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“Germs of measure-preserving holomorphic maps
from bounded symmetric domains to their
Cartesian products

By Ngaiming Mok and Sui Chung Ng at Hong Kong

Abstract. Let X be the quotient of an irreducible bounded symmetric domain Q by
a lattice. In order to characterize algebraic correspondences on X commuting with exterior
Hecke correspondences, Clozel-Ullmo studied certain germs of measure-preserving maps
from (Q;0) into its Cartesian products, proving that such maps are totally geodesic when
dim(X) = 1. Here we prove total geodesy when dim(Q) = 2 by methods of analytic con-
tinuation. For B", n = 2, total geodesy follows then from Alexander’s theorem. When
rank(Q) = 2, we deduce total geodesy from Alexander-type theorems, especially from a
new Alexander-type theorem involving Reg(dQ) in place of the Shilov boundary.

Introduction

In their study on commutants of Hecke correspondences, Clozel-Ullmo [CU] con-
sidered germs of holomorphic maps arising from an algebraic correspondence ¥ which
commutes with a given Hecke correspondence defined on the quotient X := Q/I" of an ir-
reducible bounded symmetric domain by a torsion-free discrete group of automorphisms
I' = Aut(Q). Under certain conditions on the Hecke correspondence they asked the ques-
tion whether the algebraic subvariety ¥ < X x X is modular in the sense that Y X x X
is a finite sum of totally geodesic complex submanifolds which descend from the graphs of
automorphisms of Q. They reduced the problem first to a differential-geometric problem on
the characterization of germs of measure-preserving holomorphic maps

S:(©;0) = (€;0) x - -+ x (Q;0).

Specifically, given an algebraic correspondence ¥ < X x X such that the general
fiber of the canonical projection pr; : ¥ — X; of Y to the i-th factor X; = X consists of pre-
cisely d; points, i = 1,2, then at a general point x € X, pr; pr; ' (x) = {x1,...,x4}, taking
inverse images of pr, and projecting by pr; we obtain a germ of holomorphic map

The first author was partially supported by the CERG grant 7018/03 of the Research Grants Council of
Hong Kong, China. ’
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fo: (X;%) = (X;x1) x -+ X (X;Xa,). Lifting X locally to its universal cover 2 and lifting
each base point to 0 Q we have equivalently f : (Q;g) — (Q;0) x --- x (Q;0). For
1<a<d, we write Q, for the o-th direct factor of Q®, and 7, : Q% 5 Q, for the
canonical projection onto Qy = Q. Let dyg stand for the volume form of the Bergman
metric on . Then, an algebraic correspondence ¥ = X X X is measure-preserving
if and only if for a general point xe X and for the germ of holomorphic map
£ (€;0) — (€;0) x - -+ x (€;0) defined as above, we have

() dug + - -+ mg, dpg) = di dug,
Q, being identified with Q.

When  is the unit disk A = C, a germ of measure-preserving holomorphic map
£ 1 (A;0) — (A;0) x--- x (A;0) is equivalently a holomorphic isometry

£ (A, dy ds2;0) — (A, dsk; 0)%,

where dsi denotes the Bergman metric on A, i.e., the Poincaré metric on A of constant
Gaussian curvature —1. In this case Clozel-Ullmo [CU] showed that Graph(f) = C X c*
extends to an affine-algebraic subvariety in C x C%, and deduced as a consequence that f
is totally geodesic whenever it arises from an algebraic correspondence ¥ < X x X on
some finite-volume quotient X = A/T". For the general problem of characterizing commu-
tants of (a certain type of) Hecke correspondences on finite-volume quotients X' = Q /T of
irreducible bounded symmetric domains Q, Clozel-Ullmo [CU] did not solve the problem
on germs of measure-preserving holomorphic maps. In its place they further reduced the
characterization problem for commutants to another differential-geometric problem of
characterizing germs of holomorphic isometries

1 :(Q, Ads3;0) — (Q, dsé;\O) X - % (Q,dsh;0),

where ds} stands for the Bergman metric on €, and where in the case of dim(Q) > 1 the
normalizing constant J is a priori only known to be a positive real number. They observed
that in the case where Q is of rank = 2, any germ of holomorphic isometry f as above is
necessarily totally geodesic as a consequence of the arguments on Hermitian metric rigidity
in Mok (cf. [M1], [M2]), and the total geodesy of f holds true without assuming that it
arises from an algebraic correspondence on some finite-volume quotient X = /T. In the
remaining case of the complex unit ball Q = B, n = 2, Mok [M4] proved that f is neces-
sarily totally geodesic under the assumption that A is a positive integer. A slight modifica-
tion of the arguments in [M4] yields the result also for an arbitrary normalizing constant
4> 0, and this generalization has been incorporated in [M5], §3. We note that even in the
case of Q = B", n = 2, the germ of map f is totally geodesic whenever it is a germ of holo-
morphic isometry, without further assuming that it arises from algebraic correspondences.
Here as in [CU] the proof proceeds first with proving algebraic extension of Graph(f), but
for the proof of total geodesy of the map we made use of the functional identity on poten-
tial functions and the result of Alexander [A] characterizing automorphisms of B" of com-
plex dimension 2 2.

In this article we solve the problem of Clozel-Ullmo on the characterization of germs
of measure-preserving holomorphic maps

f= (flv"-)fdz) : (Q‘7d1 d:uﬂvo) - (de,ﬂ-’fdﬂg‘l‘ +7C;2d/19;0)
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for irreducible bounded symmetric domains Q, where each component map f, : Q — Q,,
1 < a £ dy, is of maximal rank at some point. When Q = A, by Clozel-Ullmo [CU]J, f is
totally geodesic provided that it arises from an algebraic correspondence ¥ = X x X on
some finite-volume quotient X' = A/I". Moreover, without the latter assumption, in gen-
eral f need not be totally geodesic as shown by the nonstandard examples of Mok [M4]
given by p-th root maps and their composites. In the current article, we prove on the other
hand that for irreducible bounded symmetric domains Q of dimension = 2, the germ of
measure-preserving holomorphic map f : (Q;0) — (Q%;0) is totally geodesic without fur-
ther assumptions.

For the proof of our main results we make use of extension theorems in several com-
plex variables. With respect to the Harish-Chandra realization Q € C” as a bounded sym-
metric domain, it is known that the Bergman kernel K(z, w) on Q is a rational function in
(2, w). It follows that by passing to unit sphere bundles the germ of the measure-preserving
holomorphic map f : (Q;0) — (Q%;0) induces a germ of CR-mapping f between certain
algebraic hypersurfaces. By curvature considerations the target algebraic hypersurface is
pseudoconvex and strongly pseudoconvex at a general point. We check that, modifying
the base point of the germ of map f if necessary, f maps its base point to a strongly pseu-~
doconvex point of the target algebraic hypersurface. As a consequence, we can apply the
result of Huang [Hu] to obtain an extension of Graph(f) < Q x Q% to an affine-algebraic
variety ¥ = C x C%, which may be regarded as the ‘graph’ of a multivalent holomorphic
map F from C” into (C")%. When Q is the complex unit ball B” of dimension 7 > 2, after
the step of algebraic extension we conclude our argument again by using Alexander’s theo-
rem [A}, according to which a nonconstant holomorphic map 4 : U, — C”", n = 2, defined
on a neighborhood U, of a boundary point » € dB" must necessarily agree with an auto-
morphism of B" whenever (U, N 0B") = dB". The latter condition is checked for compo-
nent maps F,, 1 £ a < d,, of any local branch at a general boundary point b € 0B" of the
extended multivalent map F by means of the functional identity arising from the measure-
preserving property. We conclude from Alexander’s result [A] that F restricts to a totally
geodesic holomorphic embedding F|g. : B" — (B") “_When Q is of rank > 2 we make use
of an analogous result due to Henkin-Tumanov [TK1], in which automorphisms of an ir-
reducible bounded symmetric domain Q of rank = 2 are given a local characterization in
terms of boundary points lying on the Shilov boundary.

In order to apply the result of Henkin—-Tumanov [TK1], we show first of all that
the lifting of the bad set of the multivalent holomorphic map F on C” lies on an affine-
algebraic variety which necessarily avoids general points on the Shilov boundary. Further-
more, by means of the fine structure of Q2 (Wolf [W]), which decomposes 9 into a disjoint
union of finitely many Auty(£2)-orbits, we show that a general point b € Sh(€2) of the Shilov
boundary Sh(Q2) is mapped into Sh(Q) by each component map of a local branch of the
multivalent extension F, thereby allowing us to apply [TK1] and to conclude the total ge-
odesy of f : (©;0) — (Q%;0).

In the last section we give a new Alexander-type characterization theorem for auto-
morphisms on irreducible bounded symmetric domains Q of rank = 2, where in place of the
Shilov boundary as considered by Henkin—-Tumanov we consider a boundary-preserving
biholomorphism defined on a neighborhood of a point on the smooth locus Reg(dQ) of
the boundary. We deem it natural to present the latter Alexander-type theorem as it gives
an alternative argument to complete the proof of our Main Theorem in a way parallel to
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the rank-1 case, and the new statement and its proof could provide a useful tool in the fu-
ture for the study of rigidity phenomena on irreducible bounded symmetric domains of
rank = 2 related to the theme of the current article.

Acknowledgment. In relation to his works on holomorphic isometries the first of the
authors would like to thank Prof. Yum-Tong Siu for his comments that extension problems
on holomorphic isometries between Kéahler manifolds can be studied in terms of extension
of induced CR-maps on unit sphere bundles. While for holomorphic isometries there re-
mains in general the task of analyzing the structure of degeneracies of holomorphic bi-
sectional curvature, the same approach works out perfectly well in the study of germs of
measure-preserving holomorphic maps on irreducible bounded symmetric domains, in
which case the unit sphere bundles considered are weakly pseudoconvex, and the structure
of the set of weakly pseudoconvex points is particularly simple. The second of the authors
would like to thank Prof. Xiaojun Huang for his invitation to Rutgers University and for
discussions in relation to his works on algebraic extension on CR maps which are used in
the current paper.

1. Background materials and statement of results

1.1. Motivation and statement of results. Let Q be an irreducible bounded symmet-
ric domain, of complex dimension n, and I" be a torsion-free discrete subgroup of Aut(Q).
Write X := Q/T". In the case where X is compact, by an algebraic correspondence on X we
will simply mean a pure n-dimensional algebraic subvariety ¥ < X x X such that the
restriction to Y of the canonical projection to each of the two Cartesian factors is a finite
map. When X is of finite volume with respect to the canonical measure but non-compact,
we consider a non-singular projective-algebraic model X of the minimal compactification
Xwmin, and regard X = X naturally as a quasi-projective manifold. By an algebraic corre-
spondence we will mean a pure n-dimensional quasi-projective subvariety ¥ < X x X
such that the restriction to ¥ of the canonical projection to each of the two Cartesian fac-
tors is a surjective finite proper map. The assumption that ¥ < X x X is a quasi-projective
subvariety means equivalently that the topological closure Y « X x X (called the closure
of Y in the sequel) is a projective-algebraic subvariety (of complex dimension n). We are
going to recall the notion of measure-preserving algebraic correspondences on X = Q/T
taken from Clozel-Ullmo [CU]. For the basic definitions we refer the reader to [CU], §1,
and the references given there. ¥

Denote by pr;: Y — X; the restriction to Y of the canonical projection of

X x X — X; to the i-th factor X; = X, i =1,2, and by Pr; : Y — X; the analogue on Y.
Write d; for the degree of Pr;, i = 1,2. At a general point x € X,

pry prz“l(x) = {xh v )xdz}’

taking inverse images of pr, and projecting by pr; we obtain a germ of holomorphic
map fy: (X;x) = (X;x1) X -+ X (X;xg). By locally lifting X to its universal cover
Q with the base points identified with 0 €Q we obtain a germ of holomorphic map
£ (@0) = (©0) x -+ x (€;0). For 1 £ a<d, we write Q, for the o-th direct factor
of Q% and m, : Q% — Q, for the canonical projection onto £, = €.
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By the canonical measure dug on an irreducible bounded symmetric domain Q we
will mean the volume form of the Bergman metric ds3 on Q. For a surjective finite proper
holomorphic map ¢ : M — Z from an irreducible complex-analytic space M onto a com-
plex manifold Z, there is the notion of the order (multiplicity) of ¢ at a € M, written y,(a),
such that u,(a) = 1 whenever ¢ is unramified at @, and such that > u,(a) = s(p), the

aep~i(z)
sheeting number of ¢ : M — Z. Coming back to the algebraic correspondence ¥ < X x X,

for each x € X we have the 0-cycle Ty.x := pr,, pr{ x, and for a function o on X we define

Tho(x) = ; a(z). By [CU]J, Lemma 1.1, T’y transforms continuous functions « on X to
ZELy.X

continuous functions. Denoting by duy the volume form on X induced from dpug, the alge-
braic correspondence ¥ = X x X is said to be measure-preserving ([CU], immediately after

the proof of Lemma 1.1) if and only if —a}— [ Tyadpy = [ aduy, noting that the normalizing
) lx X

factor dl is imposed by the special case of the constant function & = 1. By Clozel-Ullmo
1

[CU]J (cf. Section 2.1) the algebraic correspondence ¥ < X x X is measure-preserving if
and only if the germ of holomorphic map f = (Q;0) — (Q;0) % defined as above by taking
inverse images under pr, on a neighborhood of a general point x € X, and projecting by pr;
satisfies the identity f™*(n{ dug + - - - + =}, dug) = di dug. In other words, f = (fi,. .., fa)
satisfies '

1 &,
o 5% i dto = i,
1a=1

In relation to a problem of characterizing modular correspondences of X among
algebraic correspondences, Clozel and Ullmo [CU] raised the following question: If an al-
gebraic correspondence preserves the canonical measure, is the correspondence necessarily
modular?

To give an affirmative answer to the question, it suffices to prove the total geodesy of a
measure-preserving algebraic correspondence ¥ = X x X. Let the Kéhler form of (Q, ds3)
be @ = vV—13(g;7dz' Adz’) and g = det(g;7). Then

dug = (\/—1)"zga’z1 A AdZAdZ A A"

Now (}) can be rewritten as

d

(1) Y. (g0 fldet(Jf)|* = dig,

a=1

where Jf, is the Jacobian matrix of f,. Clozel-Ullmo [CU] considered the special case
where Q is the unit disk, and they proved the following theorem.

Theorem 1.1.1 (Clozel-Ullmo [CU]). Let I" = Aut(A) be a torsion-free lattice, and
X = A/T be the quotient Riemann surface, X be its uniquely determined compactification
to an algebraic curve. Let Y < X x X be an algebraic correspondence on X such that the
canonical projection pr; : Y — X;, i = 1,2, is of degree d;, where X; denotes the i-th direct
Jactor of X x X = X1 x X,. Suppose the algebraic correspondence Y < X x X is measure-
preserving. Let f = (fi,...,fs): (A, d1ds%;0) — (A,ds3;0) X - x (A, ds3;0) be a germ
of measure-preserving holomorphic map arising from taking inverse images under pr, at a
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general point x € X and projecting by pri. Then, Graph(f) c A x A% < C x C*% extends to
an affine-algebraic variety V < C X C% which is the graph of a totally geodesic holomorphic
embedding F : (A, ds?) — (A,ds3) x -+ x (A, ds}). In particular, Y = X x X is a modular
correspondence.

Our main result in the current article is as follows:

Main Theorem. Let Q € C" be an irreducible bounded symmetric domain of complex
dimension = 2, and dug be the volume form of the Bergman metric on Q. Suppose dy and dy
are positive integers and f = (fi, ..., fa) : (Q,d1 dpg; 0) — Q% 7} dug + -+ + 7, dpg; 0)
is a measure-preserving holomorphic map such that each f,, 1 S o = d,, is of maximal rank
at some point. Then, dy = d, and f extends to a totally geodesic holomorphic embedding
f:Q- Q%

Here in the statement of the Main Theorem we do not assume that f arises from an
algebraic correspondence, but, following the question posed in [CU], we assume that the
implicit normalizing constant A, given by dj, is a positive integer, and that each of the com-
ponent maps f; is of maximal rank at some point, so that det(Jf,) does not vanish identi-
cally. A holomorphic isometry between bounded symmetric domains up to normalizing
constants with respect to the Bergman metric will be called nonstandard if and only if it is
not totally geodesic. In Mok [M5] one of the authors has constructed nonstandard exam-
ples of holomorphic isometric (proper) embeddings of the unit disk into polydisks. For this
case, holomorphic isometries are the same as measure-preserving holomorphic maps.
Our Main Theorem says that, unlike the case of the unit disk A, there is no nonstandard
measure-preserving holomorphic map F : Q — Q% whenever the irreducible bounded sym-
metric domain Q is the complex unit ball B* of dimension n = 2 or it is of rank = 2. For
holomorphic isometries arising from algebraic correspondences in the case of the unit disk,
the result of Clozel-Ullmo (Theorem 1.1.1) says that the algebraic extension is forced to be
totally geodesic because the algebraic extension V' < A x A% is equivariant with respect
to I". Combining Theorem 1.1.1 and our Main Theorem we have resolved the problem of
Clozel-Ullmo [CU] on measure-preserving algebraic correspondences, as follows.

Theorem 1.1.2. Let Q € C" be an irreducible bounded symmetric domain, and
T’ < Aut(Q) be a torsion-free lattice. Write X :=Q/T" and let ¥ < X x X be a measure-
preserving algebraic correspondence with respect to the canonical measure dug on Q. Then,
Y is necessarily a modular correspondence.

A}

From Clozel-Ullmo [CU], Sections 2 and 3, and in the terminology used there, The-
orem 1.1.2 implies a characterization of algebraic correspondences commuting with certain
modular correspondences. In the notation of Theorem 1.1.2, an irreducible modular corre-
spondence on X is defined by an element g < Aut(Q) such that g and g~I'g are commen-
‘surable. Defining i, : Q@ — Q x Q by i,(2) = (z, g(z)), the irreducible modular correspon-
dence associated to g is given by S; = n(ig(Q)), where 7: QxQ — X x X is the
canonical projection. Following [CU], S, will be called an interior modular correspondence
(correspondance intérieure) if the subgroup generated by I" and g in Aut(Q) is discrete, and
called an exterior modular correspondence (correspondance extérieure) otherwise. Finally,
a modular correspondence is by definition a finite sum of irreducible modular correspon-
dences. From Theorem 1.1.2 here and the proofs of [CU], Theorems 2.10 and 3.8 (for the
case of the unit disk resp. the case of rank = 2), it follows that the latter results hold also in
the case where Q is of rank 1 and of dimension = 2. In other words, we have
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Corollary 1.1.1. Let Q € C" be an irreducible bounded symmetric domain and iden-
tify Aut(Q) as a linear algebraic group 9 defined over Q. Let I' < Aut(Q) be a torsion-free
lattice which is a congruence subgroup of % and write X :=Q/I'. Let S; c X x X be an
exterior modular correspondence defined by g, where g is a rational point in 4. Suppose
Y < X x X is an algebraic correspondence which commutes with S,. Then, Y is necessarily

a modular correspondence.

1.2. Algebraic extension of germs of measure-preserving holomorphic maps. Denote
by d;, i = 1,2, the degree of the canonical projection of ¥ onto the i-th factor. To prove the
Main Theorem, we first establish the algebraic extension of the holomorphic map
f:U— Q% induced by Y, where U is some open neighborhood of 0 € Q. Equivalently,
we consider f as a germ of holomorphic map at 0, written as f : (€;0) — (Q;0) % In the
sequel we will make no distinction between a germ of map and a representative of the germ
of map, thus in the latter interpretation for f it is understood that f refers to a map on
some open neighborhood U of 0, and Graph(f) both refers to the germ of the graph and
its representative, viz., the graph of f over U.

Consider the anti-canonical line bundle L of Q equipped with the Hermitian metric
g = det(g;;), then (L,g) is a negative line bundle because —v/—1001og g = Ric(Q, w)
which is negative definite. Let 7, : Q% — Q be the canonical projection onto the a-th
factor and write (L,,g,) = (m;L,gomn,) for the pull-back of (L,g) by =, to Q% Let

& d
(Z,9) = (@ Ly, 629 ga) be the direct sum of L, equipped with the product metric. It then
a=1 o=l
follows that (%, g) is a seminegative Hermitian holomorphic vector bundle in the sense of
Griffiths.
Write the canonical coordinates in L and % as

1 1 d d
(Z1y o Znytt)  ANd (21,00, 2y 210y 2ty UL ey Uy ),

respectively. Then the unit sphere bundles Sy, and S¢ of (L,d1g) and (&, g) are respec-
tively defined by the equations

(1) dlg(Zl,...,Zn)|ul2: 1
~and
& o o 2 .
(2) Zlg(zl,...,zn)|ua| =1
. o=

- Now by considering the derivative of f on the tangent bundle of 2, we obtain an induced
- locally defined map f: V < (L,dig) — (£, g) given by

(#) f=f-s S det(TA)u, ..., det(Ifs,)u).

1), f maps some non-empty connected open subset of Sy, into S¢. We will make use Of-
he following theorem of Huang.
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Theorem 1.2.1 (Huang [Hul]). Let M, =« C™ and M, < C™** be real algebraic hyper-
surfaces withm > 1 and k 2 0. Let p € My be a strongly pseudoconvex point. Suppose that h
is a holomorphic mapping from a neighborhood U, of p to C™* so that h(U, " My) < M,
and h(p) is also a strongly pseudoconvex point, then h is algebraic.

In [Hul, 4 is said to be algebraic if each of its component function satisfies a non-
trivial algebraic equation. For our purpose, we will take another equivalent definition,
viz., h is algebraic if and only if Graph(#) is contained in an irreducible affine-algebraic va-
riety of the same dimension, i.e., of dimension m. Theorem 1.2.1 is the Main Theorem of
Huang [Hu]. In the original version of the theorem, M; and M, are assumed to be strongly
pseudoconvex real-algebraic hypersurfaces and 4 is defined on a neighborhood of M, such
that h(M;) = M,. However, we note that the proof is local in nature, and the assumptions
can be slightly relaxed as stated here in the theorem.

To prove the algebraicity of f: U — Qdi in our situation, we first need two lemmas.
Tn what follows on C" we write dV = (vV—1)" dz' A--- A dZ" AdZ' A --- AdZ", which is 2"
times the Euclidean volume form.

Lemma 1.2.1. Let Q € C" be a bounded symmetric domain in its Harish-Chandra
realization. Write Ko(z,w) for the Bergman kernel of . Then, there exists a polynomial
Qq(z,w) which is holomorphic in z and anti-holomorphic in w such that

KQ(Z, W) = ag)_(lz—,w_)

As a consequence, denoting by dug the volume form of the Bergman metric on Q and writing
dug = gdV, g(z) is the restriction of a rational function in (z,2) to Q.

Proof The formula for the Bergman kernel Ko(z,w) = L on the bounded

QQ (Z ) W)
symmetric domain Q can be found in Faraut-Koranyi [FK], pp. 76-77, especially equations
(3.4) and (3.9). Since the automorphism group Aut(Q) acts transitively on Q, and both
Kq(z,z) dV and dug = gdV are invariant under Aut(Q), we must have g(z) = caKa(z,2)
for some positive constant cq, and the lemma follows. [

Next, in order to apply the result of Huang (Theorem 1.2.1) on extension of CR-maps
between real-algebraic hypersurfaces, we have to check the condition of strong pseudocon-
vexity. For a Hermitian holomorphic vector bundle (E,h) on a domain D, we denote by
® = @ ; the associated End(E)-valued curvature (1,1) form. At each point z € D, the ten-
sor ®, = ®(z) can equivalently be considered as a Hermitian bilinear pairing ¢, on
E, ® T%!. Then, (E, k) is of strictly negative curvature in the dual sense of Nakano if and
only if Q, < 0 at each point z € D. For the purpose of checking the condition of strong
pseudoconvexity we have

Lemma 1.2.2. Let (E, h) be a Hermitian vector bundle holomorphic of rank r on a do-
main D < C" with the Hermitian metric h. Let Sg be the unit sphere bundle of E. If (E, h) is
" seminegative in the sense of Griffiths, then Sg is a pseudoconvex real hypersurface in C” o,
Furthermore, if (z,v) € Sg is a weakly pseudoconvex point, then there exisis some non-zero
vector € € THOD such that Q,(v ® &,v Q@ &) = 0. In particular, if (E,h) is strictly negative
in the sense of Griffiths, then Sg is strongly pseudoconvex.
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Proof. Write 7 : E — D for the canonical projection. At z € D, let U be a sufficiently
small open neighborhood of z such that x| u) i T ~1(U) — U is holomorphically trivial.
Let (w/, v"‘) 1 <iZn 1 Sa=r, be local holomorphic coordinates over E|U =n"Y(U),
where w' are holomorphic coordinates on U, wi(z) = 0 for 1 <i < n, and v* are holomor-
phic fiber coordinates for the vector bundle E|;. We choose the fiber coordinates adapted
to the point z, i.e. &, (0) ﬁ and dh, (0) = 0, where d,p is the Kronecker delta. Sg is de-

fined by p(w'; v*) = Eh ( ")u ## = 1. The complex Hessian of ¢ at (0,0%) is
by
0)v#s* 0
1) | S wiow
0 Jup

On the other hand, the curvature tensor at z is given by

@) 0,(0) =~ 21 g
wiif - 6w,-6Wj )

n . r
Thus, given a (1,0) tangent vector = > é’i + 3 A% 0 at (0,v) we have
' a=1 awi «=1 aua

& VI ra) == 5 S 00T+ S

1_]—1 12 v=1
By definition, (E, k) is seminegative in the sense of Griffiths at 0 if and only if

(4) E G)yw]( )Uﬂﬁéig é 0)

#’ v l’]

and it follows from (3) that the Levi form +/—10dp is semipositive on S if and only if
0.(v®¢&v®E) <0 for any ve E,, ¢ e T} Moreover, it is strictly positive at (z,v),
v % 0, unless there exists some nonzero & € 710 such that

0:(v® E, 1® E) =3 @/ﬁif(o)vﬂﬁéig —0,
as desired. [ ‘

Since (L, d)g) is a (strictly) negative line bundle, Sy is a strongly pseudoconvex real-
algebraic hypersurface in C"*! as g is rational for the Bergman metric. On the other hand,
(£, g) is seminegative in the sense of Griffiths, so we only know that S¢ is a psendoconvex
real-algebraic hypersurface in C%( ) In order to apply Theorem 1.2.1, we need to show |
that 7 maps some point in Sy, to a strongly pseudoconvex point in Se.

From the definition of (%, g), we see that the weakly pseudoconvex points on S¢
-are those where at least one of the components u, vanishes, where (uy,...,us) are the
. canonical fiber coordinates on %. Since none of the component maps of f is degener-
~ate, the set {det(Jfi) =0} u--- U {det(Jfz) = 0} is a proper subvariety in U < Q. By
“ the definition of f as in (4) in the first paragraph of Section 1.2, it follows that f maps
,_Some point in Sy to a strongly pseudoconvex point in Sg. Therefore, by Theorem 1.2.1,
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Graph(f) < (Q x C) x (Q% x C*%) extends to an irreducible affine-algebraic variety
W< (C"xC)x ((<IZ")"I2 X Cdz) of complex dimension z + 1. Restricting fto Qx {0} we
recover f, and as a consequence Graph(f) < Q X Q% extends to an affine-algebraic vari-
ety ¥V = C" x (C")“ of complex dimension n. To summarize, we have established the fol-
lowing intermediate result toward the proofs of the Main Theorem and Theorem 1.1.2, not-
ing that the preceding arguments apply to any irreducible bounded symmetric domain
including the unit disk A.

Proposition 1.2.1.  Let Q &€ C” be an irreducible bounded symmetric domain, and dyg,
be the volume form of the Bergman metric on Q. Suppose dy and d, are positive integers and
F=U1, - Ja): (Qddug;0) — (Q%, 7} dug + - - - + n, dug; 0) is @ measure-preserving

holomorphic map. Then, Graph(f) < Q x Q% <= C" x (C")d2 extends to an affine-algebraic
variety V < C" x (C")“.

From Proposition 1.2.1 we deduce readily

Proposition 1.2.2. Let Q € C" be an irreducible bounded symmetric domain in its
Harish-Chandra realization. Denote by dug the canonical measure on Q given by the volume
form of its Bergman metric. Let f = (fi,..., fa) : (€0) — Q% 7t dug + -+ + 7}, dpg; 0)
be a germ of measure-preserving holomorphic map. Then, there exists an affine-algebraic sub-
variety R = C" such that for any point b € 0Q — R, the germ of holomorphic map fat0eQ
can be analytically continued along some continuous path y:{0,1] — Q — R satisfying
7([0,1)) =« Q— R, y(0) =0 and y(1) = b to a holomorphic map into (C™% defined on a
neighborhood Uy, of b in C".

Proof. By Proposition 1.2.1, Graph(f) = Q x Q% < C" x (<IZ")d2 can be extended
to an affine-algebraic variety ¥V < C" x (C")dz. Denote by M the compact dual of €, so
that Q = C" < M gives at the same time the Harish-Chandra embedding Q = C” and the
Borel embedding Q <= M. The compactification C" < M is birational to the standard com-
pactification C" < P". As a consequence, the topological closure Ve MxM®%is a pro-
jective subvariety of complex dimension z. Denote by 7 : V — M the canonical projection
onto the factor M of M x M%. Let S  V be the union of the singular locus of V, the
subset of Reg(¥) consisting of points where 7y fails to be a local biholomorphism, and
the set of points we ¥ such that m,(w) e M — C" for one of the canonical projections
ny: V — M, 1<a<d, onto the a-th direct factor of M%. Then S < ¥V is a projective
subvariety such that each irreducible component is of complex dimension at most n — 1.
By the Proper Mapping Theorem, E := mo(S) & M is a subvariety of M. Furthermore,
R:= ENC" £ C"is an affine-algebraic subvariety. Then

moly iy * ¥V 7 (R) - C"—R

is a topological covering map. The rest of Proposition 1.2.2 on analytic continuation fol-
lows readily. [

2. Proof of the Main Theorem and Theorem 1.1.2

2.1. Proof of the Main Theorem in the rank-1 case. From Proposition 1.2.1 we have
established the algebraic extension of the graph of the germ of measure-preserving holo-
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morphic map f : (Q;0) — (Q;0)%. To proceed we will make use of the real-analytic func-
tional identity satisfied by f and study boundary behavior of component maps f,
1 £ a = d,, of the holomorphic map, still denoted by f, obtained by analytic continuation
along continuous paths on ) — R. By means of algebraic extension and the functional iden-
tity, we will obtain holomorphic maps defined on open neighborhoods of a general bound-
ary point which preserve the boundary, and we will need to make use of the extension re-
sults due to Alexander [A] in the rank-1 case, and due to Henkin-Tumanov [TK1] in the
case where Q is of rank = 2. We start with the rank-1 case.

Theorem 2.1.1 (Alexander [A]). Let B” € C" be the complex unit ball of dimension
nz2 LetbedB", Uy be a connected open neighborhood of b in C", and f : Uy — C" be a
nonconstant holomorphic map such that f(Up, N 0B™) < dB". Then, there exists an automor-
phism F : B" — B" such that Fly, g0 = [y, pn.

_ Using the result on the algebraic extension of the germ of graph of a measure-
preserving map as given in Proposition 1.2.1 and Theorem 2.1.1 (Alexander’s theorem)
we are now ready to prove the Main Theorem in the rank-1 case, i.e., for the complex
unit ball B n = 2.

Proof of the Main Theorem in the case of B", n = 2. Recall that for an irreducible
bounded symmetric domain Q € C" in its Harish-Chandra realization, Kqo(z, w) stands for
the Bergman kernel on Q and ds3 stands for the Bergman metric on Q. Denote by dV the
Euclidean volume form on C". Both the (n,n)-form Kq(z,z) dV and the volume form dug
of (Q,ds3) are invariant under the action of the group Aut(Q) of holomorphic auto-
morphisms. Since Aut(Q) acts transitively on Q, dug, = coKq(z,z) dV for some constant
ca > 0. From the functional identity (1) in Section 1.1 we deduce that

(1) éKg(fa(z),ﬁ,(z)) |det(Jfa(z)) |2 = d1Kq(z,z).

C

z fi
W or some

For Q = B", the Bergman kernel on B" is given by Kp«(z,w) =
constant ¢, > 0. Hence, by (1)

& ldet(Jfo((z))|2 _ dy ‘
S (L= A== ‘

Let b€ 0B" — R where R ¢ C" is the affine-algebraic subvariety as in the statement of

Proposition 1.2.2. Then f : U — Q% can be analytically continued along some continuous

path on Q — R reaching b to give a holomorphic mapping on a neighborhood Uj, of b, still
to be denoted f = (f, ..., fs). Noting that det(Jf;(z)) is bounded on U} n B for any

neighborhood Uy of b in C” relatively compact in Up, applying the functional equation

(2) to f] u,~pn and comparing the two sides near points on U, n dB", we conclude that for

some fy, say f1, we must have |f1(b')| = 1 for any ¥’ € U, n 9B", i.e., fi(Uy N 0B") < OB™.

When n 2 2, by Alexander’s theorem [A] as stated here in Theorem 2.1.1, Sily,~p» €xtends

to an automorphism of B”. Since an automorphism preserves the volume form of the Berg-

man metric, we have

(2)

det(h@)" 1
(I-1A@H™  A=jzP)™

(3)
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and it follows from equation (2) that

d |det(.]f¢,¢(z))|2 _ di—1
= I N o A o
If d; — 1 > 0 the saine argument can be repeated, and we conclude by induction that there

are exactly d; of the components f; such that f,(U, n B") < 0B", say those [« for which
1 < « £ d;. What remains gives

)

Ldvi 1
it (1= |fa(2)]?)

The possibility d; < d; plainly cannot occur because each of the component maps fu 18 as-
sumed to be of maximal rank at some point, and the same property must be propagated by
analytic continuation to U, showing that each of the Jacobian determinants det (Jj; (z)),
1 < « £ dy, is not identically 0 on U,. We have thus established in the rank-1 case, where
Q = B", n = 2, that in fact d; = d, and that f : (B";0) — (B";0) “ extends to a totally geo-
desic holomorphic embedding F : B* — (B")dz, where each component F; : B" — B" is a
biholomorphism. As a consequence, we have completed the proof of the Main Theorem
in the special case where Q = B", n =2 2. [] 4

(5) 1 ldet(Jfu(2))|* = 0.

2.2. Boundary behavior of the algebraic extension along the Shilov boundary. For the
proof of the Main Theorem in the case of rank = 2, to start with we need the following
special case of a result of Khenkin—Tumanov [TK1], Theorem 1, analogous to Alexander’s
theorem.

Theorem 2.2.1 (Khenkin-Tumanov [TK1}). Let Q € C" be an irreducible bounded
symmetric domain of rank =2 in its Harish-Chandra realization, and denote by
Sh(Q) = 0Q its Shilov boundary. Suppose b € Sh(Q). Let Uy = C" be a connected open
neighborhood of b in C", and f : U, — C" be an open holomorphic embedding such that
F(U,nQ) < f(Up) nQ and f (U, nSH(Q)) = f(Us) N Sh(Q). Then, there exists an auto-
morphism F : Q — Q such that Fly, .o = [ly,~a-

Remarks. The result of Khenkin-Tumanov [TK1] is stated in the general form for 3§
Cartesian products of irreducible bounded symmetric domains of camplex dimension = 2,
and a complete proof is given there for irreducible classical domains of Type-I. A simplifi-
cation of the proof in the latter case is given in Khenkin-Tumanov [TK2], §4, based on the
use of geometric structures defined by irreducible Hermitian symmetric spaces of the com-
pact type of rank > 2. (The work of Goncharov [G] was cited in [TK2], but the result

- needed was first due to Ochiai [0].) The scheme of proof in [TK1] together with the simpli-

fication as given in [TK2] applies to yield Theorem 2.2.1.

Imitating the proof of the Main Theorem in the rank-1 case, we need to show that
there exists some point b on Sh(Q) such that the germ of holomorphic mapping
F =, fa): (©;0) — (€;0) x -+ x (©;0) can be analytically continued along a con-
tinuous path in Q to a neighborhood of b € C", and such that, with respect to any choice of
analytic continuation of f to Up, one of the components of the mapping, say f1 : U, — C”,
satisfies f; (Up N Sh(Q)) = Sh(Q). To start with, we have
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Lemma 2.2.1.  With reference to Proposition 1.2.2 and in the notation there, the sub-
variety R & C” does not contain the Shilov boundary Sh(Q).

Proof.  In the notation of the proof of Proposition 1.2.2, the affine-algebraic variety
R < C" is exactly the common zero set of a finite number of polynomials {h1,...,hs}. By
the property of the Shilov boundary, given any continuous function s : Q — C such that g
is bolomorphic, the maximum of the moduli {|s(x)| : x € Q} is precisely attained on the
Shilov boundary. If Sh(Q) were contained in R, then the maximum modulus of each of
the defining functions #;, 1 <i </, would have to be 0, and hence #; =0 on C”, a plain
contradiction. Thus, Sh(Q) — R + @, as desired. []

Ie

.

For the proof of the Main Theorem we need some structure theory about bounded
symmetric domains regarding maximal polydisks and Harish-Chandra realizations. Let Q
be an irreducible bounded symmetric domain. Write G for the identity component of the

- group Aut(Q) of biholomorphic automorphisms of Q, and K < G for the isotropy sub-
group at the origin 0 € Q. Denote by g the Lie algebra of G, and by f the Lie algebra
of K. With respect to the involution at 0 = eX of Q we have the Cartan decomposition
g = T @ m, where m is canonically identified with the real tangent space T, R(Q) at 0 = eK.
Equipping Q with the Bergman metric, Q can be identified with G/K as a Riemannian

symmetric manifold. Let G be the complexification of G, K€ < G be the complexification
of K in G%, and P = G be the maximal parabolic subgroup containing K€ (as a Levi fac-
tor). Then M := G/P is the rational homogeneous manifold which is the underlying com-

plex manifold of the Hermitian symmetric manifold of the compact type dual to Q. As a

complex manifold Q can be identified with an open subset of M by means of the Borel

Embedding Theorem, given by the natural map G/K — G€/P := M. Write g€ for the

(complex) Lie algebra of G*. The real Lie algebra g is a real form of the complex Lie alge-

bra g€, ie., g = g ®g C. We have the Harish-Chandra decomposition g = m* @ € @ m~
in standard notations (cf. Wolf [W] and Mok [M2]), where m* @ m~ = m® := m ®C,

m* is canonically identified with T5(Q) = T,'%(Q), m~ is canonically identified with

To(Q) =T, g 1(Q), 1€ (being the complex Lie algebra of K €) is the complexification of f,

and p = * @ m~ is the Lie algebra of P = G®. If we fix a Cartan subalgebra ) < f, and
denote by A the set of roots with respect to b, then we have a decomposition of g® into

the direct sum of §h = ) ®z C and the (1-dimensional) eigenspaces g%, and Tp(Q) = m*

can be identified with the direct sum of the eigenspaces g as ¢ ranges over the set Af of
positive noncompact roots. \

S < QL

For each ¢ € A we write g? = Ce,. We choose ¢, as in Wolf [W], §3, as follows. De-
note by (-,-) the restriction of the Killing form B of ¢° to the complexified Cartan sub-
algebra h®, and by the same symbol the induced bilinear form on the dual space (§*) € For
- 9 € A we define 4, € i} by the relation 2¢p(h) = (¢, ¢)(h,, ) for every h € ). We choose now
root vectors e, € g subject to the normalization e_, = &,, [e,, e_,] = h,, where conjugation
- in © is taken with respect to the real structure given by g < g“.

Regarding G/K as an open subset of M by the Borel embedding, the mapping
¢:mt — M = G®/P given by &(z) = exp(m)P is a biholomorphism onto a Zariski open
Subset of M containing G/K. The inverse map #=¢"1: G/K S5 Q € mt =~ C" is the
Harish-Chandra embedding. Enumerating the positive noncompact roots as

A+ = {¢1"--)¢n}7

s
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and identifying a point z = zie, + - + zne,, With (z1,-..,2n), we have obtained the
Harish-Chandra realization Q € C", and we will refer to (zi,...,2,) as the Harish-
Chandra coordinates.

Maximal polydisks IT < Q can be constructed as follows. Two roots ¢;,¢, € A
are said to be strongly orthogonal if and only if neither ¢; + ¢, nor ¢; — ¢, is a root.
When ¢; and ¢, are positive roots, ¢; + ¢, is never a root. Let ¥ = Af be a maximal
set of mutually strongly orthogonal positive noncompact roots. ¥ consists of precisely r
elements, ¥ = {Y;,...,¥,}, where r denotes the rank of Q as a Hermitian symmetric
manifold. For each y € P, the real 3-dimensional vector space

G =Py NG where py = g‘[’ + g—‘l’ + [g"’, g_"’]

gives a Lie algebra isomorphic to su(1,1), and Qy :=exp(qy) = G gives a Lie group
isomorphic to SU(1,1)/{+I} such that the orbit of 0 € Q under Qy is a minimal disk on
Q. The tangent space To(P) < Tp(Q) = m* < g© is spanned by root vectors belonging to
a maximal set of strongly orthogonal noncompact positive roots. Furthermore, from the
strong orthogonality condition Qg := Qy, X -+ X Qy, acts as a group of automorphisms
on Q and the orbit of 0 € Q under Qy is a maximal polydisk IT < Q passing through the
origin 0 € Q2. We have '

Theorem 2.2.2 (Polydisk Theorem, cf. Wolf [W], p. 280). Let Q be a bounded sym-

_ metric domain of rank r, equipped with an Aut(Q)-invariant Kihler metric g. Then, there
W exists an r-dimensional totally geodesic complex submanifold 1 biholomorphic-to the poly-
disk A'. Moreover, the identity component G of the group of automorphisms Aut(Q) acts

transitively on the space of all such polydisks. , .

o A maximal strongly orthogonal set ¥ = Aj can be constructed inductively, as fol- .
lows. Choose a lexicographic ordering on the set A of roots with respect to h and let
Y, := p € Af be the dominant root thus defined. If a set {1, ..., ¥} of mutually strongly ;
orthogonal positive noncompact roots has been defined, 1 < k <r, we pick Yy, € Af to
be the highest root with respect to the chosen lexicographic ordering among all positive
noncompact roots ¢ strongly orthogonal to each y;, 1 £ i < k. This way we end up with a
maximal strongly orthogonal set ¥ = AJ of cardinality equal to r = rank(Q) and a corre-

: sponding maximal polydisk II = Q. In our choice of Harish-Chandra coordinates we will

E take g; = ; for 1 <i <r, where y; = u is the dominant root. By Wolf [W], §3, equation

[ (3.22), in terms of Harish-Chandra coordinates, the maximal polydisk II as constructed
above is precisely the unit polydisk A" x {0}.

P Denote by B(:,-) the Killing form on q®. With respect to the Cartan decomposition
L - g =T@m, the restriction Bl; on the compact semisimple Lie algebra f is negative definite,
while the restriction B|,, is positive. Write g, :=f+im < g€ for the compact real form 3
of gC. Let 4> 0 be any positive constant and define {:,-» by <{a, B> = —AB(%,7.(f)).
Since B|, is negative definite, <-,-> is a Hermitian inner product with respect to the real
structure defined by g, < aC, i.e., with respect to conjugation given by 7., which is invari-
ant under K. The Harish-Chandra decomposition g = m+ @ £© @ m~ is an orthogonal
e decomposition with respect to <-,->. In terms of the conjugation 7p(g) =g on g€ with
[ respect to g = g%, we have {mi,my) = AB(m1,m;) for my,m; € mC=mt*@®m~, while §
(eyyky) = —AB(ky, k) for ki, ky € EC. ‘-
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To study the boundary of the irreducible bounded symmetric domain Q € C" in
its Harish-Chandra realization we will make use of the Hermann Convexity Theorem, as
follows.

Theorem 2.2.3 (cf. Wolf [W], p. 286). Let Q € C" be an irreducible bounded sym-
metric domain in its Harish-Chandra realization. Let B(-,-) be the Killing form on gF,
A >0 be any positive number, {-,-> ble the Hermitian inner product on g® defined by
{g,h) = —1B(g, t.(h)), and |g| = {g,g>>. Then, the Harish-Chandra realization

QEmt=C”®

is given by Q = {{ e m™ : flad(Re¢)|| < 1}, where || - || is the Banach norm on ad(g) defined
by ||lad(w)|| = sup{|lad(w)(g)|| : g € o, |g| = 1}. In particular, @ € C" is a bounded convex
domain.

In the definition ||ad(u)|| is in fact the operator norm of ad(x) : g€ — g€, and is thus
independent of the choice of 4 > 0 in the definition of {-,->. We will not make use of the
convexity but rather the more precise description of Q as the unit ball with respect to a
Banach norm. We have

Lemma 2.2.2. Let Q € C" be an irreducible bounded symmetric domain in its
Harish-Chandra realization. Let I1 < Q be a maximal polydisk passing through 0 and sup-
pose the Harish-Chandra coordinates (z1, . . . ,z,) have been chosen so that the basis vectors
are root vectors with respect to the Cartan subalgebra ¥y < 1, and (z1, ... ,z,) are Euclidean
coordinates on the maximal polydisk II1 < Q. Then, for 1 £k <, the function n: Q — C
defined by n(z) = zi, maps Q onto the unit disk A.

Proof.  In the notation of Theorem 2.2.3, the restriction of {-,-> to m*+ defines a
Hermitian inner product on m*. In terms of the Harish-Chandra coordinates (z1y---y20)
as described we have IT = A" x {0} = Q for the maximal polydisk II. Suppose now z € Q
and z=ae,+ ). bye,. To prove the lemma it suffices to show that |a| < 1. We nor-

peAy,p*u
malize {-,-) by choosing the constant 1 > 0 such that |[e,,&;]| = 1. With this normaliza-

tion from standard calculations on sl(2, C), we have |e,| = % and |Re(e,)| = % We have

. b}
O Frrecal=2Re(de,glt T blendl).
' peAf o+u

Note that [e,, &,] € il is purely imaginary. Replacing z by e?z, we may assume that a is
purely imaginary. For ¢ € A distinct from 0, either lep, 24 is 0 or ¢ — e A, in which
case [e,, &,] is a generator of the root space g? #. The root spaces are mutually orthogonal
to each other and they are orthogonal to the complexified Cartan subalgebra HC. Taking
real parts it remains the case that the non-zero summands of the right-hand side of (1) are
mutually orthogonal. It follows that

(2) © 2l < |[2Rez 2Re(e,)]| = 4|[Rez,Re(e,)]|
= 4[ad(Rez)(Re(e,))| < 4|Re(ey)] = 2,

£ hence |a| < 1, as desired. [
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Remarks. (a) From (2), the statement that z = ae, lies on Q if and only if la] < 1is
equivalent to the fact that l|lad(Re(e,)) || = 1, which results from the Restricted Root The-
orem and is used in the proof of the Hermann Convexity Theorem (cf. Wolf {W], §3).

(b) In terms of the Harish-Chandra embedding #: G/K 5Q&cC", one has

0 . . . .
dn(e, mod P) = o The normalization on (-, -y chosen in the proof is precisely the one

with respect to which

1 . . " .
=75 i.e., the one for which, writing zx = Xk + &k, Xn+k *= Vi
Zk

V2

: 0 0 . ' . .
the set {—5, SNy } constitutes an orthonormal basis of the underlying real vector
1 2n .

space of C". In other words, ¢ ,-» induces the standard Euclidean metric on C". The latter
in’gerpretation is however irrelevant to the proof.

In order to apply the result of Khenkin—Tumanov [TK1] (Theorem 2.2.1 here) to our
situation of measure-preserving holomorphic maps in the higher rank case, we prove the
following general result on biholomorphisms defined on a neighborhood of a point on the
Shilov boundary.

Lemma 22.3. Let Q€ C" be an irreducible bounded symmetric domain in its
Harish-Chandra realization, and denote by Sh(Q) its Shilov boundary. Let UcC" be a
connected open set such that U0 Sh(Q) + 0. Let h: U — C" be a biholomorphism onto
an open subset of C" (regarded as a Euclidean space containing a copy of Q in its Harish-
Chandra realization) such that h(U Q) < Q and such that h(U N Q) < 0Q. Then,
h(Un Sh(€))) < Sh(Q). A4s a consequence, there exists H € Aut(Q) such that H\y, g = h.

Proof. FBach y e Gy extends to an automorphism of the compact dual M, and as
such it restricts to a homeomorphism of O mapping 0Q homeomorphically onto Q. By
the structure of boundary components of bounded symmetric domains (cf. Wolf [W]), 0Q
decomposes into the union of exactly r orbits under the action of G. This can be deduced
from the Polydisk Theorem, as follows. Denote by I« Q, I = A', a maximal polydisk
passing through 0 defined by a maximal strongly orthogonal subset ¥ = Af of non-
compact positive roots, ¥ = {¥1, ..., ¥} Denote by (z1,-. .,z the Euclidean coordinates

: 0 . . .
on II, so that P eg¥ and I = A" in terms of these coordinates. Extend the Euclidean
i ,
coordinates (z1,...,2r) tO Harish-Chandra coordinates (zl,...,z,',z,+1,...,z,,) on Q so
0~ . . .\
that each P 1 < k £ n, is a root vector belonging to a positive noncompact root. By the
k

Polydisk Theorem each point x € Q is equivalent under the action of K to a point y € IL.
We have a decomposition Il =4 udy -~V A,, where A consists of boundary points
b= (by,...,b) n which exactly k of the coordinates b; are of norm 1, and exactly r — k of
the coordinates b; are of norm strictly less than 1. Denote by & the point (1,.. ., 1;0,...,0)
on 4TT with the first k coordinates equal to 1 and the other r — k coordinates equal to 0.
Thus, if we write e; for the i-th unit vector, 1 £i < n, then g = €1+ T €k Now a point
b e o1l lies on A if and only if it is of the form y(g,) for some y € Aut(IT), noting that.
Aut(TT) is a semi-direct product of Auto(IT) = (Aut(A))" with the permuting group S, on
a set of r elements, where o € S, acts by o(z15---,2r) = (Zo1)y - - - s Zo(r))- NOW the full group
Aut(IT) of automorphisms extends to automorphisms of Q (cf. Wolf [W]). Hence, given
any b € 0Q, there exists y € G such that y(b) = & for some k, 1 < k £ r. Furthermore, for




Mok and Ng, Germs of measure-preserving holomorphic maps 63

1 £k < ¢ =, & and ¢, are inequivalent under the action of G. As a consequence, we have
a decomposition 0Q = Ey UE, U--- U E, into the disjoint union of orbits Ej := Ge;. We
claim:

(b) Let 1 <¢ <r and write Ky := E; UFEs U+ UE,. Then, b € K, is a smooth
point of K, if and only if b € E,.

We observe first of all that for 1 < k < r — 1, Ey, is always in the topological closure
of Ey, as can be seen from the action of Auto(II) on 8I1. To prove (b) we may assume that
¢ <r and it suffices to show that any point b € E,;; cannot be a smooth point of K.
Since G acts transitively on each E, it suffices to show that es+1 ¢ Reg(Ky). Suppose &4
were a smooth point of K. Then, the real tangent space TE"}H (K,) must contain limits of
real vectors v; tangent to p;, where (p;) is any sequence of points lying on E, < Reg(K;)

and converging to g.1. In particular, writing z; = x; + V—1yr as usual for 1 £k <n,

lies on

the point p = ¢ + zsez4; lies on E, whenever |z;| < 1, and the vector v =
X141

T, le (Ez), and thus v e TR (K). Since zz41(es41) = 1, it follows that there exists some point
b € K, such that |z,,1(b)| > 1, contradicting Lemma 2.2.2.

We proceed to prove £(U n Sh(Q)) < Sh(Q) by induction. It suffices to consider the
case where rank(Q) :=r = 2. By (b), Reg(0Q) = E;. Since ~: U — C" is an open embed-
ding such that A(U n 0Q) = 0Q, a singular point of U n 6 must be mapped by 4 to a sin-
gular point of 0Q. In other words A(U n K3) = K,. If Qis of rank 2 then K, = E, = Sh(Q)
and we are done. If r > 3, let £ be any integer such that 2 < ¢ < r. Suppose by induction
hypothesis we have A(U n K;) = K;. By (b), Reg(K;) = Ey, i.e., Sing(Ky) = K;,1, and ex-
actly the same argument as above shows that A(U n Ks+1) = Kz4. Thus, by induction we
reach £ = r, showing that #(U n K,) = K. But X, is nothing other than the Shilov bound-
ary Sh(Q) and we have shown that #(U n Sh(Q)) = Sh(€). By the theorem of Khenkin—
Tumanov (Theorem 2.2.1 here), there exists H e Aut(Q) such that 4|, ., = H] Unq> 38
desired. [

2.3. Proof of the Main Theorem and its consequences in the case of rank = 2. We
are ready to complete the proof of the Main Theorem and Theorem 1.1.2. To start with
we need the following standard fact about the Bergman kernel on bounded symmetric do-
mains. N

Lemma 2.3.1. On an irreducible bounded symmetric domain Q & C" in its Harish-
Chandra realization, denote by Ko(z,w) the Bergman kernel. Write pg(z) = Kq(z, z).
Then, pq(z) is an unbounded exhaustion function on Q.

Proof.  Write n := dimc(Q) and r := rank(€). In the statement of Lemma 1.2.1, we

have Kq(z,w) :ﬁw)’ where Q is a polynomial in (zi,...,2.;Wr,...,W,) such that

Q(z,z) .+ 0 whenever z € Q. More precisely, Q(z, w) = h(z, w)?, where h(z,w) is some poly-
nomial in (z1,...,2,;Wi,...,W,) and p is a positive integer, with the following property
(cf. Faraut-Koranyi [FK], pp. 76-77). Let II = A" be a maximal polydisk on Q passing
through 0. We may choose Harish-Chandra coordinates such that IT is exactly the unit poly-
disk A" x {0}. For z € Q, there exists y € K = Auto(Q) such that y(z) = (a1,...,a,) el
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and we have
h(z,2) = (1) x - x (1= |a]’).

We may normalize a,...,dr,, & = a;(z), so that each a; is nonnegative and we have
@ =z Za 20, and refer to (ai(z),...,a,(z)) as the normal form of z modulo K.
Then, a sequence of points (zx), is discrete if and only if a(z) — 1 as k — o0 s0 that
h(ze,2) — O as k — oo. It follows that pq(z) = Ka(z,2) is an exhaustion function, as

desired. O

In order to apply the result of Khenkin—Tumanov (Theorem 2.2.1) in the case of
rank > 2 in analogy to using Alexander’s theorem (Theorem 2.1.1) in the rank-1 case, we
need to consider topological properties concerning the structure of 9€ of the Harish-
Chandra realization Q &€ C". More precisely, we will need the following connectedness
statement.

Lemma 2.3.2. Let Q € C" be an irreducible bounded symmetric domain in its
Harish-Chandra realization, and denote by Sh(Q) < 0Q its Shilov boundary. Let p € Sh(Q)
be any point on the Shilov boundary, Reg(0Q) be the smooth locus of 0, and @, < 9Q be
any connected open neighborhood of p on 0C. Then, there exists a connected open neighbor-
hood Qj of p in 0Q such that Qp < O, and such that Qp N Reg(0Q) is connected.

Proof. 'We will make use of a canonical unbounded realization of the bounded sym-
metric domain Q. By, Koranyi—-Wolf [KW] there is a biholomorphism @ : € — 9 of Q onto
a Siegel domain 9 = C" of the first or second kind such that ®(p) =0, where O lisa
Cayley transform in the terminology of [KW]. Siegel domains were defined in Pyatetskii- -
Shapiro [PS]. A Siegel domain & = C* of the first kind is a tube ‘domain over a cone :
¥ < R" where V does not contain any affine line. A Siegel domain of the second kind: :
P = CM x C™ defined by @ = {(z1,22) : Im(z;) — F(z,25) € V'}, where V < R™ is a
open convex cone not containing any affine line, and where F:C™x C"” — C" s
C™-valued Hermitian form such that F(z3,z) € V for any non-zero z; € C"™. In both case
9 < C" will be referred to as a Siegel domain in the sequel. When the Siegel domain
is of the first kind, for any positive real number ¢ the mapping o(z) = #z is an autom
phism of 9. When 2 is of the second kind, the mapping a(z1,22) = (t21, Viz) is.an
morphism of 9. In either case o, is a complex linear map, and it extends therefore
homeomorphism of % = @ U89 such that w,(2) =D, 2,(09) = 09, 0,(0) = 0.- W,
Q € C" <« M to incorporate both the Harish-Chandra realization and the Bore
bedding Q < M. The inverse Cayley transform ®:Q — 2 is the restriction to Q
an automorphism of M, still to be denoted by ®, where we have 9 < C" c M can
cally. The affine part Sh*(9) < C" of the Shilov boundary Sh(%) =M is gt
Sh*(9) = {(z1,22) € C" x C™ : Im(z1) = F(z3,22)}. In particular, 0 € 09 is a poinyg
the Shilov boundary. :

In terms of an unbounded realization @ : Q — 9 as a Siegel domain, <I)(p\r

have equivalently to prove that, given any connected open neighborhood Pj = 9%,
89, there exists a connected open neighborhood Py of 0 in 82, such that Pp < P
that Py n Reg(09) is connected. Without loss of generality we may assume that
Define PF:= |J o (P}), P¥ € 09. Let now s be a sufficiently small pos
O<t<1 ;

such that oy(P¥) < P and we define Py := o,(P§) = P§. By construction o (Po
0<t=1. .
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We proceed to prove that Py N Reg(09) is path-connected, i.e., given any two points
41,492 € Py N Reg(09), there exists some continuous path u on Py nReg(09) joining q;
to g2. Write ®'(g;) :=b,€0Q, i=1,2. From (b) in Lemma 2.2.3 the smooth locus
Reg(0Q) = 6Q is an orbit under the identity component Gy of Aut(Q) and it is hence con-
nected. Thus there exists a continuous path y on 9Q joining b; to b,. The hypersurface
H := M — C" corresponds to a hypersurface

L:=0"'(H) =M such that ®~'(Reg(09)) = Reg(dQ2) — L.

(Here 09 stands for the boundary of 2 in C”, not in M .) For the proof of Lemma 2.3.2
in what follows without loss of generality we will assume that the irreducible bounded
symmetric domain Q is of rank > 2. Now H = M is of complex codimension 1, and
hence L nReg(dQ) is at least of real codimension 1 in Reg(0Q). If the codimension is 1,
then Reg(0€Q) must contain some open subset of I, which is impossible since any locally
closed complex submanifold lying on Reg(0€Q2) must be contained in a boundary compo-
nent of maximal dimension on 69, and the latter are necessarily of real codimension > 3
whenever Q is an irreducible bounded symmetric domain of rank 2 2. Thus, L nReg(0Q)
is at least of real codimension 2, and it follows that we can choose a continuous
path on Reg(dQ) — L joining b; to b,. Equivalently, we can find a continuous path
v:[0,1] — Reg(d9) joining q; to g¢». Choose now &> 0 sufficiently small so that
ae(v([0,1])) < Py. Since Reg(09) is invariant under the automorphism o, ¢ > 0, we have
% (v([0,1])) = Py N Reg(dD). Thus o;(q1) is joined to ae(g2) by o 0 v on Py N Reg(02). On
the other hand, o,(¢;) € Py nReg(09) for0 <t <1,i= 1,2. Thus, for i = 1,2 the point ¢;
is joined to ox(g;) € Py N Reg(09) through a,(g;) as ¢ decreases from 1 to &. It follows that
for an arbitrary pair of points g1, € Py N Reg(092), ¢, is joined to ¢, by a continuous
path on Py N Reg(09), and the latter is path-connected, hence connected, as desired. []

Remarks. 0Q c C” is a semi-analytic subset, and as such it is locally connected [1.].
Hence, given any open neighborhood U, = C" of p in C", there exists some connected
‘open neighborhood Q, <0QN U, of p in 0Q. Lemma 2.3.2 is a topological statement,
and it can also be derived from the structure of AQ as a semi-analytic set and the fact that
‘the singular locus Sing(dQ) := 9Q — Reg(dQ) < 4Q is of real codimension = 2. In fact,
-0, N Reg(0Q) is already connected.

We are now ready to give a proof of the Main Theorem when rank =2

Proof of the Main Theorem for rank > 2. In the statement of the Main Theorem re-
«call that Q € C” is an irreducible bounded symmetric domain of complex dimension at
Jeast 2 in its Harish-Chandra realization, and

J= i fa) 1 (Q,d1 dug; 0) — (Q%, 7} dug + -+ + 5, dug; 0)

a measure-preserving holomorphic map. Furthermore, in the notation of the statement of
osition 1.2.2, for some affine-algebraic variety R & C”, and for every b € 9Q — R the
£erm of holomorphic map f can be analytically continued along some continuous path in
) — R to a holomorphic map into (C™)* defined on a neighborhood Uj, of b in C". We still
te by ' = (fi,..., f) such an analytic continuation on Up. By the structural equation

n Section 1.1 for measure-preserving holomorphic maps we have

(1) ' éKQ( a(z),ﬁ(z))ldet(]ﬁ(z))lz = diKq(z,2).
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By Lemma 2.3.1, Ko(z,2) = h—(gl—z—); is an exhaustion function. Here A(z, w) is a polynomial

in z and w such that A(z,z) > 0 whenever z € Q and h(z,z) = 0 whenever z € Q. Let
b e Sh(Q) — R, which is non-empty by Lemma 2.2.1. Define ¢(z) := —h(z,z). Then
9(z) < 0 for ze Q and ¢(z) =0 for z € 0L, so that ¢ is an algebraic (in particular real-
analytic) defining function of Q € C". Imitating the proof of the rank-1 case in Section
2.1 for B", n > 2, we assert that one of the components fu: Q — Q, say fi, must satisfy
£1(Uy, 0 0Q) < 8Q, which is not altogether obvious when rank(Q) = 2. By Lemma 2.3.2,
without loss of generality we may assume that for Qp := U, n0<Q, the intersection
0, N Reg(0Q) is connected. Write ¢(z) := h(z,z). From the definition of f by analytic
continuation and from the functional equation (1) it follows that f(Uy N Q) = Q% In
particular f{(UpnQ)cQforanyi,1=i= d,. Again from (1) we can choose a compo-
nent, say fi after renumbering the components if necessary, such that fj(Np) < 0Q for
some non-empty open subset Np < Qp. In order to apply the extension result of Khenkin—
Tumanov stated here in Theorem 2.2.1, we have to check that f1(Up n 0Q) = 0Q. Now
Y :=go fi : Uy — Ris a real-analytic function which vanishes on the non-empty open sub-
set N n Reg(dQ) < Qp N Reg(0Q), which is connected. From the real-analyticity of ¥ and
the Identity Theorem for real-analytic functions it follows that  must vanish identically
on the dense open subset Op N Reg(dQ) = 05, hence identically on Qp = Up n 0Q. Since
(U, n D) = Q and g|q < 0, it follows from |y, = 0 that in fact fi(Uy 0 0Q) < 8Q. By
Lemma 2.2.3, we have furthermore fi (Up N Sh(Q)) = Sh(€Q), and there exists an automor-
phism Fj : Q — Q such that Fy agrees with f; on Uy, n Q. The proof of the Main Theorem
for the general case then follows exactly as in the rank-1 case. [J

Finally, combining the Main Theorem and the result of Clozel-Ullmo (Theorem
1.1.1) we deduce Theorem 1.1.2.

Proof of Theorem 1.1.2. Recall that Q € C" is an irreducible bounded symmetric
domain in its Harish-Chandra realization and T’ = Aut(Q) is a torsion-free discrete group
of automorphisms such that X := Q/T is of finite volume with respect to the canonical
measure induced by the Bergman metric dsy on Q. Let ¥ < X x X be a measure-
preserving algebraic correspondence. In the case where Q = A, by the result of Clozel-

"Ullmo (Theorem 1.1.1) the algebraic correspondence Y is necessarily modular. When

Q € C" is of complex dimension greater than 1, by the Main Theorem any germ of
measure-preserving holomorphic map f : (€2, d1 dug;0) — (de, 7} dug + -+ + 7y, dpo; 0)
is already totally geodesic, and Theorem 1.1.2 follows. [] }

Proof of Corollary 1.1.1. Corollary 1.1.1 follows immediately from Theorem 1.1.2
and from the same argument as in [CU], Theorems 2.10 and 3.8. [J

2.4. From algebraic extension to total geodesy owing to I'-equivariance: a'differential-
geometric proof in the case of the Poincaré disk. To make the article more self-contained,
for the proof of Theorem 1.1.2 in the case of Q= A we will provide an alternative
argument deducing the total geodesy of f from the algebraicity of Graph(f) and from
I'-equivariance. We use a differential-geometric argument by studying the boundary

behavior of f. In the case of the Poincaré disk the Bergman metric is given by

dsi =2Re 2dw®dw where w is the Euclidean coordinate on A.

(1= 1w?)’
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Proof of Theorem 1.1.2 from the algebraic extension by differential-geometric means.
By the measure-preserving property of f = (fi,---, fa) we deduce

(1) b2l fi(w) __ 24
= (1= (1= wH?

on a neighborhood of 0 € A. By Proposition 1.2.2, for a general point b e OA, there exists an
open neighborhood Uy, of b in C such that f = (f7, ..., Ja,) admits an analytic continuation
along some continuous path in A to a holomorphic map, still denoted as = fa),
such that f,(Up nA) < A for any i, 1 < « < d,. The functional identity (1) then holds true
for this branch of the holomorphic map f on U,. Suppose f,(Us 0A) < dA. Clearly
f+ ¥ 0 on Uy ndA. Choosing b € 0A sufficiently general and shrinking U}, if necessary we
may assume that f;(p) % 0 for p € U, n 0A. Then, there exists a smooth function @, on U,
such that 1 — [f,(w)|* = (1 — iw|%)e?™ on U, and we have

! 2 5
X ( —'ff}gffv'nz)z =~ el ~ A"

62 .2 62(001
=~ Gwa 081 = W) — o
1 P,
(= w)?  awaw’

If we choose the point b € dA to be sufficiently general and the open neighborhood U,
to be sufficiently small, by comparing the boundary behavior of both sides of (2)aswe U,
approaches b, we conclude readily that exactly d; of the functions f;, sayi=1,...,d;, map
boundary points to boundary points, i.e., £,(Uy "0A) = A for 1 < a < dj, and (Up) €A

for di +1 £ f < dp. From (1), (Up N A, f* dsi,,z) is of constant Gaussian curvature — i

1
We may assume that f is an embedding on Uy. Write Z = f (UpnA). For we Uy n A de-

note by #(w) € Tyw)(Z) a vector of unit length with respect to dsi,,z. Denote by o the sec-

ond fundamental form of Z as a (locally closed) complex submanifold of A%, By the Gauss
equation we have

)

1
®) R oo ~ oI = - -

For w e A, write §(w) = 1 — |w| for the Euclidean distance to the boundary dA. From (2),

writing f'(w) = (f{ (w),..., S, (w)), it follows that the tangent vector fl(w) 6% is of length

; |2 B + 0(6(w)) for 1 a =d), and of length O(Q1) for di +1 < a = d,. Tt follows
—|w

readily that 7(w) is equivalent under the action of Aut(A%) to the unit vector 1, € To(A%)
giveh by

@ =

5 (1 0@, 1+ 0(()?); 0(6(m)....., 0(6(w)
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where precisely the first ¢ components are of the form 1 + 0(3(w)?). Comparing (3) and
(4) we conclude that

(5) R tmnomen = —dl1+ 0(5(w)2); hence ”a(f(w))“ = 0(6(w)).

As a consequence, f: UynA—Zc A% is asymptotically totally geodesic as w
approaches Us N dA. On the other hand, since I' = Aut(A) is a lattice, for almost every
point b’ € Uy 1 dA, there exists a sequence of elements y; € I' such that y;(x) approaches
the boundary point b’ for any xeA. If we pick xe UynA, for j sufficiently large
3(%) € Up 0 A, and we have ||o(f(x))]| = lo(f (#;(x))) || in view of the way that f is de-
fined from ¥ = X x X, X = A/T". Taking the limit as j tends to oo we conclude from the
asymptotic total geodesy of f on U, N A that in fact o(f(x)) = 0 for any xe Up N A. As
a consequence, f : UpnA — A% is in fact a totally geodesic embedding such that f, ex-
tends to an automorphism F € Aut(A) for 1 < a =d; and f, is a constant function for
dy +1 £ o £ d,. However from the way that f is defined from an algebraic correspondence
it follows that each component map f; must be of maximal rank at some point, hence
dy =d, and [ : (A;0) — (A O)d2 extends to a totally geodesic embedding F congruent to
the diagonal map ®(w) = (w, ..., w) in the sense that Y o f o 9 = @ for some ¢ € Aut(A),
Y € Aut(A®). In particular, ¥ < X x X is a modular correspondence, as desired. [

3. An Alexander-type theorem for automorphisms of irreducible bounded symmetric
e domains of rank = 2 in terms of smooth boundary points

e 3.1. Alternative proof of the Main Theorem in the case of rank =2 by a new

‘ Alexander-type characterization theorem. For an alternative way to complete the proof -

: of the Main Theorem we give here another Alexander-type characterization theorem for
automorphisms of irreducible bounded symmetric domains Q of rank = 2 in their Harish- - ]
Chandra realization, where in place of the Shilov boundary Sh(Q) we consider holomor- :
phic maps defined on a neighborhood of a smooth point b € 9Q. We have

“‘"‘L,} o * Theorem 3:1.1. LetQ & C" be an irreducible bounded symmetric domain of rank = 2
in its Harish-Chandra realization. Suppose b be a smooth point on 0Q. Let Uy = C" be an
e open neighborhood of b in C" and f : Uy — C" be an open holomorphic embedding such
l B that f(Uy 0 Q) = Q and f(Us N 0Q) = 0Q. Then, there exists an autogorphism F : Q — Q
|

such that Fly, q = f l,n0

Theorem 3.1.1 allows us to give an alternative proof of our Main Theorem in the case
of rank > 2 without the need to examine the behavior near the Shilov boundary Sh(Q) of
the multivalent map given by the algebraic extension of Graph(f) of the germ of measure-
preserving holomorphic mapping f : (Q;0) — (€;0) %,

Alternative proof of the Main Theorem in the case of rank = 2. The Main Theorem

_ in the case of rank = 2 follows immediately from the extension result (Proposition 1.2.2),

the functional identity for measure-preserving holomorphic maps as in the structural equa-

tion (}) in Section 1.1 for such maps and reformulated in equation (1) in Section 2.3 in the

proof there of the Main Theorem, and from Theorem 3.1.1, exactly as in the case of the
unit ball B*, n = 2, given in Section 2.1. []
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We have chosen to give in Section 2.2 a proof of the Main Theorem in the case where
rank(Q) = 2 by resorting to the result of Khenkin—-Tumanov [TK1], stated here as Theo-
rem 2.2.1, since the latter is the well-known form of Alexander-type theorem in the
rank = 2 case. Here we present a proof of Theorem 3.1.1 for two reasons. First of all, as
explained it completes a proof of the Main Theorem in the case of rank = 2 in a way par-
allel to the rank-1 case. Secondly, Theorem 3.1.1 is of independent interest in the function
theory of bounded symmetric domains and may serve other purposes for rigidity phenom-

ena in the case of rank = 2.

Remarks. We note furthermore that Theorem 3.1.1 implies Theorem 2.2.1. In fact,
given any point by € Sh(Q) and an open holomorphic embedding f : Up, — C" satisfying
f(Up, 0 Q) = f(Up,) nQ and f (U, Sh(Q)) = f(Us,) N Sh(Q), for a smooth point
b € Up, n 0Q and any connected open neighborhood Uj of b such that U, < Uy, the open
holomorphic embedding fly, : Up — C" satisfies the hypothesis of Theorem 3.1.1.

3.2. G-structures modeled on irreducible Hermitian symmetric manifolds of rank = 2.
The proof of Theorem 3.1.1 will be based on Ochiai’s result [O] from the theory of
G-structures modeled on irreducible Hermitian symmetric manifolds M of the compact
type and of rank = 2. The reader is refered to Mok [M3] for an introduction to such
G-structures. We adopt the notations in Section 2.2, writing Q € C" =« M for the
Harish-Chandra and Borel embeddings of Q and representing the compact dual
M = GC/P of Q as a rational homogeneous manifold. At each x € M denote by P, = G°
the isotropy subgroup of x. There is a natural homomorphism g, : Px — GL(Tx(M))
given by ¢, (y)(n) = dy(n) for ne T(M), and we denote its image by I'x. At 0eQ,
9ol : K — GL(To(Q)) is an injective homomorphism on the isotropy subgroup K = G,
and K will be naturally identified with its image in GL(7o(Q)) = GL(r; C). With respect
to the trivialization of the holomorphic tangent bundle over C" = M given by the Harish-
Chandra coordinates, the image of ¢, is identified with K¢ = GL(Tx(M)) = GL(»,C),
where K€ is the complexification of K = GL(n,C). Covering M by charts admitting
Harish-Chandra coordinates we have equipped M with a flat (or integrable) K C_structure,
i.e., a holomorphic reduction of Tas from GL(n, C) to K€ by means of holomorphic coor-
dinates on the base manifold. There is a notion of preservation of G-structures, which in
our case can be equivalently formulated in terms of minimal rational tangents, as follows
(cf. Mok [M3]). A rational curve C = M is said to be a minimal rational curve if and only
if its homology class is a generator of Hy(M,Z) = Z. At x € C", the reductive complex Lie
group T = K€ acts on Tx(M), and the highest weight orbit of the semisimple part of I,
defines a highest weight variety #5 < PT.(M). The latter agrees with the var\lety of mini-
mal rational tangents at x € M, i.e., the variety of tangents to minimal rational curves pass-
ing through x, and, for x € C", such a curve is precisely the topological closure of an affine
line £ = C” passing through x such that [T +(£)] € P#. We have the following equivalent
- formulation of the main result of Ochiai [O] (cf. Goncharov [G]):

. Theorem 3.2.1 (Ochiai [O]). Let M be an irreducible compact Hermitian symmetric
L manifold of compact type and of rank 22; U,V = M be connected open subsets, and
k. £ .U — V be a biholomorphism. Suppose for every xe U the projectivization [df (x)] of
L df (x) » Te(M) — Ty (M) satisfies [df (x)[(#%) = #Wyx). Then, there exists an automor-
hism F e Aut(M) such that Fly; = f.

3.3. Proof of Theorem 3.1.1. In order to check that the given holomorphic map in
heorem 3.1.1 preserves the K ©-structure modeled on M, we make use of the fine structure
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of bounded symmetric domains Q, especially the foliation of the smooth locus of 0Q by

boundary components of maximal dimension. To pass from boundary values 10 the map-
ping on Up N2 we resort to the method of Mok—Tsai [MT] for the study of boundary
ions on irreducible bounded symmetric domains of rank =2

values of holomorphic functt
by restriction to certain complex submanifolds which are product domains.

on, we recall the notion of invariantly geodesic submani-

folds introduced in Tsai [T], §4. Equip Q with the caponical Kéhler—Einstein metric g, : §
and M with the K-invariant Kiihler—FEinstein metric gc on M, so that (Q,g) and (M,4gc)
form a dual pair of Hermitian symmetric spaces. In the terminology of [T}, complex sub- i 3

manifold S = M is called an invariantly geodesic submanifold if and only if y(S) « M is
folds are completely classified in

totally geodesic in (M, g.) for any y € GE. (Such submani
[T], Proposition 4.6.) A complex submanifold So = Q will be called an invariantly geodesic

submanifold if and only if y(So) nQ Qs totally geodesic in (€, g) forany y € G® such :
that y(So) N Q2 * 0. If 0 € So, then it follows from the total geodesy of So = Q and the def- *
inition of the Harish-Chandra embedding that So = W nQ for some complex vector sub- E
space W < C". From [T], Lemma 4.3, it follows readily that Sp = Q is invariantly geodesic
if and only if (W) = W forany y € P, where E denotes the topological closure of Ein M
for any subset E < M. Hence, So = Qs invariantly geodesic if and only if So =S N Q for
some invariantly geodesic submanifold S © M. An affine-linear subspace 4 = C" will be
called invariantly geodesic if and only if 4 = M is invariantly geodesic. From [T], Lemma

bmanifold S = M such that S0 C" + () must be of the form

4.3, any invariantly geodesic su
A for some invariantly geodesic affine-linear subspace 4 = C". Regarding invariantly geo-

desic submanifolds we have the following obvious lemma.

To streamline the presentati

Lemma 3.3.1. . Let Q c M bean irreducible bounded symmetric domain Q realized as

an open subset of its compact dual M by the Borel embedding. Let {Se}uca be any family Qf
invariantly geodesic submanifolds Sy < M such that N :== [\ Sq 1S non-empty. Then, Nc M

wed - ' i
is an invariantly geodesic submanifold. Consequently, if {Dy}yeq is a1y family of invariantly, -
¥ cQisan invayij-;

geodesic submanifolds Dy < 2 such that ¥ = () Dy is non-empty, then
ant geodesic submanifold. aed

We are now ready to give 2 proof of Theorem 3.1.1.
1.” Write r := rank(Q) Z 2. Without loss of generality W ma
A 8Q) consist entrs

mains (cf. Wolf {
dmits a smooth

Proof of Theorem 3.1.
assume that Up is convex and that both Up N 0Q and its image f(Up

of smooth points of Q. By the fine structure of bounded symmetric 4o

in their Harish-Chandra realization, the smooth locus Reg(0Q) of 0Q &

liation & by boundary components. For p € Reg(0Q), the leaf @, of & passipg thro
f 8Q), i.e., a boundary component of maximal o

is a maximal boundary component o :
dimension (and of rank r — 1), and the group G = Auto(Q) acts transitively O,I}th
of such boundary components ®,. Let II be a maximal polydisk on Q such that b,

Replacing b by y(b) for some y € G, we may assume that IT is a Euclidean

A" = C" x {0} « C" in terms of Harish-Chandra coordinates, and that

b=(1,0,...,0) € ol = 0Q.

il
Sl

A1 is a maximal polydisk of an irreducible bou"nd;

1 lying on some complex vector subspace V' <

wa

We have IT = A X A~ where
-metric domain Q' of rank 7 —
Q' € V is the Harish-Chandra embedding.
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A x Q' = Qis a totally geodesic complex submanifold. For each point
P =(a,q) € dA x Q' < 3Q,

the boundary component ®, passing through p is given by {a} x Q' < Q. In the termi-
nology of Mok-Tsai [MT], Definition 1.5.2, for any e A, the complex submanifold
Q; {1} xQ' = Q is a characteristic symmetric subspace. By [MT], Proposition 1.12,
and Tsai [T], Lemma 4.4, Q, = Q is an invariantly geodesic submanifold. Denoting by
Qy € C™ = M, the Harish-Chandra and Borel embeddings, My — M is an invariantly
geodesic submanifold. Consider the complex submanifold A x Q' = Q. Since the point
b=(1,0,...,0) € 011 lies on U, there exists an open neighborhood W of 1 in C, and a
connected open neighborhood D of 0 in Q' such that W x D < U,. For any (e AN W,
fliyxp is a biholomorphism of {{} x D onto its image f({¢} x D), which is an open
subset of the maximal boundary component ®Or(;0), which is a bounded domain on some
characteristic affine-linear subspace A;. As in the proof of [MT], Proposition 2.3, by taking
higher-order partial derivatives in the directions of Q' along the zero-section W x {0} = U
and verifying their linear dependence on first-order derivatives (owing to holomorphicity
and linear dependence on W n dA), it follows that for each te Uy, f] {#}xp 18 @ biholo-
morphism of {¢} x D onto an open subset of some affine-linear subspace A4;. We have thus
an induced holomorphic map f* : W — ¥, where ¢ is the Grassmannian of affine-linear
subspaces of C”" of dimension ny. Let 5 be the set of all affine-linear subspaces 4 < ¢
such that A = p(Mp) for some y € GC. Then 3 = % is a complex submanifold. For each
maximal boundary component ®, < Reg(8Q), ®, is an open subset of an ny-dimensional
affine-linear subspace belonging to #. Hence the map f*: W — & is such that
S¥W noA) c #, and it follows that f*(W) < #. Fix now a maximal characteristic
symmetric subspace of the form ® = {£} x Q' for some 7 € W N A so that ® n U, + 0,
and flg,y, is a biholomorphism onto an open subset of a maximal characteristic symmet-
ric subspace Z.

In order to apply Ochiai’s result as in Theorem 3.2.1 we need to check that [df] pre-
serves varieties of minimal rational tangents. In the case of rank equal to 2 this follows
readily from the last paragraph since in that case tangents to maximal characteristic sym-
metric subspaces are minimal rational tangents. For arbitrary rank r = 2 we need to have a
procedure of recovering mihimal rational tangents from maximal characteristic symmetric
subspaces, which are of rank r — 1 > 1.

A}

There is an open neighborhood N of the identity element e in G€ with the following
property. Forany y € N, y(W x D) n (U n Q) + §. Then y(®) N U, % @ and the same ar-
" gument as above then shows that f ly@)n1, 15 2 biholomorphism of (@) N U, onto an open
subset of a maximal characteristic symmetric subspace E,. Write xp := (£;0) e A x Q'. For
“# e N write x := u(xp). N contains an open neighborhood of y in the right coset K u. Then,
for y € K,u we have y(xp) = x, y(®) is a maximal characteristic symmetric subspace pass-
_Ing through x and there is a maximal characteristic symmetric Z, passing through f(x)
_such that f(y(®) N Up) is an open subset of E,. Fix a non-zero minimal rational tangent
€ Tx(Q) and denote by A, the unit minimal disk passing through x and tangent to a. By

T], Proposition 1.9, A, is the intersection of all maximal characteristic symmetric sub-
paces © containing it. By the Identity Theorem for holomorphic functions the same re-
ins true if in place of all such ® we take a non-empty open subset of such ®. Then
(Au n Up) lies on ¥ := {E, : p(x0) = x,y € N}, and f(A, " Up) = ¥ is an open subset.
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On the other hand, ¥ is the intersection of a family of maximal characteristic symmetric
subspaces, and it follows that ¥ is an open subset of an affine line. By Lemma 3.3.1,
¥ < Q is an invariantly geodesic submanifold. Thus, for some v € G we have v(¥) = 2,
a maximal polydisk passing through 0. As can be easily checked using the action of
Auto(#) < G, such a geodesic submanifold can be invariantly geodesic only if it is a mini-
mal disk, and we conclude that ¥ < Q is a minimal disk. As a conclusion, we have shown
that for some non-empty connected open subset @ < Up N Q, we have [df ()(#x) = #5x)
for x € 0, and by Ochiai’s result as given in Theorem 3.2.1 we conclude that there exists
F, € Aut(M) such that Ry, =1

It remains to check that F := Folg 1s an automorphism of Q. For that purpose it
_suffices to check that the germ of F at some point xp € Q is a germ of holomorphic iso-
metry of (€, g). Choose xo € Q such that for some minimal rational tangent o + 0 at xo,
we have Ay, N Up *+ 0. Ay, is an open set of a minimal rational curve Cy, on M such that
F|c, maps Ceq biholomorphically onto a minimal rational curve C' = M. The image of
dA, under F must be a circle on the affine part of C' = P!, C'nC"=C. Since
F(8Ay nUp) = C' (0, the restriction Fl,, must map Ay, isometrically onto the minimal
disk C' n Q. The analogous statement holds true for x sufficiently close to Xo and for a mini-
mal rational tangent o at x sufficiently close to &g in the tangent bundle To. 1t follows that
for x sufficiently close to xo, F is an isometry when restricted to a non-empty open set of
minimal disks passing through x, hence for all minimal disks passing through x by the
Identity Theorem for real-analytic functions. Writing s=¢g — F*gon a neighborhood ¢
of xp, for x € 0 and for any minimal rational tangent o at x we have s,z = 0. Since the set
of (non-zero) minimal rational tangents at x is complex-analytic, expanding « in Taylor se-
ries at some point a; and polarizing the identity we conclude that sg; = 0 for any EneWs,
noting that #% < PT. (Q) is linearly non-degenerate. Thus the germ of F at xo is a germ of
holomorphic isometry of (Q,g) at xo and we have F € Aut(Q), as desired. The proof of
Theorem 3.1.1 is complete. [
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