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An Effective Formulation of Coupled
Electromagnetic-TCAD Simulation for Extremely

High Frequency Onward
Quan Chen, Student Member, IEEE, Wim Schoenmaker, Member, IEEE, Peter Meuris, and

Ngai Wong, Member, IEEE

Abstract—This paper presents an effective formulation tailored
for electromagnetic-technology computer-aided design coupled
simulations for extremely-high-frequency ranges and beyond (>50
GHz). A transformation of variables is exploited from the starting
A-V formulation to the E-V formulation, combined with adopting
the gauge condition as the equation for scalar potential. The
transformation significantly reduces the cross-coupling between
electric and magnetic systems at high frequencies, providing
therefore much better convergence for iterative solution. The
validation of such transformations is ensured through a careful
analysis of redundancy in the coupled system and material prop-
erties. Employment of the advanced matrix permutation tech-
nique further alleviates the extra computational cost introduced
by the variable transformation. Numerical experiments confirm
the accuracy and efficiency of the proposed E-V formulation.

Index Terms—A-V solver, coupled simulation, E-V solver,
electromagnetic, high frequency, semiconductor.

I. Introduction

ADVANCED high-speed integrated circuits (ICs), such
as radio frequency (RF)/photonic ICs, represent a com-

plicated electromagnetic (EM) system generally consisting
of metal or polysilicon interconnects, various semiconductor
material systems, and surrounding media, as shown in Fig. 1.
Conventional approaches for simulating such complex sys-
tems rely on conducting separate characterizations of active
devices by technology computer-aided design (TCAD) device
models without consideration of electrodynamic effects and
finite conductivity of metals, and the passive interconnects

Manuscript received May 20, 2010; revised August 31, 2010 and Oc-
tober 30, 2010; accepted December 8, 2010. Date of current version
May 18, 2011. This work was supported in part by the Hong Kong Re-
search Grants Council under Projects HKU 717407E and 718509E, the
University Research Committee of the University of Hong Kong, and in
part by the EU Projects CHAMELEON-RF (IST-2004-027378), ICESTARS
(IST-FP7/2008/ICT/214911), and the IWT-Medea+Project COSIP-Vlaanderen
(IWT-080478). This paper was recommended by Associate Editor R. Suaya.

Q. Chen is with the Department of Computer Science and Engi-
neering, University of California, San Diego, CA 92093 USA (e-mail:
quanchen@eee.hku.hk).

W. Schoenmaker and P. Meuris are with MAGWEL NV, Leuven 3000,
Belgium (e-mail: wim.schoenmaker@magwel.com; peter.meuris@magwel.
com).

N. Wong is with the Department of Electrical and Electronic
Engineering, University of Hong Kong, Pokfulam, Hong Kong (e-mail:
nwong@eee.hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2103270

by pure EM models simplifying semiconductors to equivalent
conducting or dielectric materials. Whereas this “decoupled”
characterization suffices at low to medium frequencies, it
becomes increasingly questionable beyond extremely high
frequency (EHF), e.g., >50 GHz, where the interplay between
semiconductor carrier dynamics and EM wave dynamics [1] is
prominent. Examples with such strong interplay include metal-
insulator-semiconductor interconnects [2], substrate noise iso-
lation structures [3], and through-silicon-via in 3-D integra-
tions [4]. It is therefore suggested that the on-chip actives and
passives should no longer be analyzed separately; instead, the
critical mixed-signal/RF block must be treated as an entity,
and simulated with the full-wave EM physics coupled with the
semiconductor carrier dynamics in the design phase to avoid
costly mismatch leading to simulation failures or silicon re-
spins. This motivates the development of EM-TCAD coupled
simulation approach. It should be noted that a coupled full-
wave EM-TCAD approach is not demanded in all circum-
stances. The necessity for the inclusion of the magnetic effects
depends on the scale of the structure under consideration. For
nano-scale device designs the self-induced magnetic fields may
be safely ignored. However, while designing larger parts of the
IC, the induced magnetic fields can have a noticeable effect.
The eddy current effects in substrates, which take place at
still larger scales, are essentially a magnetic field phenomenon.
More extensive discussions can be found in [5] and [6].

The objective of coupled simulation is to model and emulate
various components (devices, interconnects, substrates, and
dielectrics) of on-chip structures within a uniform frame-
work without differentiation in the level of abstraction and/or
modeling methodology. Some works have been done on the
combination of time-domain full-wave EM analysis and dif-
ferent semiconductor models, mostly via the finite-difference
time-domain method (FDTD) [1], [8]. Yet the choice of
basic variables in FDTD (Ē, H̄) is NOT fully compatible
with that in TCAD modeling (potentials V) forcing different
solution strategies being adopted in different models, which
corresponds to a “loosely coupled” scheme. In the frequency
domain, the finite-element method (FEM) has been applied to
couple the full-wave Maxwell equations with the semiconduc-
tor transport equations [2], [9]. Nevertheless, standard FEM
aiming at building solution with minimal Galerkin residue
may not be able to guarantee exact charge conservation

0278-0070/$26.00 c© 2011 IEEE
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Fig. 1. Typical on-chip structure consisting of metallic interconnects, semi-
conductor devices, and substrate [7].

and thus may cause spurious oscillations in the numerical
solution [10].

A more sophisticated frequency-domain technique for multi-
domain (metal, semiconductor and insulator) coupled simu-
lation was proposed in [11] and [12], based on the finite-
volume method (FVM) that has built-in guarantee of charge
conservation. Instead of the conventional use of electric and
magnetic fields (Ē and H̄), the technique uses the scalar
potential V and vector potential Ā (with B̄ = ∇ × Ā) as
fundamental variables (denoted as A-V formulation or A-V
solver hereafter), and as a consequence provides a conve-
nient, physically consistent and “tightly coupled” interfacing
between the full-wave EM model and the TCAD device model.
The A-V formulation has been validated for a number of cases
in which the simulator results were compared with measured
data on test structures developed in industry [13], [14]. The
solver has been transferred into a series of commercial tools
of MAGWEL, Leuven, Belgium [15].

Despite the attractive performance from DC to tens of
GHz, the A-V solver suffers from a slow iterative solution
in the high microwave and even terahertz (THz) regimes
wherein EM-TCAD coupled simulation capacity is pressingly
demanded. The high-frequency difficulty of A-V solver is
attributed to the strong cross-couplings between electric and
magnetic systems at high frequencies and when metallic
materials are involved, which together lead to linear systems
with significant off-diagonal dominance that largely affects
the convergence of iterative solvers.

In this paper, we propose a new framework of coupled
simulation characterized by using V and Ē as basic variables,
called the E-V formulation or solver henceforth, in the problem
formulation, and by using a modified gauge condition as the
equation of V in metals and insulators. The transformation
removes much of the undesirable dependency of the cross-
couplings on frequency and metal conductivity which is in
general a large variable. In this way, the diagonal dominance of
resultant Jacobian matrices is improved and the performance
of iterative solution is greatly enhanced for EHF problems.
Validity of the proposed E-V formulation is proved though
examining the redundancy problem specific to coupled sim-
ulation and the influence of material properties. Additional
cost in computations introduced by the reformulation is well
alleviated by the column approximate minimum degree (CO-
LAMD) permutation, rendering the E-V solver an effective

tool for generic integrated simulation tasks at sub-THz and
THz frequency ranges.

It should be emphasized that the E-V formulation obtained
by performing a variable transformation has interesting con-
sequences for microelectronic applications. First, the minimal
procedure to identify voltages and currents at contacts and
ports is preserved. In other words, the connection to the
Kirchhoff variables is straightforward, as was discussed in
[12]. Furthermore, the planar technology implies that current
elements in the vertical direction are usually over the lengths
of the via heights. Consequently, it is a valuable assumption
that the vertical component of the vector potential is negligible.
This approximation leads to a much smaller size of the set of
degrees of freedom and this property is also preserved after
the transformation. We also note that the resulting system is
not identical to the E-formulation that is often exploited in
finite element solvers. The latter often works in the temporal
gauge for which V = 0 everywhere.

The remaining parts of this paper are organized as follows.
Section II briefly reviews the A-V formulation and verifies its
feasibility with measurement data. Section III discusses the
origin of the difficulty that the A-V solver faces in iterative
solution at high frequencies. Formulation and implementation
of the proposed E-V solver are detailed in Section IV. An
in-depth numerical study of the E-V solver including spectral
analyses is provided in Section V to demonstrate the merits
of the E-V solver. A conclusion is drawn in Section VI.

II. Review of A-V Formulation

A. A-V Formulation of the Coupled System

In the A-V framework for coupled simulation, the Gauss law
is used to solve for the scalar potential V in insulating and
semiconducting regions, and the current-continuity equation
∇ · J + jωρ = 0 is to be employed to find the V in metals{∇ · [

εr

(∇V + jωĀ
)]

+ ρ = 0 insul. and semi.

∇ · [
(σ + jωεr)

(∇V + jωĀ
)]

= 0 metal
(1)

where σ, εr, and ω denote, respectively, the conductivity,
relative permittivity, and frequency. The free charge density
is denoted by ρ and in semiconductors ρ = n + p + Nd where
Nd is the net doping concentration. This set of equations is
often regarded as the electric system.

The current-continuity equation is exploited to solve the
electron and hole charge carrier densities, n and p, in the
semiconductor region

∇ · J̄χ − jωqχ ∓ R(n, p) = 0 χ ∈ {n, p} (2)

in which R(n, p) refers to the generation/recombination of
carriers and q the elementary charge. The sign ∓ is for
electrons and holes, respectively. Provided the drift-diffusion
model is employed, the semiconductor current is determined
by J̄χ = qμχχ (−∇V −jωĀ)±kTμχ∇χ, χ ∈ {n, p}, where μ,
k, and T denote the carrier mobility, Boltzmann constant, and
temperature, respectively. The Scharfetter-Gummel scheme is
applied to discretize (2) [16].
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To solve the magnetic vector potential Ā, we consider the
Maxwell-Ampére equation, which is regarded as the magnetic
system

∇ ×
(

1

μr

∇ × Ā

)
+ K(σ + jωεr)(∇V + jωĀ) − K Jsemi = 0

(3)

where Jsemi = Jn+Jp denotes the semiconductor current, and K

is the dimensionless constant in the scaling scheme [12]. For
generic materials of on-chip structures it is safe to set μr = 1.
Equation (3) itself is not well-defined since the operator ∇ ×
(∇×) is intrinsically singular when discretized by FVM. A
special treatment in the A-V solver is to subtract (3) by the
divergence of the gauge condition

∇ · Ā + ξKjωεrV = 0 (4)

which yields

∇ × (∇ × Ā
) − ∇ (∇ · Ā

)
+ K(σ + jωεr)jωĀ

+K(σ + jωεr)∇V − ξKjωεr∇V − KJsemi = 0 (5)

where ξ is the gauge slider ranging from 0 (Coulomb gauge)
to 1 (Lorenz gauge). This regularization procedure recovers a
Laplacian-like operator and thus eliminates the singularity.

The task of coupled simulation is to find the simultaneous
solution of (1), (2), and (5), which are represented in a
condensed notation as⎧⎨

⎩
F

(
V, {n, p} , Ā

)
= 0

H
(
V, {n, p} , Ā

)
= 0

G
(
V, {n, p} , Ā

)
= 0.

(6)

B. Feasibility of the A-V Solver

Using the solver based on computational electrodynamics,
we are able to compute the s-parameters by setting up a field
simulation of the full structure. This allows us to study in
detail the physical coupling mechanisms. As an illustration,
we consider two inductors which are positioned on a substrate
layer separated by a distance of 14 μm. This structure was
processed and characterized and the s-parameters were ob-
tained. It is quite convenient when studying a compact model
parameters to obtain a quick picture of the behavior of the
structure. For this device a convenient variable is the “gain,”
which corresponds to the ratio of the injected power and the
delivered power over an output impedance [17]

G =
Pin

Pout

. (7)

The structure is shown in Fig. 2.
When computing the s-parameters, we put the signal source

on one spiral (port 1) and place 50 � impedance over the
contacts of the second spiral (port 2). The s11-parameter is
shown in Fig. 3 and the s12-parameter is shown in Fig. 4.
Finally, the gain plot is shown in Fig. 5. This results shown
here have been obtained without any calibration of the material
parameters. The silicon is treated “as-is.” This means that the
substrate and the eddy current suppressing n-wells are dealt
with as doped silicon.

Fig. 2. View on the coupled spiral inductor using the MAGWEL editor.

Fig. 3. Comparison of the experiment and simulation results for s11.

Fig. 4. Comparison of the experiment and simulation results for s12.

III. Origin of the High-Frequency Breakdown of

the A-V Solver

The coupled system of equations (6) is intrinsically non-
linear when semiconducting regions are present and preferably
solved by the Newton’s method. The non-linearity arises from
the discretization of the current flux along the links of the
computational grid. As has been shown in [11], the discretized
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Fig. 5. Comparison of the experimental and simulation results for the gain.

carrier current associated with a link of the grid is

Jχij = χiB(∓Xij) − χjB(±Xij) χ ∈ {n, p} (8)

where χi and χj are the carrier concentrations of the begin
and end nodes of the link, and

B(z) =
z

exp(z) − 1
(9)

is the Bernoulli function. The argument Xij = Vi − Vj +
sgn(ij) jωhijAij and Vi, Vj are the nodal voltages and Aij

is the projection of the vector potential A on the link < ij >.
Finally, sgn(ij) is ± depending on the orientation of the link
with respect to its begin and end nodes. Evidently, the presence
of the Bernoulli function turns the problem into a highly non-
linear one.

Starting from some initial guess, for example the DC solu-
tion, the update vector in each Newton’s iteration is obtained
by solving the sparse linear system

MX = b (10)

which in detail reads
⎡
⎢⎢⎢⎢⎣

∂F
∂V

∂F
∂{n,p}

∂F
∂Ā

∂H
∂V

∂H
∂{n,p}

∂H
∂Ā

∂G
∂V

∂G
∂{n,p}

∂G
∂Ā

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣


V


 {n, p}

Ā

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

F(V, {n, p} , Ā)

H(V, {n, p} , Ā)

G(V, {n, p} , Ā)

⎤
⎥⎥⎥⎦ . (11)

The numerical difficulty of the A-V solver can be revealed
by analyzing the magnitudes of the matrix entries in (11),
which are mainly dependent on the electric properties of ma-
terials and the frequency under consideration. The differential
operators (∇, ∇·, ∇×) are usually of order one with spatial
scaling. In the electric sector (1) the magnitude of the cross-
coupling of Ā to V is

∂F
∂Ā

= ∇ · [
jω (σ + jωεr)

] ∼ O (jω (σ + jωεr)) (12)

where O (·) denotes the order of the magnitude, and in the
magnetic sector (5) the magnitude of the cross-coupling of V

to Ā is

∂G
∂V

=
[
K(σ + jωεr)∇ − ξKjωεr∇

] ∼ O (K(σ + jωεr)) . (13)

Although the cross-couplings between Ā and V tend to
vanish at zero frequency, they become dominant for frequen-
cies in the higher GHz range, especially when the structure
includes metallic conductors that have large conductivity σ

and skin effects are desired to be computed such that surface-
impedance models can be obtained. When solved by the
widely-used Krylov subspace methods such as GMRES, these
significant off-diagonal blocks will impose negative effects
to the convergence rate through inducing undesirable spectral
distribution in the preconditioned system matrix. For instance,
the popular ILU preconditioner and its variants compute the
incomplete L and U factors of M such that

M = LU + E (14)

where E is the error matrix. Then an iterative solver effectively
deals with the preconditioned matrix

(LU)−1 M = I + U−1L−1E. (15)

For diagonally dominant matrices, L and U are well condi-
tioned and the size (2-norm) of U−1L−1E remains reasonably
bounded, which confines the eigenvalues of the preconditioned
matrix within a small neighborhood of 1 and allows a fast
convergence of Krylov subspace methods. When the matrix
M lacks diagonal dominance, L−1 or U−1 may have large
norms, rendering the “preconditioned” error matrix U−1L−1E

of large size and thus adding large perturbations to the identity
matrix [18]. This large perturbation causes the eigenvalues dis-
persed and spread far away from each other, resulting in slow
down or even failure of the convergence of iterative solution.
As a consequence, the A-V solver becomes increasingly inef-
ficient, if not impossible, in EHF scenarios wherein coupled
simulation is demanded to capture the complicated interplay
between EM wave and semiconductor carrier transport.

IV. E-V Formulation

From a modeling perspective, the above intensive cross-
coupling arises from explicitly separating the electric field
(more precisely the electric field in the metals) into its static
component from V and dynamic component from Ā, and
associating them with equal weightings that have magnitudes
depending on the frequency and metal conductivity. To reduce
the weight of cross-coupling terms, we reformulate the coupled
system using the scalar potential V and the electric field Ē via
the variable transformation

Ē = −∇V − jωĀ. (16)

The coupled system of (1), (2), and (5) under this transfor-
mation changes into

F′ :

{
∇ · (

εrĒ
)

+ ρ = 0 semi. and insul.

∇ · [
(σ + jωεr) Ē

]
= 0 metal

(17a)

H′ : ∇ · J̄χ − jωqχ ∓ R(n, p) = 0 χ ∈ {n, p} (17b)

G′ : ∇ × (∇ × Ē
) − ∇ (∇ · Ē

)
+ Kjω(σ + jωεr)Ē (17c)

−∇ (∇2V
) − ξKω2∇ (εrV ) + KjωJ̄semi = 0
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where J̄χ = qμχχĒ ± kTμχ∇χ, χ ∈ {n, p} accordingly. Note
that here we only consider Ē as a variable transformation of
Ā instead of an independent physical quantity.

The transformation from A-V to E-V immediately removes
the conductance-dependent cross-coupling of V from (17c).
Yet little improvement has been made to (17a) wherein the
cross-coupling coefficients of Ē still have undesirable depen-
dence on σ and ω. A detailed analysis of the coupled system
in the next subsection however indicates that we are allowed to
exploit, instead of the Gauss law (17a) (as well as the current-
continuity), the transformed gauge condition to determine the
scalar potential in the metal and insulator regions (but not in
the semiconductor regions), which reads

∇2V + ξKω2εrV + ∇ · Ē = 0. (18)

This way, the cross-couplings of Ē have magnitudes of order
one, and are not growing any more with the large value of σ

and frequency in the bulk of metallic materials. Whereas the
conversion from A-V solver to E-V solver looks promising,
there are certain subtleties that require special attention to
guarantee a correct implementation of the E-V solver.

A. Redundancy in Coupled System

It is a unique feature for coupled EM-TCAD simulation
to look for a simultaneous solution of the following system,
which consists of the Gauss law, the current-continuity law,
and the Maxwell-Ampére law

∇ · D̄ − ρ = 0 (19a)

∇ · J̄ = 0 (19b)

∇ × H̄ − J̄ = 0 (19c)

where J̄ represents the total current including the conduction
and the displacement parts. In the A-V formulation all un-
knowns are expressed in terms of potentials V and Ā, and a
gauge condition is required to eliminate the well-known gauge
freedom to ensure a unique solution

∇ · Ā + f = 0 (20)

where f can be an arbitrary function of V and Ā.
It is straightforward to see (19), more exactly (19b) and

(19c) is redundant by taking the divergence on both sides of
(19c) [19]. Conventional TCAD device simulation or full-wave
EM simulation alone is free of this redundancy, in that the
former uses only (19a) and (19b) to solve for V and ρ (n and
p) without Ā, while the latter uses only (19c) and (20) to look
for V and Ā in the absence of ρ [which is recovered later via
(19a)]. When the A-V solver has to deal with the combined
system of (19b) and (19c) that is fundamental to describe
the field-carrier interaction, it employs a specific technique to
address the redundancy problem, which, as mentioned above,
is to subtract (19c) by the divergence of the gauge condition,
yielding

∇ × H̄ − J̄ − ∇ · (∇ · Ā + f
)

= 0. (21)

There are several points in (21) that deserve attention.

1) The system of (19b) and (21) is not redundant as long
as the gauge condition is not explicitly involved in the
system of equations.

2) Though the gauge condition does not participate in
the solution procedure, it should serve as an implicit
constraint and be recovered from the solution thereby
obtained.

Taking divergence on (21) and together with (19b), we have

∇2
(∇ · Ā + f

)
= 0 (22)

which is essentially a Laplace’s equation. In numerical theory,
it is known that for a Laplace’s equation ∇2φ = 0 in some
domain �, the solution will be zero everywhere in � provided
the boundary condition φ|∂� = 0 is applied. Hence, the
requirement of the second point is that the gauge condition
must be set equal to zero at the boundary of the simulation
domain. This is done in the discretization of (21), wherein
the evaluations of ∇ · Ā + f are forced to be equal to
zero by the discretization scheme for the nodes bouncing on
the boundary of the simulation domain. In other words, the
gauge condition will be automatically recovered over the usual
Maxwell-Ampére equation for the whole domain provided that
the current-continuity equation is solved.

The above discussion shows the way how the A-V solver
deals with the redundancy arising when different systems of
equations are coupled together, wherein the current-continuity
equation is solved explicitly for V with the gauge condition
being an implicit constraint. Alternatively, one could choose
the gauge condition as the equation of V constrained by
the current conservation. This change requires the current-
continuity equation being removed from the system of equa-
tions, otherwise the system will become redundant again since
the gauge condition is enforced explicitly and implicitly at
the same time. The removal of current-continuity equation
as a consequence requires the removal of charge density ρ

from the unknown list for an equal counting of equations
and unknowns. Such removal is applicable in the metallic and
insulating regions in which ρ is able to be recovered by the
Gauss law, while not in the semiconductors in which the carrier
concentrations n and p are of fundamental interest and cannot
be recovered from merely the field variables.

As a result, in the E-V solver (18) can be exploited to solve
for V in the metals and insulators (though not entirely, see
the next section), while (17a) remains the one we should use
in the semiconducting regions. Note that the gauge condition
will still be recovered in the semiconductors given the fact that
the gauge condition is set zero at all nodes surrounding the
semiconductors. In addition, using (17) in the semiconductors
will not introduce large cross-coupling terms as the relative
permittivities of semiconducting materials are generally of
order one.

B. Issues of Material Properties

Depending on the electric properties of the materials under
investigation (metal or insulator or material interfaces), there
are still subtle distinctions in the appropriate formulation of



CHEN et al.: AN EFFECTIVE FORMULATION OF COUPLED ELECTROMAGNETIC-TCAD SIMULATION FOR EXTREMELY HIGH FREQUENCY ONWARD 871

gauge condition that should be employed as the equation of
V , i.e., (18) in the E-V solver. For nodes in the bulk of metals
as well as material interfaces except semiconductor/insulator
interfaces, the governing equation is essentially the current-
continuity equation; the Gauss equation will come into use
only when the (surface) charge density is demanded in post-
process steps. Therefore, the equation in the E-V solver for
these nodes is exactly (18), which together with (17c) are
equivalent to the current-continuity equation (1) in the A-V
solver.

The situation is slightly different for the insulating regions.
The current-continuity is now trivial (0 = 0) and the (small-
signal) free charge density is zero by definition. Therefore,
there is no need to recover the current-continuity equation
and only the Gauss’s equation must be recovered. Although
applying the gauge condition to find out V remains possible,
such choice will induce certain numerical difficulty, especially
for the insulators with homogeneous dielectric constants. This
is because, due to the homogeneity of dielectric constants,
solution of (18) in the bulk of insulators has to obey a stronger
requirement of demanding ∇2V + KjωεrV = 0 and ∇ · Ē = 0
simultaneously. Direct application of (18) will cause non-
uniqueness in the solution and render the system matrix highly
ill-conditioning. As a result, the ordinary Gauss equation
remains an appropriate choice to determine the scalar potential
in the insulators, no matter homogeneous or inhomogeneous

∇ · (
εrĒ

)
= 0. (23)

The nodes at semiconductor/insulator interfaces are classified
as semiconductor nodes for which it is natural to apply the
original Gauss equation (17a).

C. Boundary Conditions

Boundary conditions for the E-V solver are derived from
its A-V counterpart through the transformation relation (16).
The underlying principle is to minimize the coupling between
the simulation domain and the rest of the world.

As done in the A-V solver [11], [12], we divide the bound-
ary of the simulation domain into two parts: contact regions
and non-contact regions. The contacts allow currents, and thus
energy, to enter and leave the simulation domain, wherein
the constant voltage condition is applied. The remainder, the
non-contact boundary, is characterized by demanding that
the outward-pointing normal component of Ē vanishes, i.e.,
Ēn = 0. This leads to the boundary condition of the electric
system for non-contact boundary nodes

∇ · [
(σ + jωεr) Ē

]
= 0. (24)

The boundary condition (24) introduces again a σ-dependent
coupling in some circumstances, i.e., for boundary nodes
attached by metallic cubes. Their contribution to undesirable
cross-couplings, however, is much lower than that in the
A-V formulation, wherein all nodes attached by metallic cubes
have to be taken into account.

For the magnetic sector, the similar requirement of B̄n = 0 is
applied to keep all magnetic fields remain inside the simulation
domain. This forces a zero tangential component of Ā since

B̄ = ∇ × Ā, namely, Āt = 0, which holds for both the contact
and non-contact boundaries. In light of (16), the boundary
condition of magnetic system should be

Ēt = −∇Vt. (25)

The above condition implies the unknowns associated with
the boundary links, which are part of degrees of freedom in
the E-V solver but not in the A-V solver, can be substituted
by the corresponding nodal unknowns of V in the solution
phase and recovered later by post-processing. This way, the
total number of unknowns are identical for both the A-V and
E-V solvers.

It should be emphasized that above selection of the bound-
ary conditions represents a particular choice which was moti-
vated by upgrading standard TCAD simulations into the elec-
tromagnetic regime. However, there is nothing “fundamental”
about this choice. One may equally well choose radiative
boundary conditions or Neumann-type boundary conditions
for the vector potential. The preferred choice depends on the
problem under consideration. Here, it is important to note that
when discussing the A-V solver and the E-V solver, the same
physical boundary conditions are used.

D. Implementation Details

The full system of equations of the E-V solver is laid out
in (26)

F′ :

⎧⎪⎨
⎪⎩

∇ · [
(σ + jωεr) Ē

] − ρ = 0 boundary

∇ · (
εrĒ

) − ρ = 0 semi. and insul

∇2V + ξKω2εrV + ∇ · Ē = 0 remaining regions
(26a)

H′ : ∇ · J̄χ − jωqχ ∓ R(n, p) = 0 χ ∈ {n, p} (26b)

G′ : ∇ × (∇ × Ē
) − ∇ (∇ · Ē

)
+ Kjω(σ + jωεr)Ē (26c)

−∇ (∇2V
) − ξKω2∇ (εrV ) + KjωJ̄semi = 0.

Similar to (11), a linear system MX = b is solved at each New-
ton’s step, in which M results from the FVM discretization of
the Jacobian of (26).

It is convenient to upgrade the A-V solver to include an E-V
solver by exploiting the following 4-step solution strategy.

1) Map Ā − V variables onto Ē − V variables via (16).
2) Apply the E-V solver to compute the update vector[


V, 
Ē
]T

in the Newton’s iteration.
3) Map

[

V, 
Ē

]T
onto

[

V, 
Ā

]T
.

4) Update the A-V system.

Using this approach, the data structure in the original A-V
solver is unaltered and the switching between the A-V and
E-V solvers is easy to realize. This is beneficial in that, as
shown in Section IV, the A-V and E-V solvers are suitable
to work complementarily with the former at low frequencies
and the latter at high frequencies, and thus switching between
solvers may be needed in a wide-band simulation.
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Fig. 6. (a) Cross wire structure. Simulation domain is 10×10×10 μm3 and
the cross sections of metal wires are 2 × 2 μm2. σ = 5.96 × 107 S/m. FVM
discretization generates 1400 nodes and 3820 links. (b) Metal plug structure.
Simulation domain is 10 × 10 × 10 μm3 the cross section of metal plug is
4 × 4 μm2. σ = 3.37 × 107 S/m. A uniform doping of ND = 1 × 1024 is used.
FVM discretization generates 1300 nodes and 3540 links.

E. Matrix Permutation

Despite the attractive reduction in the magnitudes of cross-
couplings, the E-V transformation introduces more non-zero
fill-ins into the off-diagonal block of ∂G

∂V
through the term

∇ (∇2V
)

in (26c). The increased amount of fill-ins from
A-V to E-V formulations is approximately 10× the number
of boundary links. Inferior sparsity burdens the construction
of preconditioner as well as subsequent iterations, limiting the
applications of E-V solver to relatively small-sized problems.

To enhance the performance of the E-V solver, the CO-
LAMD permutation [20] is applied to the system matrix
M, which computes a permutation vector p such that the
(incomplete) LU factorization of M(:, p) tends to be much
sparser than that of M. This way, building popular ILUT
preconditioners with small threshold becomes possible for M

in the order of tens of thousands. The subsequent iteration also
speeds up owing to the improved sparsity of the computed LU
factors.

V. Numerical Results

The proposed E-V solver as well as its A-V counterpart, on
which MAGWEL’s softwares are based, are implemented and
compared in MATLAB. The “de Mari” scaling scheme [12]
is adopted. For simplicity, the Coulomb gauge (ξ = 0) is
adopted throughout the numerical experiments. Three struc-
tures are tested to demonstrate the efficiency of the E-V solver:
1) a cross wire structure consisting only of passives as shown
in Fig. 6(a); 2) a metal plug structure consisting of both
passives and actives as shown in Fig. 6(b); and 3) a practical
substrate noise isolation (SNI) structure as shown in Fig. 7.
The iterative solutions are computed by GMRES with ILUT
preconditioners. All programming and simulations were done
on a 3.2 GHz 16-Gb-RAM Linux-based server.

A. Accuracy of E-V Solver

Fig. 8 verifies the accuracy of E-V solver in comparison
with the A-V solver at frequencies ranging from 106 Hz to
1015 Hz for the three test benches. This frequency range
covers a wide spectrum from medium radio frequency to
visible light. Direct solver (Gaussian elimination) is used to

Fig. 7. Substrate noise isolation structure. A deep n-well (DNW) (pink re-
gion) is implanted in the p-type substrate to isolate analog circuits from digital
noise sources. Simulation domain is 100 ×50 ×11 μm3. σ = 3.37×107 S/m.
A user-defined doping profile is adopted. FVM discretization generates 6300
nodes and 13 540 links.

Fig. 8. Differences between the A-V and E-V solvers for the testing struc-
tures (with direct solver).

solve the linear equations at each Newton’s iteration. The
accuracy is measured by the relative error between the whole
internal state space solution of the A-V and E-V solvers
err = ‖XEV − XAV ‖2 / ‖XAV ‖2, X =

[
V ; n; p; Ā

]
. It is seen

that the E-V solver is in an excellent agreement with the
A-V solver throughout the testings, which is expected from
a mathematical perspective since no approximation is intro-
duced in the variable and equation transformations. The slight
fluctuations in the curves are due to the final precisions of
Newton’s method and vary among solvers even when the same
convergence criterion is applied. Fig. 9 visualizes the current
density inside the substrate of the SNI structure, demonstrating
a clear isolation effect for the part of analog circuits from
external digital noises.

B. Spectral Analyses

To investigate the influence of increasing frequency on the
A-V and E-V solvers, we plot in Figs. 10 and 11 the eigen-
values of the Jacobian matrices preconditioned by ILUT(10−6)
for the metal plug structure at four different frequencies. The
norms of L−1 and U−1 of each solver are also computed in
Table I.

At relatively low frequency (106 Hz), the off-diagonal
blocks in (12) and (13) are of small sizes and so are the norms
of the inverses of incomplete factors L and U in (15). The
eigenvalues of the preconditioned matrix from the A-V solver
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Fig. 9. Current density at the middle layer of the substrate of SNI structure
(shown in log10 scale).

Fig. 10. Eigenvalue distribution of the preconditioned Jacobian matrices of
A-V solver at different frequencies.

Fig. 11. Eigenvalue distribution of the preconditioned Jacobian matrices of
E-V solver at different frequencies.

are then tightly clustered around the point 1 in favor of a fast
convergence of iterative solution. As frequency increases, the
spectra of the preconditioned matrices have eigenvalue clusters
with continuously enlarging radii and separations among each
other, reflecting an increasing perturbation to the identity
matrix as the result of increasing off-diagonal dominance. This
is also confirmed by looking into the growing sizes of U−1

TABLE I

Norms of L−1
and U−1

Computed for the A-V and E-V Solvers

[ILUT(10−6
)]

Frequency A-V E-V∥∥L−1
∥∥ ∥∥U−1

∥∥ ∥∥L−1
∥∥ ∥∥U−1

∥∥
106 Hz 1.55 × 101 4.82 9.15 × 101 1.67 × 107

109 Hz 1.32 × 101 4.87 × 102 4.37 × 101 3.82 × 104

1012 Hz 2.50 × 101 1.75 × 107 2.89 × 101 1.16 × 102

1015 Hz 2.42 × 102 1.15 × 1011 1.52 × 101 5.15

Fig. 12. Eigenvalue distribution of the preconditioned Jacobian matrices of
A-V solver at different frequencies (no metal).

Fig. 13. Eigenvalue distribution of the preconditioned Jacobian matrices of
E-V solver at different frequencies (no metal).

in Table I. It therefore suggests a poor iterative performance
for the A-V solver at high frequencies when Krylov subspace
methods are applied, whose convergence behaviors are closely
related to the relative radii of eigenvalue clusters and their sep-
arations of the preconditioned matrix [21]. The enlargements
of cluster radii and separations are proportional to the increases
of frequency.

Compared to that of the A-V solver, the spectral distribution
of the preconditioned system of E-V solver has a roughly
opposite trend along with the rising frequency. The eigenvalues
are clustered more loosely at low frequencies, while becoming
increasingly concentrated around 1 at higher frequencies, due
to the growing contribution from the term of Kjω(σ + jωεr)Ē
in (26c) improving diagonal dominance. Such concentration
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TABLE II

Iterative Performance of A-V and E-V Solvers for the Cross Wire Structure [ILUT(10−6
), Time Unit: S]

Freq. A-V(ORIG) A-V(AMD) A-V(DS) E-V(ORIG) E-V(AMD) E-V(DS)
tpre Nit tper it tpre Nit tper it tpre Nit tper it tpre Nit tper it

106 48.34 5 0.37 11.22 5 0.38 NC NC
107 62.15 6 0.34 12.68 7 0.37 179.16 546 1.51 49.88 515 1.01
108 62.96 11 0.41 12.91 12 0.39 179.49 130 1.11 45.73 91 0.71
109 77.59 27 0.42 14.80 35 0.41 163.00 17 1.09 43.15 14 0.67
1010 105.06 43 0.73 20.77 167 0.50 163.73 9 1.09 38.01 8 0.65
1011 NC NC 12.76 155.41 8 1.03 38.09 7 0.63 15.08
1012 NC NC 154.45 7 1.01 38.50 7 0.61
1013 IP NC 154.52 7 1.08 38.77 6 0.57
1014 IP IP 150.29 6 0.98 34.55 6 0.57
1015 IP IP 127.37 5 1.01 28.64 6 0.51

TABLE III

Iterative Performance of A-V and E-V Solvers for the Metal Plug Structure [ILUT(10−6
), Time Unit: S]

Freq. A-V(ORIG) A-V(AMD) A-V(DS) E-V(ORIG) E-V(AMD) E-V(DS)
tpre Nit tper it tpre Nit tper it tpre Nit tper it tpre Nit tper it

106 100.02 5 0.57 34.83 5 0.62 37.39 NC NC 50.12
107 146.18 6 0.54 53.71 7 0.65 NC NC
108 156.44 10 0.60 62.01 11 0.68 616.12 187 2.11 136.12 141 1.11
109 200.28 22 0.69 62.50 27 0.66 455.02 81 1.81 129.19 51 0.91
1010 207.16 102 0.73 69.39 165 0.72 442.65 21 1.73 128.94 18 0.92
1011 NC NC 440.56 13 1.72 100.18 12 0.80
1012 NC NC 369.19 11 1.39 85.50 11 0.78
1013 IP NC 363.20 9 1.32 83.16 10 0.78
1014 IP IP 362.21 7 1.23 83.18 7 0.81
1015 IP IP 309.64 5 1.10 83.20 6 0.74

TABLE IV

Iterative Performance of A-V and E-V Solvers for the SNI Structure [ILUT(10−4
), Time Unit: S]

Freq. A-V(ORIG) A-V(AMD) A-V(DS) E-V(ORIG) E-V(AMD) E-V(DS)
tpre Nit tper it tpre Nit tper it tpre Nit tper it tpre Nit tper it

106 1298.45 8 2.57 252.83 9 2.12 943.01 NC NC 1391.67
107 1506.15 32 3.54 349.11 41 3.45 NC NC
108 2112.06 100 4.60 539.78 140 4.08 NC NC
109 NC NC 17347.12 141 11.12 770.81 101 3.62
1010 NC NC 13556.65 71 9.34 598.76 70 3.49
1011 NC NC 9342.33 47 9.02 474.05 44 3.28
1012 IP NC 8006.09 40 8.62 427.25 36 3.20
1013 IP IP 7681.85 36 8.00 394.00 32 3.01
1014 IP IP 7262.10 19 7.68 318.64 18 2.85
1015 IP IP 7245.72 16 6.11 301.66 15 2.79

of eigenvalues greatly facilitates the convergence of iterative
methods and thus suggests enhanced performances for the E-V
solver at high-frequency scenarios.

Similar experiments are conducted in Figs. 12 and 13
to examine the role of metal conductivity. The metal plug
structure is used again, but with the metallic part replaced by
insulating materials, rendering the structure consisting of only
insulators and semiconductors. Horizontal comparisons for the
A-V solver show that, whereas at sufficiently high frequencies
the eigenvalues still disperse, the degree of dispersion is
reduced by a great extent. This confirms that the presence
of metallic conductors with large conductivity is one origin
of the numerical difficulty of A-V solver at high frequencies.
The eigenvalues of E-V solver are in a similar distribution
over the four testing frequencies, suggesting roughly constant
performance in iterative solution.

C. Performance Comparisons
Detailed comparisons between the A-V and E-V solvers

for their performances in iterative solution are tabulated in
Tables II–IV. A relative tolerance of 10−10 and a maximum
number of iterations of 1000 are used in GMRES. The high
accuracy used in iterative solution is intended to minimize the
number of necessary Newton iterations to as close as with
direct solver, so as not to complicate the analysis by the
issues related to the convergence rate of Newton’s method.
Successful solutions with convergence achieved are shown
with the time for building preconditioner, the number of
iterations and the time per iteration. Unsuccessful solutions,
according to the reasons of failure, are marked as “NC” (no
convergence within the maximum number of iterations) or
“IP” (ill-conditioned preconditioner). The iterative solvers with
and without COLAMD pre-processing are labeled as “AMD”
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and “ORIG,” respectively. The runtimes of direct solver (at 10
GHz) are also shown with the label of “DS” for reference.

For all the three structures, the A-V solver exhibits deterio-
rated performances as frequency increases, and tends to break
down at frequencies beyond (tens of) GHz for requiring either
a large number of iterations or high-quality preconditioners
that are costly to generate (“UV catastrophe”). The E-V solver
fails to converge for low frequencies (“IR singularity”) but
in contrast to the A-V solver, performs increasingly well
with growing frequency. These results are consistent with the
above spectral analysis and confirm the merit of the E-V
solver as a capable tool in EHF applications. Meanwhile, it
suggests that the A-V and E-V solvers have complementary
preferable frequency ranges and thus are suitable to work
together to provide a truly wide-band coupled simulation
framework.

As frequency increases, calculating ILUT preconditioners
are generally more time-consuming for the A-V solver, while
less for the E-V solver, which may be attributed to their oppo-
site behaviors in terms of diagonal dominance. Without matrix
permutation, the constructions of preconditioners for the E-V
solver are several times slower than that of the A-V solver
due to a higher number of matrix fill-ins introduced by the
∇(∇2V ) term. This prevents the E-V solver from being applied
to simulate large-scale problems. As a remedy, application
of the COLAMD permutation in the E-V solver provides a
remarkable reduction (∼20X for the SNI example) in the
computational cost of preconditioner and a moderate reduction
(>2X for the SNI example) in the cost of following iterations,
rendering the overall cost of E-V solver comparable even
with that of the COLAMD-permuted A-V solver, for which
the improvement is less significant because of its inherently
better sparsity. Besides, an increased number of iterations are
observed for the COLAMD-permuted A-V solver compared
to the original version, offsetting its gain in preconditioner
computations. It turns out that the E-V solver combined with
COLAMD is the most robust and efficient tool for coupled
simulations at EHF and beyond.

VI. Conclusion

An effective E-V formulation was proposed, with dedication
to the simultaneous simulation of full-wave EM and semi-
conductor dynamics for EHF regime onward. The underlying
idea was to reformulate the conventional A-V formulation
via variable and equation transformations, which removed the
undesirable dependences of cross-couplings on frequency and
metal conductivity, and as a consequence brings substantial
improvement into the efficiency of iterative solution at high
frequencies. From a spectral perspective, the improved di-
agonal dominance ameliorates the concentric appearance of
eigenvalues of the preconditioned Jacobian matrix, by which
a fast convergence of iterative solution was achieved. The
equation transformation from the Gauss equation to the gauge
condition was rigorously validated by a careful investigation of
the redundancy in coupled system and the influence of material
properties. The COLAMD matrix permutation technique was
applied to offset the additional cost introduced by the E-V

reformulation, rendering the E-V solver comparably efficient
with its A-V counterpart. Numerical experiments have con-
firmed the superior performance of the proposed method with
frequency up to optical range.
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