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Abstract 

Cell adhesion depends on combinational expression and interactions of a large number of 

adhesion molecules from opposing cells. Integrins and immunoglobulin superfamily (IgSF) 

members are two foremost classes of cell adhesion molecules in immune system. 

Structural study is critical for better understanding of the interactions between integrins 

and their IgSF ligands.  Here we describe protocols for protein expression of integrin αL I 

domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.   
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1. Introduction 

Integrins are major cell adhesion molecules that mediate cell-cell and cell-extracellular 

matrix interactions, thereby playing a key role in development, immune responses, 

leukocyte trafficking, homeostasis and cancer metastasis. Integrins transduce signals 

across the plasma membrane bi-directionally in an allosteric fashion. Ligand-binding to 

integrins transmits signals to the cytoplasm (“outside-in” signaling). Conversely, integrins 

can be activated in response to intracellular signaling cascades elicited by other receptors 

(“inside-out” signaling) (1, 2). The structural basis of integrin allostery has been 

extensively reviewed (3). Structural studies of the binding domain of leukocyte integrins 

(αI domain) and their ligands have been extensively performed to understand the 

allosteric regulation of integrins. For example, the complex structures between integrin 

αL  I domain and its ligands ICAM-1, ICAM-3 and ICAM-5 (4-6) have revealed a basic 

binding model between integrins and their ligands.  An acidic residue from the ligand 

coordinates to the metal ion dependent adhesion site (MIDAS) of I domain (7), thereby 

triggering the conformational changes of MIDAS, which is allosterically linked to an axial 

movement of the α7-helix at the other end of the I domain. This eventually leads to a 

large-scale reorientation of the ecto-domains up to 200Å, and the separation of the integrin 

α and β subunits by as much as 70Å (8, 9).  In this chapter, we will use the α I domain of 

αLβ2 integrin and its natural ligands, ICAM-5 as an examples to describe the expression 

and structure determination of integrin domains in complex with ligand.  

 



2. Materials 

2.1 Expression and purification of αL I domain in E.coli 

1. Expression vector: pET22b with an inserted fragment encoding the αL I domain 

(residue N129 to Y307 with a stop codon following Y307) (10, 11). 

2. BL21 (DE3) competent cells. 

3. LB-amp medium: Dissolve 10g tryptone, 5g yeast extract and 10g sodium chloride in 

1L of water (see Note 1).  Autoclave at 121°C for 20min, add 1ml of 100 mg/ml 

ampicillin when it is cooled to room temperature. 

4. Rich medium: 20 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl, 20 ml/L glycerol, 50 

mM K2HPO4, 10 mM MgCl2, 10 g/L glucose, and 100 µg/L ampicillin. 

5. 0.1 M Isopropyl β-D-1-thiogalactopyranoside (IPTG). 

6. Lysis buffer: 50 mM Tris-HCl pH8.0, 1 mM MgCl2, 0.4 µg/ml DNase I, 0.4 µg/ml 

RNase A, 1 µg/ml lysozyme. 

7. Sonicator with a large sonication tip. 

8. Wash buffer 1: 20 mM Tris-HCl pH8.0, 23 %( w/v) sucrose, 0.5 %( v/v) Triton X-100, 

1 mM EDTA. 

9. Wash buffer 2: 20 mM Tris-HCl pH8.0, 1 mM EDTA. 

10. Solubilization buffer: 6 M Guanidine HCl, 50 mM Tris-HCl pH8.0, 1 mM DTT. 

11. Refolding buffer: 50 mM Tris-HCl pH8.0, 1 mM MgCl2, 5 %( v/v) glycerol, 50 mg/L 

CuSO4 (see Note 2), 1 mM phenathroline (stock of 1M in DMSO), 0.1mM PMSF 

(stock of 100 mM in isopropanol). 



12. Ion exchange buffer A: 20 mM Tris-HCl pH8.0. 

13. Ion exchange buffer B: 20 mM Tris-HCl pH8.0, 1 M sodium chloride. 

14. Size exclusion buffer: 20 mM HEPES pH7.5, 0.2 M sodium chloride. 

15. FPLC equipment. 

16. Q-sepharose ion-exchange column. 

17. Superdex75prep size-exclusion column. 

 

2.2 Expression and purification of ligands in CHO-lec 3.2.8.1 cells 

  1. CHO lec 3.2.8.1 cells stably transfected to express ICAM-5 D1D2 (6). 

  2. GMEM-MSX medium: To make 500 ml or 2L of GMEM-MSX medium, add the 

following stock solutions as listed below using aseptic technique in a cell culture 

hood. 

Sterile water (ml) 350 1400 

a. 10XGMEM (ml) 50 200 

b. Sodium bicarbonate (ml) 18.1 72.4 

c. NEAA (ml) 5 20 

d. G+A (ml) 5 20 

e. Sodium pyruvate (ml) 5 20 

f. Nucleosides (ml) 10 40 

g. Pen-Step (ml) 5 20 

h. Dialyzed FCS (ml) 50 200 



i. L-MSX (ml) 0.125 0.5 

Total (ml) 500 2000 

   

Stock solutions: 

a. 10X Glasgow MEM without glutamine and without 

tryptose-phosphate broth (custom order to GIBCO or Sigma). 

b. 7.5% sodium bicarbonate. 

c. 100X Non-essential amino acids (NEAA). 

d. 100X glutamic acid + asparigine (G+A): Dissolve 1,500 mg 

L-glutamic acid and 1,500 mg L-asparigine to 250 ml of distilled 

water and sterilize by filtration. 

e. 100 mM sodium pyruvate. 

f. 50X Nucleosides: Dissolve 175 mg adenosine, 175 mg guanosine, 175 

mg cytidine, 175 mg uridine, 40 mg thymidine to 500 ml of 

autoclaved water, and sterilize by filtration. 

g. 100X Penicillin-Streptomycin at 5,000units/ml. 

h. Dialyzed FCS: Heat inactivated at 56 °C for 30~35 min (see Note 3). 

i. 100 mM L-MSX: Prepare 18 mg/ml solution in PBS. Sterilize by 

filtration and store at –20°C in 1-ml aliquots. Final concentration in 

medium is 25 µM. 

 



4. FPLC equipment. 

5. Cation exchange column SP. 

6. Anion exchange column Mono Q. 

7. Cation exchange column Mono S. 

8. Size exclusion column Superdex75 prep. 

 

3. Methods 

The αL I domain is expressed in E.coli as an inclusion body, refolded, and purified to 

homogeneity.  By contrast, the integrin ligand domain of ICAM-5 (ICAM-5D1D2) is 

expressed in CHO cells, as the protein is highly glycosylated and involves several disulfide 

bonds. A mutant cell line CHO lec 3.2.8.1 has four independent mutations in the N- and O- 

glycosylation pathways (12). N-linked carbohydrates produced by CHO lec 3.2.8.1 cells 

are all of the high mannose type, but different in the number of mannoses, ranging from 

Man5 to Man9. O-glycosylation is homogenous, with only a single GalNAc residue 

attached per site. When cultured in the presence of the alpha-glucosidase I inhibitor 

N-butyl-deoxynojirimycin (NB-DNJ), glycoproteins produced in CHO lec 3.2.8.1 cells are 

almost completely susceptible to Endo H digestion (13, 14). Endo H cleaves chitobiose, 

leaving a single N-linked N-acetylglucosamine per site, which is ideal for maintenance of 

protein solubility and special carbohydrate-protein interactions, such as between the first 

N-acetyl glucosamine residue and tryptophan. The property of CHO lec 3.2.8.1 makes it 

quite suitable for expression of proteins for structural studies. Therefore, CHO lec 3.2.8.1 



will be our expression host for integrin IgSF ligands including ICAM-5 D1D2. 

 

3.1 Expression and purification of αL I domain in E.coli 

1. Inoculate a single colony of BL21(DE3) transformed with the expression vector 

into 30 ml of LB-ampicillin medium and shake at 37 °C for 6~8 hours. 

2. The next day, transfer 30 ml of bacteria culture to 600 ml of rich medium, shake at 

37 °C for 3~4 hours. When OD600 reaches to 1~1.2, add 1 mM IPTG to induce 

expression. 

3. 3~4 hours later harvest bacteria by centrifugation.  Re-suspend the pellet with 50 

mM Tris-HCl pH8.0 and centrifuge to harvest the pellet. Freeze pellet at –20°C for 

later use. 

4. Suspend the pellet in 30 ml of lysis buffer, incubate it at 37°C for 10~15min, and 

sonicate it with a large sonicator tip. 

5. Harvest inclusion bodies by centrifuge (25,000 X g for 30min).   

6. Wash inclusion bodies with wash buffer 1, centrifuge at 25,000 X g for 15min and 

discard the supernatant. Repeat this step for 5 times. 

7. Wash inclusion bodies with wash buffer 2. 

8. Resuspend inclusion bodies in solubilization buffer, stir at room temperature for 

1~2 hours. 

9. Centrifuge at 25,000 X g for 30 min, filter and keep the supernatant. Measure the 

protein concentration at OD280 and adjust protein concentration to 0.5~1 mg/ml 



with solubilization buffer. 

10. Refolding at 4°C overnight or longer by quick dilution into 19-fold of refolding 

butter.  

11. Centrifuge and filter with a 0.22 µm membrane to remove precipitant. 

12. Concentrate the supernatant to small volume and filter it. 

13. Purify the sample on a Q-sepharose ion-exchange column using a FPLC 

equipment. The supernatant is loaded to the column, washed with 2 column 

volumes (CV) of buffer A and eluted with a NaCl gradient from 0 to 30% of buffer 

B in 20 CV.  

14. Collect and pool the peak fractions.   

15. Concentrate the pooled fractions and further purify it on Superdex75 prep 

size-exclusion column using a FPLC equipment. 

16. Collect and pool the peak fractions. 

17. Desalt and change buffer to 20 mM HEPES pH7.5, 50 mM sodium chloride and 5 

mM magnesium chloride.  

18. Concentrate the sample to >20 mg/ml. Flash freeze into liquid nitrogen and store at  

-80 °C for later use of crystallization (see Notes 5). 

 

3.2 Expression and purification of ligands in CHO-lec 3.2.8.1 cells 

Our ICAM-5D1D2 construct does not contain any purification tags and we have no 

suitable antibodies against ICAM-5D1D2 to be used in affinity purification. However, the 



unique situation here is that the isoelectric point (pI) of ICAM-5 D1D2 is about 11, far 

above the pI value of most proteins (4~6). This property was exploited to purify this 

protein fragment using a series of ion-exchange columns. 

1. Collect supernatant from CHO lec 3.2.8.1 cells stably transfected to express 

ICAM-5 D1D2. The cells were cultured in dishes, flasks or in roller bottles with 

GMEM-MSX medium. Roller bottles generally give higher expression due to 

larger surface area. We typically harvest the supernatant every week and add fresh 

medium into roller bottles (100~200 ml for a 2-L roller bottle) for long term culture 

(see Note 4). 

2. Concentrate the supernatant up to 10~20 folds and dialyze it against 50 mM 

Tris-HCl, pH8.8. 

3. Centrifuge to remove precipitants. 

4. Load the concentrated supernatant to a SP cation exchange column pre-equilibrated 

with 50 mM Tris-HCl pH8.8. Wash the column with 10 CV of 50 mM Tris-HCl 

pH8.8. Elute ICAM-5D1D2 with 50 mM Tris-HCl pH8.8, 1M NaCl. 

5. Collect and pool peak fractions containing ICAM-5D1D2. Dialyze it against 50 

mM Tris-HCl pH8.8. 

6. Load the dialyzed sample to Mono Q anion exchange column pre-equilibrated with 

50 mM Tris-HCl pH8.8. ICAM-5D1D2 does not bind to the column at this pH. 

Collect the flow through fraction. Although ICAM-5D1D2 does not bind to Mono 

Q at this pH, contaminant proteins do and this step improves the purity. 



7. Load the flow through fraction from Mono Q to Mono S pre-equilibrated with 50 

mM Tris-HCl pH8.8. Wash the column with 2CV of 50 mM Tris-HCl pH8.8 and 

elute with a NaCl gradient from 0 to 0.4 M in 20 CV. Collect and pool the peak 

fractions.  

8. Concentrate the ICAM-5D1D2 fractions from Mono S and load to Superdex 75 

prep column pre-equilibrated with 20 mM HEPES pH7.5, 0.2 M NaCl. Collect and 

pool the peak fractions. 

9. Concentrate the pooled fractions and change buffer by dialysis to 20 mM HEPES, 

pH7.5, 50 mM NaCl. Aliquote, flash freeze into liquid nitrogen and store at -80ºC 

for later use (see Notes 5 and 6). 

 

4. Notes 

1. Unless stated otherwise, all solutions should be prepared in water that has a 

resistivity of 18.2 MΩ-cm and total organic content of less than five parts per 

billion. This standard is referred to as “water” in this text. 

2. For wild type I domain, CuSO4 and phenathroline should not be included. CuSO4 is 

used to facilitate oxidization of the engineered disulfide-bond in the mutant locked 

high-affinity I domains and phenathroline is used to inhibit metalloprotease activity. 

GSH and GSSH may be used instead of CuSO4 to provide oxidization-reduction 

potential. CuSO4 and phenathroline are less expensive. 

3. Dialyzed FCS should be used especially when culturing CHO cells in the presence 



of L-MSX.  

4. CO2 is not needed for CHO lec cells cultured in roller bottles. The bottles can be 

placed on a rotating rack at a speed of 2~3 rpm in a 37°C warm room. Harvest the 

supernatant and add in fresh medium with an aseptic technique in a tissue culture 

hood. Parafilm can be used to wrap around the bottle cap to further reduce 

contaminant. 

5. In the crystallization of ICAM-5 D1D2 with the integrin αL I domain, ICAM-5 

D1D2 was mixed with the I domain in equal molar ratio at a total concentration of 

11 mg/ml. The mixture was used in crystallization screening and we obtained 

crystals from precipitant in a reservoir solution containing 0.1 M HEPES pH 7.5, 

10% PEG8000, 8% ethylene glycol at room temperature. Crystals were optimized 

with a pH gradient from 7.0 to 8.0 and PEG8000 gradient from 5% to 15%. Later, 

ethylene glycol was replaced by glycerol with a gradient from 5% to 12%. Better 

crystals were obtained with 2 µl of protein mixed with 1 µl of reservoir solution 

(0.1 M HEPES pH 7.5, 7.5% PEG8000, 10% glycerol) at 4° C in 3 days. 

   The crystals were harvested and soaked in 0.1M HEPES pH7.5, 15% 

PEG8000, 20% glycerol and 5 mM magnesium chloride. It is important to increase 

the concentration of PEG8000 from 7.5% to 15%, otherwise the crystals dissolved 

slowly and this impairs the diffraction quality. After soaking in cryo-protectant, the 

crystals were flash frozen into liquid nitrogen for later data collection. 

6. The diffraction data for crystals of ICAM-5D1D2 in complex with the integrin αL I 



domain were collected at ID19 at Argonne National Laboratory and processed with 

HKL2000 (15). The scaled diffraction data (sca file) were fed into program 

dtrek2mtz in CCP4 (16) and converted into mtz file with 5% of the data added to 

FreeR column. The result of Mathew’s coefficient calculation (17) showed that 

there was likely only one copy of the complex in the asymmetric unit with about 

67% solution content. Self-rotation function did not show any pseudo-symmetry, 

and there was no pseudo-translation either. Thus, we figured that there should be 

only one copy of the complex in the asymmetric unit to look for. 

Two homologous structures, ICAM-3 D1 in complex with high affinity I 

domain (HA) (PDB code 1T0P) and ICAM-1 D1D2 with intermediate affinity I 

domain (IA) (PDB code 1MQ8), were used as search models to solve the structure 

of ICAM-5D1D2 with I domain by molecular replacement. The structure of 

ICAM-1 D1D2 alone was also used (PDB code 1IC1). Phaser (18) from CCP4 

package was used to accomplish molecular replacement with HA, ICAM-3D1 and 

ICAM1-D2 as search models.  

The solution was refined in Refmac (19) in CCP4 suit by rigid body 

refinement followed by constrained refinement. By alternate model building with 

Coot (20) to fit density into ICAM-5 sequence and refinement with Refmac, there 

was not much difficulty in the tracing of ICAM-5. However, we did encounter 

some trouble in correctly tracing the I domain. In all previous integrin α I domain 

structures, α7 helix is located between β6 strand and α1 helix with a direction from 



top to down. At the beginning we tried to model the α7 helix of I domain in this 

direction and the density did not fit well with the residues of α7 helix. Furthermore, 

the β6-α7 loop did not have any reasonable density (Fig. 1a). When the symmetry 

related molecules were checked, we noticed that α7 helix of one molecule might 

swing out and insert into a symmetry related molecule in an upside-down fashion 

(Fig. 1a). Fig. 1b shows a typical α helix, for which all the Cα-Cβ bond point to the 

N terminus of the helix. Upon carefully checking the density we noticed that most 

of the residues in α7 helix showed a polarity with α7 helix from down to up (Fig. 

1c). The final model did have a swing-out of the α7 helix (Fig. 2).  
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Fig. 1. Swung-out of the α7 helix of the I domain in complex with ICAM-5 D1D2. (A) 

Fo-Fc map showing the traces of β6-α7 loop and α7 helix. The positive map of Fo-Fc was 

shown as grey mesh. The I domain and ICAM-5 were shown as Cα traces. The density 

connecting to Leu289 showed an upward tracing for β6-α7 loop and α7 helix. And there 

was a break between Leu289 and the density at the lower part of I domain. (B). A typical α 

helix composed of alanines. All Cα-Cβ bonds of the helix pointed to the N terminus of the 

helix. (C). Polarity of the density for α7 helix showing a direction from down to up. The α7 

helix was modeled into the density and was shown as Cα traces. Some of the residues were 

labeled showing a clear polarity from down to up.  

 
 
 
 



Fig. 2.  Ribbon diagram of ICAM-5/I domain complex. Two symmetry-related ICAM-5/I 

domain complexes were shown with the C-terminal α7-helix of one I domain (at the lower 

position) inserted into a groove of the other I domain (at the upper position) and the 

α7-helix of upper I domain swung-out to insert into the third I domain, which was not 

shown in the figure.  

 


	Protein Expression and Purification of Integrin I Domains and IgSF Ligands for Crystallography
	Hongmin Zhang* and Jia-huai Wang#
	Abstract
	1. Introduction
	2. Materials
	2.1 Expression and purification of L I domain in E.coli
	1. Expression vector: pET22b with an inserted fragment encoding the L I domain (residue N129 to Y307 with a stop codon following Y307) (10, 11).
	2. BL21 (DE3) competent cells.
	3. LB-amp medium: Dissolve 10g tryptone, 5g yeast extract and 10g sodium chloride in 1L of water (see Note 1).  Autoclave at 121 C for 20min, add 1ml of 100 mg/ml ampicillin when it is cooled to room temperature.
	4. Rich medium: 20 g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl, 20 ml/L glycerol, 50 mM K2HPO4, 10 mM MgCl2, 10 g/L glucose, and 100 (g/L ampicillin.
	5. 0.1 M Isopropyl -D-1-thiogalactopyranoside (IPTG).
	6. Lysis buffer: 50 mM Tris-HCl pH8.0, 1 mM MgCl2, 0.4 (g/ml DNase I, 0.4 (g/ml RNase A, 1 (g/ml lysozyme.
	7. Sonicator with a large sonication tip.
	8. Wash buffer 1: 20 mM Tris-HCl pH8.0, 23 %( w/v) sucrose, 0.5 %( v/v) Triton X-100, 1 mM EDTA.
	9. Wash buffer 2: 20 mM Tris-HCl pH8.0, 1 mM EDTA.
	10. Solubilization buffer: 6 M Guanidine HCl, 50 mM Tris-HCl pH8.0, 1 mM DTT.
	11. Refolding buffer: 50 mM Tris-HCl pH8.0, 1 mM MgCl2, 5 %( v/v) glycerol, 50 mg/L CuSO4 (see Note 2), 1 mM phenathroline (stock of 1M in DMSO), 0.1mM PMSF (stock of 100 mM in isopropanol).
	12. Ion exchange buffer A: 20 mM Tris-HCl pH8.0.
	13. Ion exchange buffer B: 20 mM Tris-HCl pH8.0, 1 M sodium chloride.
	14. Size exclusion buffer: 20 mM HEPES pH7.5, 0.2 M sodium chloride.
	15. FPLC equipment.
	16. Q-sepharose ion-exchange column.
	17. Superdex75prep size-exclusion column.
	3. Methods
	3.1 Expression and purification of L I domain in E.coli
	3.2 Expression and purification of ligands in CHO-lec 3.2.8.1 cells
	Our ICAM-5D1D2 construct does not contain any purification tags and we have no suitable antibodies against ICAM-5D1D2 to be used in affinity purification. However, the unique situation here is that the isoelectric point (pI) of ICAM-5 D1D2 is about 11...
	4. Notes
	6. The diffraction data for crystals of ICAM-5D1D2 in complex with the integrin (L I domain were collected at ID19 at Argonne National Laboratory and processed with HKL2000 (15). The scaled diffraction data (sca file) were fed into program dtrek2mtz i...
	References


