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Abstract 

DNA methylation is one of the heritable epigenetic modifications, leading to repressed gene 

expressions and consequent phenotypic alterations without changing the DNA sequence. 

MicroRNA (miRNA) is a novel class of short non-coding RNA molecules regulating a wide 

range of cellular functions through translational repression of their target genes. Recently, 

epigenetic dysregulation of tumor suppressor miRNA genes by promoter DNA methylation 

has been implicated in human cancers, including multiple myeloma (MM). This article 

presents a brief overview of the pathogenesis of MM, the role of DNA methylation in cancer 

biology, methods of DNA methylation analysis, miRNA biology, dysregulation of miRNAs in 

MM, and summaries the current data on the role of DNA methylation of tumor suppressive 

miRNAs in MM. 
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Multiple myeloma 

 Multiple myeloma (MM) is a cancer arising from neoplastic proliferation of plasma cells. 

In the US, it is the second most common form of hematological malignancies, which 

accounts for approximately 15% of all hematological malignancies or approximately 1% of all 

malignant diseases [1]. Interestingly, the incidence of MM appears to be higher in Western 

than Asian countries [2]. 

 

Clinical stages of MM 

 The disease starts with immortalization of a post-germinal center B cell, which will then 

home to the bone marrow and clinically present as asymptomatic monoclonal gammopathy 

of undetermined significance (MGUS) (Figure 1). MGUS progresses to symptomatic MM at a 

rate of 1% per year, and hence is considered as the precursor of MM [3]. Symptomatic MM 

is characterized by the presence of end-organ damages which include hypercalcemia, renal 

failure, anemia, and bone lesions (CRAB) [4]. About 15% of all newly diagnosed MM patients 

are preceded by an additional intermediate stage, known as smoldering MM (SMM), which 

will evolve into symptomatic MM at a higher rate of 10% per year [5]. At the terminal stage, 

MM cells become independent of the bone marrow stroma, and hence extramedullary MM, 

such as plasma cell leukemia, may occur [6]. 

 

Molecular genetics of MM 

 Based on gene expression profiling, universal upregulation of D-type cyclins (cyclin D1, 

D2, or D3) is a hallmark of all MM [7]. However, MM remains a highly heterogeneous 

disease with variable losses and gains of chromosomes, and can be categorized into 
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non-hyperdiploid and hyperdiploid MM [8-10] (Figure 1). It has also been found that this 

ploidy dichotomy can also be detected even in MGUS, the precursor of symptomatic MM, 

and hence an early event of myelomagenesis [10,11]. 

 

 Non-hyperdiploid MM, constituting approximately half of all MGUS and MM, can be 

further subdivided into 3 categories, known as hypodiploid (chromosome number up to 

44/45; and/or DNA index less than 0.95), pseudodiploid (chromosome number between 

44/45 to 46/47; and/or DNA index between 0.95 to 1.05) and near-tetraploid (chromosome 

number greater than 75; and/or DNA index greater than 1.75). Majority of the 

non-hyperdiploid MM is associated with a primary translocation which involves juxtaposition 

of a strong immunoglobulin heavy chain gene enhancer locus to a partner oncogene 

important for myelomagenesis [12,13]. In MM patients, approximately 15% of patients 

harbor t(11;14)(q13;q32), which is associated with upregulation of oncogenic cyclin D1 

(CCND1) [13]. Another 15% of patients carry t(4;14)(p16.3;q32), which involves 

dysregulation of fibroblast growth factor receptor 3 (FGFR3) and wolf-hirschhorn syndrome 

candidate 1 (also known as MM SET domain, MMSET) [14,15]. Less frequent but 

distinguishable primary translocations, known as t(14;16)(q32;q23), t(6;14)(p21;q32) and 

t(14;20)(q32;q11), are found in approximately 5%, 3% and 2% of patients, leading to 

dysregulation of v-maf musculpaponeurotic fibrosarcoma oncogene homolog (avian) (MAF) 

(also known as c-MAF), cyclin D3 (CCND3) and v-maf musculpaponeurotic fibrosarcoma 

oncogene homolog B (avian) respectively [16-19]. 

 

 In contrast to the non-hyperdiploid MM, hyperdiploid MM constitutes another half of 

all MGUS and MM, due to trisomies of odd-numbered chromosomes including 3, 5, 7, 9, 11, 
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15, 19 or 21, resulting in a chromosome number between 46/47 to 75, as measured by 

conventional karyotyping; and/or a DNA index between 1.05 to 1.75. In contrast to other 

odd-numbered chromosomes frequently involved in hyperdiplody, chromosome 13 is often 

deleted instead [20,21]. Moreover, trisomy of chromosome 11, to which CCND1 is localized, 

has been shown to result in direct upregulation of CCND1 [22,23]. While the underlying 

mechanism leading to the aforementioned dichotomy of MM remains to be elucidated, it is 

noteworthy that, clinically, hyperdiploid MM patients are associated with better prognosis 

and treatment outcomes than the non-hyperdiploid MM patients [24-26]. 

 

 During disease progression, secondary translocations and other genetic aberrations, 

including deletion of the short arm of chromosome 17 [del(17p)] and mutations of RAS 

genes, etc, are involved [27]. Unlike primary translocations, which involve juxtaposition of 

the strong immunoglobulin heavy chain gene enhancer locus to a partner oncogene, the 

mechanisms of secondary translocations are less well-defined but appears unrelated to the 

error-prone B cell-specific DNA modification events. For instance, at the time of disease 

progression, about 15% of MM patients carry secondary immunoglobulin heavy chain 

translocation involving v-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC) 

(8q24), which confers proliferative advantage to MM cells [27,28]. 

 

 Based on fluorescence in situ hybridization (FISH) analysis, del(13) is detected in 20% to 

50% of MGUS, and approximately 50% of MM. Notably, 90% of del(13) is characterized by 

monosomy 13, and interstitial deletion of 13q14 occurs in the remaining 10% of cases 

[20,21]. Despite that del(13) was once believed to impart poor prognosis, recently, the 
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prognostic impact of del(13) has been shown to be mediated by its strong association with 

unfavorable risk factor of t(4;14) [29,30]. 

 

 By interphase FISH analysis, del(17p), which is the locus for tumor suppressor protein 

TP53, is generally found in less than 10% of MM patients at diagnosis. However, presence of 

del(17p) at diagnosis is a powerful negative prognostic factor for MM [31,32]. A recent study 

of MM patients uniformly receiving bortezomib-based induction therapy prior to autologous 

stem cell transplantation further confirmed that del(17p) is associated with an inferior 

event-free survival (median time: 14 vs. 36 months) and overall survival (4-year OS: 50% vs. 

79%) as compared with those without del(17p). Therefore, the adverse impact of del(17p) 

appears not abolished by the use of targeted therapy [33]. 

 

 RAS mutations, predominantly K- and N-RAS at codon 12, 13 and 61, but not H-RAS, is 

present in more than half of MM at diagnosis but not in MGUS, suggesting that the RAS 

mutations is at least a marker of the transition from MGUS to MM [34-37]. 

 

 Last but not least, the bone marrow microenvironment is very important in the 

pathogenesis of MM for homing of MM plasma cell to the bone marrow and secretion of 

growth-stimulating cytokines to the MM plasma cells. The homing of MM plasma cell is a 

chemotaxis mechanism mediated by the bone marrow stromal cells secreted chemokine 

(C-X-C motif) ligand 12 or stromal cell-derived factor 1, which binds to its specific receptor, 

chemokine (C-X-C motif) receptor 4, expressed on the MM plasma cell. Moreover, upon 

cell-to-cell interactions between the bone marrow stromal cells and the MM plasma cells, a 
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multitude of cytokines are secreted, and hence favor the proliferation and survival of MM 

plasma cells by autocrine and paracrine signaling [e.g. interleukin 6 (IL6), insulin-like growth 

factor 1, tumor necrosis factor alpha and nuclear factor of kappa light polypeptide gene 

enhancer in B-cells (NFκB)], angiogenesis [e.g. vascular endothelial growth factor and basic 

fibroblast growth factor] and osteolysis [e.g. tumor necrosis factor (ligand) superfamily, 

member 11, tumor necrosis factor receptor superfamily, member 11a and tumor necrosis 

factor receptor superfamily, member 11b] [27,38,39]. 

 

DNA methylation 

DNA methylation and cancer 

 DNA methylation refers to catalytic addition of a methyl group (-CH) to carbon 5 

position of a cytosine ring in a CpG dinucleotide [40-44]. CpG dinucleotide cluster in any 

genomic region of over 200 bp in length with a high GC content of more than 50% and 

observed/expected CpG ratio larger than 0.60 is known as a CpG island [45,46]. In human, 

CpG island is associated with at least 50% of gene promoters. Methylation of a 

promoter-associated CpG island will lead to recruitment of histone methyltransferase, 

methyl-CpG-binding domain (MBD) protein and histone deacetylase, resulting in formation 

of a compact heterchromatin configuration, which precludes the binding of transcription 

factor complex, and hence silencing of the associated gene [46,47].  

 

 In normal cells, a majority of genes with promoter-associated CpG islands are usually 

unmethylated, associated with a euchromatin configuration, and hence are generally 

transcriptionally ready or active (Figure 2). However, a fraction of genes with 
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promoter-associated CpG islands are methylated, and hence silenced in normal cells 

including genetic imprinting and X-chromosome inactivation [48,49]. 

 

 On the other hand, in cancer cells, genes with promoter-associated CpG islands are 

aberrantly methylated in a tumor-specific manner, leading to gene silencing. In particular, 

hypermethylation of promoter-associated CpG islands of tumor suppressor genes, resulting 

in decreased or loss of gene expressions, and hence loss of tumor suppressor functions, has 

been implicated in carcinogenesis [40,41,43,44,50-52] (Figure 2). Furthermore, in cancers, 

hypermethylation of the tumor suppressor genes may serve as a second hit, in addition to 

deletion or mutation of the other allele, thereby fulfilling the Knudson’s two-hit hypothesis 

[53]. 

 

 In MM, by genome-wide or gene-specific approaches, aberrant DNA methylation has 

been found to mediate the loss of a number of protein-coding tumor suppressor genes 

regulating cell cycle progression, cell signaling or apoptosis, including cyclin-dependent 

kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase inhibitor 2B (CDKN2B), 

death-associated protein kinase, secreted frizzled-related protein 2 and suppressor of 

cytokine signaling 1 (SOCS1), etc [54,55]. 

 

Methods of DNA methylation analysis 

 Over the years, techniques of DNA methylation analysis have evolved from qualitative 

to quantitative in fashion, and from locus-specific to genome-wide in scale [56-58] (Table 1). 

Bisulfite conversion, which chemically deaminates or modifies unmethylated cytosine to 
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uracil, and hence translating an epigenetic variation (methylated or unmethylated) into a 

genetic difference (C or U), is an important procedure fundamental to most of the later 

methods [59,60]. 

 

(I) Candidate gene-specific methods 

 Before the integration of bisulfite conversion into DNA methylation research, earlier 

techniques mostly depend on enzymatic digestion and high-performance liquid 

chromatography (HPLC). For the methylation-sensitive restriction enzyme-based analysis, for 

example, DNA methylation pattern of CpG dinucleotides embedded in a CCGG sequence can 

be detected by the use of isoschizomer pair of HpaII and MspI, by which methylated CCGG 

can be digested by MspI but not by HpaII, together with gel electrophoresis and Southern 

blotting [61]. However, the use of restriction enzyme digestion is limited by the requirement 

of large amount of DNA and the availability of restriction enzyme cut site at the 

locus-of-interest. Moreover, it is less informative about the methylation pattern over a 

stretch of CpG dinucleotides and prone to generate false-positive results due to incomplete 

digestion. In addition to enzymatic digestion, HPLC was also employed in DNA methylation 

analysis in the early days [62]. However, the use of HPLC is also limited by the requirement 

of large amount of DNA and the need of skillful and tedious operation. 

 

 Later, Frommer et al. first incorporated bisulfite conversion into DNA methylation 

research, leading to the advent of bisulfite genomic sequencing (BGS), and subsequently a 

qualitative method, known as methylation-specific PCR (MSP). Moreover, bisulfite 

conversion is integrated to a number of quantitative methods, namely, combined bisulfite 
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restriction analysis (COBRA), methylation-sensitive single nucleotide primer extension 

(Ms-SNuPE), MethyLight, pyrosequencing and MassARRAY. 

 

 BGS generates the highest resolution map of the DNA methylation status of every 

single cytosine residue within a locus-of-interest, by the use of simple techniques including 

bisulfite conversion, PCR, cloning and sequencing [63]. Bisulfite-converted DNA is first 

amplified by primers, which do not span any CpG site and hence allow unbiased 

amplification of both methylated and unmethylated alleles. The amplicons are then cloned 

and sequenced. However, it is labor-intensive and hence is limited to small number of 

locus-of-interest and samples. 

 

 MSP is currently the most popular technique used in studying DNA methylation of 

locus-specific CpG sites because of its specificity and simplicity [64]. DNA methylation status 

of any given CpG site is revealed by PCR amplification of bisulfite-converted DNA with two 

sets of PCR primers, one specific to the methylated sequence and the other to the 

unmethylated sequence. With validated specific primers and PCR conditions, the 

methylation status in a large number of samples can easily be obtained. However, it is not a 

quantitative method. 

 

 COBRA is highly similar to one of the two classic methods for the use of restriction 

enzyme, however, with the incorporation of bisulfite conversion, it becomes a 

high-throughput and quantitative technique [65]. Upon bisulfite conversion, unmethylated 

BstUI recognition sites CGCG will be converted to TGTG, whereas methylated BstUI sites 
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remain unchanged. Followed by BstUI digestion and gel electrophoresis, methylation of a 

locus-of-interest can be quantified by [100% X intensity of (digested fragments/ both 

digested and undigested fragments)]. 

 

 Ms-SNuPE is a quantitative DNA methylation analysis method derived from primer 

extension technique [66]. In brief, primer extension is performed on bisulfite-treated 

locus-of-interest with 32P-labeled dCTP or dTTP, which enable differentiation and 

quantification of the methylated or unmethylated template. However, the use of radioactive 

isotopes hinders the popularity of this technique. 

 

 MethyLight, also known as quantitative MSP, enables simultaneous detection and 

quantification of bisulfite-treated methylated and unmethylated templates by two specific 

TaqMan probes labeled with different fluorophores [67]. By the use of real-time PCR, 

MethyLight is regarded as a high-throughput, sensitive and quantitative method in DNA 

methylation research. 

 

 Pyrosequencing, which originally designed to study single-nucleotide polymorphism by 

indirect detection of pyrophosphate (PPi) released during DNA synthesis, has also been 

applied to detect the C and T difference generated by bisulfite conversion [68,69]. During a 

primer extension process on a bisulfite-treated template, PPi is released in an equimolar 

fashion according to the number of incorporated nucleotides, resulting in a proportional 

conversion of PPi to ATP by sulfurylase, and hence a quantifiable firefly luciferase signal 
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driven by the ATP. However, such a high-throughput, accurate and quantitative method is 

limited by the length of individual read, which is only about 60 to 100 bp. 

 

 MassARRAY, a technique involving a combination of bisulfite conversion, in vitro 

transcription, RNA digestion and MALDI-TOF mass spectrometry, is another high-throughput 

quantitative DNA methylation analysis method [70]. In brief, bisulfite-treated 

locus-of-interest is amplified with an in vitro transcription tag, which allows later in vitro 

transcription. The transcripts will then be digested into fragments without affecting any of 

the original CpG sites. Based on mass difference arise from methylated (resulting G) and 

unmethylated (resulting A) on the fragments, quantification of the methylated or 

unmethylated fragment is enabled. However, this technology requires sophisticated 

operation. 

 

(II) Genome-wide methods 

 Recently, coupled with bisulfite conversion, methylation-sensitive restriction enzyme 

digestion or methylation-sensitive antibody purification, genome-wide analysis of DNA 

methylation is made possible with different kinds of DNA microarrays and high-throughput 

sequencing methods [57,71-73]. 

 

 Bisulfite-converted DNA, for instance, can be subjected to Infinium Methylation Assay 

(Illumina), which allows quantitative analysis of > 485,000 specific CpG dinucleotides per 

sample. By methylation-specific single-base primer extension, specific fluorescence-labeled 

nucleotides will be incorporated, and hence a ratio of different fluorescent signals indicating 
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the methylation status [74,75]. Other array platforms include Affymetrix, Agilent and 

NimbleGen. Alternatively, bisulfite-converted DNA libraries can be generated from 

sonication or restriction enzymes prior to high-throughput sequencing, resulting in 

whole-genome bisulfite sequencing (WGBS) or reduced representation bisulfite sequencing 

(RRBS), which is able to generate DNA methylome with single-base resolution [76,77]. 

 

 Moreover, methylation-sensitive restriction enzyme may be used to enrich methylated 

or unmethylated DNA for different kinds of tiling arrays and high-throughput sequencings. 

For instance, BstUI or HpaII digestion (cleaves unmethylated DNA) will lead to enrichment of 

methylated sequences, whereas MspI or McrBC digestion (cleaves methylated DNA) will 

result in enrichment of unmethylated sequences, which are followed by array or sequencing 

profiling [78,79]. 

 

 Alternatively, with the development of methylation-sensitive antibodies, such as 

MECP2 (methyl-CpG-binding protein 2), MBD1 and MBD2, which binds to methylated CpG 

sites, immunoprecipitation of methylated sequences prior to DNA microarrays or 

high-throughput sequencing is enabled and collectively known as MeDIP (methylated DNA 

immunoprecipitation)-chip, when it is analyzed by DNA microarray, or MeDIP-seq, when it is 

analyzed by high-throughput sequencing method [80,81]. 

 

MicroRNA (miRNA) 

History and biogenesis 
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 miRNA is a class of short non-coding RNA molecules of 20 to 30 nucleotides (nts) in 

length [82]. miRNAs inhibit the translation of their own target genes via binding of the 

miRNA seed region (i.e. the 2nd to 7th nts from 5’ to 3’ of the mature miRNA) to the three 

prime untranslated region (3’UTR) of the target gene, and hence involve in the regulation of 

various cellular activities, including development, differentiation, proliferation, and 

apoptosis [83-86] (Figure 3). 

 

 The first miRNA was identified in Caenorhabditis elegans, in which lin-4 miRNA was 

found controlling the gradual decrease of LIN-14 protein expression from developmental 

stage L1 to later larval stages, through binding to the 3’UTR of lin-14 messenger RNA (mRNA), 

leading to translational inhibition of the lin-14 mRNA [87,88]. Later, with more small 

non-coding RNAs discovered in C. elegans, this class of RNAs was collectively named as 

miRNAs by Thomas Tuschl, David Bartel, and Victor Ambros [89-91]. 

 

 Most miRNA genes are associated with RNA polymerase II promoter and are generally 

first transcribed into primary (pri-) miRNA (>100 nts) by RNA polymerase II in the nucleus 

[92]. A pri-miRNA transcript is first stabilized by 5’capping and 3’polyadenylation, and then 

further processed into precursor (pre-) miRNA by RNase III Drosha and its co-factor Pasha 

[93,94]. A pre-miRNA (60 to 80 nts) forms a hairpin or stem-loop structure, followed by 

export into the cytoplasm through Ran-GTP-dependent exportin 5 [95,96]. In the cytoplasm, 

the pre-miRNA is further processed by RNase III Dicer into mature miRNA duplex (22 to 25 

nts), which will then be loaded into a RNA-induced silencing complex (RISC) [94]. The 

functional mature miRNA strand of the duplex is retained in the RISC for recognizing the 

mRNA target through sequence complementarity between the miRNA seed region and the 
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3’UTR of the target gene. Subsequently, the target gene is inhibited by either translational 

inhibition or mRNA degradation mediated by the miRNA-associated RISC [97,98]. 

 

 Precise miRNA expression is essential for normal cellular functions, including apoptosis, 

proliferation, and differentiation [83-86]. Conversely, dysregulation of miRNA expression is 

implicated in various diseases, including cancers. 

 

miRNA, DNA methylation and Knudson’s hypothesis 

 Mechanistically, miRNAs play a role in the regulation of DNA methylation in cancers. 

miR-29 family miRNAs are downregulated in cancers including acute myeloid leukemia (AML) 

and non-small cell lung cancer [99,100]. Moreover, it has been shown that the miR-29 family 

miRNAs are tumor suppressive miRNAs targeting DNA methyltransferase (DNMT) 3A and 3B, 

which are responsible for initiation of de novo DNA methylation [101,102]. Indeed, 

restoration of the miR-29 family miRNAs in lung cancer cells led to inhibition of cellular 

proliferation, induction of apoptosis and reduced tumorigenicity in mice. Furthermore, by 

targeting DNMT3A and 3B, restoration of the miR-29 family miRNAs resulted in 

re-expression of hypermethylated tumor suppressor genes, including CDKN2B and estrogen 

receptor 1 in AML cells, and fragile histidine triad and WW domain containing 

oxidoreductase in lung cancer cells by gene hypomethylation. Therefore, miR-29 family 

miRNAs are involved in locus-specific hypermethylation of tumor suppressor genes via 

inhibition of DNMTs. 

In breast and cervical cancers, CDKN2A and SOCS1 are important tumor suppressor 

genes inactivated by DNA hypermethylation. [103,104]. On the other hand, miR-24 and 
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miR-155 are oncogenic miRNAs over-expressed in breast and cervical cancers [105,106]. 

Furthermore, miR-24 and miR-155 have been shown to target the 3’UTR of, and hence 

repress CDKN2A and SOCS1 respectively. [106,107]. Therefore, in addition to gene 

hypermethylation, tumor suppressor genes can be translationally repressed by oncogenic 

miRNAs, suggesting that the Knudson’s hypothesis can potentially be fulfilled by a complex 

co-operation of gene alterations with one allele inactivated by gene deletion, mutation or 

hypermethylation, and the other allele by miRNA targeting. 

Thus, these data suggested that miRNAs play multifaceted role in carcinogenesis. Later 

part of this article focuses on the role of DNA methylation of tumor suppressor miRNAs in 

MM. 

 

Dysregulation of miRNAs in MM 

 Dysregulation of miRNAs has been implicated in MM [108,109]. In brief, by miRNA 

expression profiling using hybridization or Taqman low-density array, miRNAs were found 

aberrantly expressed in MM cells as compared with their healthy counterparts [110-116]. 

Moreover, miRNA signatures were found associated with distinct genetic subtypes, such as 

t(4;14), t(11;14) and t(14;16), and different clinical stages of MM [110,112,114-117]. 

Furthermore, of these dysregulated miRNAs, some were found to be involved in the 

regulation of cell cycle, proliferation and apoptosis. For examples, miR-21 and miR-17-92 

were identified as oncogenic miRNAs, leading to enhanced survival and reduced apoptosis of 

MM [110,118]. In particular, upregulation of miR-21, a downstream target of activator of 

transcription 3 (STAT3), was found to potentiate the proliferative IL6-mediated signal 

transducer and STAT3 signaling in MM. In contrast, miR-15a and miR-16-1 were found to be 

tumor suppressor miRNAs, resulting in increase of apoptosis and suppression of NFκB 
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pathway in MM cells [111,119]. Moreover, these studies showed that some known tumor 

suppressor miRNAs, such as let-7, miR-29 and miR-193, are downregulated in MM. 

 

Downregulation of miRNA expression in cancers may be mediated by various 

mechanisms, ranging from epigenetic inactivation, gene mutation or copy number loss to 

defective miRNA biogenesis or post-transcriptional processing [120]. Of these, DNA 

methylation is associated with repression of miRNAs possessing promoter-associated CpG 

islands [121]. Furthermore, the expressions and functions of these tumor suppressor 

miRNAs can be reversed and restored by DNA hypomethylation treatment [122]. Therefore a 

better understanding of epigenetic inactivation of tumor suppressor miRNA genes is 

essential for the biology and treatment in human cancers including MM. Recently, the 

following studies described the role of DNA methylation of tumor suppressor miRNA genes, 

including miR-34a, miR-34b/c, miR-194-2-192, miR-203 and miR-124-1, in MM. 

 

Aberrant methylation of miRNA in MM 

miR-34a 

The tumor suppressor protein TP53 plays a central role in the tumor suppression 

network, in response to carcinogenic cellular stress and DNA damage, through the induction 

of apoptosis, cell cycle arrest and senescence [123]. Deletion of the short arm of 

chromosome 17, to which TP53 gene is localized, confers an adverse impact on event-free 

and overall survival of MM patients [29,124]. However, homozygous deletion or mutation of 

the TP53 gene is rarely found in MM patients [32,125]. Therefore, it was hypothesized that 
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the dysregulation of the TP53-mediated tumor suppression may be due to inactivation of 

other tumor suppressive components along the TP53 pathway in MM. 

 

Recently, the miR-34 gene family members (miR-34s), including miR-34a, miR-34b and 

miR-34c, have been shown to be direct transcriptional targets and tumor suppressive 

effectors downstream to the TP53 [126-131]. Deletion or mutation of the TP53 gene 

abrogates the miR-34s expression, leading to attenuated TP53-mediated tumor suppression 

activities, and hence loss of translational repression of the miR-34s target genes, such as 

B-cell CLL/lymphoma 2, CCND1, cyclin E2, cyclin-dependent kinase (CDK) 4, CDK6, E2F, v-myc 

myelocytomatosis viral related oncogene, neuroblastoma derived (avian) and sirtuin 1, etc 

[132-139]. 

 

With the presence of promoter-associated CpG island at each of the miR-34a (1p36) 

and miR-34b/c (11q23) promoters, frequent DNA hypermethylation of the miR-34s gene, 

leading to silencing of the miR-34s, and hence upregulation of the miR-34s target genes has 

been found in a wide range of solid cancers, including bladder, breast, colon, lung, 

melanoma, neuroblastoma, prostate, and ovarian cancer, etc [126,127,129,130,140-143]. 

 

In hematological cancers, Chim et al. studied the methylation status of the miR-34a in a 

broad spectrum of primary samples, consist of AML, chronic myeloid leukemia (CML), acute 

lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), MM, non-Hodgkin’s 

lymphoma (NHL) and Philadelphia chromosome negative (Ph-ve) myeloproliferative diseases 

(MDS) [144,145]. Both of these studies showed that the promoter-associated CpG island of 
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the miR-34a was unmethylated in normal controls but aberrantly methylated in 50% of the 

hematological cancer cell lines, including human myeloma cell lines (HMCLs). Treatment 

with 5-aza-2’-deoxycytidine led to demethylation of the miR-34a promoter and consequent 

re-expression of the pri-miR-34a transcript in cells homozygously methylated for the 

miR-34a. Among primary samples at diagnosis, the miR-34a promoter was preferentially 

methylated in 18.8% NHL (p=0.018), 5.5% MM, 4.0% CLL and 2.2% MDS and none of ALL, 

AML and CML. Furthermore, in MM, with paired primary samples of at diagnosis and at 

relapse/progression, it was also shown that methylation of the miR-34a promoter remained 

infrequent even at the time of disease relapse/progression. Therefore, in contrast to the 

frequent methylation of miR-34a in epithelial cancers [142,146], methylation of the miR-34a 

promoter appears unimportant in MM pathogenesis and progression. 

 

miR-34b/c 

In contrast to miR-34a, methylation of the miR-34b/c was implicated in the progression 

of MM [147]. In a recent study, the promoter-associated CpG island of the miR-34b/c was 

shown to be unmethylated in normal controls but aberrantly methylated in 75% of the 

HMCLs, in which the expression of mature miR-34b inversely correlated with the 

methylation status of the miR-34b/c promoter. Moreover, hypomethylation treatment with 

5-aza-2’-deoxycytidine led to demethylation of the miR-34b/c promoter and concomitant 

re-expression of the mature miR-34b in myeloma cells homozygously methylated for the 

miR-34b/c, thereby confirming miRNA silencing was associated with promoter 

hypermethylation. Furthermore, restoration of the miR-34b led to inhibition of cellular 

proliferation and concomitant increase of apoptosis in MM cells, thereby confirming the 

tumor suppressor role of the miR-34b in MM. In primary samples, hypermethylation of the 
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miR-34b/c promoter occurred in only 5.3% diagnostic MM but 52.2% relapsed MM samples 

(p<0.001). Moreover, in 12 MM patients with paired samples at both diagnosis and relapse, 

apart from one showing methylation of the miR-34b/c promoter at both diagnosis and 

relapse, hypermethylation of the miR-34b/c promoter was acquired at the time of relapse in 

six (54.5%) patients. Therefore, miR-34b/c promoter methylation is acquired at relapse, and 

hence a biomarker of disease progression in MM. 

 

Therefore, the frequent methylation of miR-34b/c in MM at relapse is consistent with 

the notion that inactivation of other components of the TP53 tumor suppression network 

may be involved in MM. 

 

miR-194-2-192 

In addition to the miR-34s, which mediates TP53-associated tumor suppression, 

Pichiorri et al. found that the expression of miR-194-2-192 (11p13.1) miRNA cluster was also 

TP53-dependent, and could be silenced by DNA hypermethylation in HMCLs [148]. First, they 

showed that the expression of the miR-194-2-192 cluster was higher in HMCLs with intact 

TP53 expression as compared with those with deleted or mutated TP53. Moreover, in cells 

with intact TP53, treatment with Nutlin-3a, a small-molecule inhibitor of Mdm2, TP53 E3 

ubiquitin protein ligase homolog (mouse), upregulated expression of TP53, and 

consequently miR-194-2-192 cluster in both HMCLs and primary MM plasma cells. However, 

the authors found that, upon treatment with Nutlin-3a, despite successful activation of the 

wild-type TP53, the miR-194-2-192 cluster was not uniformly re-expressed in all HMCLs and 

primary MM plasma cells. In search of the mechanism for this discordance, the authors 

showed that the promoter-associated CpG island of the miR-194-2-192 cluster was 
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hypermethylated, and hence, upon hypomethylation treatment, the miR-194-2-192 cluster 

could be re-expressed in HMCLs possessing intact TP53 expression. Moreover, the tumor 

suppressive property of the miR-194-2-192 cluster was demonstrated by, upon 

overexpression of the miR-194-2-192 cluster, the inhibition of cellular proliferation (by 

growth assays) and blockage of MM cell migration (by trans-well assay). The possible tumor 

suppressor role of the miR-194 was further illustrated in another study, in which high 

expression of the miR-194 was associated with superior overall survival in MM patients 

[116]. 

 

miR-203 

Epigenetic inactivation of the tumor suppressor miRNA miR-203, localized to 14q32, 

was reported in CML, hepatocellular carcinoma and a wide range of hematological 

malignancies [145,149-151]. While juxtaposition of the 14q32 immunoglobulin heavy chain 

enhancer to an oncogene partner occur in approximately 50% of MGUS and SMM, > 75% of 

MM, and > 80% of PCL, leading to upregulation of oncogenes, such as CCND1, CCND3, FGFR3, 

MMSET, and MAF [12,13], double-stranded DNA breaks inherent with the translocation may 

result in DNA loss [152], and hence potential loss of tumor suppressor gene or miRNA. Wong 

et al. hypothesized that hypermethylation of the promoter-associated CpG island, and hence 

silencing of miR-203 might contribute to the development of MM, by fulfilling the Knudson’s 

two-hit hypothesis [53]. Therefore, the authors studied the methylation status of miR-203 in 

HMCLs, together with primary samples from patients with MGUS, MM at diagnosis and MM 

at relapse/progression, by MSP [153]. This study showed that the promoter-associated CpG 

island of miR-203 was unmethylated in normal controls but homozygously methylated in 

25% of the HMCLs, in which hypomethylation treatment led to demethylation of the 
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miR-203 promoter and concomitant re-expression of the mature miR-203. Furthermore, 

based on the same search result yielded by both bioinformatics algorithms miRanda and 

TargetScan, the authors further validated cyclic AMP responsive element binding protein 1 

(CREB1) mRNA as a novel direct target of the miR-203, by luciferase assay. Upon 

overexpression of miR-203, the luciferase activity was reduced in cells transfected with 

constructs carrying wild-type CREB1 3’UTR but not in cells transfected with constructs 

carrying mutant CREB1 3’UTR, thereby confirming CREB1 as a target of miR-203. Moreover, 

restoration of miR-203 led to downregulation of CREB1 protein and inhibition of cellular 

proliferation of MM cells. In primary samples, hypermethylation of the miR-203 promoter 

occurred at similar frequency in MGUS, MM at diagnosis and 21% MM at 

relapse/progression (MGUS: 25%, MM at diagnosis: 24%, MM at relapse/progression: 21%; 

p=0.973). Therefore, miR-203 methylation may be an early event in the development of 

myelomagenesis. 

 

miR-124-1 

One of the first and most well-defined epigenetically silenced tumor suppressor 

miRNAs is miR-124-1. Hypermethylation of the miR-124-1 has been reported in majority of 

patients with ALL, brain, cervical, colon and liver cancers, leading to direct inhibition of CDK6 

translation by binding on the 3’ UTR of the CDK6 mRNA, thereby tumor suppressive 

[151,154-157]. Later, Wong et al. reported a study of the miR-124-1 methylation in different 

types of hematological malignancies, including MM [158]. The promoter-associated CpG 

island of the miR-124-1 was shown to be unmethylated in normal controls but frequently 

methylated in 75% of the HMCLs. Upon 5-aza-2’-deoxycytidine treatment of MM cells with 

homozygous methylation of miR-124-1, re-expression of the mature miR-124 was associated 
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with demethylation of the miR-124-1 promoter and a euchromatic trimethyl H3K4 histone 

code, leading to repression of CDK6 expression. In primary samples, surprisingly, 

hypermethylation of the miR-124-1 promoter was detected only in 2% primary MM samples 

at diagnosis or relapse/progression. Together, the authors reasoned that frequent 

methylation of the miR-124-1 promoter in human myeloma cell lines was a result of in vitro 

passaging, and hence unimportant in the pathogenesis of MM. 

 

Conclusion and future perspectives 

 Current data on DNA methylation of miRNAs in MM focuses on the loss of tumor 

suppressor miRNAs due to promoter DNA hypermethylation. Epigenetic inactivation of these 

tumor suppressor miRNAs is involved in the pathogenesis (miR-194-2-192 and miR-203) and 

progression (miR-34b/c) of MM. Hence, DNA methylation of miRNAs can potentially be 

biomarker for diagnosis or relapse in MM. Importantly, while deletion or inactivating TP53 

mutation is infrequent in MM, abrogation of the TP53 tumor suppression machinery can be 

achieved by inactivation of the TP53 transcriptional targets, such as the miR-34 family 

members and miR-194, by DNA methylation. 

 

Moreover, methylation of these tumor suppressor miRNAs can be reversed by 

hypomethylation treatment, leading to restoration of corresponding expression and tumor 

suppressor function of these miRNAs. Epigenetic therapy has recently emerged as a  

state-of-the-art strategy in cancer treatment [159,160]. For instance, pharmacological grade 

DNA methyltransferase inhibitors have been approved for the treatment of myelodysplastic 

syndrome [161]. Therefore, these findings on methylation of tumor suppressor miRNAs may 

provide a foundation for the use of epigenetic drugs in the treatment of MM. In addition, 
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these data also suggest the potential use of tumor suppressor miRNA mimics as a cancer 

therapy in tumors lacking certain critical tumor suppressor miRNAs [162]. 

 

 Last but not least, these data highlight the importance of methylation of tumor 

suppressor miRNAs in MM with respect to the disease pathogenesis, diagnosis and therapy. 

Therefore, future genome-wide analysis of DNA methylation of miRNAs in MM will allow 

identification of novel miRNAs important in myelomagenesis.
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Legends: 

Figure 1: Clinical stages and molecular genetics of multiple myeloma. CCND: cyclin D; 

CDKN2C: cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4); FGFR3: fibroblast growth 

factor receptor 3; HMCL: human myeloma cell line; MAF: v-maf musculoaponeurotic 

fibrosarcoma oncogene homology (avian); MAFB: v-maf musculoaponeurotic fibrosarcoma 

oncogene homology B (avian); MGUS: monoclonal gammopathy of undetermined 

significance; MMSET: Wolf-Hirschhorn syndrome candidate 1; NF-κB: nuclear factor of kappa 

light polypeptide gene enhancer in B-cells; PCL: plasma cell leukemia; SMM: smoldering 

multiple myeloma. Derived from Smadja et al., 2001; Kuehl et al., 2002; Debes-Marun et al., 

2003; Fonseca et al., 2003; Chng et al., 2006 [24-27,163]. 

 

Figure 2: Role of DNA methylation in normal and cancer cells. In normal cell, CpG 

dinucleotides (lollipops) of promoter-associated CpG island are generally unmethylated 

(blue lollipops) and is associated with a euchromatin histone configuration, which allows 

access of transcription factors (TFs), histone acetyltransferases (HATs), H3K4 histone 

methyltransferase (HMT), and RNA polymerase complex, for gene transcription. In cancer 

cell, promoter-associated CpG island are aberrantly hypermethylated (black lollipops) by 

DNA methyltransferase (DNMT), leading to recruitment of histone deacetylase (HDAC) and 

HMT, results in a heterochromatic histone configuration, and hence gene silencing. (Co-Act, 

co-activator; DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, histone 

deacetylase; HMT, histone methyltransferase; MBD, methyl-CpG-binding domain protein; 

Pol II, RNA polymerase II; TAF, TBP-associated factor; TBP, TATA-binding protein; TF, 

transcription factor). Modified from Wong et al., 2011 [146]. 
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Figure 3: Mechanisms of miRNA biogenesis and function. Most miRNA genes are transcribed 

by RNA polymerase II (Pol II) into primary (pri-) miRNA, which is processed into precursor 

(pre-) miRNA stem-loop by Drosha and Pasha. Pre-miRNA is transported into cytoplasm via 

exportin 5, and is processed into mature miRNA duplex by Dicer. The functional strand, 

which recognizes target gene, is loaded into RNA-induced silencing complex (RISC). Partial 

complementary binding of the miRNA to the 3’ untranslated region of target gene through 

the miRNA seed region will result in translation inhibition of target gene. Perfect 

complementary binding of the miRNA will induce mRNA degradation of target gene. 

Extracted from PhD thesis of K.Y.W. [164] (ORF, open reading frame; Pol II, RNA polymerase 

II; RISC, RNA-induced silencing complex; UTR, untranslated region)  
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Table 1: Common DNA methylation analysis methods 

 Locus-specific  Genome-wide 

Qualitative MSP   

Quantitative BGS  Infinium 

 COBRA  WGBS 

 Ms-SNuPE  RRBS 

 MethyLight  Enzyme-chip 

 Pyrosequencing  Enzyme-seq 

 MassARRAY  MeDIP-chip 

   MeDIP-seq 

Keys: BGS, bisulfite genomic sequencing; chip, DNA microarray; COBRA, combined bisulfite 

restriction analysis; MeDIP, methylated DNA immunoprecipitation; MSP, 

methylation-specific polymerase chain reaction; Ms-SNuPE, methylation-sensitive single 

nucleotide primer extension; seq, high-throughput sequencing; RRBS, 

reduced representation bisulfite sequencing; WGBS, whole-genome bisulfite sequencing. 
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Table 2: List of tumor suppressor miRNAs hypermethylated in multiple myeloma 

miRNA Genomic 

location 

Key known 

target 

Hypermethylated in other 

cancer type 

Reference 

miR-34a 1p36 BCL2 

CDK4/6 

E2F3 

Prostate 

Ovary 

[140,142,144] 

miR-34b/c 11q23 CCNE2 

CREB 

MET 

Colon 

Ovary 

[131,147,165,1

66] 

miR-124-1 8p23 CDK6 Colon 

ALL 

[154,157,158] 

miR-194-2-192 11q13 MDM2 Nil [148] 

miR-203 14q32 BCR-ABL 

CREB 

CML 

 

[149,153] 

Keys: BCL2, B-cell CLL/lymphoma 2; BCR-ABL, breakpoint cluster region c-abl oncogene 1, 

non-receptor tyrosine kinase; CCNE2, cyclin E2; CDK4/6, ; CREB, cAMP responsive element 

binding protein; E2F3, E2F transcription factor 3; MET, met proto-oncogene; MDM2, Mdm2, 

TP53 E3 ubiquitin protein ligase homolog (mouse). 
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