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Abstract

Recognizing familiar faces is essential to social functioning, but little is known about how people identify human faces and
classify them in terms of familiarity. Face identification involves discriminating familiar faces from unfamiliar faces, whereas
face classification involves making an intentional decision to classify faces as ‘‘familiar’’ or ‘‘unfamiliar.’’ This study used a
directed-lying task to explore the differentiation between identification and classification processes involved in the
recognition of familiar faces. To explore this issue, the participants in this study were shown familiar and unfamiliar faces.
They responded to these faces (i.e., as familiar or unfamiliar) in accordance with the instructions they were given (i.e., to lie
or to tell the truth) while their EEG activity was recorded. Familiar faces (regardless of lying vs. truth) elicited significantly less
negative-going N400f in the middle and right parietal and temporal regions than unfamiliar faces. Regardless of their actual
familiarity, the faces that the participants classified as ‘‘familiar’’ elicited more negative-going N400f in the central and right
temporal regions than those classified as ‘‘unfamiliar.’’ The P600 was related primarily with the facial identification process.
Familiar faces (regardless of lying vs. truth) elicited more positive-going P600f in the middle parietal and middle occipital
regions. The results suggest that N400f and P600f play different roles in the processes involved in facial recognition. The
N400f appears to be associated with both the identification (judgment of familiarity) and classification of faces, while it is
likely that the P600f is only associated with the identification process (recollection of facial information). Future studies
should use different experimental paradigms to validate the generalizability of the results of this study.
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Introduction

Recognizing familiar faces is crucial to social interaction, one of

the basic abilities of human beings [1,2,3]. People act very

differently if they categorize someone as a friend or a stranger. The

ability to differentiate a friend from a stranger and to make

appropriate responses in terms of greetings (e.g., addressing by

name), facial expressions (e.g., smiling), and body gestures (e.g.,

hand shaking) have serious social consequences. However, people

sometimes deliberately pretend not to recognize faces for their

own benefit. For instance, a debtor might deny recognizing a loan

shark in a face-to-face encounter in order to avoid the demand to

pay up, or a swindler may sidle up to a stranger, pretending to

recognize a relative, to ask for money. These examples suggest that

processing familiar faces may involve two dissociable processes:

identification and classification. The identification process prob-

ably involves perceiving facial features and relating the face to

other semantic information, such as names, relationships, and

events. The classification process probably involves the intention

of recognizing a face, which may be outcome driven.

Reviewing the research on face recognition, there is a unitary

model that stipulates that people always try to recognize faces

accurately (i.e., to recognize familiar faces as ‘‘familiar’’ and

unfamiliar faces as ‘‘unfamiliar’’) [4,5,6]. A few recent fMRI

studies have investigated the effect of the deliberate manipulation

of facial recognition [7,8]. These studies focused on the neural

processes involved in the manipulation of intention and used

recognition of faces as an outcome measure, but they did not

address the separate processes of identification and classification.

Furthermore, the poor temporal resolution of fMRI prevented

these researchers from finely differentiating these neural processes.

The ERP methodology offers a high temporal resolution that helps

uncovered at least two processes associated with processing familiar

faces [9,10]. Eimer [9] found that compared to unfamiliar faces,

familiar faces elicit an enhanced N400f (300–450 ms post stimulus)

and P600f (450–650 ms). Both the N400f and the P600f were widely

distributed over the scalp and peaked in the central-parietal region.

These two components were not observed when participants saw

inverted faces, which have been known to disrupt face recognition

[11,12]. They were also absent in prosopagnostic patients, who suffer

from semantic memory dysfunction, further suggesting that N400f

and P600f are important in face recognition [13].

The question then becomes ‘‘What roles do N400f and P600f

play in face recognition?’’ There are at least two theories. First, the
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earlier N400f could be the identification of the actual identity of

the face, and the later P600f could be the intentional classification

of the face into either the ‘‘familiar’’ or ‘‘unfamiliar’’ category.

This theory is not terribly promising, since a previous study found

that the P600f was not necessarily a consequential process of the

N400f. Eimer [10] found that when participants had to respond to

a target character inside a string presented in front of the facial

stimulus, the letter strings directed attention away from the face,

after which the N400f disappeared, but the P600f remained, for

familiar faces. One interpretation of this finding is that the

processes responsible for the N400f are not triggered automatically

in response to the presence of a familiar face in the visual field;

instead, they depend on attentional processing. The fact that the

P600f remained suggests that it is independent from attentional

processing. In line with this thought, the N400f might be the result

of a top-down cognitive control process, while the P600f may

reflect the more basic processing of the characteristics of the

stimuli (facial features and semantic content). A second possible

theory is that the P600f reflects the identification process, which

includes the perception of facial features and relating the features

to the semantic content and leads to recognition. The N400f may

represent the classification of facial familiarity, which is a top-

down intention to manipulate incoming information.

This study investigates the roles of N400f and P600f in facial

recognition by manipulating classification intention using a

directed-lying paradigm. Participants were asked to respond to

the familiarity of facial stimuli according to visual cues that

prompted them to make either a truthful (i.e., congruent) or

deceptive (i.e., incongruent) response. It was hypothesized that the

directed-lying task would elicit two event-related components: one

around 400 ms post stimulus (probably the N400f) elicited the

strongest signal in the central-parietal region and another around

600 ms post stimulus (probably the P600f), also elicited the

strongest signal in the central-parietal region. Furthermore, it was

hypothesized that the N400f would be modulated by congruency

and incongruency (lying) and the P600f would be modulated by

(actual) familiarity and unfamiliarity.

Results

Behavioral findings
Measured by mean reaction times, there were no significant

effect of identification (F,1), but there were significant effects of

classification (F(1, 14) = 1.64, p = .022) and the interaction between

identification and classification (F(1, 14) = 3.37, p = .009).

Measured by accuracy rates, there was a significant main effect of

identification (F(1, 14) = 5.66, p = .003) but not of classification

(F,1). The interaction between identification and classification was

also significant (F(1, 14) = 4.95, p = .004). In general, the participants

identified familiar faces (97.263.0%) more accurately than

unfamiliar faces (95.364.1%). When the participants saw familiar

faces, they were more accurate when they were instructed to tell the

truth (97.962.5%) than when they were told to lie (96.663.4%; i.e.,

incongruent), t(14) = 2.23, p = .004. There were no other significant

differences in the between-condition comparisons.

ERP results
SPM analyses showed significant main effects of identification on

the amplitudes of ERP in two time ranges. In general, the

amplitudes elicited by familiar faces were significantly more

positive-going than amplitudes from unfamiliar faces. The first

component was found before 400 ms post stimulus, with maximal

significance identified at 319 ms. The second component was found

after 400 ms post stimulus, with maximal significance identified at

501 ms. The maximal significance of both components appeared to

come mainly from channels in the middle and right parietal regions

and from the middle and right temporal regions. There was less

amplitude in the middle occipital region (Table 1).

It is likely that the maximum significance at 319 ms (from 284

to 372 ms) represents the N400f. The main channels elicited less

Table 1. Main and interaction effects of identification and
classification revealed by repeated-measures ANOVA using
SPM (Significance level p,.001, uncorrected. Extent threshold
k.200 voxels).

t(ms) side# area$ channel* k T p(unc)

Main effect of identification

(FF+FU).(UF+UU)

284 R T 127 670 3.41 0.001

286 R FT 112 670 3.34 0.001

319 M P 67 23078 4.32 ,0.001

326 M P 94 23078 4.16 ,0.001

327 R PT 121 23078 4.23 ,0.001

371 R T 127 1762 3.53 ,0.001

371 R PT 121 1762 3.44 0.001

372 R FT 112 1762 3.48 ,0.001

501 M P 72 364264 6.94 ,0.001

501 M O 70 364264 6.81 ,0.001

541 M P 67 364264 6.59 ,0.001

(FF+FU),(UF+UU)

No significance

Main effect of classification

(FF+UF).(FU+UU)

No significance

(FF+F),(FU+UU)

280 M C 51 34450 4.36 ,0.001

284 M C 90 34450 4.36 ,0.001

287 R T 127 34450 4.19 ,0.001

761 M O 45 2025 3.74 ,0.001

761 M O 69 2025 3.65 ,0.001

762 L OT 22 2025 3.75 ,0.001

763 R FT 112 460 3.48 ,0.001

764 R T 128 2556 3.62 ,0.001

765 R PT 121 2556 3.63 ,0.001

Interaction between stimuli and response

(FF2FU).(UF2UU)

No significance

(FF2FU),(UF2UU)

No significance

#denotes the transverse positions: i.e., left (L), middle (M), and right (R).
$denotes the area the channel is located in: i.e., frontal-temporal (FT), central (C),
parietal (P), parietal-temporal (PT), temporal (T), occipital (O), and occipital-
temporal (OT).

*denotes the nearest suprathreshold channel.
k = cluster size (number of voxels showing significant differences; each voxel
size is 2.13 mm62.69 mm61 ms), T = peak value measured within the cluster,
FF = familiar faces classified as ‘‘familiar,’’ FU = familiar faces classified as
‘‘unfamiliar,’’ UF = unfamiliar faces classified as ‘‘familiar,’’ and UU = unfamiliar
faces classified as ‘‘unfamiliar.’’
doi:10.1371/journal.pone.0031250.t001

Facial Familiarity and Directed Lying
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negative-going N400f (i.e., familiar.unfamiliar) in the middle (67

and 94) and right (121) parietal regions (p,.001; k = 23,078 voxels;

Table 1, Figure 1A). Other channels showing a similar pattern

included those in the right frontal-temporal, temporal, and

temporal-parietal regions (112 and 127; p = .001 to ,.001;

k = 670 or 1,762 voxels). It is likely that the maximum significance

at 501 ms (from 501 to 541 ms) represents the P600f. The

channels elicited more positive-going P600f (i.e., familiar.unfa-

miliar) in the middle parietal (67 and 72) and middle occipital (70)

regions (p,.001; k = 364,264 voxels; Figure 1B).

There was a significant main effect of classification in two time

ranges. Unlike the identification effect, the amplitudes elicited by

classifying faces as ‘‘familiar’’ were significantly less positive-going

than those elicited by classifying faces as ‘‘unfamiliar.’’ The first

component, which was likely to be a more negative-going N400f

(i.e., ‘‘familiar’’,‘‘unfamiliar’’), was found to be maximally

significant around 280 ms post stimulus and was elicited at

channels in the middle central region (51 and 90) and the right

temporal (127) regions (p,.001; k = 34,450 voxels; Table 1,

Figure 2A). The second component associated with classification

was between 761 and 765 ms post stimulus and was elicited in

channels located in the right temporal (112, 121, and 128), middle

occipital (45 and 69), and left temporal-occipital (22) regions

(p,.001; k = 2,023 to 2,556 voxels, except for channel 112, which

was 460 voxels; Figure 2B).

SPM analysis did not show significant interactions between the

identification and classification effects on the ERP amplitudes at

the significance level of p,.001.

Figure 1. ERP waveforms at representative channels indicating the main effect of the identification of facial familiarity. Familiar faces
elicited significantly more positive-going amplitudes than unfamiliar faces at two time windows: (A) From 284 to 372 ms (N400f) post stimulus in the
middle parietal (represented by channel 67) and right parietal regions; (B) From 501 to 541 ms (P600f) post-stimulus in the middle parietal
(represented by channel 72) and occipital regions. The shadowed bars cover the time windows indicated above. Fam = familiar faces,
Unfam = unfamiliar faces, ‘‘Fam’’ = responded as familiar faces, and ‘‘Unfam’’ = responded as unfamiliar faces.
doi:10.1371/journal.pone.0031250.g001

Facial Familiarity and Directed Lying
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Conventional analyses based on the mean amplitudes extracted

from the selected channels within the predetermined time windows of

N400f and P600f revealed findings similar to those found using the

SPM method. There were significant main effects of both identifi-

cation (F(1, 14) = 11.19, p = .005) and classification (F(1, 14) = 9.22,

p = .009) for the N400f. However, the conventional analysis revealed

a time window from 320 to 400 ms—somewhat later than the time

points of peak significance signaled by the SPM (284 to 372 ms). The

interactions between the identification, classification, and site effects

were not significant (F(3,42) = 1.33 to 2.45, p..05).

Familiar faces elicited significantly less-negative going N400f

than unfamiliar faces at the midline sites (i.e., familiar.unfami-

liar); faces classified as ‘‘familiar’’ (regardless of truth/lying) elicited

more negative-going amplitudes than those classified as ‘‘unfamil-

iar’’ at the midline sites. Only the effect of identification (F(1,

14) = 26.15, p,.001) was significant in modulating the P600f

amplitudes. All of the other main (F(1, 14) = 2.14 to 3.01, p..05)

and interaction (F(3, 42) = ,1 to 1.13 p..05) effects were not

statistically significant.

Familiar faces elicited more positive-going P600f over the

midline sites than unfamiliar faces. The main effect of classification

found by the SPM at the right temporal, middle occipital, and left

temporal-occipital regions from 761 to 765 ms was beyond the

time window of the P600f (i.e., 500 to 600 ms) and was not found

in the conventional analysis.

Discussion

This study used a directed-lying paradigm to explore the

possible differentiation between identification and classification

Figure 2. ERP waveforms at representative channels indicating the main effect of classification of facial familiarity. Faces classified as
‘‘familiar’’ elicited significantly more negative-going amplitudes than faces classified as ‘‘unfamiliar’’ at two time windows: (A) From 280 to 297 ms
(N400f) post stimulus in the middle central (represented by channel 51) and right temporal regions; (B) From 761 to 765 ms (P600f) post stimulus in
the right temporal (represented by channel 128), middle occipital and left temporal-occipital regions. The shadowed bars cover the time windows
indicated above. Fam = familiar faces, Unfam = unfamiliar faces, ‘‘Fam’’ = responded as familiar faces, and ‘‘Unfam’’ = responded as unfamiliar faces.
doi:10.1371/journal.pone.0031250.g002

Facial Familiarity and Directed Lying
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processes involved in facial recognition. The directed-lying

paradigm made it possible to measure honest and deceptive

classification responses for familiar and unfamiliar faces. In

general, the participants were more accurate at identifying familiar

faces than unfamiliar faces. Results based on the two a priori

markers for facial familiarity showed that the N400f occurred

with both identification and classification, while P600f only

appeared with identification. Regardless of whether they had

to lie or tell the truth, the participants had more positive-going

N400f and P600f in the middle and right parietal regions when

they were identifying familiar faces compared to when they

were identifying unfamiliar faces. Classifying faces as ‘‘familiar’’

(under both truth and lie conditions) elicited more negative-going

N400f in the central and right temporal regions. Both conven-

tional and SPM analysis gave convergent evidence of these

observations.

The results showed that the N400f was associated with both the

identification and classification processes in facial recognition. The

difference is that in the identification process, familiar faces were

found to elicit less negative-going N400f than unfamiliar faces. In

contrast, in the classification process, faces classified as familiar

elicited more negative-going N400f than those classified as

unfamiliar. This suggests that it is likely that, despite sharing the

same N400f, the two steps in facial recognition involve two

discrepant cognitive processes. Previous studies have consistently

found that the N400f is involved in discriminating familiar faces

from unfamiliar ones [14,15,16]. Previous researchers have also

related the N400f to high-level attentional processing [10]. They

found that familiar faces elicited more negativity than unfamiliar

faces at Cz and Pz; however, such effects were diminished when

attention was directed to another demanding task. It is plausible

that the N400f also reflects top-down control in the processing of

familiar faces.

In this study, regardless of whether the participants were telling

the truth or lying, faces classified as ‘‘familiar’’ elicited more

negative-going N400f than those classified as ‘‘unfamiliar.’’ These

results were interesting because lying did not seem to affect the

N400f. In other words, classification could be determined by the

intention of categorizing faces as familiar or unfamiliar rather than

by the possible regulatory processes of lying.

Moreover, there were different polarity effects for identification

(i.e., familiar.unfamiliar) and classification (i.e., ‘‘familiar’’,

‘‘unfamiliar’’). Compare this to the findings of previous studies

that found N400f amplitude differences: familiar faces classified as

familiar elicited more negative-going amplitudes than unfamiliar

faces classified as unfamiliar [9,10]. This suggests that the N400f

can also be attributed to an intended classification of the facial

stimuli rather than to the mere identification of familiarity based

on facial features.

The P600f was associated only with the identification of faces,

not with lying. Familiar faces elicited a more positive-going

component than unfamiliar faces in the middle parietal and

occipital regions. This identification process seems to be

independent from the classification process since the interaction

was not significant. Our findings are consistent with a previous

study that reported that the P600f component was related with

more positive amplitudes for familiar faces than for unfamiliar

faces at the Pz channel, regardless of whether attention was

directed to another demanding task or not [10]. The association of

face identification with the P600f is somewhat counter-intuitive.

One would expect the perception of facial features to be a

prerequisite for identification, which precedes classification, but

the results of this study suggest that some sub-process of

identification (reflected by the P600f) takes place even after

classification (reflected by the N400f). Rugg and Curran offered a

plausible explanation for the temporally split phenomena

underlying face identification [17]. According to their findings,

the recognition of an object involves a dual process: a judgment on

familiarity followed by a recollection of the information associated

with the object. The identification sub-process, as reflected by the

P600f in this study, suggests that the participants probably

accessed the information related to the familiar faces. This

proposition is supported by previous studies which related the

P600f to the processing of the demographic characteristics (e.g.,

name and occupation) of known persons or the visual character-

istics of known faces [9,10,13]. The recollection of information

about familiar faces is likely to be automatic as the participants

were not instructed recollect such information in the task used in

this study.

In the directed-lying task used in the study, the intention to lie

or tell the truth was prompted before the presentation of a face.

The appearance of the face would have enabled the participants to

extract the facial features embedded in the stimuli (associated with

N170). Setting the intention to lie as part of the classification

process appears to occur at around 280 ms (denoted by N400f).

Our results also suggest that attention would be allocated as

part of the identification process at round 300 ms. The extraction

of semantic information about faces, which is independent

of the decision to lie (classification), is likely to occur at around

500 ms.

An interesting finding in this study is the late onset of the

classification process, elicited around 760 ms in the bilateral

temporal to occipital regions. Temporally, this signal is distinct

from the N400f and P600f components. Other studies have

reported a face-specific negative component (N700) elicited

about 700 ms post stimulus from intracranial electrodes placed

on the cortical surface of the ventral and lateral brain regions

[17,18]. The N700 was found to be related to semantic priming

in a task involving learning and identifying face names [17],

perhaps reflecting a top-down process. However, the contribution

of this component in the processing of facial familiarity is beyond

the scope of this study and should be investigated in further

studies.

Our findings support the differential roles of identification and

classification processes in the recognition of familiar faces. The

N400f appears to be linked with both identification and

classification, while the P600f appears to be primarily linked with

identification. The dual identification processes revealed in this

study are likely to involve an earlier judgment of familiarity and a

later recollection of information related to familiar faces. Using

electrophysiological measures together with brain imaging could

further differentiate the role of these two components.

This study has a few limitations. The faces used were of personal

acquaintances, but previous studies have shown that learned

familiarity [13,19] and celebrity faces [20] evoke different

processes. Therefore, caution should be taken when generalizing

the current findings to female adults and those with different

demographic characteristics to the participants in this study. The

results may also not be generalizable to other types of familiarity.

More studies on the neural processing of face identification and

classification are still needed.

This study also has implications for lie detection. However,

there are at least two things that need to be done first. First, this

paradigm needs to be tested on more samples to obtain a

consistent standard for lie detection. Second, the measures

should be adjusted to the special neural characteristics of each

person so that the method is able to detect lies better in individual

cases.

Facial Familiarity and Directed Lying
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Materials and Methods

Participants
Fifteen healthy Chinese males aged between 25 to 40 years

(mean = 29.8; SD = 4.0) and with an average of 16.2 years of

education (SD = 2.9) were recruited from the community. Male

participants were recruited to prevent possible gender differences

in facial recognition [21,22] and directed-lying behaviors

[23,24,25]. All of the participants (a) were right handed as assessed

by the Edinburgh Handedness Inventory [26], (b) possessed

normal or corrected-to-normal vision, (c) reported no history of

neurological or mental disorders, and (d) gave their written

informed consent to participate in the study. The study was

conducted under the approval of the Institutional Review Board of

The University of Hong Kong/Hospital Authority Hong Kong

West Cluster and Hong Kong Polytechnic University.

Materials
There were two sets of face stimuli: (1) 30 personally familiar

faces of males taken from photographs of the participants’ friends

from the local community and (2) 30 faces of male strangers, which

were photos of Chinese people unknown to the participants. All of

the familiar and unfamiliar stimuli had neutral facial expressions

and were age matched. To control for differences in color tones,

all of the pictures were transformed into grayscale. The luminance,

contrast, and resolution of the photos were adjusted to approach

equivalence using Adobe Photoshop (San Jose, CA).

Experimental Task
This study’s design was based on Lee and colleagues’ design [8].

After a randomized inter-trial interval ranging from 800 to

1,200 ms, a condition cue of ‘‘Lie’’ (incongruent response) or

‘‘Truth’’ (congruent response) was presented on the screen for

1,000 ms (Fig. 3A). This was followed by a blank screen that lasted

for a randomized period of 200 to 600 ms. The face stimulus was

then presented for 600 ms. A fixation cross then appeared on the

screen for 1,200 ms to give the participants time to prepare a

response. Then, after a randomized 200 ms to 600 ms blank inter-

stimulus interval (ISI), the question ‘‘Do you know him?’’

appeared on the screen to prompt the participants to make a

response. The participants had to respond by indicating whether

the face shown was ‘‘Familiar’’ or ‘‘Unfamiliar’’ by pressing the

designated keys on a keypad using the left or right index finger.

The participants were told to respond as quickly and accurately

as possible. The keys for ‘‘Familiar’’ and ‘‘Unfamiliar’’ were

counterbalanced among the participants. The two main effects

manipulated were identification (familiar vs. unfamiliar faces) and

congruence (truth vs. lying). The 262 factorial design gave four

conditions: (1) familiar faces classified as ‘‘familiar’’ (a ‘‘Truth’’ cue

leading to a congruent response); (2) familiar faces classified as

‘‘unfamiliar’’ (a ‘‘Lie’’ cue leading to an incongruent response); (3)

unfamiliar faces classified as ‘‘familiar’’ (‘‘Lie’’/incongruent); and

(4) unfamiliar faces classified as ‘‘unfamiliar’’ (‘‘Truth’’/congru-

ent). During the formal experiment, each of the 60 faces (30

familiar and 30 unfamiliar) was presented 8 times, i.e. half for

truthful responses and half for deceptive responses, giving a total of

480 trials in the task. The order of trials was randomized into 8

blocks. Completing one block took about 5 minutes, and the

participants had 30-second breaks between the blocks.

Procedure
Prior to the experimental task, each participant completed

familiarity and valence calibrations of the facial stimuli used in the

experimental task. After seeing a face, the participant was required

to give the name of the person corresponding to the face and to

assign a rating of the extent of the face’s familiarity and valence,

from 1 (lowest) to 9 (highest). Stimuli that produced correct name

responses, familiarity ratings above 5 (the middle score), and

valence ratings of 5 (to control for possible valence effects) were

included in the experimental task as familiar faces. Faces were

selected as the unfamiliar face stimuli if the participants (1) could

not name the person, (2) assigned a 0 familiarity rating, or (3)

assigned a valence rating of 1 to 4. This maximized the difference

in familiarity between the familiar and unfamiliar faces.

The directed-lying task was explained to the participants as a

lie-detection game in which they were required to lie as genuinely

as possible so as to deceive the computer. They were instructed to

pay attention to the visual cue of ‘‘Truth’’ or ‘‘Lie’’ (all materials

were written in Chinese) before the presentation of the stimulus.

For example, a ‘‘Truth’’ cue would mean responding ‘‘familiar’’

when seeing a familiar face; a ‘‘Lie’’ cue would mean responding

‘‘unfamiliar’’ to a familiar face.

The participants practiced with a few trials until they expressed

their readiness to engage in the experimental task. During the

experiment, each participant was seated about 0.5 m in front of a

computer screen in an electromagnetically shielded room. All of

the visual stimuli were presented within 10 degrees of the visual

angle to control eye movement.

Behavioral data analysis
The variables under study were response time and accuracy

with a 2 (familiar vs. unfamiliar faces)62 (lie vs. truth) repeated-

measures ANOVA.

ERP recording and analysis
Electroencephalogram (EEG) data was captured over the scalp

by a 128-channel fabric cap (Neuroscan) embedded with Ag-AgCl

electrodes. All channel recordings were referenced to a computed

average of the left and right mastoids. Channel impedances were

kept below 5 kV. The electrical signals were amplified by a gain of

1,000 with a band pass from .01 to 200 Hz.

The preprocessing of EEG data was conducted with Scan 4.3

(Neuroscan). The raw signals were filtered off-line with a zero

phase-shift digital filter and a 0.1 to 30 Hz band pass. Eye blink

artifacts were mathematically corrected [27], and signals exceed-

ing 6100 mV were automatically discarded. The epochs extracted

covered 2200 to 1,000 ms of each trial, with time zero set at the

time when the facial stimulus was presented. Epochs of each of the

262 conditions were averaged for each participant.

Averaged epochs (i.e., files ending with ‘‘.avg’’) for each

participant were converted into SPM8 (Wellcome Trust Centre

for Neuroimaging, UCL) file format on Matlab (The MathWorks,

Inc.). The first step was to generate scalp maps per time frame

using the 2D sensor layout [28,29]. The output dimension of an

interpolated scalp map was 64 pixels in each of the x and y

directions. That is, the standard Neuroscan 128-channel locations

(for ensuring smoothness) were projected onto a 64664 pixel

sensor space equivalent to 136.32 mm6172.16 mm. The second

step was to stack scalp maps over peristimulus time. A total of 1201

scalp maps were constructed from epoch based on the 1,000 Hz

sampling rate. This generated the 3D (6466461201 voxels) data

volume for computation. Different from functional brain mapping,

a voxel in here was defined as 2.13 mm (space)62.69 mm

(space)61 ms (time). The ERP amplitudes captured at each

channel and time point were fit to the voxels by linear

interpolation and Gaussian smoothing procedures (at FWHM

correction 8:8:8) [30,31].
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The SPM8 used a general linear model (GLM) to analyze the

main and interaction effects on these images. Because the a priori

hypotheses set for the present study were about the N400f and

P600f, signals captured earlier than P1 (up to 80 ms post stimulus,

which were primarily due to visual information processing [18])

and later than 980 ms were excluded from the analysis. Similar to

the main effects used for the behavioral data, a 262 repeated-

measures ANOVA tested the identification and classification

effects on the two ERP components. Significance thresholds were

set at p,.001 (uncorrected), and the extent threshold was set at

k.200 voxels; it was set conservatively to prevent false positives.

The SPM method results were verified against conventional

repeated-measures ANOVA model analyses of the amplitudes of

N400f and P600f captured at selected sites on the scalp. The sites

selected for the analyses were based on the sites used in previous

studies [9,10] over the midline central-parietal regions. Four sites

along the midline were selected: Fz, Cz, Pz, and Oz; these sites

were equivalent to channels 60, 10, 66, and 69, respectively

(Fig. 3B). The time window defined for the N400f (320 to 400 ms)

and P600f (500 to 600 ms) components were based on Eimer’s

studies [9,10]. The mean amplitude of each component was tested

with a 2 (familiar vs. unfamiliar face)62 (lie vs. truth)64 (sites: Fz,

Cz, Pz, and Oz) repeated-measures ANOVA.
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