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ABSTRACT

Investigating positivity of polynomials over the complex unit
disc is a relevant problem in electrical and computer engineer-
ing. This paper provides two sufficient and necessary condi-
tions for solving this problem via linear matrix inequalities
(LMIs). These conditions are obtained by exploiting trigono-
metric transformations, a key tool for the representation of
polynomials, and results from the theory of positive polyno-
mials. Some numerical examples illustrate the proposed con-
ditions.

Index Terms— Linear system, Discrete time, Transfer
function, Positivity, LMI.

1. INTRODUCTION

It is well-known that an useful tool for studying a linear sys-
tem consists of investigating its frequency response, i.e. the
restriction of the transfer function of the system onto the sta-
bility boundary in the complex plane, which is the imaginary
axis in the case of continuous-time systems or the unit disc in
the case of discrete-time systems, see e.g. [1] and references
therein. Numerous results based on the frequency response
have been provided in the literature through the years, for sta-
bility and performance analysis, control synthesis, etc. Some
of these results involve the positivity of a polynomial over the
stability boundary, for instance because this can be used to
detect and impose stability.

This paper proposes two conditions based on linear matrix
inequalities (LMIs) for investigating positivity of polynomials
over the complex unit disc. First, a sufficient and necessary
condition is proposed for the case of a generic polynomial,
which requires to solve a convex optimization problem, in
particular an eigenvalue problem (also known as semidefinite
program). Second, another sufficient and necessary condi-
tion is proposed for the case of polynomials with real coeffi-
cients, which requires to solve another eigenvalue problem in
a smaller number of variables. These conditions are obtained
by exploiting trigonometric transformations, a key tool for the
representation of polynomials, and results from the theory of

positive polynomials. Some numerical examples illustrate the
proposed conditions.

The paper is organized as follows. Section 2 introduces
the problem formulation and some preliminaries on the rep-
resentation of polynomials. Section 3 describes the proposed
results. Section 4 presents some illustrative examples. Lastly,
Section 5 concludes the paper with some final remarks.

2. PRELIMINARIES

2.1. Problem Formulation

The notation used throughout the paper is as follows: R (C):
space of real (complex) numbers; j: imaginary unit, i.e. j =√−1; �(a) (�(a)): real (imaginary) part of a; a∗: complex
conjugate of a, i.e. a∗ = �(a) − j�(a); A′: transpose of A;
A > 0 (A ≥ 0): symmetric positive definite (semidefinite)
matrix A; �: symmetric entry.

Let f : C → C be defined as

f(z) =
d∑

k=−d

akz
k (1)

where d is a nonnegative integer that defines the degree of
f(z) and a−d, . . . , ad ∈ C are the coefficients of f(z). We
assume that these coefficients satisfy

a−k = a∗k ∀k = 0, . . . , d (2)

hence implying that f(z) is real on the complex unit disc.

Problem. The problem that we consider in this paper con-
sists of establishing whether f(z) is positive on the complex
unit disc, i.e.

f
(
ejω

)
> 0 ∀ω ∈ R. (3)

2.2. Representation of Polynomials

Before proceeding we briefly introduce a key tool that will be
exploited in the next sections. Let p : Rn → R a polynomial
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of degree less than or equal to 2m. Then, p(x) can be ex-
pressed via the square matrix representation (SMR) [2] (also
known as Gram matrix method) as

p(x) = x{m}′
(P + L(α))x{m} (4)

where x{m} ∈ Rσ(n,m) is a vector containing all monomials
of degree equal to m in x, where σ(n,m) is the number of
such monomials given by

σ(n,m) =
(n+m− 1)!

(n− 1)!m!
, (5)

P ∈ Rσ(n,m)×σ(n,m) is a symmetric matrix, and L(α) ∈
Rσ(n,m)×σ(n,m) is a linear parametrization of the set

L(n,m) = {L = L′ : x{m}′
Lx{m} = 0} (6)

where α ∈ Rτ(n,m) is a vector of free parameters, being
τ(n,m) the dimension of L(n,m) given by

τ(n,m) =
1

2
σ(n,m)(σ(n,m) + 1)− σ(n, 2m). (7)

The representation (4) was introduced in [2] in order to
establish whether p(x) is a sum of squares of polynomials
(SOS) through linear matrix inequalities (LMIs). Specifically,
p(x) is SOS if there exist polynomials p1(x), p2(x), . . . such
that

p(x) =
∑
i

pi(x)
2, (8)

and by using the SMR one has that p(x) is SOS if and only if
there exists α such that

P + L(α) ≥ 0. (9)

Condition (9) is a linear matrix inequality (LMI) feasibility
test, which amounts to solving a convex optimization prob-
lem. See e.g. [3] and references therein for details about SOS
polynomials. See also [4] for algorithms for the construction
of the matrices P and L(α).

3. PROPOSED RESULTS

The first condition proposed in this paper is obtained by re-
calling that

ejω =
1 + jt

1− jt
, t = tan

ω

2
(10)

whenever ω 	= π + 2kπ, k = 0,±1,±2, . . .. Thus, it follows
that

f
(
ejω

)
=

d∑
k=−d

ak

(
1 + jt

1− jt

)k

. (11)

Consequently, after some calculations we obtain that

f
(
ejω

)
=

q(t)

(1 + t2)
d

(12)

where
q(t) = a0

(
1 + t2

)d
+ r(t) (13)

with

r(t) =
d∑

k=1

2k∑
i=0

d−k∑
l=0

bk,i
(d− k)!

l!(d− k − l)!
ti+2l (14)

and

bk,i =

⎧⎪⎪⎨
⎪⎪⎩

2�(ak) (−1)i/2(2k)!

i!(2k − i)!
if i even

2�(ak) (−1)(i+1)/2(2k)!

i!(2k − i)!
if i odd.

(15)

Next, let us express q(t) via the SMR as

q(t) = t{d}
′
(Q+ Lq(α)) t

{d} (16)

whereQ is a symmetric matrix andLq(α) is a linear parametriza-
tion of the subspace L(1, d), see Section 2.2 and references
therein for details about their construction. Let Oq be a ma-
trix satisfying

1 = t{d}
′
Oqt

{d}. (17)

The following result provides a sufficient and necessary con-
dition for establishing whether (3) holds.

Theorem 1 Define the optimization problem

μ∗ = sup
α,μ

μ

s.t. Q+ Lq(α)− μOq ≥ 0.
(18)

The condition (3) is satisfied if and only if f(−1) > 0 and
μ∗ > 0.

Proof. “⇐” Suppose that f(−1) > 0 and μ∗ > 0. Let α∗ be
the optimal value of α in (18). One has that

Q+ Lq(α
∗)− μ∗Oq ≥ 0.

Pre- and post-multiply this constraint by t{d}
′

and t{d}, re-
spectively. One gets:

0 ≤ t{d}
′
(Q+ Lq(α

∗)− μ∗Oq) t
{d}

= q(t) − μ∗

i.e. μ∗ is a lower bound of q(t). Therefore, q(t) is positive,
and from (12) and f(−1) > 0 we conclude that (3) is satis-
fied.

“⇒” Suppose that (3) is satisfied. This means that f(−1) >
0 and q(t) > 0 for all t ∈ R. Hence, it follows that μ# > 0
where

μ# = inf
t

q(t).



Since q(t) − μ# is nonnegative and t is a scalar, it follows
that q(t)−μ# is SOS, see e.g. [3] and references therein, and
hence there exists α such that

Q + Lq(α)− μ#Oq ≥ 0.

Therefore, for such an α and for μ = μ#, the constraint in
(18) holds, i.e. μ∗ ≥ μ# > 0. �

Theorem 1 provides a sufficient and necessary condition
for establishing whether (3) holds based on the solution of
the optimization problem (18). This optimization problem be-
longs to the class of eigenvalue problems [5] (also known as
semidefinite programs) and is a convex optimization problem
since the cost function is convex (linear in this case) and the
feasible set is convex (feasible set of an LMI in this case). The
number of scalar variables in (18) is given by

n1 =
d2 − d+ 2

2
. (19)

The second condition proposed in this paper assumes that
the coefficients of f(z) are real, i.e.

�(ak) = 0 ∀k = −d, . . . , d. (20)

This clearly implies that

f
(
e−jω

)
= f

(
ejω

) ∀ω ∈ R. (21)

By using the fundamental relation

ejω = cosω + j sinω (22)

it follows that

f
(
ejω

)
=

d∑
k=−d

�(ak) cos(ωk)−�(ak) sin(ωk) (23)

i.e.

f
(
ejω

)
= a0 +

d∑
k=1

2 (�(ak) cos(ωk)−�(ak) sin(ωk)) .
(24)

By defining
x = cosω (25)

and using trigonometric formulas, one has that

cos(ωk) =
∑

l≥0, 2l≤k

(−1)lk!xk−2l(1− x2)l

(2l)!(k − 2l)!
. (26)

Consequently, we obtain that

f
(
ejω

)
= s(x) (27)

where

s(x) = a0 +

d∑
k=1

∑
l≥0, 2l≤k

ck,lx
k−2l(1− x2)l (28)

and

ck,l = 2�(ak) (−1)lk!

(2l)!(k − 2l)!
. (29)

Next, let u(x) be an auxiliary polynomial, and let us define

v(x) = s(x) + u(x)(x2 − 1). (30)

Let us express u(x) and v(x) as

u(x) = x{d1−1}′
Ux{d1−1}

v(x) = x{d1}′
(V (U) + Lv(β)) x

{d1} (31)

where

d1 =

⌈
d

2

⌉
, (32)

U and V (U) are symmetric matrices with V (U) depending
affine linearly on U , and Lv(β) is a linear parametrization of
the subspace L(1, d1), see Section 2.2 and references therein
for details about their construction. Let Ov be a matrix satis-
fying

1 = x{d1}′
Ovx

{d1}. (33)

The following result provides a sufficient condition for estab-
lishing whether (3) holds.

Theorem 2 Assume that d > 0 and that (20) holds. Define
the optimization problem

ν∗ = sup
U,β,ν

ν

s.t.

{
U ≥ 0
V (U) + Lv(β)− νOv ≥ 0.

(34)

The condition (3) is satisfied if and only if ν∗ > 0.

Proof. “⇐” Suppose that ν∗ > 0. Let U∗ and β∗ be the
optimal values of U and β in (34). One has that

U∗ ≥ 0
V (U∗) + Lv(β

∗)− ν∗Ov ≥ 0.

Pre- and post-multiply the first constraint by x{d1−1}′
and

x{d1−1}, respectively. One gets:

0 ≤ x{d1−1}′
U∗x{d1−1}

= u(x)

i.e. u(x) is nonnegative. Similarly, from the second constraint
one gets

0 ≤ s(x) + u(x)(x2 − 1)− ν∗.

These two facts imply that, for any x ∈ [−1, 1],

s(x) ≥ ν∗

i.e. ν∗ is a lower bound of s(x) over [−1, 1]. Therefore, from
(27) we conclude that (3) is satisfied.



“⇒” Suppose that (3) is satisfied. Define the minimum of
s(x) over [−1, 1] as

ν# = inf
x∈[−1,1]

s(x).

This means that ν# > 0. Moreover, s(x)−ν# is nonnegative
over [−1, 1]. Hence, there exists a SOS polynomial s(x) of
degree 2(d1 − 1) such that s(x) + u(x)(x2 − 1)− ν# is also
SOS, see e.g. [3] and references therein, and hence there exist
U and β such that

V (U) + Lv(β) − ν#Ov ≥ 0.

Therefore, for such a U and β and for ν = ν#, the constraints
in (34) hold, i.e. ν∗ ≥ ν# > 0. �

Theorem 2 provides a sufficient and necessary condition
for establishing whether (3) holds in the case that the coef-
ficients of f(z) are real. This condition is based on the op-
timization problem (34) which belongs to the class of eigen-
value problems similarly to the one in Theorem 1. The num-
ber of scalar variables in (34) is given by

n2 =

⎧⎪⎨
⎪⎩

d2 + 4

4
if d is even

d2 + 2d+ 5

4
if d is odd

(35)

4. EXAMPLES

This section provides two illustrative examples of the pro-
posed conditions. The eigenvalue problems (18) and (34) are
solved with the toolbox SeDuMi for Matlab [6].

4.1. Example 1

Let us consider

f(z) = (1 + 2j)z−2 + z−1 + 5 + z + (1− 2j)z2.

We have that

f
(
ejω

)
= 5 + 2 cosω + 2 cos(2ω)− 4 sin(2ω).

Let us use Theorem 1. The polynomial q(t) is given by

q(t) = 9 + 16t− 2t2 − 16t3 + 5t4.

By choosing t{d} = (1, t, t2), the matrices in (18) are

Q =

⎛
⎝ 9 8 −1

� 0 −8
� � 5

⎞
⎠ , Lq(α) =

⎛
⎝ 0 0 −α

� 2α 0
� � 0

⎞
⎠

Oq =

⎛
⎝ 1 0 0

� 0 0
� � 0

⎞
⎠ .

It turns out that μ∗ = −19.61, and hence from Theorem 1 we
conclude that (3) does not hold.

4.2. Example 2

Let us consider

f(z) = 3z−15 + 2z−2 − z−1 + 11− z + 2z2 + 3z15.

We have that

f
(
ejω

)
= 11− 2 cosω + 4 cos(2ω) + 6 cos(15ω).

Since (20) holds we can use Theorem 2. The polynomial s(x)
is given by

s(x) = 7− 92x+ 8x2 + 3360x3 − 36288x5 + 172800x7

−422400x9 + 552960x11 − 368640x13 + 98304x15.

It turns out that ν∗ = 0.878, and hence from Theorem 2 we
conclude that (3) holds. The same conclusion can be found
by using Theorem 1. However, the number of scalar variables
in (18) is n1 = 106, while the number of scalar variables in
(34) is just n2 = 65.

5. CONCLUSIONS

This paper has provided two sufficient and necessary con-
ditions for investigating positivity of polynomials over the
complex unit disc. These conditions are based on eigenvalue
problems, which belong to the class of convex optimization
problems, and have been obtained by exploiting trigonomet-
ric transformations, a key tool for the representation of poly-
nomials, and results from the theory of positive polynomials.
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