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Abstract—This paper presents the design of the BetterLife 2.0
framework, which facilitates implementation of large-scale social
intelligence application in cloud environment. We argued that
more and more mobile social applications in pervasive computing
need to be implemented this way, with a lot of user generated ac-
tivities in social networking websites. We adopted the Case-based
Reasoning technique to provide logical reasoning and outlined
design considerations when porting a typical CBR framework
jCOLIBRI2 to cloud, using Hadoop’s various services (HDFS,
HBase). These services allow efficient case base management
(e.g. case insertion) and distribution of computational intensive
jobs to speed up reasoning process more than 5 times. With the
scalability merit of MapReduce, we can improve recommendation
service with social network analysis that needs to handle millions
of users’ social activities.

I. INTRODUCTION

The Internet has witnessed the emergence of Web 2.0

social networking sites, such as Facebook, Yelp, Amazon,

and Netflix. They allow individuals to construct a public

profile and articulate a list of connected users to traverse and

share contents within the system. These social networking

websites become very successful as they bring together social

experiences from small and disconnected groups.

Further with the advancement of pervasive computing, com-

puter access penetrates almost every aspect of our society,

from GPS receiver, RFID tags to mobile devices. Many

context-aware mobile applications have been developed with

social networking website access. GeoLife 2.0 [1] is a recom-

mender system of location-based social networking service. It

enables users to invite people from the community to visit a

place together. These places are mined from past experience of

one’s potential friends. PaTac [2] is platform to deliver urban,

ubiquitous, personalized services for citizens and tourists.

Similarly, it is also based on user’s location, profile. In general,

this new type of applications can enhance social interaction

within ambient environment and enrich individual’s choices

and relationships when getting recommendation services [3].

People use these applications unconsciously to do daily tasks

and leave records of experience about both people and envi-

ronment. For example, a customer can comment on a meal

of a restaurant on Yelp with his mobile phone, which can be

viewed by other Yelp users as a reference or recommendation.

As people share more information, online communities can

compile more and more digital traces. These information

bear comprehensive pictures of both individual and group

behaviors, which has the potential to transform the under-

standing of people or organizations [4]. As the degree of

considering others’ experience depends on the relationship,

the correlation actually affects people’s decision. Conventional

ideas of Social Intelligence mainly focused on identifying

the rules, norms, and modeling interactions (e.g., protocols,

polices) that guide appropriate behavior in a given social

setting. Although this cognitive approach has served well in

linguistics and artificial intelligence, its meets its limits when

applied to human relationships [5].

It is usually difficult for users to judge whether certain

information is useful to them or not in this huge information

surge. People have to actively do search, whenever they need a

piece of information. Even more effort is needed if they want

to search a more trustworthy piece of information. The capac-

ity to collect and analyze massive amounts of data generated

by users demands high performance computing to accelerate

knowledge discovery and to boost pattern recognition. Also

a social network with n users has at most n2 possible

relations among members, the promising solution of analyzing

large-scale social networks data in time is to distribute the

computation workload over a large number of nodes. The

cloud environment can be regarded as a massively scalable

infrastructure to deliver computing (CaaS) and data (DaaS)

service “anytime, anywhere” to support pervasive computing

applications.

One the other hand, Case-based Reasoning (CBR) technique

has long been used in context-aware recommendation systems

as a reasoning technique, which is the process of solving new

problems based on the solutions of similar past problems [6],

[7]. Similarity-based retrieval is a beneficial feature of case-

based recommenders [8]. It is applicable to problems where

earlier cases are available, even when the underlying domain

knowledge are not fully understood. People would benefit from

a contrast-and-compare analysis by supplying a previous case

and its solution to convince a user to make a decision. When

the case base accumulates and the application needs to handle

massive amount of user history, new reasoning platform in

cloud environment need to be developed to scale with the

explosion of case data.

The goal of BetterLife 2.0 is to provide an extensible frame-

work to implement pro-active personalized recommendation
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service for users in daily life. It makes use of reasoning

technique CBR and social network information to analyze

large amount of data on cloud, in order to make better

intelligent decisions for online and mobile users. The rest of

this paper is organized as follows. We examine related work

in Section II. We then detail our BetterLife 2.0 framework in

Section III. Performance evaluation of a sample application is

done in Section IV. Section V concludes the paper with future

work directions.

II. RELATED WORK

A. Large-scale Recommender system

Recommendation systems can be classified into four main

approaches [9], namely personalized recommendation, social

recommendation, item recommendation, and a combination of

the three. Classical Collaborative Filtering (CF) algorithm for

item recommendation has been used in most large-scale e-

commerce websites (e.g. eBay, Amazon, Netflix). They try

to predict utility of items based on rating of other users,

especially those peers “similar” to the user. A. Das et al.

proposed a scalable real time Google news recommendation

engine [10] based on CF and MapReduce to guarantee the per-

formance. Zhao et al. implemented a user-based CF algorithm

on Hadoop [11] to solve the scalability problem. Zhang et al.

introduced a user-centered collaborative location and activity

filtering algorithm to make mobile recommendations [12]

through mining knowledge from GPS trajectory. Traditional

standalone CBR recommender systems will suffer similar

performance degradation when large scale user cases need to

be analyzed. Fortunately, MapReduce follows the divide-and-

conquer strategy and facilitates the large-scale processing [13],

which can be used to extend the standalone CBR application.

B. Rule-based Reasoning vs Case-base Reasoning

For traditional rule-based recommendation systems, they are

not suitable for large scale social intelligence applications.

Rules can be difficult to generalize or induce in certain domain

without absolute standards for decision making. All triggering

conditions must be strictly satisfied or exactly matched to

activate the adaption, and then the system scalability is a chal-

lenge issue because the substantial rules have to be checked

extensively as data accumulate. Due to the unpredictable

nature of the pervasive computing environment, the intelligent

agent should make decision according to the changing context

in the environment. The system designer can not foresee all

possible conditions or pre-determine all the rules. Failure in

rule condition matching leads to malfunction of the whole

system, which in turn distracts user’s attention.

Also, rule-based systems are hard to maintain because rules

have to be kept adding for increased size of data, while they

could become more complicated. CBR is usually used when a

large volume of historical data already exists, problems are not

fully understood, lots of exceptions need to be considered, and

service customization are needed. Therefore, in order to keep

the applications in the long run, CBR is needed as it does not

require additional rule generation when the data size become

large. We also adopted an efficient cloud storage system like

HBase to efficiently store and add new cases. The accuracy of

results could be improved over time as the case base increases.

C. Social Network Analysis

Some research work has shown that at least some of the

similarities within a network are caused by the influence and

interactions of the people in the network. Leskovec et al.

discussed the phenomenon of information cascade [14], in

which individuals adopt a new action or idea due to influence

by others. In some extreme cases, knowledge about a full

network’s behavior determines the result of its members’

asking a “top hit” list available in a music downloading

website.

Traditional methods for determining the importance of a

node or a relationship in a network are sampling and survey-

ing, while in a very large network the structural properties

cannot be inferred by scaling up the results from small net-

works. To measure a user’s correlation to his/her social affilia-

tions, Berscheid et al. [15] considered Relationship Closeness

Inventory (RCI) based on the degree of interdependence and

determined the degree of closeness by calculating the amount

of shared time, the diversity of activities, and the strength

of the influence. Aron et al. [16] argued the closeness can be

described as a holistic process of cognitively including another

person within one’s self-concept, exhibiting the Inclusion of

Other in Self scale (IOS) as seven Venn-like diagrams from

not overlapped at all to nearly fully overlapped.

However these two theories do not address the transitivity

of correlation. Since the closeness usually reflects the mutual

benefits, how to efficiently measure the social closeness to

guarantee fruitful interactions is a challenging issue in large-

scale social networks. The evaluation of social closeness is

computational intensive, a computational social science [4] has

emerged to collect and analyze data with an unprecedented

breadth, depth and scale. H. Karloff et al. [17] showed the

advantage of MapReduce model for a large class of PARM al-

gorithms. Tang et al. implemented the TAP distributed leaning

algorithm for analyzing social influence [18] on MapReduce to

scale to real large networks model. We can also apply breadth

first search or a single-source shortest paths [19] to calculate

social closeness.

All in all, while other work aims at improving algorithm

accuracy for recommendation in specific interest domain,

BetterLife 2.0 tries to provide a sustainable, extensible and

efficient framework that can generalizes the recommendation

services to cover many kinds of activity interest in everyday

life. Besides, while some provide recommendation services to

users without justification on data trustfulness, BetterLife 2.0

considers relationship of users in social network to give more

trustworthy suggestions. Lastly, some existing recommenda-

tion systems have limitations when processing large amount

of data. By using Case-based Reasoning in cloud environment,

this problem can be solved in BetterLife 2.0 framework.
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Fig. 1. Architecture of BetterLife 2.0

III. BETTERLIFE 2.0 OVERVIEW

The architecture of BetterLife 2.0 is shown in Figure 1.

There are three components within BetterLife 2.0 namely, (1)

Cloud Layer (2) Case-based Reasoning Engine (3) Application

Interface.

The Cloud Layer consists of Hadoop Distributed File Sys-

tem (HDFS) clusters. The Hadoop data nodes will collectively

store application data represented by cases and social network

information, which include relationship topology, and pairwise

social closeness information. Growing user activities from

online websites or mobile devices leads to fast growing data set

of user history and social interactions. Traditional reasoning in

web server is not adequate to handle this scale of information,

as excessive I/O access and computation intensity would result

in very long query response time. It is therefore necessary to

have cloud facilities to handle the heavy I/O access and logic

reasoning of intelligent applications. Therefore, the major

bottleneck of the response time will shift from the intelligence

reasoning complexity to the optimization of MapReduce func-

tions and local computation on task nodes.

The Case-based Reasoning Engine extended from jCOL-

IBRI2 [20] has a data connector to Cloud Layer, and calculate

similarity measurement between cases to retrieve the most

similar ones. It can also store new case back to Cloud Layer

using HBase.

The Application Interface uses a master node which is

responsible for handling the request query from users. It then

distributes the query to other server machines in the clusters

(Map). It will also receive computation results from those

server machines (Reduce). For client side, there be two types

of clients. The first one is a web interface, which is extended

from a social networking website for user to create profile,

generate and record social interactions and edit user data, all

these information will be stored into Cloud Layer. Another

type of client is the mobile application on mobile phones, for

user to upload or modify user context, to query and to receive

server recommendations.

A. Case-Based Reasoning on MapReduce

In this section, we explains the design considerations of

porting the typical CBR framework jCOLIBRI2 onto Hadoop

MapReduce framework in BetterLife 2.0. As the first step, we

extended jCOLIBRI2’s data connector so that it can connect

with the case base stored in Hadoop HDFS. In a typical CBR

reasoning cycle, we have:

• Retrieve: Given a target problem, retrieve the most rel-

evant or similar cases from memory to solve it. A case

consists of a problem description, solution, and optionally

annotations about how the solution was derived.

• Reuse: Map the solution from the prior case to the

target problem. This may involve adapting the solution

as needed to fit the new situation.

• Revise: Having mapped the previous solution to the target

situation, test the new solution in the real world (or a

simulation) and, if necessary, revise.

• Retain: After the solution has been successfully adapted

to the target problem, store the resulting experience as a

new case in memory.
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There is a main difference between BetterLife 2.0 CBR

engine and jCOLIBRI2 framework as shown in Figure 2. The

jCOLIBRI2 CBR application would first retrieve all stored

case into memory of the running machine, then operate any

other operations, such as similarity matching or storing a new

case. There are two problems of CBR applications developed

HDFS

(a) jCOLIBRI2 CBR

Retrieval

Revise

Retain

Reuse
CBRCBR

CBR
CBR

(b) BetterLife 2.0 CBR

Fig. 2. jCOLIBRI2 CBR vs BetterLife 2.0 CBR

under jCOLIBRI2 framework:

1) The computing power relied on only one single machine,

which requires considerably large amount of time on

computing similarity for a single query, especially for

huge amount of cases stored in case base. This is in

contrast with the idea of parallel computation in Hadoop

MapReduce framework.

2) The main memory of a single machine is limited and

therefore the heap size of JVM is also limited. Thus,

for huge amount of cases stored in case base, the

application cannot run as usual. So we need to run

a jCOLIBRI2 CBR application in parallel, processing

power and case base capacity should also be scaled up.

Hence, scalability and sustainability of CBR reasoning

could be achieved.

Revise and retain are basically done by mobile users. After

the system recommends a solution to user, user can give

feedback to system whether he/she has chosen the recom-

mended solution. This newly formed case would be sent back

to our CBR engine. We used the HBase, which is Hadoop

framework’s solution for storing table-like data. Since Hadoop

is capable for storing huge amount of data, case indexing and

case integration in the memory structure are not the concern

of BetterLife 2.0’s CBR engine, but rather timeliness.

To implement the CBR reasoning process on HDFS, the

workflow is shown in Figure 3. The Map function can be

divided into two phases, namely retrieval phase and filtering

phase. In retrieval phase, data format used are designed to be

as simple as possible, with a loose csv format of:

(UserID, T imestamp, Longitude, Latitude, ShopID,

ProductID, Price)

In retrieval phase, each Mapper reads their set of data

locally. The reason behind is to avoid data transfer through

network, which will slow down the whole MapReduce work-

flow. As all queries are targeted at all data (equivalently cases

of CBR), no searching of data is needed in this phase. HDFS

is being configured to have data replication. Failure in a data

Split 0

Split 1

Split 2

Split 0'

Split 1'

Split 2'

ShopID (key),

List(Case)

Shop 1,

{case1, case3}

Shop 2,
{case2, case5}

Shop 3,

{case4, case6}

Shop 1,
Similarity=.9

Shop 2,

Similarity=.7

Shop 3,

Similarity=.8

Shop 4,

Similarity=.6

filtering

CBR
filtering

filtering

CBR

CBR

CBR

Mappers Reducers

Hadoop Distributed File System (HDFS)

Fig. 3. MapReduce Workflow in BetterLife 2.0

node (no response from that node back to the master node)

will result in calling another node with the replicated data to

carry the Map function again. At the end of retrieval phase, the

temporary output will be a line of string, which representing

a historical case data.

The retrieved line of data is then entering the Filtering

Phase, in this phase the line of data is interpreted. Information

like UserID, ProductID (barcode) are extracted from the

line. Irrelevant data like mismatching ProductID, expired

data are filtered. Unfiltered data will be calculated for sim-

ilarity or further attached with the social closeness factor.

These lines are then written into the intermediate output for

Reducer. In our sample application, people will normally only

be interested in the best result of a store, we therefore need

to find the best similarity score for a particular store. We can

thus use the ShopID as the key and the line of data as value

in the Mapper.

Each Reducer will then receive a key ShopID and a collec-

tion of values (cases under that key). CBR is then performed

here. For each value, that is the line of case, CBR calculates

the similarity measurement of that case with the query, as in

the normal retrieve phase. This phase will define similarity

functions for each attribute to find k past cases which are

most similar to the current query using k-nearest neighbors

algorithm (K-NN). The similarity Similarity(N,P ) between
a new case N and a past case P is calculated as follows,

Similarity(N,P ) =
n∑

i=1

Sim(Ni, Pi) ∗Wi

Distance(N,P ) = 1− Similarity(N,P )

n∑

i=1

Wi = 1

Ni is the value of attribute i of the new case N, Pi

is the value of attribute i of the past case P, n is the

number of relevant attributes in the case. Sim(Ni, Pi) is

the local similarity measurement between attribute i values.
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The Similarity(N,P ) is the global similarity measurement

between the two cases, which is a weighted sum of all local

similarity values. Each weight Wi is in the range of [0,1].

Right now the domain knowledge will be used to set the

weight of each attribute. The Distance(N,P ) between a new

case N and a past case P is used to represent the distance

between two cases considering all its attributes’ similarities.

In our demo application, we identified four types of similarity

functions:

• Location Similarity The similarity of two GPS location

attributes is defined as Equation (1), where MaxDistance

is a predefined maximum distance between two points

within a certain region. When Distance(Ngps, Pgps) >
MaxDistance, Sim(Ngps, Pgps) = 0.

Sim(Ngps, Pgps) = 1−
Distance(Ngps, Pgps)

MaxDistance
(1)

• Timestamp Similarity This similarity is defined in

Equation (2), where Diff(Nt, Pt) means their relative

difference in minutes within one day. Because we assume

that user’s behavior pattern will be similar from day to

day, but could vary a lot through out a day.

Sim(Nt, Pt) = 1−
Diff(Nt, Pt)

24 ∗ 60
(2)

• Social Closeness Similarity This similarity is used to

incorporate interpersonal closeness into similarity mea-

surement among cases. The closer the two users in the

social closeness, the higher influence they will have on

each other as defined in Equation (3):

max
p(i,j)∈P (i,j)

∏

e(u,v)∈p(i,j)

w(u, v) (3)

This equation means that we need to find out the path that

maximizes the products of weights of its edges, since two

online user can be connected via multiple different path,

as one user may belong to multiple communities with

difference social closeness. It will be explained more in

Section III-B.

• Price Similarity This similarity returns the similarity of

two prices for the same product in two cases. It uses

McSherry’s “Less is Better” formula

Sim(Pprice, Nprice) =
Maxprice −Nprice

Maxprice −Minprice

(4)

where Maxprice, Minprice are maximum and minimum

prices of that product set by application, and Pprice is

not taken into account.

To make the result list from all Reducers more meaningful,

at the final stage, we sorted the result list according to

similarity value into one list and chop a small set which

exceeds a predefined threshold θ = 0.8 .

B. Social Network Analysis

In order to make a more relevant recommendation system,

we need to trace individual’s relationship. This section ex-

plains the CBR reasoning with social network analysis. After

all the cases are grouped by their user id, we will have a graph

with each node corresponding to one user. We use the breadth

first search (BFS) algorithm on MapReduce to calculate their

closeness according to pairwise relationship weight. Figure 4

showed an example of weight propagation diagram given each

edge’s weight that represents the pairwise closeness of two

nodes. Consider a case associated with its node, we need to

find out the top k nearest cases in the whole case base, based

on distance equation:

u j

v

i

x

w=0.25

w=0.3

w=0.4

          w=0.6

w=0.35

y w=0.5

Fig. 4. Social Closeness Propagation Diagram

Distance(N,P ) = 1−Wgps ∗ Sim(Ngps, Pgps)

− Wt ∗ Sim(Nt, Pt)

− Wprice ∗ Sim(Nprice, Pprice)

− Wsocial ∗ max
p(i,j)∈P (i,j)

∏

e(u,v)∈p(i,j)

w(u, v)

Assuming a case C with node nC.uid at iteration i, its

current estimated distance to given query case Q is:

Distance(C,Q)i = c−Wsocial ∗ w1 ∗ w2 ∗ . . . ∗ wi (5)

where

c = 1−Wgps ∗ Sim(Ngps, Pgps)

−Wt ∗ Sim(Nt, Pt)

−Wprice ∗ Sim(Nprice, Pprice)

and c has been calculated during previous task’s Mapper phase.

At iteration i+ 1:

Distance(C,Q)i+1 = c−Wsocial∗w1∗w2∗. . .∗wi∗wi+1 (6)

So we have:

Distance(C,Q)i+1 = c−(c−Distance(C,Q)i)∗wi+1 (7)

Algorithm 1 and 2 show the steps of BFS using the distance

function Distance(N,P ) to get the most similar cases with

social closeness information. Given a social network topology
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Algorithm 1 SocialNetworkMapper (Key k, Node n)

1: if n.Color == GRAY then

2: for all edge e of n do

3: Node vnode ← new Node (e.ToID)

4: vnode.Distance ← c− (c−n.Distance)∗e.Weight

5: vnode.Color ← GRAY

6: word ← vnode.Id

7: Emit < word, vnode >

8: n.Color ← BLACK

9: end for

10: end if

11: word ← n.Id

12: Emit < word, n >

and their pairwise closeness for each direct relationship, Al-

gorithm 1 and 2 try to explore all the possible paths between

the query user and others by node coloring (WHITE, GRAY,

BLACK). All nodes will be initially be colored WHITE. Upon

discovering a new node, the new node will be colored as

GRAY. It will become BLACK after finishing exploring it.

Algorithm 2 SocialNetworkReducer (Key k, Iterator V )

1: distance ← MAX

2: color ← WHITE

3: edges ← NULL

4: for all Node u ∈ V do

5: if u.Edges.size > 0 then

6: edges ← u.Edges

7: end if

8: if u.Distance < distance then

9: distance ← u.Distance

10: { /* Save the minimum distance */ }
11: end if

12: if u.Color.Ordinal > color.Ordinal then

13: color ← u.Color

14: { /* Save the darkest color */ }
15: end if

16: end for

17: Node n ← new Node (k)

18: n.Distance ← distance

19: n.Edges ← edges

20: n.Color ← color

21: Emit < k, n >

22: if color == GRAY then

23: reporter.incrCounter(Counters.MOREGRAY, 1)

24: end if

IV. PERFORMANCE EVALUATION AND ANALYSIS

We prototyped the BetterLife 2.0 framework and developed

an application of location-based price comparison to evaluate

feasibility, performance and accuracy of CBR technique on

cloud with MapReduce and social closeness information. This

application allows mobile user to find the best place (with

TABLE I
NODE ENVIRONMENT

CPU 2 x Intel Quad-Core E5540 Xeon CPU, 2.53GHz,
8MB cache

Memory 16GB DDR3 memory, 1066MHz,
dual ranked UDIMMs

Storage 2 x 250GB 7.2K RPM SATA hard disks,
running in RAID-1

Network Interface Broadcom 5709 dual-port

OS Fedora 11

best price and from trusted data source) to buy things he

wants from his mobile phone. Because it is always a dilemma

for consumers to strike a balance between shop location and

product price in that shop. The user can take a picture of

the barcode to search for his intended product. The user ID,

barcode information, and detected GPS location will be send to

server to do analysis with trusted data according to the user’s

social relationship, which comes from the product rating social

networking website built from Elgg 1.

The MapReduce cloud environment is based on Hadoop

0.20.2. We implemented an application daemon on the

Hadoop’s master node to accept query from client, which can

be either the browser accessing our product rating website, or

the mobile client implemented in HTC Magic. The Hadoop

cluster environment is shown in Table I.

The experiments are designed to compare the performance

of CBR engine between standalone machine and Hadoop

framework, and to compare the accuracy of CBR engine

with or without social network relationship analysis. We

used synthetic data sets to carry out stress test and measure

response time under various case base size. For performance

comparison, we measured the reasoning time for processing

a query, excluding the time of query/result communication

between Android client and server side Application Interface.

To evaluate accuracy, we use a 10-fold cross-validation

method [21] on three sets of sample data with weighted kNN

algorithm. In our experiment, we set k = 1 and 3 respectively.

For k = 3, the solution is considered as correct when it

appears in the best 3 most similar cases globally. There are 103

user accounts in our product rating social networking website.

We recorded some activities like commenting on product,

joining groups and following friends, to demonstrate a mini-

community and form historical cases. We used locations of

7-Eleven convenient stores in Hong Kong, together with the

social network topology of these 103 users. To obtain enough

cases under different contexts, users’ behaviors were simulated

by a set of pre-defined rules (e.g., location clusters, product

type clusters, time clusters, ). The designed evaluation process

is carried out on 6 data sets with different case base size. For

each set of data, we randomly select one percent of cases

to manually verify that solutions are reasonable in human’s

perspective. The Hadoop cluster consists of up to 16 nodes

for slave operation and one cluster node for master operation.

Slaves are responsible for data node in HDFS and will carry

1http://elgg.org/
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out computing tasks.

A. Query Response Time

We first compared the query execution time on a standalone

machine and on Hadoop machines (with 5 cluster nodes). The

measured response time did not include network latency (to

and from user’s mobile device) as we only concern the speed

of the reasoning engine. Table II compares query response time

(in ms) of the reasoning engine on jCOLIBRI2 (standalone

machine) and BetterLife 2.0 (Hadoop). For case base size =

2500K, standalone machine requires 159s to response, while

Hadoop requires 29s to response, which is more than 5 times

faster than standalone jCOLIBRI2. For a larger case base

size, standalone machine even cannot run the reasoning engine

properly. In particular, our testing machine has a main memory

of 16GB, which is considerably large for a single machine.

It can only hold case base size (no. of cases) as large as

15000K. This is because of the JVM heap size, due to the

limited memory available. However, with Hadoop framework,

the reasoning engine can run even the case base size is as

large as 25000K, while the response time only scales almost

linearly (to 50s).

The HDFS test has shown especially promising result. In

writing a 400MB case data with 2 slave nodes enabled, HDFS

takes 23 seconds to finish. The average I/O rate is about 17.4

MB/s. The read operation also shows a similar result. While

in another test that writes 3GB case data with 15 slave nodes,

it still takes only 23 seconds to finish. The average I/O rate is

130 MB/s. The result shows that Hadoop is performing very

well in large data I/O and increase in hardware resource could

gain almost linear increase in performance. However, some

issue arose when testing MapReduce computing performance.

Because Table II tells that Hadoop performs better than

standalone machine only when the input is large enough. It

should be also noted that there is a start-up delay for the

MapReduce call to take place. This issue can be partially

solved by using online MapReduce solution [22]. Another way

of improving CBR performance is to apply domain-specific

index to cases so that a request would not scan through all

cases in the data set. Hadoop can be used to carry out the

indexing job as an off-line operation and it is not involved in

the user request workflow. A brief idea of this improvement

is that Hadoop can be used in background to instantaneously

build a decision tree to classify cases by criteria like price,

time, location, etc. Classified cases are stored in different files

and folders regarding to the built decision tree. CBR will

therefore only need to find the file storing the suitable subset

of cases and compute similarity among a much smaller subset.

B. Accuracy with Social Network Analysis

Figure 5 shows the accuracy improvement of the query

result with social network analysis, using k-Nearest Neighbors

algorithm with k = 1 and k = 3 respectively. When k = 3,
accuracy in both cases is satisfactory (at least 70%). For both

k = 1 and k = 3, the result accuracy is improved more than

10% with social relationships taken into consideration (labeled

TABLE II
TIME COMPARISON BETWEEN JCOLIBRI2 (STANDALONE) AND

BETTERLIFE 2.0 (HADOOP)

No. (K) Hadoop Standalone No. (K) Hadoop Standalone

100 23015 7121 10000 31000 700886

200 23048 13252 12500 35041 867455

500 25002 34582 15000 41023 1049880

1000 27007 69699 17500 42030 -

2500 29018 159145 20000 44030 -

5000 31078 329378 22500 47046 -

7500 33002 511856 25000 50062 -
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Fig. 5. Accuracy Comparison with different k and social information

by 1nn-w and 3nn-w in Figure 5). This is due to the fact that

when data are synthesized, we imitated some bogus users to

provide product ratings in the website. As these users generally

have lower social closeness with other users, their cases are

less likely to be taken into consideration in case retrieval, even

though their information about a product is preferable. This

reflects the reality that some people intend to spam information

for various reasons such as to promote his own product. For

the accuracy test, it is also found that the accuracy with 1-NN
retrieval method is not as high as expected.

All in all, we have demonstrated the significant improve-

ment on both performance and accuracy of BetterLife 2.0,

compared with standalone jCOLIBRI2 framework. BetterLife

2.0 framework can support a scalable reasoning engine while

the response time is still in acceptable level (considering the

case base size is as large as 25000K). The actual processing

time of the query is within 30 seconds, which is relatively

short. If the start-up cost can be further shortened by other

online MapReduce solutions, the result would be more desir-

able.

V. CONCLUSION AND FUTURE WORK

We addressed various technical aspects to support large-

scale intelligent recommendation service with social network

analysis. The proposed framework BetterLife 2.0 is based on

the Case-Based Reasoning technique for its additive knowl-

edge space growing, and MapReduce framework for its large

scale processing capability on cloud, and social network in-

formation for more relevant recommendation. Through various

large-scale evaluations, we show that queries processing time
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using Hadoop can be highly reduced, as compared to stan-

dalone reasoning engine. Moreover, social relationship plays

an important role in reasoning, selecting trustworthy data for

recommendation.

Future work includes developing more applications with

BetterLife 2.0 framework, covering various types of activities

in daily life, such as transportation, restaurant recommenda-

tion. Also, more contexts can be collected from user’s mobile

devices, such as schedule, moving speed, and weather, temper-

ature from environment. This can enhance the applicability of

BetterLife 2.0 from passively answering user queries to pro-

actively providing intelligent decision to user. We also need

to further improve the timeliness of this whole process with

other online MapReduce solutions.
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[8] D. Bridge, M. H. Göker, L. McGinty, and B. Smyth, “Case-based
recommender systems,” The Knowledge Engineering Review, vol. 20,
no. 3, p. 315, 2005. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1132830

[9] “A guide to recommender systems,” http://www.readwriteweb.com/
archives/recommender systems.php, 2010.

[10] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news
personalization:scalable online collaborative filtering,” International

World Wide Web Conference, 2007. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1242572.1242610

[11] Zhi-Dan Zhao and Ming sheng Shang, “User-Based Collaborative-
Filtering Recommendation Algorithms on Hadoop,” in International

Workshop on Knowledge Discovery and Data Mining. IEEE Computer
Society, 2010, pp. 478–481. [Online]. Available: http://www.computer.
org/portal/web/csdl/doi/10.1109/WKDD.2010.54

[12] Vincent W. Zheng and Q. Y. Bin Cao, Yu Zheng, Xing Xie, “Col-
laborative Filtering Meets Mobile Recommendation: A User-Centered
Approach,” 2010.

[13] J. Dean and S. Ghemawat, “MapReduce:simplified data processing
on large clusters,” Communications of the ACM, vol. 51,
no. 1, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1327452.1327492

[14] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst,
“Cascading behavior in large blog graphs: Patterns and a model,” in
Society of Applied and Industrial Mathematics: Data Mining (SDM07),
2007.

[15] M. S. Ellen Berscheid, “Measuring closeness: The relationship
closeness inventory (rci) revisited,” in The handbook of closeness and

intimacy, LAWRENCE ERLBAUM ASSOCIATES LTD. Erlbaum,
2004, pp. 81–101. [Online]. Available: http://www.questia.com/PM.qst?
a=o&d=104635124

[16] A. Aron, E. N. Aron, and D. Smollan, “Inclusion of other in the self
scale and the structure of interpersonal closeness,” Journal of Personality
and Social Psychology, vol. 63, no. 4, pp. 596–612, 1992.

[17] H. Karloff, “A Model of Computation for MapReduce,” Time, pp.
938–948, 2010. [Online]. Available: http://www.siam.org/proceedings/
soda/2010/SODA10 076 karloffh.pdf

[18] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis
in large-scale networks,” International Conference on Knowledge

Discovery and Data Mining, pp. 807–816, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1557019.1557108

[19] H. ElGindy and C. Y. Pang, “Two Parallel Algorithms for Shortest Path
Problems,” in Proc 1980 Conf on Parallel Processing, vol. 3. Dept.
Comput. Inform. Sci., Univ. Pennsylvania, 1980, pp. 244–253.

[20] J. A. Recio-Garcı́a, D. Bridge, B. Dı́az-Agudo, and P. A. González-
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