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Robust Beamforming With Magnitude Response
Constraints Using Iterative Second-Order Cone

Programming

B. Liao, K. M. Tsui, and S. C. Chan

Abstract—The problem of robust beamforming for antenna arrays with
arbitrary geometry and magnitude response constraints is one of consider-
able importance. Due to the presence of the non-convex magnitude response
constraints, conventional convex optimization techniques cannot be applied
directly.Anewapproachbasedoniteratively linearizingthenon-convexcon-
straints is then proposed to reformulate the non-convex problem to a series
of convex subproblems, each of which can be optimally solved using second-
order cone programming (SOCP). Moreover, in order to obtain a more ro-
bust beamformer against array imperfections, the proposed method is fur-
ther extended by optimizing its worst-case performance using again SOCP.
Different from some conventional methods which are restricted to linear ar-
rays, the proposed method is applicable to arbitrary array geometries since
theweightvector,ratherthanitsautocorrelationsequence, isusedasthevari-
able. Simulation results show that the performance of the proposed method
is comparable to the optimal solution previously proposed for uniform linear
arrays, and it also gives satisfactory results under different array specifica-
tions and geometries tested.

Index Terms—Adaptive beamforming, linear and arbitrary arrays, mag-
nitude response, second-order cone programming (SOCP), worst-case op-
timization.

I. INTRODUCTION

Sensor array processing using antenna arrays have been successfully
applied to many engineering fields including wireless communications,
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radar, radio astronomy, etc. In particular, the theoretical and applied as-
pects of beamforming have received great research interests during the
last decades [1]. One of the most popular beamformers is the minimum
variance distortionless response (MVDR) beamformer, which is devel-
oped based on an ideal antenna array with exactly known array mani-
fold. However, antenna arrays in real systems may suffer from various
types of uncertainties or mismatches, such as look direction mismatch,
imperfectly known sensor positions and orientations, and the mismatch
between the estimated array covariance matrix and theoretical one. It
is known that the performance of the MVDR beamformer may consid-
erably degrade due to the existence of these imperfections. Therefore,
much effort has been spent on improving the robustness of the MVDR
beamformer with appropriate additional linear or quadratic constraints
[1]–[9].

However, most of the above mentioned robust methods lack the flex-
ibility in controlling the beamwidth and response ripple in the look di-
rection. As a result, they may not offer sufficient robustness against
large look direction errors [10]. Recently, a number of advanced ro-
bust beamforming methods have been proposed to address this issue
by imposing prescribed magnitude response constraints over a given
beamwidth in the look direction [11], [12], where the magnitude con-
straints are non-convex. In particular, the approach in [12] simplified
the problem by expressing the beamformer weight vector in terms of
its autocorrelation sequence. Hence, similar to filter design method in
[13], the autocorrelation sequence can be solved optimally using linear
programming, and the beamformer weight vector can be determined
using an additional step of spectral factorization. However, this method
is derived based on the assumption that the array covariance matrix is a
Hermitian Toeplitz matrix. Hence, its performance may degrade when
the assumption is violated due to array imperfections. Also, it is found
that this method may further be affected by the numerical error of the
spectral factorization employed. More importantly, it is restricted to
linear arrays with inter-element spacing being integer multiples of a
base distance, because the conventional spectral factorization is only
well developed for one-dimensional Laurent polynomials [13]. As a
result, it may not be applicable directly to other array geometries.

In this communication, we propose a new method for addressing
the robust beamforming problem with magnitude response constraints
using iterative SOCP. The basic idea of the proposed approach is to
linearize the non-convex magnitude squared response constraints in a
neighborhood of the complex array weights in each iteration. For this
linearization, it is shown that the problem of finding the optimal up-
dates around the previous iterates is a convex SOCP problem that can
be efficiently solved. It should be noted that, different from the outer
product matrix used in [11] and autocorrelation sequence used in [12],
the beamformer weight vector can be directly obtained in the proposed
approach, and hence the extra spectral factorization is not required.
Thus, the proposed approach is generally applicable to arrays with arbi-
trary geometries. Motivated by the conventional robust adaptive beam-
formers [14], we further extend the proposed approach to deal with
the optimization of worst-case performance in order to obtain a more
robust beamformer against possible array imperfections. This suggests
that the proposed approach offers a general framework for the design of
beamformers of arbitrary array geometries in satisfying different com-
monly used robustness requirements.

II. ROBUST BEAMFORMER DESIGN

A. MVDR Beamformer

Consider an arbitrary antenna array with� sensors, it is well known
that the conventional MVDR beamformer is chosen by minimizing the

0018-926X/$26.00 © 2011 IEEE
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output power subject to a constraint of unity array response at the di-
rection of arrival (DOA) of the signal of interest (SOI). That is
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�
������� ��� � 	 (1)

where��� is the��	 complex array beamformer weight vector and the
superscript	 denotes the Hermitian transpose. ������� ��� is the��	
steering vector corresponding to the DOA of the SOI, i.e.,���� ���.����
is the��� array covariance matrix, which can be estimated using

received samples �����	�� 
 
 
 � ����
�� as ����� � 
��

�

���
�������������.

The constraint ����������� ��� � 	 prevents the gain in the DOA of
SOI from being reduced, and the solution of (1) can be easily deter-
mined using Lagrange multiplier method as:
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However, it is known that the performance of the MVDR beamformer
in (2) is sensitive to the mismatch between the nominal and true steering
vectors due to the uncertainty in the DOA of the SOI as well as other
array imperfections [1]–[12].

B. Robust Beamforming Using Iterative SOCP (RB-ISOCP)

A possible way to improve the robustness of the MVDR beamformer
is to impose additional linear equality constraints. However, this ap-
proach may lead to a decrease in degrees of freedom in interference re-
jection. Recently, much effort has been made to overcome this problem
[11], [12]. More precisely, instead of equality constraints, inequality
constraints are used to control the array response in the region of in-
terest (ROI), where the SOI comes with a high probability. To maintain
a fairly stable gain in the ROI, the following inequality constraints on
the magnitude response are imposed [12]:

��� �� � ����� ��� � ���� ��� ��� �� � � (3)

where ���� �� � ���������� �� denotes the array response, ��� �� and
���� �� are respectively the prescribed lower and upper bounds of the
magnitude response, and � denotes the ROI. Consequently, the robust
beamforming with the magnitude constraints in (3) can be written as:
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It can be seen that (4) is not a convex optimization problem due to the
presence of the non-convex constraint ��� �� � ����������� ���. As a
result, conventional convex programming techniques are not directly
applicable. Recently, a number of studies have been devoted to solving
this problem [11], [12]. However, these approaches are only suitable for
some specific antenna arrays, such as uniform linear arrays (ULAs). We
now propose to solve the non-convex optimization problem (4) with
an iterative SOCP technique, which has been successfully applied to
power pattern synthesis [15]. An important advantage of the proposed
method is that it can be applied to arbitrary array geometries.

To start with, we first rewrite the problem in (4) as (e.g. [7])

���





��������
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���� ��� ��� �� � �
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���� ��� ��� �� � � (5)

where 	����� � ���������� � �����������, ��� � ������� �� ������� ��
�

,
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, ���� � ������ ��������� ��, and ��� is the

Cholesky factor of ��� �
�������� 	��������

�������� ��������
� ������� .

In what follows, we shall describe the proposed algorithm for solving
the non-convex problem in (5). Suppose that our algorithm starts with
a reasonably feasible initial guess ���� and arrives at a point ��� after �
iterations. At a sufficiently small neighborhood of ��� , the magnitude
squared response of the array, 	�����, which is smooth, can be approx-
imated by the following linear approximation:

	���� � ���� 
 	����� � ���
� �������� (6)

where �������� is the gradient of 	����� with respect to ��� and ��� is the linear
update vector to be determined to satisfy (3) under the approximation
in (6). As ��� � ���� , we have �������� � �������


. Once ��� is available, the

new solution can be updated as ����� � �������. This process is repeated
until the relative change of two successive solutions is sufficiently small
or the maximum number of iterations is reached. To determine ���, we
substitute ��� � ��� � ��� into (5) and obtain
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where an additional quadratic constraint ����� � ������ is imposed to
ensure that the linear approximation in (6) is sufficiently accurate. Ob-
viously, we can see that the optimization problem in (7) is convex, and
it can be solved using SOCP by discretizing the ROI as in [12] and
[15]. Hence, the new iteration can be updated using the optimal ��� as
����� � ��� � ���. For the sake of presentation, the proposed method
described above is referred to as robust beamforming using iterative
SOCP (RB-ISOCP). With appropriate choice of initial guess to be pre-
sented in Section II-D, the proposed algorithm converges quickly to a
satisfactory solution as we shall elaborate further by the simulation re-
sults in Section III.

C. RB-ISOCP via Worst-Case Performance Optimization
(RB-ISOCP-WC)

It is worth noting that the robust beamformer derived in the previous
sub-section is based on the assumption that the covariance matrix ����
is known exactly or well-estimated. However, certain mismatches be-
tween the nominal covariance matrix ����� and the actual one���� always
exist in practice due to various kinds of array imperfections as men-
tioned in Section I. To address this uncertainty in the true covariance
matrix, the following mismatch model is adopted in this communica-
tion:

����� � ���� �� (8)

where � is an unknown Hermitian error matrix of ����, and its Frobe-
nius norm is bounded by a certain known constant � � � as ��� � �.
Using a similar idea as in the conventional method [14], the worst-
case performance of the robust beamformer in (4) can be optimized by
solving the following problem
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which is again a non-convex problem. Following the descriptions in
[14], we first solve the following problem

���
�

��������� ������ ��	� ��� � � (10)

with respect to �. It can be shown that the solution of (10) is given
by � 
 ���������������. Substituting this solution back to (10) yields
the maximum value ��������� � ��������, where ��� is an � �� identity
matrix. Hence, the problem in (9) can be rewritten as
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 ��
 �	
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It can be seen that the problems in (4) and (11) are identical except for
the covariance matrices in the respective objective function. Therefore,
the iterative SOCP algorithm in the previous sub-section can be simi-
larly employed to solve (11). More precisely, at the �th iteration, the
problem in (11) can be approximated as the following convex problem

���
�

��������� � ��������

��	� ������� � ���� ��������� � ��	
 ��
 �	
 �� � 

������� � ���� ��������� � ���	
 ��
 �	
 �� � 
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where ���� is obtained by the Cholesky factorization of the regularized
array covariance matrix ���� � ���� as

���� 

������� � ����� �������� � �����

������� � ����� ������� � �����

 ����

� ����� (13)

Consequently, the problem in (12) can be solved using SOCP by dis-
cretizing the ROI.

D. Choice of the Initial Guess ����

As described earlier, the proposed robust beamformers are ob-
tained through an iterative procedure. Hence, it is important to
choose a reasonably good initial guess ���� for the problem in (4)
or ���� 
 ��������

� �
 ������
�
� ��

�
for the problem in (7) to obtain a

satisfactory solution. Following the recommendations in [15], the
non-convex constraint in (3) is first rewritten as

��������	
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where ��	
 �� 
 ��	
 ��� ��	
 ����� and � �	
 �� 
 ��	
 �� �
��	
 �����. Then, it is approximated as the following convex con-
straint:
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Hence, the initial guess can be obtained by solving the following SOCP
problem
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for the problem in (7), and
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 �� � ��	
 ��
 �	
 �� �  (17)

for the worst-case optimization problem in (12). It should be noted that
there may be other approaches to find such feasible initial guess. Never-
theless, given the initial guess designed above, the proposed algorithm
converges quite quickly to a satisfactory result. For instance in Example
1, the initial guess converges to a nearly optimal solution in only five
iterations for a ULA with a beamwidth of 8� and a ripple of 0.4 dB.

E. Convergence Behavior and Complexity

It should be noted that the algorithm presented above converges to
a local solution due to the linear approximation. Fortunately, as illus-
trated subsequently in a representative example for the design of robust
beamformers in ULAs (Example 1 in Section III-A), the proposed al-
gorithm is capable of finding solutions that are very close to the optimal
ones obtained using the method in [12]. In fact, when applying the pro-
posed algorithm to this problem, we did not fail in finding a nearly
optimal solution for every specification we have tried. The good con-
vergence performance of the proposed algorithm is largely attributed
to the global convergence of individual subproblem, as suggested in
[15]. On the other hand, the proposed algorithm might also be viewed
as a SOCP-based trust region method with simplified update steps [16].
Thanks to the efficient interior-point method, the step size and step di-
rection characterized by the norm bound constraint in each convex sub-
problem can be optimally solved. Through extensive computer simula-
tions, it is also interesting to note that the norm of ��� tends to converge
to zero as the iteration increases regardless of the value of ������. There-
fore, the choice of ������ becomes less critical. This allows us to set a
larger norm bound initially to speed up the convergence and hence sig-
nificantly reduce the computational complexity.

Similar to the conventional methods in [8], [12], the total complexity
of the proposed algorithm mainly depends on the complexity of solving
each subproblem using convex optimization, which is�����������
�������, where � is the number of sampled points in the ROI [8]. With
the dramatic increase in computing power and advanced coding tech-
niques, it is suggested in [17] that nowadays convex optimization can
almost be carried out in real-time for a modest-size problem. Never-
theless, taking the number of iterations into account, the proposed al-
gorithm should in general have higher computational complexity than
the conventional methods in [12]. Fortunately, since the number of it-
erations is usually small as mentioned earlier, the increase in computa-
tional complexity is still affordable by the virtue of the efficient convex
optimization solver.

III. SIMULATION RESULTS

In our simulations, robust beamformer designs for ULAs and uni-
form circular arrays (UCAs) are considered to evaluate the performance
of the proposed methods. In all experiments, the CVX Matlab Toolbox
[18] is employed to solve the SOCP optimization problems. Also, we
let ��	
 �� 
 ���� 	�� and �	
 �� 
 ��� 	�� for a given ripple
�
� in decibel scale.

A. Example-I: ULA

In this example, a ULA with � 
 �� sensor elements separated by
half wavelength is considered. Let the ROI be  
 �	�
 	 � so that the
beamwidth of the ROI is 	�	�. The ROI is discretized with a step size
of 0.1�. Two equal power interferences with an interference-to-noise
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Fig. 1. Beampatterns of various beamformers with beamwidth of 8 and ripple of � � ��� ��. (a) Optimal beamformer. (b) RB-CMR. (c) RB-ISOCP with
different numbers of iteration.

Fig. 2. (a) Beampatterns of the RB-CMR with different beamwidths and a fixed ripple � � ��� ��. (b) Beampatterns of the RB-ISOCP with different
beamwidths and a fixed ripple � � ��� ��. (c) Beampatterns of the RB-ISOCP with different ripples and a fixed beamwidth of 16 .

ratio (INR) of 20 dB are assumed to impinge on the array from far-field
at angles �� � ���� and �� � ���. The DOA of the SOI is assumed
to be �� � ��, whereas the nominal direction is 0�.

1) Infinite Sample Case: Firstly, we test the performance of the
proposed method with an ideal array covariance matrix���� by assuming
that the number of snapshots � is infinite. The signal-to-noise ratio
(SNR) of the SOI is 10 dB. Let the ripple be ��� � ��� �� and
the ROI be � � 	���� ��
, i.e., the designed beamwidth of the
ROI is 8�. The maximum norm of the linear update vector ��� is
chosen to be ������ � ���. Fig. 1(c) shows beampatterns obtained
using the RB-ISOCP with different number of iterations. It can
be seen that the proposed method converges in five iterations, so
that the beam patterns so obtained after five and ten iterations are
nearly identical.

As a comparison, we consider the robust beamformer with con-
straints on magnitude response (RB-CMR) studied in [12] (see also
Matlab code therein). The optimal pattern based on the autocorrelation
of ��� is shown in Fig. 1(a), and it will be used as a gold standard to
assess the performance of the proposed approach in this particular
problem. It can be seen from Fig. 1(b) that the pattern obtained
after spectral factorization (RB-CMR [12]) is quite different from
the optimal one and its interference rejection level are significantly
degraded. This is mainly attributed to the numerical error caused by
spectral factorization. It should be noted there may be other spectral
factorization methods with better numerical behaviors. However, we
did not intend to modify the code used in [12] for a fair comparison. On

the other hand, Figs. 1(c) show the proposed beampatterns obtained
within ten iterations. It can be seen that the proposed RB-ISOCP
exhibits deeper nulls than RB-CMR, and its beampattern is very close
to the optimal one.

Next, we show the beampatterns of the conventional RB-CMR and
the proposed RB-ISCOP with different beamwidths and a fixed ripple
of 0.2 dB. From Figs. 2(a) and (b), it can be seen that all beampat-
terns obtained from these two methods are comparable and they are
very close to the optimal ones in the sense that the main beam specifi-
cations are precisely satisfied. However, the proposed RB-ISCOP can
generally form deeper nulls at the directions of the interferences. Sim-
ilar arguments hold for other simulation results as shown in Fig. 2(c),
where the beamwidth is fixed and the ripple varies. The above results
suggest that the proposed approach is effective in finding nearly op-
timal solutions.

2) Finite Sample Case: It is known that any kinds of array imper-
fections would result in uncertainties of the array covariance matrix. In
this example, the uncertainties caused by insufficient snapshots will be
considered to evaluate the robustness of the proposed method. The sim-
ulation settings are summarized as follows: The ripple is 0.2 dB and the
beamwidth of the ROI is 16�. Fig. 3(a) shows the resultant beampat-
terns of the proposed RB-ISOCP with different numbers of snapshots
� . It can be seen that the sidelobe level of the proposed RB-ISOCP is
severely affected by insufficient snapshots, although the beam gain in
the ROI can be well controlled. Also, its performance is improved as
the number of snapshots increases.
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Fig. 3. (a) Beampatterns of RB-ISOCP with different numbers of snapshots. (b) Beampatterns of RB-ISOCP-WC with different numbers of snapshots and a fixed
relative regularization factor � � ���. (c) The output SINR of RB-ISOCP versus SNR with different relative regularization factors. (d) Comparison of the output
SINR of RB-ISOCP-WC and RB-CMR-WC. Common settings: The ripple is � � ��� �� and the beamwidth is 16 .

Fig. 4. Beampatterns of RB-ISOCP and RB-ISOCP-WC for a ten-element UCA. The ROI is � � �� � � 	 � �� � � 	 � �
� � �� 	 � ���� � �� 	, and the
ripple is � � �� ��. (a) RB-ISOCP with infinite samples. (b) RB-ISOCP with � � ���. (c) RB-ISOCP-WC with � � ��� and � � ���.

To further improve the limited performance due to insufficient snap-
shots, the proposed RB-ISOCP-WC is employed. Following the ap-
proach in [12], � is chosen as � � ��������� ��, where �� denotes the
relative regularization factor, and it is chosen as �� � ��� for illustra-
tive purpose. It can be seen in Fig. 3(b) that the performance is greatly
improved by considering the uncertainty of the array covariance ma-
trix. Next, with a fixed number of snapshots � � ���, a hundred
of Monte-Carlo simulations are run to estimate the output signal-to-
interference-plus-noise ratio (SINR) of the proposed RB-ISOCP-WC
versus the SNR ranging from �10 dB to 10 dB. It can be seen from
Fig. 3(c) that the RB-ISOCP-WC gives better performance than the
RB-ISOCP (i.e., �� � �). Also, a small regularization factor is suffi-
cient to achieve a satisfactory improvement. For larger regularization
factors, the proposed method gives nearly the same performance, as we
can see that the curves of �� � � and �� � � almost overlap.

For a comparison, the conventional robust beamforming with con-
straints on magnitude response using worst-case optimization (RB-
CMR-WC) [12] is also considered. As suggested in [12], the regulariza-
tion factor for the RB-CMR-WC should be selected as � � ��������� ��,
where �� denotes the relative regularization factor. Comparing our def-
inition of � with � in (16) of [12], ����� should generally be larger
than ����� for the same uncertainty matrix 	. For a fair comparison,
we choose �� � � for the proposed algorithm and try to find the
best performance of the RB-CMR-WC from the set of different rel-
ative regularization factors given by �� � 
�� ���� � � � � ��. Fig. 3(d)
shows the performance comparison of the proposed RB-ISOCP-WC
and the RB-CMR-WC. For clarity, only the two best results of the

latter are shown. It can be seen that the RB-CMR-WC achieves the
best performance when �� � �, which is outperformed by the proposed
RB-ISOCP-WC. As discussed previously, the inferior performance of
the RB-CMR-WC is probably due to the invalid assumption of Her-
mitian Toeplitz array covariance matrix and the numerical error intro-
duced in spectral factorization. Therefore, a larger regularization factor
may be required for the RB-CMR-WC to combat such unexpected er-
rors. Nevertheless, the major advantage of the proposed approach over
the conventional method is its usefulness in designing robust beam-
formers with arbitrary geometries, as we shall demonstrate in the next
example.

B. Example-II: UCA

In Example-I, we have shown that the proposed method works well
in the case of ULAs. Though the conventional RB-CMR in [12] is able
to achieve comparable performance as ours, its application to other
array geometries, say two-dimensional arrays, may not be straight-
forward as described previously. On the other hand, the proposed
method does not have such limitation and it is applicable to arbitrary
arrays. The general experimental settings are as follows: The number
of sensor elements of the UCA is � � ��, the radius is ��	�
.
Two equal power interferences with an INR of 20 dB are assumed to
impinge on the array from far-field at angles ���� ��� � ���� ����
and ���� ��� � ����������. The DOA of the SOI is assumed to be
���� ��� � ���� ���, whereas the nominal direction of the SOI is (80�,
0�). The ROI is � � 
��� �� �� 
��� �� � � 
���� ���� 
����� ����,
and the target ripple is �� � ��� ��.



3482 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

1) Infinite Sample: Similar to the first example, we firstly consider
the performance of the RB-ISOCP with ideal array covariance matrix
����. Fig. 4(a) shows the beampatterns of the RB-ISOCP in discretized
�-planes within the region � � ����� ����. It can be seen that the ROI
is very flat and the array gain in this region can be well controlled ac-
cording to the prescribed ripple size. Moreover, deep nulls are imposed
at the directions of interferences.

2) Finite Sample: In this experiment, the performance of the
proposed method is evaluated when there are uncertainties in the
array covariance matrix due to insufficient samples. For simplicity,
the experimental settings are identical to the previous infinite sample
case, except that the array covariance matrix is approximated from
one hundred snapshots. Fig. 4(b) shows the beampattern obtained
using the RB-ISOCP within the region � � ����� ����. Compared with
the results for the case of ideal array covariance matrix in Fig. 4(a),
it can be seen that the sidelobe level degrades significantly, because
the RB-ISOCP fails to take the uncertainty of the array covariance
matrix into account. Fig. 4(c) shows the beampattern obtained using
the RB-ISOCP-WC with a relative regularization factor of �� � ���.
As expected, the performance can be greatly improved, and the result
is close to that in the case of ideal array covariance matrix.

IV. CONCLUSIONS

An iterative SOCP method for designing robust beamformers with
magnitude response constraints has been presented. A locally optimal
solution to the original non-convex problem is efficiently obtained by
solving a sequence of convex SOCP subproblems, which are obtained
via a local linearization of the magnitude squared response of the array.
The proposed method is further extended to handle uncertainties of the
array covariance matrix due to array imperfections. By incorporating
uncertainties in form of bounded variation in the design procedure, the
robustness of the beamformers can be significantly improved. Design
results show that the proposed method is an attractive alternative to tra-
ditional design methods in tackling the robust beamforming problem,
especially for arrays with arbitrary geometries.
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Performance Improvement of a U-Slot Patch Antenna
Using a Dual-Band Frequency Selective Surface With

Modified Jerusalem Cross Elements

Hsing-Yi Chen and Yu Tao

Abstract—A dual-band FSS consisting of regular Jerusalem cross ele-
ments was first used to study its impact on the bandwidths and resonant
frequencies of a U-slot patch antenna. Based on the simulation experience
of the first partial study, another FSS with modified Jerusalem cross ele-
ments was proposed to improve the bandwidths, antenna gains, and return
losses of a smaller U-slot patch antenna at 2.45 and 5.8 GHz for Bluetooth
and WLAN applications, respectively. Measured data of the return loss,
radiation pattern, and antenna gain of this smaller U-slot patch antenna
were also presented. It is proven that the smaller U-slot patch antenna im-
planted with a FSS consisting of modified Jerusalem cross elements has a
good performance with sufficient bandwidth and higher gain and is capable
of dual-band operation.

Index Terms—Bandwidths, dual-band FSS, Jerusalem cross elements, re-
turn loss, U-slot patch antenna.

I. INTRODUCTION

For wireless communications, multi-band and wide-band patch
antennas will become the requirements for accurately transmitting the
voice, data, video, and multimedia information in wireless commu-
nication systems, such as ultra wide-band measurement applications,
intelligent transportation systems (ITS), wireless local area networks
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