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Abstract—This paper presents a comprehensive sizing 

methodology which could contain all key elements necessary to 
obtain a practical sizing result for a stand-alone photovoltaic 
(PV) system. First, a stochastic solar radiation model based on 
limited/incomplete local weather data is formulated to synthesis 
various chronological solar radiation patterns. This enables us to 
evaluate a long-term system performance and characterize any 
extreme weather conditions. Second, a stochastic load simulator 
is developed to simulate realistic load patterns. Third, two 
reliability indices, Expected-Energy-Not-Supplied (EENS) and 
Expected-Excessive-Energy-Supplied (EEES), are incorporated 
with an Annualized Cost of System (ACS) to form a new 
objective function called an Annualized Reliability and Cost of 
System (ARCS) for optimization. We then apply a particle swarm 
optimization (PSO) algorithm to obtain the optimum system 
configuration for a given acceptable risk level. An actual case 
study is conducted to demonstrate the feasibility and 
applicability of the proposed methodology.     
 

Index Terms—Stand-alone PV system, sizing optimization, 
Expected-Energy-Not-Supplied (EENS), load signatures, particle 
swarm optimization (PSO). 

I.  INTRODUCTION 
ith increasing emphasis on climate change and 
sustainable development, renewable resources are more 

widely used in power generation to reduce carbon emissions. 
Among all renewable resources, solar energy is one of the 
most abundant ones and photovoltaic (PV) technologies have 
seen significant improvement in cost and performance in 
recent years. Although PV technology is still costly, it has 
become feasible and cost competitive in small-scale stand-
alone system. Since solar energy is intermittent with diurnal 
characteristics, energy storage such as a battery bank is 
essential to act as a backup to ensure a reliable supply [1].  

For sizing evaluation, there are two main types of 
simulation scenario [2], namely chronological and analytical. 
The former requires a time series data while the latter uses a 
probability density function (pdf) to simulate the stochastic 
characteristic of the renewable resources. The chronological 
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simulation is used in this paper because it emulates system 
conditions in a continuous time-line to enable detailed 
evaluation of the batteries [3].  

Accurate solar radiation data is one of the most important 
parameters for the feasibility study of a PV project because it 
is the main cause of failure/inadequacy in a stand-alone 
system if all energies (generated and stored) are depleted [4]. 
Industrial PV sizing practice requires historical and measured 
solar data on site. However, typical durations of measured data 
are from a few months to a year which can only offer a limited 
view to project its long-term performance. To enhance the 
accuracy, modeling solar radiation using artificial neural 
network (ANN) [5]-[7] and regressive model [8]-[10] has been 
proposed but share different degree of limitations. In this 
paper, we propose to use two commonly accessible weather 
data, namely solar radiation and total rainfall, to synthesis 
variable chronological solar radiation patterns.  

On the demand side of the power balance equation, load is 
also varying with time and common practices just use a 
constant value (e.g. maximum). However, assuming a constant 
load pattern may oversimplify the stochastic load nature. We 
therefore propose a load simulator based on load signatures as 
described in [11], [12] to generate a more realistic and 
chronologically-based consumption pattern for our studies. 

The optimum design of the system is mainly evaluated by 
two objectives: reliability and cost. For reliability, a 
commonly used index is Loss-of-Load-Probability (LOLP) 
[2], [3], [13]. However, this index is not able to measure the 
severity of the shortage period and neglect the excessive 
energy that could not be captured by battery due to its 
capacity. In order to incorporate these, the Expected-Energy-
Not-Supplied (EENS) [14] and the Expected-Excessive-
Energy-Supplied (EEES) are bundled with an Annualized Cost 
of System (ACS) [3] to form a new objective function called 
Annualized Reliability and Cost of System (ARCS) for the 
optimization process. 

Among various optimization techniques proposed to solve 
similar sizing problem (e.g. probabilistic approach [14], 
graphical construction method [13] and artificial intelligence 
method [3], [7]), we propose to use a particle swarm 
optimization (PSO) algorithm to obtain the optimum 
configuration of PV modules and batteries because it is 
generally recognized to be robust in finding global optimal 
solutions, especially in multi-model and non-linear 
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optimization problems [15]. This paper is organized as 
follows. Section II provides a mathematical formulation of 
various system components.  The modeling of meteorological 
conditions is presented in Section III. Section IV presents a 
probabilistic load simulator. Reliability and cost assessment 
tools are given in Section V. A stochastic optimal sizing 
optimization formulation and the use of PSO algorithm to 
solve the problem are described in Section VI. Simulation and 
results based on a case study is presented in Section VII and 
finally the conclusion. 

II.  MODELS OF SYSTEM COMPONENTS 
A stand-alone PV system mainly includes three 

components: 1) PV array, 2) battery bank and 3) inverter. This 
paper focuses on the system sizing in which the PV arrays and 
the batteries are configured in parallel. When solar energy is 
available, surplus PV energy will go into the battery until it is 
fully charged. Conversely, the battery will be discharged to 
meet the load if solar energy is inadequate or inexistent. This 
section describes the mathematical formulations of the system 
components. 

A.  PV Array Power Model 
PV array is consisted of modules which are the basic power 

conversion units. The number of PV modules is one of the 
decision variables in our sizing problem because it determines 
the total PV power output as shown in (1): 
 ( ) = ( ) ; = 1,2,… ,  (1) 
 
where ( ) is the total PV power output at time t in W; ( ) is the power output of PV module at time t in W; and 

 is the number of PV modules. 
To determine the total PV power output, an accurate model 

of PV module in terms of received solar radiation is necessary. 
In this paper, a regression model is used [16] and formulated 
as follows:  
 ( ) = ( ) + ( ) + ( ) ( )+ ( ) ( ); = 1,2, … ,  (2) 

 
where ( ) is the solar radiation at time t in W/m2; ( ) is the 
wind speed at time t in m/s; ( )  is the ambient 
temperature at time t in oC; and , ,  and  are 
regression coefficients which can be estimated from measured 
data.  

B.  Battery Bank & Inverter Model 
A proper sized battery bank requires a detailed formulation 

of charging and discharging processes and this can be 
characterized by the State-Of-Charge (SOC) of the battery. 
SOC at any time, says t, is related to the previous state of SOC 
and to the battery power ( ) as follows:  

 ( ) = ( − 1) ∙ (1 − )+ ( ) ∆ ; = 1,2, … ,  (3) 

where ( ) and ( − 1) are the SOC at time t and t–1, 
respectively;  is a self-discharge rate of the battery bank; 

 is a round-trip efficiency; ∆  is the time step;  is the 
energy capacity of a single battery in kWh;  is the number 
of batteries; and T is the simulation period. An initial 
condition of the SOC, i.e. (0), is set to be 0.8 in this 
paper. 
 In order to prevent the battery bank from overcharging and 
overdischarging, SOC is commonly used as a decision 
variable of the bi-directional inverter with the following SOC 
constraints: 
 ≤ ( ) ≤ ; = 1,2, … ,  (4) 
 
where  and  are the minimum and maximum SOC 
values of the battery bank, respectively.  

The sign of battery power ( )  can be positive or 
negative depending on whether the battery bank is in charging 
or in discharging modes as shown by following power balance 
equation of the system: 

 ( ) = ( ) − ( ) ; = 1,2, … ,  (5) 

 
where ( ) is the load demand at time t in W;  is the 
inverter efficiency. Since there is a power conversion loss in 
the bi-directional inverter, this efficiency loss is considered as 
part of the load demand. 

III.  MODELS OF METEOROLOGICAL CONDITIONS 
In this section, we provide a statistical method to synthesis 

the meteorological conditions in a chronological manner. The 
meteorological data include solar radiation, ambient 
temperature and wind speed, which are required to determine 
the power output of PV arrays. 

A.  Modeling of Solar Radiation 
To generate the chronological solar radiation, we have to 

consider two key elements: 1) weather for two consecutive 
days and 2) profile of solar radiation for each day.  
    1)  Weather for two consecutive days 

The Markov chain model is widely used to simulate 
different meteorological conditions such as solar radiation [17] 
and wind speed [18]. We apply a first-order Markov chain 
model with daily total rainfall as a variable to simulate the 
daily weather sequences. The first-order Markov chain model 
indicates that the next step only depends on the present state 
and not on any earlier states.  

In our study, the Hong Kong weather data from 2009 to 
2010 are used to model the variations of daily weather 
conditions. For simplicity, the daily total rainfall is 
categorized into three states: 
1) Sunny day (i.e. total rainfall = 0) 
2) Light raining day (i.e. 0 < total rainfall ≤ 10 mm) 
3) Heavy raining day (i.e. total rainfall  > 10 mm) 

With above categorization, the 3 × 3 daily transition 
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