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Abstract 
This note provides an extension of the Fend-Feichtinger-Tragler dynamic game of 
offending and law enforcement to a stochastic framework. This allows the analysis 
to reflect actual crime statistics which displays randomness in its distribution. 
Stochastic paths of crimes are derived. The asymptotic stationary distribution of 
crime records is also obtained. 
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1. Introduction 

Fent et al (2002) analyze a differential game describing the interactions between a 

potential offender and the law enforcement agency. However, actual crime statistics 

displays randomness in its distribution as shown in the Appendix. To generate this effect 

we extend the Fend-Feichtinger-Tragler game in Fent et al (2002) to a stochastic 

differential game. Stochastic dynamics are derived. This note is organized as follows. In 

Section 2, an intertemporal game played between an offender and a law enforcer with 

stochastic dynamics is set up. Analysis on the outcome of the game is performed and the 

solution crime evolution path is derived. Section 4 considers the case when the time 

horizon approaches infinity. The stationary distribution of crime records is obtained. 

Concluding remarks are given in Section 5.    

2.  A Stochastic Fend-Feichtinger-Tragler Game of Law Enforcement 
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Following Fent et al (2002), we consider the behaviour of two rational players. The first 

player is a (group of) potential offender who tries to maximize profit gained from illegal 

activities, while the second player is a law enforcement agency that tries to maximize 

public welfare. The offender's decision variable is )(1 tu , the rate of offence, and the 

agency chooses its rate of crime investigation )(2 tu . 

As argued in Fent et al (2002), it may be less plausible why the authority should 

concentrate its activities -- and therefore its spending on investigation, prosecution, and 

execution of sentences -- on one particular offender. The state )(tx  represents the 

offender's experience in committing crimes or her record of prior criminal offences. The 

state variable has two possible interpretations. First, it can be considered as the record of 

prior crimes. Following Greenwood et al (1994), it is assumed that the increase of this 

record only depends on the criminal activity and the number of convictions, but not on 

the punishment. A decay term x  describes those cases in which former crimes are 

only considered for a limited period. The second interpretation is to regard x  as the 

offender’s level of experience. The experience increases in proportion to the intensity 1u . 

However, the offender also forgets, and the experience decays with time due to changes 

of law and technology. Thus, the value of experience will be reduced by a rate  .  

To introduce randomness we use the stochastic differential equation 

)()()( 1 txdzdtxutdx                       (2.1)  

to describes the dynamics of the state x . In particular, where   is a constant and )(sz  is 

a Wiener process and the initial state 0x . Equation (2.1) shows that the decay rate   is 

subject to stochastic shocks. 

 The utility the offender obtains from criminal activities consists of revenues 

minus costs. The revenues of the offender is 

11)( uuR  .        (2.2) 

The offender's costs consist of two terms, S  and C . The term S  represents the 

costs connected with the sentence. These costs depend on the decision variables 1u  and 

2u  and the state x :  

),,( 21 uuxS )(),( 21 xuu   xuu  21 .    (2.3) 
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In particular, the punishment an offender will suffer is a function of his own 

offending intensity, the rate of crime investigation, and the criminal record. The offence 

level 1u  influences the probability of being convicted and the level of punishment, the 

investigation activities 2u  affect the probability of being convicted and prosecuted, and 

the criminal record x  influences the level of punishment. With the formulation in (2.3), 

the function ),,( 21 uuxS  takes positive values in case of a criminal record 0x  even if 

01 u . This represents, for example, the disadvantages one might experience in the 

labour market after having been convicted. 

The second cost term C  represents costs that are not related to incarceration or 

conviction. These costs are increasing in the criminal intensity the following cost-

function is adopted.  

2
11)( uuC  .                                      (2.4) 

At terminal time T , there is a salvage value function ))((1 TxQ  which assesses 

the value of the state x  at the end of the planning period. It represents the damage or 

harm (or utility) caused to the offender by having the criminal record )(Tx . It is assumed 

that 

)())((1 TxTxQ  .      

If the criminal record )(Tx  has a negative impact,   must be positive. In the 

case where the offender does not consider a criminal record to be something bad at all, 

the parameter   can be equal to or less than zero.  

 The offender’s expected objective functional can be expressed as: 










  )(][ 12
121101 TxedtuxuuueEJ TrT rt  ,  (2.5) 

where r  is the discount rate. 

The expected objective functional of the law enforcement agency is 










  T rt dtuuLxuxKuDeEJ
0 2,1212 )](),()([    (2.6) 
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where all terms are costs for the state. Since the criminal record and the experience of a 

previously convicted offender at the terminal time do not influence public welfare there is 

no salvage value of the state x . 

The damage )( 1uD  caused by illegal activities increases with the offence rate 

and it is assumed: 

2
11)( uuD  . 

The costs of law enforcement, ),( 2uxK , increase and have non-decreasing 

marginal costs. More experienced offender might be more difficult to arrest but, on the 

other hand, the higher the level of criminal experience already is, the smaller the 

advantage of one additional unit of experience.  The law enforcement cost is assumed to 

be: 

xuuxK   2
22 ),( . 

The term ),( 21 uuL  in the law enforcement agency’s objective functional reflects the 

costs of imposing a certain punishment. For instance, the costs implied by maintaining 

prisons might be included here. In particular: 

 2121 ),( uuuuL  . 

The expected objective functional of the law enforcement agency in (2.6) can 

then be expressed as: 










  T rt dtuuxuueEJ
0 21

2
2

2
12 ][  .   (2.7) 

3. Analysis 

The game (2.1), (2.5) and (2.7) is a stochastic version of the Fend-Feichtinger-Tragler 

game. Given the presence of stochasticity, a feedback solution has to be sought. A  Nash 

equilibrium solution for this stochastic differential game can be characterized as: 

Theorem 3.1.   A pair of feedback strategies ),({ *
1 xt ; ),(*

1 xt } provides a 

Nash equilibrium solution to the game (2.1), (2.5) and (2.7) if there exist suitably smooth 
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functions ],0[:),( TxtV i R  R , }2,1{i , satisfying the partial differential 

equations 

]),([max),(
2

1
),( 2

1211
1221

1

uxxtuuextVxxtV rt

u
xxt  





   

  




 ))(,( 1
1 xuxtVx  , 

),(1 xTV xe rT ; 

]),()),(([max),(
2

1
),( 21

2
2

2
1

2222

2

uxtxuxtextVxxtV rt

u
xxt  





   

  




 ]),()[,( 1
2 xxtxtVx   

),(2 xTV = 0.        (3.1) 

Proof.   Follow the proof of Theorem 2.5.1 in Yeung and Petrosyan (2006). □ 

Performing the indicated maximization in (3.1) yields the conditions: 

0),(2),( 1
12  x

rtVextxt  ,  

0]),(2),([ 1
121  x

rtVextxtu  ; 

0),(),(2 12  xtxt  , 0)],(),(2[ 122  xtxtu  ; 

0),(1 xt , 0),(2 xt .      

The conditions above give: 




2
),(

1

1
x

rtVe
xt


  and 0),(2 xt .    (3.2) 

Note that the authority will decide not to investigate at all.  

Substituting ),(1 xt  and ),(2 xt  into (3.1) yields 
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Proposition 3.1. 

The system (3.3) admits a solution 

),(1 xtV )]()([ 11 tCxtAe rt    and ),(2 xtV )]()([ 22 tCxtAe rt   ,  (3.4) 

where 

)(1 tA , )(1 tC , )(2 tA  and )(2 tC  satisfy 

  )()()( 11 tArtA , 

)()( 11 trCtC 
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)(1 TA  , 0)(1 TC , 0)(2 TA , 0)(2 TC .    (3.5) 

Proof.  Substituting the relevant derivatives of ),(1 xtV  and ),(2 xtV  into (3.3) yields 

)]()([ 11 tCxtAre rt  )]()([ 11 tCxtAe rt     
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)]()([ 22 TCxTAre rT  =0.      (3.6) 

 For (3.6) to be satisfied, it is required that (3.5) to hold. Hence Proposition 3.1 

follows.          □ 

 System (3.5) forms a block recursive system of differential equations. )(1 tA  

and )(2 tA  can be solved independent of )(1 tC  and )(2 tC . In particular: 
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e
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tA Ttr ))((

1 )( , 

1)( ))((
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  Ttre
r
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.     (3.7) 

Note that )(2 tA  is negative for all ],0[ Tt  and )(1 tA  is negative for all 

],0[ Tt  if 0 . This means that an additional unit of criminal record (or experience) 

x  is negatively evaluated by both players at any instant of time. Having a negative 

shadow price, x  is a “bad stock”. This is clear since x  enters negatively in both 

objectives.  

The game equilibrium strategies of the offender and law enforcer are 

respectively 
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Substituting the game equilibrium strategies into the state dynamics yields: 
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(3.9) 

Equation (3.9) is a linear stochastic differential equation which solution can be expressed 

as: 

dssx
r

e
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t
 .         (3.10) 

The stochastic path (3.10) manages to exhibit random elements in its evolution. 
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4. Infinite Horizon and Stationary State 

Now we consider the case when the terminal T  approaches infinity. An infinite horizon 

version of the game (2.1), (2.5) and (2.7) can be specified as: 










  dtuxuuueE rt

u
][max 2

12110
1
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    (4.1) 

subject to 

)()()( 1 txdzdtxutdx   .     (4.2) 

A  Nash equilibrium solution for this infinite horizon stochastic differential 

game can be characterized as: 

Theorem 4.1.   A pair of feedback strategies )({ *
1 x ; )(*

1 x } provides a Nash 

equilibrium solution to the game (4.1)-(4.2) if there exist suitably smooth functions 

:)(xV i R  R , }2,1{i , satisfying the partial differential equations 
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Proof.   Follow the proof of Theorem 2.7.1 in Yeung and Petrosyan (2006).  □ 

 Performing the indicated maximization yields the conditions: 

0)(2)( 1
12  xVxx  , 0])(2)([ 1

121  xVxxu  ; 

0)()(2 12  xx  , 0)]()(2[ 122  xxu  ; 

0)(1 x , 0)(2 x .      (4.4) 

The conditions in (4.4) yields: 
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Substituting )(1 x  and )(2 x  into (4.3) yields 

1221

2

1
xxVxrV 











 











4

)(

2

)( 211
xx V

x
V












 x

V
V x

x 



2

1
1 ,   

2222

2

1
xxt VxrV 
























 
 x

Vx 



2

1

2 













 x

V
V x

x 



2

1
2 .    (4.6) 

Proposition 4.1. 

The system (4.6) admits a solution 

)(1 xV ][ 11 CxA   and )(2 xV ][ 22 CxA  ,   (4.7) 

where 
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Proof.  Follow the proof of Proposition 3.1.     □ 

 A Nash equilibrium is given by 
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Substituting the game equilibrium strategies into the state dynamics (4.2) yields: 
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Equation (4.10) is a linear stochastic differential equation with constant coefficients 

which solution can be expressed as: 
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 .   (4.11) 

The stochastic path (4.11) manages to exhibit random elements in its evolution. 

The stochastic system (4.10) will generate a stochastic process governed by a 

joint transition probability density function. This transition probability density function 

characterizes the possible realizations of )(tx . 

Let ],0,[ 0xxt  denote the transition density function of the vector of x  at 

time t , given the initial values 0x  at time 0 . The function   must satisfy the Fokker-

Planck ‘forward’ equation (see Soong 1973 and Yeung (2009)): 
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 .  (4.12) 

A stationary state of the system (4.10) will be characterized by a process which has 

invariant probability density over time. It implies that the process )(tx  approaches a 

steady state as the transition time t  approaches infinity. Specifically 

0



 t
Lim
t


. 

 Therefore, the stationary distribution of x  will be represented by a time 

invariant density function )(x , which in turn will be independent of time t  and the 

initial values of 0x . In particular, the stationary Fokker-Planck equation can be expressed 

as: 
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This differential equation will immediately lead to the result (see Liu (1969) and Soong 

(1973)): 
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where m  is the normalization factor such that 1)( 



dxx . 

 The stationary distribution function )(x  characterizes the probability that the 

state equal x  in a steady state. 

5.  Concluding Remarks 

This note provides a stochastic version of the Fend-Feichtinger-Tragler dynamic game of 

offending and law enforcement. Stochastic paths of crimes are derived. This allows the 

analysis to reflect actual crime statistics which displays randomness in its distribution.  

Appendix:  

United States Crime Index Rates Per 100,000 Inhabitants 

      Forcible  Aggravated  
Larceny-

  
Vehicle 

Year  Population  Total  Violent  Property Murder Rape  Robbery assault  Burglary  Theft  Theft  

1960  179,323,175  1,887.2 160.9  1,726.3 5.1  9.6  60.1  86.1  508.6  1,034.7 183.0  

1961  182,992,000  1,906.1 158.1  1,747.9 4.8  9.4  58.3  85.7  518.9  1,045.4 183.6  

1962  185,771,000  2,019.8 162.3  1,857.5 4.6  9.4  59.7  88.6  535.2  1,124.8 197.4  

1963  188,483,000  2,180.3 168.2  2,012.1 4.6  9.4  61.8  92.4  576.4  1,219.1 216.6  

1964  191,141,000  2,388.1 190.6  2,197.5 4.9  11.2  68.2  106.2  634.7  1,315.5 247.4  

1965  193,526,000  2,449.0 200.2  2,248.8 5.1  12.1  71.7  111.3  662.7  1,329.3 256.8  

1966  195,576,000  2,670.8 220.0  2,450.9 5.6  13.2  80.8  120.3  721.0  1,442.9 286.9  

1967  197,457,000  2,989.7 253.2  2,736.5 6.2  14.0  102.8  130.2  826.6  1,575.8 334.1  

1968  199,399,000  3,370.2 298.4  3,071.8 6.9  15.9  131.8  143.8  932.3  1,746.6 393.0  

1969  201,385,000  3,680.0 328.7  3,351.3 7.3  18.5  148.4  154.5  984.1  1,930.9 436.2  

1970  203,235,298  3,984.5 363.5  3,621.0 7.9  18.7  172.1  164.8  1,084.9  2,079.3 456.8  

1971  206,212,000  4,164.7 396.0  3,768.8 8.6  20.5  188.0  178.8  1,163.5  2,145.5 459.8  

1972  208,230,000  3,961.4 401.0  3,560.4 9.0  22.5  180.7  188.8  1,140.8  1,993.6 426.1  
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1973  209,851,000  4,154.4 417.4  3,737.0 9.4  24.5  183.1  200.5 1,222.5  2,071.9 442.6  

1974  211,392,000  4,850.4 461.1  4,389.3 9.8  26.2  209.3  215.8  1,437.7  2,489.5 462.2  

1975  213,124,000  5,298.5 487.8  4,810.7 9.6  26.3  220.8  231.1  1,532.1  2,804.8 473.7  

1976  214,659,000  5,287.3 467.8  4,819.5 8.7  26.6  199.3  233.2  1,448.2  2,921.3 450.0  

1977  216,332,000  5,077.6 475.9  4,601.7 8.8  29.4  190.7  247.0  1,419.8  2,729.9 451.9 

1978  218,059,000  5,140.4 497.8  4,642.5 9.0  31.0  195.8  262.1  1,434.6  2,747.4 460.5  

1979  220,099,000  5,565.5 548.9  5,016.6 9.8  34.7  218.4  286.0  1,511.9  2,999.1 505.6  

1980  225,349,264  5,950.0 596.6  5,353.3 10.2  36.8  251.1  298.5  1,684.1  3,167.0 502.2  

1981  229,146,000  5,858.2 594.3  5,263.8 9.8  36.0  258.7  289.7  1,649.5  3,139.7 474.7  

1982  231,534,000  5,603.7 571.1  5,032.5 9.1  34.0  238.9  289.1  1,488.8  3,084.9 458.9  

1983  233,981,000  5,175.0 537.7  4,637.3 8.3  33.7  216.5  279.2  1,337.7  2,869.0 430.8  

1984  236,158,000  5,031.3 539.2  4,492.1 7.9  35.7  205.4  290.2  1,263.7  2,791.3 437.1  

1985  238,740,000  5,207.1 556.6  4,650.5 8.0  37.1  208.5  302.9  1,287.3  2,901.2 462.0  

1986  240,132,887  5,480.4 620.1  4,881.8 8.6  38.1  226.0  347.4  1,349.8  3,022.1 509.8  

1987  243,400,000  5,550.0 609.7  4,940.3 8.3  37.4  212.7  351.3  1,329.6 3,081.3 529.5  

1988  245,807,000  5,664.2 637.2  5,027.1 8.4  37.6  220.9  370.2  1,309.2  3,134.9 582.9  

1989  248,239,000  5,741.0 663.1  5,077.9 8.7  38.1  233.0  383.4  1,276.3  3,171.3 630.4  

1990  248,709,873  5,820.3 731.8  5,088.5 9.4  41.2  257.0  424.1  1,235.9  3,194.8 657.8  

1991  252,177,000  5,897.8 758.1  5,139.7 9.8  42.3  272.7  433.3  1,252.0  3,228.8 658.9  

1992  255,082,000  5,660.2 757.5  4,902.7 9.3  42.8  263.6  441.8  1,168.2  3,103.0 631.5  

1993  257,908,000  5,484.4 746.8  4,737.7 9.5  41.1  255.9  440.3  1,099.2  3,032.4 606.1  

1994  260,341,000  5,373.5 713.6  4,660.0 9.0  39.3  237.7  427.6  1,042.0  3,026.7 591.3  

1995  262,755,000  5,274.9 684.5  4,591.3 8.2  37.1  220.9  418.3  987.1  3,043.8 560.4  

1996  265,284,000  5,087.6 636.6  4,451.0 7.4  36.3  201.9  390.9  945.0  2,980.3 525.7  

1997  267,637,000  4,927.3 611.0  4,316.3 6.8  35.9  186.1  382.1  919.6  2,891.8 505.7  

1998  270,296,000  4,615.5 566.4  4,049.1 6.3  34.4  165.2  360.5  862.0  2,728.1 459.0  

1999  272,690,813  4,266.5 523.0 3,743.6 5.7  32.8  150.1  334.3  770.4 2,550.7 422.5  
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2000  281,421,906  4,124.8 506.5  3,618.3 5.5  32.0 145.0 324.0  728.8  2,477.3 412.2  

2001 285,317,559  4,162.6 504.5 3,658.1 5.6  31.8  148.5  318.6  741.8  2,485.7 430.5  

2002  287,973,924  4,125.0 494.4 3,630.6 5.6  33.1  146.1  309.5  747.0  2,450.7 432.9  

2003  290,690,788  4,067.0 475.8  3,591.2 5.7  32.3 142.5  295.4  741.0  2,416.5 433.7  

2004  293,656,842  3,977.3 463.2  3,514.1 5.5  32.4  136.7  288.6  730.3  2,362.3 421.5  

2005  296,507,061  3,900.5 469.0  3,431.5 5.6  31.8  140.8  290.8  726.9  2,287.8 416.8  

2006  299,398,484  3,808.1 473.6  3,334.5 5.7  30.9 149.4  287.5  729.4  2,206.8 398.4  

2007  301,621,157 3,730.4 466.9  3,263.5 5.6  30.0 147.6  283.8  722.5  2,177.8 363.3  

2008  304,059,724 3,667.0 454.5  3,212.5 5.4  29.3 145.3  274.6  730.8  2,167.0 314.7  

 

Source: The Disaster Center 
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