates a more robust performance.

6.1. A sparse pattern

In pattern #1, the two features are identical rectangles with height 110nm and width 60nm,
separated by a 50nm space, which is the critical feature size for this pattern. We first assume
that we have an annular source with its inner annulus σinner = 0.7 and outer annulus σouter = 0.9,
as shown in Fig. 8(a). Note that we have applied a Gaussian blur on the annulus to mimic the
reality, as a result of which the source does not take the same intensity inside the annulus.

We compute the corresponding optimized mask, together with its simulated output at best
focus and at a defocus of 85nm, given in (b) to (d). In the second row, using the robust SMO
algorithm presented in this paper, we show the resulting source and mask patterns in (e) and (f).
The outputs at best focus and defocus are given in (g) and (h). In terms of pattern error, if we
compare the results of mask optimization versus SMO, they give effectively identical output
at best focus, but the latter delivers a pattern closer to the design that the former when there
is defocus. As for the critical dimension (the 50nm space in between), the former results in a
20nm error at the center, while the latter keeps the nominal size. In other words, SMO gives a
more robust design.

The optimized source has a strong component at the horizontal dipole location and four weak
poles in the vertical direction. Since the small features in the target design are mainly along the
horizontal direction, such a source configuration is more suitable than the circular reference
source. We also calculate some numerical results. With a 10% EL, mask optimization with the
reference source gains 150nm DOF, while SMO enlarges this number to 170nm for this pattern.

6.2. A dense pattern

We show the results of pattern #2 in Fig. 9 in a similar fashion, with a critical dimension of
60nm. The optimized source is given in (e), which is very different from that of the sparse
pattern in the previous section. This source pattern is unlike any conventional illumination.
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(a) Reference source (b) Optimized mask
with source (a)

(c) Magnified output at
best focus

(d) Magnified output at
defocus 60nm

(e) Optimized source (f) Optimized mask
with source (e)

(g) Magnified output at
best focus

(h) Magnified output at
defocus 60nm

Fig. 9. Simulation results of test pattern #2.

Comparing the two wafer layouts printed at the nominal condition shown in Fig. 9 (c) and
(g), we can observe that the poly line-ends are better printed in (g). When there is a 60nm
defocus, the wafer image in (h) still keeps the nominal feature width in general, though some
local errors exist. But in (d), the focal change shrinks almost all polygons, resulting in a 8nm
linewidth error. Thus SMO delivers more robust wafer images than mask optimization only.
Numerically, with a 5% EL, SMO increases the DOF from 78nm to 128nm.

7. Conclusion

In this paper, we propose a source-mask optimization method for process robustness enhance-
ment. For this purpose, we introduce a cost function including not only the pattern fidelity term
but also regularization terms to adjust the aerial image intensity distribution and its contrast.
A statistical model is built by incorporating process variations explicitly into the optimization
framework as random variables. Simulation results of sparse and dense patterns show conspic-
uous process window enlargement.

A. Appendix: Computing the gradients

Given the cost function D{I(x,y; tm,βn), Ī(x,y)}, we show here how to calculate its gradients
with respect to any given mask pattern M and illumination source Ĵ′. With a fixed tm and βn, we
denote them as ∇MD and ∇Ĵ′D respectively. As with Section 5, we omit the designation (x,y)
for brevity.

From Eq. (6), we have

∇MD =
∂T

∂M
+ γ1

∂RTV

∂M
+ γ2

∂Raerial

∂M
+ γ3

∂Rcontrast

∂M
(31)

∇Ĵ′D =
∂T

∂ Ĵ′
+ γ1

∂RTV

∂ Ĵ′
+ γ2

∂Raerial

∂ Ĵ′
+ γ3

∂Rcontrast

∂ Ĵ′
. (32)

In the following we will present the analytical form of each term in Eq. (31) and (32). The
derivation will be omitted when it is straightforward.
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A.1. Computing ∇MD

First we calculate the gradient of T with respect to the mask M. In Eq. (2), H(x,y; f ,g) is
replaced by the inverse Fourier transform of Eq. (17). For brevity we denote it as H̃( f ,g), and
use H̃ ′( f ,g) to represent H̃(−x,−y; f ,g,β ). Similar to calculating the gradient under coherent
imaging system in [9], ∂T /∂M is computed by

∂T

∂M
=

∂ ∑x,y(I − Ī)2

∂M

= ∑
f ,g

Ĵ( f ,g) ·Re
{[

2α(I − Ī) · I · (1− I) · (M ∗ H̃( f ,g))†]∗ H̃ ′( f ,g)
}
. (33)

Next we compute the gradient of RTV with respect to M. As in Eq. (10), the first derivatives are
approximated by finite differences, and performed by matrix multiplication. Given an image
U and a shifting matrix D, the first derivative ∇xU is calculated by column operation UD, and
∇yU by row operation DU . So the second term ∂RTV/∂M is given by

∂RTV

∂M
=

∂ ∑x,y W ·
√
(DIa)2 +(IaD)2

∂M

= ∑
f ,g

Ĵ( f ,g) ·Re
{[(

DT
(

W · [(DIa)
2 +(IaD)2]−

1
2 · (DIa)

)

+
(

W · [(DIa)
2 +(IaD)2]−

1
2 · (IaD)

)
DT
)
· (M ∗ H̃( f ,g))†

]
∗ H̃ ′( f ,g)

}
. (34)

We compute the third term ∂Raerial/∂M as

∂Raerial

∂M
=

∂ ∑x,y(1−W ) · (Ia −2t Ī)2

∂M
= ∑

f ,g

Ĵ( f ,g) ·Re
{[

2(1−W ) · (Ia −2t Ī) · (M ∗ H̃( f ,g))†]∗ H̃ ′( f ,g)
}
. (35)

The fourth term ∂Rcontrast/∂M is calculated by

∂Rcontrast

∂M
=

∂ ∑x,y(1−W ) ·
[∣∣D(Ia − Ī)

∣∣+ ∣∣(Ia − Ī)D
∣∣]

∂M

= ∑
f ,g

Ĵ( f ,g) ·Re

⎧⎨
⎩
⎡
⎣
⎛
⎝DT

⎛
⎝(1−W ) · D(Ia − Ī)√

[D(Ia − Ī)]2

⎞
⎠

+

⎛
⎝(1−W ) · (Ia − Ī)D√

[(Ia − Ī)D]
2

⎞
⎠DT

⎞
⎠ · (M ∗ H̃( f ,g))†

⎤
⎦∗ H̃ ′( f ,g)

⎫⎬
⎭ . (36)

A.2. Computing ∇Ĵ′D

Given Eq. (32), we first compute the gradient of T with respect to an arbitrary source point
Ĵ′( f ′,g′) as

∂T

∂ Ĵ′( f ′,g′)
=

∂∑x,y [I(x,y)− Ī(x,y)]2

∂ Ĵ′( f ′,g′)

= ∑
x,y

2α(I − Ī) · I · (1− I) ·
∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

∑ f ,g Ĵ′( f ,g)
. (37)
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The second term ∂RTV/∂ Ĵ′( f ′,g′) in Eq. (32) is given by

∂RTV

∂ Ĵ′( f ′,g′)
=

∂ ∑x,y W ·
√
(DIa)2 +(IaD)2

∂ Ĵ′( f ′,g′)

= ∑
x,y

W · [(DIa)
2 +(IaD)2]−

1
2 ·
⎡
⎣(DIa) ·

D
[∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

]

∑ f ,g Ĵ′( f ,g)

+(IaD) ·
[∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

]
D

∑ f ,g Ĵ′( f ,g)

⎤
⎦ . (38)

We compute the third term ∂Raerial/∂ Ĵ′( f ′,g′) as

∂Raerial

∂ Ĵ′( f ′,g′)
=

∂ ∑x,y(1−W ) · (Ia −2t Ī)2

∂ Ĵ′( f ′,g′)

= ∑
x,y

2(1−W ) · (Ia −2t Ī) ·
∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

∑ f ,g Ĵ′( f ,g)
. (39)

The fourth term ∂Rcontrast/∂ Ĵ′( f ′,g′) is calculated by

∂Rcontrast

∂ Ĵ′( f ′,g′)
=

∂ ∑x,y(1−W ) ·
[∣∣D(Ia − Ī)

∣∣+ ∣∣(Ia − Ī)D
∣∣]

∂ Ĵ′( f ′,g′)

= ∑
x,y
(1−W ) ·

⎡
⎣ D(Ia − Ī)√

[D(Ia − Ī)]2
·

D
[∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

]

∑ f ,g Ĵ′( f ,g)

+
(Ia − Ī)D√
[(Ia − Ī)D]

2
·
[∣∣M ∗ H̃( f ′,g′)

∣∣2 − Ia

]
D

∑ f ,g Ĵ′( f ,g)

⎤
⎦ . (40)
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