
Title IDBA-UD: a de novo assembler for single-cell and metagenomic
sequencing data with highly uneven depth

Author(s) Peng, Y; Leung, HCM; Yiu, SM; Chin, FYL

Citation Bioinformatics, 2012, v. 28 n. 11, p. 1420-1428

Issued Date 2012

URL http://hdl.handle.net/10722/152505

Rights

This is a pre-copy-editing, author-produced PDF of an article
accepted for publication in Bioinformatics following peer review.
The definitive publisher-authenticated version Bioinformatics,
2012, v. 28 n. 11, p. 1420-1428 is available online at:
http://bioinformatics.oxfordjournals.org/content/28/11/1420

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37973395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Oxford University Press 2005 1

Category
IDBA-UD: A de Novo Assembler for Single-Cell and Metagenomic
Sequencing Data with Highly Uneven Depth
Yu Peng1, Henry C.M. Leung1, S.M. Yiu1 and Francis Y.L. Chin1,*
1Department of Computer Science, The University of Hong Kong
Pokfulam Road, Hong Kong
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Next-generation sequencing allows us to sequence
reads from a microbial environment using single cell sequencing or
metagenomic sequencing technologies. However, both technologies
suffer from the problem that sequencing depth of different regions of
a genome or genomes from different species are highly uneven.
Most existing genome assemblers usually have an assumption that
sequencing depths are even. These assemblers fail to construct
correct long contigs.
Results: We introduce the IDBA-UD algorithm that based on the de
Bruijn graph approach for assembling reads from single cell se-
quencing or metagenomic sequencing technologies with uneven
sequencing depths. Several non-trivial techniques have been em-
ployed to tackle the problems. Instead of using a simple threshold,
we use multiple depth relative thresholds to remove erroneous k-
mers in both low-depth and high-depth regions. The technique of
local assembly with paired-end information is used to solve the
branch problem of low-depth short repeat regions. To speed up the
process, an error correction step is conducted to correct reads of
high-depth regions that can be aligned to high confident contigs.
Comparison of the performances of IDBA-UD and existing assem-
blers (Velvet, Velvet-SC, SOAPdenovo and Meta-IDBA) for different
datasets shows that IDBA-UD can reconstruct longer contigs with
higher accuracy.
Availability: The IDBA-UD toolkit is available at our website
http://www.cs.hku.hk/~alse/idba_ud.

1 INTRODUCTION
Because over 99% of microbes cannot be cultivated, single cell
sequencing and metagenomic sequencing technologies are used to
study these microbes (Chitsaz, et al., 2011; Wooley, et al., 2010).
Single cell sequencing technology amplifies and sequences ge-
nome of an individual cell without cultivation (Chitsaz, et al.,
2011). Because of the amplification bias, the sequencing depths at
different regions of the genome can be extremely uneven. Meta-
genomic sequencing studies a microbe community as a whole
(Wooley, et al., 2010) and has similar problem of uneven sequenc-
ing depths of genomes because different species in a sample have
different abundances. Almost all existing de novo assembly tools
were designed for single genome with uniform sequencing depth

*To whom correspondence should be addressed.

and were used by some recent studies on microbes (Rodrigue, et al.,
2009; Woyke, et al., 2009). However, these tools may not be able
to produce long contigs when applying to data with highly uneven
sequencing depths.

Many existing de novo assembly tools for the next generation se-
quencing (NGS) reads adopt the de Bruijn graph approach (Butler,
et al., 2008; Chaisson, et al., 2009; Li, et al., 2010; Peng, et al.,
2010; Pevzner, et al., 2001; Simpson, et al., 2009; Zerbino and
Birney, 2008) in which a vertex represents a unique length-k sub-
string called k-mer and an edge connects vertices u and v if and
only if u and v appear consecutively in a read. Each read is repre-
sented by a path of k-mers in the de Bruijn graph. After error detec-
tion and removal, a simple path in the de Bruijn graph represents a
contig.

There are three major problems in this approach (Peng, et al.,
2010):
a) Incorrect k-mers: Sequencing errors introduce many incorrect

k-mers (vertices) that make the de Bruijn graph complicated.
b) Gap problem: When k is large, especially in regions with low-

er sequencing depths, some k-mers (i.e., vertices, also edges,
in the de Bruijn graph) are missing.

c) Branching problem: Due to repeat regions or erroneous reads,
many branches are introduced in the de Bruijn graph especial-
ly when k is small.

For Problem (a), some of these errors can be removed by the topo-
logical structure of the graph. For the remaining errors, based on
the assumption of uniform sequencing depth and the observation
that the multiplicity of an erroneous k-mer is usually smaller than
that of a correct k-mer, existing tools use a simple threshold to
either prune contigs if the contigs are formed by k-mers of low
multiplicity (e.g., Velvet (Zerbino and Birney, 2008; Zerbino, et al.,
2009) and Abyss (Simpson, et al., 2009)) or directly remove k-
mers with low multiplicity (IDBA(Peng, et al., 2010) and EULER-
SR(Chaisson and Pevzner, 2008)). Note that this also solves some
of the branching problems (Problem (c)) due to incorrect k-mers.
For Problems (b) and (c), using a small k will induce more branch-
es while using a large k will result in more gaps. Most existing
tools (e.g. Velvet (Zerbino and Birney, 2008) and SOAPdenovo (Li,
et al., 2010)) just pick an appropriate k, some intermediate value,
to balance the two problems. On the other hand, the IDBA assem-
bler (Peng, et al., 2010) provides a better solution which, instead of

Peng et al.

2

using a single k, iterates from k = kmin to k = kmax. At each iteration,
the constructed contigs are used as reads for the next iteration.
These contigs carry the k-mers of the current iteration, which may
be missing in the next iteration, to the next iteration, thus solving
some of the gap problems. It then relies on larger k to resolve the
branches for the repeat regions.

However, when applying to single cell or metagenomic assembling,
highly uneven sequencing depth aggravates these problems further
that affect the performance of these tools substantially due to the
following issues. Issue (A): erroneous vertices and branches in
high-depth regions; Issue (B): gaps in low-depth short repeat re-
gions.

Problems (a) and (c) due to Issue (A):
Due to highly uneven sequencing depth, the assumption of an in-
correct k-mer having lower multiplicity is not valid. Those incor-
rect ones in the high-depth regions may even have higher multi-
plicity than the correct ones in the low-depth regions, thus simply
using a single threshold to remove incorrect vertices will not work.
Setting the threshold too low induces many incorrect vertices and
edges (those in high-depth regions) in the graph. Setting the
threshold too high will remove many correct vertices and edges in
low-depth regions. We remark that there exist some error correc-
tion algorithms for reads/k-mers (Chaisson and Pevzner, 2008;
Kelley, et al., 2010; Medvedev, et al., 2011), but they do not per-
form very well in data sets with very uneven sequencing depths.

Problems (b) and (c) due to Issue (B):
Recall that most existing assemblers do not have a good method to
resolve Problems (b) and (c) probably except IDBA. Even for
IDBA, in low-depth short repeat regions1, when k is small, the
branching problem makes it difficult to construct a contig to be
passed to the next iteration. When k is increased, due to the low-
depth issue, we still have the missing k-mer problem (the gap prob-
lem).

Velvet-SC (Chitsaz, et al., 2011) is the only tool that tries to ad-
dress the assembling problem of single cell sequencing data with
very uneven sequencing depths. Following Velvet, Velvet-SC picks
an appropriate k to balance the gap and the branching problem; and
uses variable thresholds to address problems related to Issue (A).
Short erroneous contigs are filtered iteratively using different
thresholds from low to high sequencing depths based on a global
average of the multiplicity of all k-mers. Its performance is already
better than existing tools designed for even sequencing depth.
However, problems related to Issue (B) are not yet handled. In this
paper, we propose an assembler called IDBA-UD for de novo as-
sembly of reads with uneven sequencing depths that tackles both
issues.

To resolve Issue (A), IDBA-UD extends and enhances the idea of
variable thresholds of Velvet-SC (Chitsaz, et al., 2011) to filter out
erroneous contigs. In order to cater for very extreme sequencing
depths, instead of using a global average of the multiplicity of all
k-mers, we adopt variable relative thresholds depending on the
sequencing depths of their neighboring contigs based on the idea
that short contigs with much lower sequencing depths than their
neighboring contigs tend to be erroneous. For the gap and branch-

1 For very long repeats (longer than the whole span of a paired-end read), it
is almost impossible to resolve it.

ing problems, we follow the approach of IDBA and iterate from a
small k to a large k so that the missing k-mers for large k can be
obtained from contigs constructed in the iterations of small k.

Then we tackle Issue (B) as follows. The problem of Issue (B) is
due to the low-depth short repeat regions such that using small k,
we cannot get the contig out since it is a repeat region and the
branches may be complicated due to the ambiguity of using a small
value of k. When k increases, however, due to the low sequencing
depths some k-mers are missing. Even if we iterate from small k to
large k, this problem of missing k-mers cannot be resolved. So, we
employ the technique of local assembly with paired-end infor-
mation to handle these cases. Paired-end reads with one end
aligned to some long confident contigs are grouped together. Local
assembly is performed on the unaligned ends. Since we consider
only the read pairs with one end aligned to the contig, the ambigui-
ty due to small k is removed. If the insert size is longer than the
repeat involved, it is likely that we can extend the contig over this
repeat region, thus constructing the missing k-mers for large k.
Note that this local assembly step can also help to resolve some
branching problems in high-depth regions too.

To further reduce the size of the de Bruijn graph and to speed up
the assembly process, at every iteration, we conduct an additional
error correction step by aligning the erroneous reads from the high-
depth regions to confident contigs (i.e., with many supporting
reads) which turns out to be very effective.

We compared the performance of IDBA-UD with other assemblers
on data in actual situations when the sequencing depths are ex-
tremely uneven, e.g., with the ratios larger than 100 : 1. Experi-
ments on both simulated and real data sets showed that IDBA-UD
produces much longer contigs than existing assemblers with higher
coverage and precision.

2 METHODS
A flowchart of the major steps of IDBA-UD is shown in Figure 1.
IDBA-UD iterates the value of k from kmin to kmax. In each iteration,
an accumulated de Bruijn graph Hk for a fixed k is constructed
from the set of input reads and the contigs (Ck-s and LCk-s)
constructed in previous iterations, i.e. these contigs are treated as
input reads for constructing Hk. In each iteration, IDBA-UD also
progressively increases the value of depth cutoff thresholds for
removing some low-depth contigs so as to get longer confident
contigs (Ck) in Hk. Error in reads are corrected by aligning the
reads to some confident contigs. Some missing k-mers in reads can
be recovered from those contigs (LCk) reconstructed by local
assembling a small set of paired-end reads with one end aligned to
a confident contig. Information of these missing k-mers will be
passed to the next iteration through these contigs (LCk) for the
construction of Hk+s. Finally, all outputted contigs are used to form
scaffolds using paired-end reads information.

Algorithm 1 shows the pseudocode of IDBA-UD for assembling a
set of paired-end reads R with insert distance d and standard
derivation δ. In the first iteration when k = kmin, Hk is equivalent to
a de Bruijn graph for vertices whose corresponding k-mers have
multiplicity at least m (2 by default) times in all reads. During all
the subsequent iterations, some sequencing errors are first removed
according to the topological structure of Hk, e.g., dead-end contigs

Sequencing Data with Highly Uneven Depth

3

and bubbles (Steps (b) and (c)). The dead-end contigs (tangling
paths in Hk of lengths shorter than 2k) are likely to be false posi-
tives (Li, et al., 2010; Simpson, et al., 2009; Zerbino and Birney,
2008). Paths (bubbles) representing very similar contigs except at
one position and with the same starting vertex and ending vertex
are likely to be caused by an error or an SNP and they should be
merged together into one contig (Hernandez, et al., 2008; Simpson,
et al., 2009; Zerbino and Birney, 2008). When constructing Hk+s
from Hk, each length s+1 path in Hk is converted into a vertex
((k+s)-mer) and there is an edge from between two vertices if the
corresponding (k+s+1)-mer appears f (1 by default) times in reads
or once in contigs in Ck ∪ LCk. In the following subsections, we
will describe the other steps of IDBA-UD in details.

2.1 Progressive Relative Depth
The sequencing depth, depth in short, of each simple path (contig)
in Hk (H'k which is a copy of Hk is used in Algorithm 1 so as to
preserve Hk after the implementation of this step) is used to remove
errors. The depth of a contig is the average number of reads cover-
ing each k-mer in the contig. Note that long contigs are usually
correct, because long simple paths can unlikely be formed by erro-
neous reads; similarly for high-depth contigs which have supports
from many reads. For a contig, whether its length is long or short
and whether its depth is high or low cannot be judged by its abso-
lute values as the length of a contig depends on the value of k and
the depth of a contig depends on the depths of its neighboring con-
tigs (neighboring contigs can be identified by their adjacency in the
de Bruijn graph). Even though wrong contigs in high-depth regions
may have higher depths than correct contigs from low-depth re-
gions, short (< 2k) and relatively low-depth (< a fraction β of its
neighboring contigs’ average depth) contigs are likely to be erro-
neous and can be removed.

There is still a risk of removing short and relatively low-depth
correct contigs, because some relatively low-depth correct contigs
with high-depth neighbors may be broken into short contigs by
some wrong contigs (as branches in Hk). Based on the observation
that these short and relatively low-depth correct contigs usually
have higher depths than the short wrong contigs, we can filter out
these wrong contigs first by increasing the depth cutoff threshold
progressively from low to high. After the wrong contigs or branch-
es are removed by a low depth cutoff threshold, the relative low-
depth correct contigs will be linked together to form long confident
contigs which will be considered as reads for the next iteration.

The key idea to consider the depth progressively and relatively is
shown in Algorithm 2. T(c) represents the depth of contig c and
Tneighbor(c) represents the mean depth of c’s neighboring contigs.
The filtering depth cutoff threshold t is increased by a factor α
progressively (α is about 10%). A geometric increase, instead of
absolute increase (as used in Velvet-SC), in the depth cutoff
threshold value improves implementation efficiency because the
threshold difference is more sensitive at the low-depth values than
the high-depth values. In each iteration, short contig c is removed
if its depth T(c) is lower than the minimum of cutoff threshold t
and the relative threshold β*Tneighbor(c) where β is in the range of
0.1 to 0.5.

Algorithm 1 IDBA-UD(R, d, δ) :
1 Pre-Error-Correction (optional)
2 Repeat from k := kmin to kmax with step s

a) If k = kmin, then construct Hk from R
 else construct Hk from Hk-s and R ∪ Ck-s ∪ LCk-s
b) Remove dead-ends with length < 2k
c) Merge bubbles
d) H'k := Hk
e) Progressive-Relative-Depth(H'k, k)
f) Get all potential contigs Ck of H'k
g) Error-Correction(Ck, R)
h) LCk := Local-Assembly(Ck , R, d, δ)

3 Construct scaffolds
4 return Ckmax and scaffolds

Algorithm 2 Progressive-Relative-Depth(G, k) :
1 t := 1
2 repeat
3 for each contig c in G
4 if len(c) < 2k and T(c) < min(t, β*Tneighbor (c))
5 remove c from G
6 t := t * (1+α)
7 until t t > maxc∈G T(c)

2.2 Local Assembly
IDBA makes use of the contigs (containing the information of
some missing k-mers for larger k) constructed in each iteration for
the construction of the de Bruijn graphs of larger k. These missing
k-mers may not exist in any of the reads but they might help to fill
the gaps in the de Bruijn graphs for larger k. This approach still has
a limitation that not all the missing k-mers, i.e., contigs containing
these k-mers, can be constructed (so not all the gaps can be filled)
because of branches. The main contribution of local assembly is to
construct these contigs for the missing k-mers, especially in the
low-depth regions, based on the information of paired-end reads to

Paired-end

Construct de Bruijn for k = kmin

Progressive Depths

Error Correction

Local Assembling

Construct de Bruijn
for larger k

Scaffolding

Fig. 1. Flowchart of IDBA-UD.

Peng et al.

4

eliminate the branches introduced from other parts of the genome.

We shall illustrate this main idea of local assembly through an
example (Figure 2). Let us consider the construction of a de Bruijn
Graph for k=3, based on two reads, ...AACT and ACTG..., we have
a simple path connecting the 3-mers, AAC, ACT and CTG. IDBA
can reconstruct the missing 5-mer AACTG (not appeared in any
reads) by forming a simple path containing it. However, as given in
Figure 2, when ACT is a length-3 repeat in the genome (the repeat
regions are apart by more than the insert distance) and there are
reads covering the region ...TACTT... containing the other repeat.
The 3-mer ACT in the de Bruijn graph for k=3 now has two in-
branches and two out-branches (refer to the left diagram of Figure
3 where vertex v represents the 3-mer ACT; vertices u, w, u’ and
w’ are for 3-mers AAC, CTG, TAC and CTT respectively). Under
this situation, even when k is increased to 4 and 5 in IDBA (this
part of graph will be disconnected in H4 and H5), the missing criti-
cal 5-mers AACTG cannot be reconstructed because of the branch-
es. However, when considering the de Bruijn graph when k=3,
IDBA-UD will align the paired-end reads to the contig
ACGATCGTAGCTGA (Figure 2) while the reads of the other ends
covering the repeat regions will only be ...AACT and ACTG...
(reads covering the other repeat region ...TACTT... are not in-
volved because they are far away). Thus local assembly (by con-
sidering the reads locally) can produce a simple path containing the
critical 5-mer AACTG to resolve branches as if there were no re-
peats.
Algorithm 3 Local-Assembly(C, R, d, δ) :
1 Remove contigs shorter than 2l from C
2 Align reads in R to contigs in C
3 For each (r, s) ∊ R
4 if r uniquely aligned to last d+3δ bases of c, Rc := Rc ∪ {s}
5 if r uniquely aligned to last d+3δ bases of crc, Rc

rc := Rc
rc ∪

{s}
6 For each c ∊ C
7 LCc := IDBA({last d+3δ bases of c} ∪ Rc)
8 LCc

rc := IDBA({last d+3δ bases of crc} ∪ Rc
rc)

9 return ∪c∈G(LCc∪ LCc
rc)

Let Ck be the set of contigs (simple paths) in Hk. The set of paired-
end reads Rc are those with one read aligned with the ends of each
long contig c (with length at least twice of read length) in Ck (crc

stands for the reverse complement of contig c). The other una-
ligned ends of these aligned paired-end reads, which would cover
the genome regions extended about an insert distance beyond each
end of a long contig, are extracted separately. Assume the insert
distances of paired-end reads satisfy the normal distribution N(d, δ).
IDBA-UD groups the last d + 3δ bases of c/crc and Rc/Rc

rc together,
and then locally assembles them into the set of local contigs
LCc/LCc

rc
 using IDBA (Algorithm 1 without step e, g and h) as

shown in Algorithm 3. Since those reads which are far away from
the contig c will not be mixed up with these unaligned ends, the
contig c and these unaligned ends (reads) of Rc can be used to con-
struct a smaller and simpler de Bruijn graph whose simple paths
(represented by the set of contigs LCc) might reconstruct some of
the missing k-mers and be considered as reads for the next iteration.
Thus, the contigs can be extended longer and longer at each itera-
tion. The expected number of resolved branches can be computed
by Theorem 3 (Appendix).

2.3 Error-Correction
To reduce the errors in reads, error correction on some erroneous
bases is performed based on the alignment between reads and con-
fident contigs. Errors in reads are corrected only if they can be
aligned to contigs with certain similarity, say 95%. The reads
which can be multi-aligned to different contigs will not be consid-
ered for corrections. This approach of error correction is especially
effective for high-depth regions because the confident contigs are
well supported by many reads.

A position of a contig is labeled as “confirmed” if one base type
appears over 80% in all reads aligned to that position. Each read,
aligned to a contig region with all positions confirmed and the
number of different bases no more than 3, will be corrected accord-
ing to the confirmed bases.

A pre-error-correction step for improved efficiency can be used to
remove errors in high-depth regions as the first step in IDBA-UD
if the sequencing depths are extremely uneven. A medium k value
and filtering threshold will be used to assemble reads to form con-
tigs and errors in reads are corrected based on its alignment with
the output contigs.

2.4 Scaffold
Last, reads are aligned to contigs so as to build a scaffold graph in
which each vertex u represents a contig and each edge (u, v) repre-
sents the connection between u and v with a support of more than p
(3 by default) paired-end reads. After the scaffold graph is built,
scaffold algorithm (Li, et al., 2010) will be applied to further con-
nect contigs.

3 RESULTS
In order to evaluate the performance of our algorithm, experi-
ments2 are carried out on several data sets with different properties.
Results on existing general purpose assemblers like Velvet
(Zerbino and Birney, 2008), SOAPdenovo (Li, et al., 2010), IDBA
(Peng, et al., 2010) and special purpose assemblers like Velvet-SC
(Chitsaz, et al., 2011), Meta-IDBA (Peng, et al., 2011) were com-
pared. Different k values were tried for each assembler and the

2 All experiments were done on a machine with 8-core 2.40GHz Intel CPU
and 144GB memory. The tested assembler was run with multiple threads, if
it supports.

u'v vw' w'

u w
v

uv vw

u'
Fig. 3. Example of resolving repeats by iteration from k to k+1.
The repeat region is a single k-mer, uvw and u'vw' appear in the
genome. After the iteration, repeat v is resolved.

ACGATCGTAGCTGA......AACTG....TACTT...

Fig. 2. Example of reconstructing missing k-mer in local assem-
bly. ACT is a repeat region in the genome and no reads containing
AACTG or TACTT for resolving repeat branches. In local assem-
bly, ACT is no longer a repeat so that a simple path (local contig)
covering AACTG can be reconstructed from local reads.

Sequencing Data with Highly Uneven Depth

5

result with best performance are shown and compared.

Two most important statistics N50 and coverage are calculated to
evaluate the contiguity and completeness of assembly results. N50
is the length of the longest contig such that all the contigs longer
than this contig cover at least half of the genome being assembled.
(Earl, et al., 2011) Coverage is the proportion of the genome being
covered by output contigs. In this paper, only correct contigs are
considered in the calculation of N50 and coverage. A contig is
considered as correct if it can be aligned to the genome reference
by BLAT (Kent, 2002) with 95% similarity. For correct contigs, the
substitution errors are computed by comparing the alignment be-
tween contigs and genome reference. For unaligned contigs, the
number of contigs and number of bases are recorded for compari-
son.

errors # corrected # TP #FP
1856822 1627727 1626929 (99.95%) 798 (0.05%)
Table. 1 Error correction result on simulated 100x length-100 reads of
Lactobacillus delbrueckii (~1.85Mb) with 1% error rate.

3.1.Error Correction
The performance of our error correction algorithm is assessed by
correcting the simulated reads sampled from Lactobacillus del-
brueckii genome (~1.85Mb). The simulated data set contains 1.85
million length-100 reads (100x) uniformly sampled from the refer-
ence with 1% error rate. The error correction algorithm was exe-
cuted on this data set with output contigs of IDBA with k = 60 (kmin
= kmax in this case). The correction result is shown in Table 1. There
are 1856822 error bases in the data set. Our algorithm corrected
1627727 bases with 1626929 (99.95%) being true positive. Note
that our target of error correction is to reduce the errors without
introducing other errors. The remaining erroneous reads either
contains too many errors to be aligned to contigs or are from those
regions which cannot be assembled correctly. This high-precision
and low-sensitivity error correction algorithm is suitable for IDBA-
UD, because the remaining errors could be handled by other means
in the later iterations. Note that error correction which simplifies
the graph for next iterations improves efficiency tremendously.

3.2. Low depth assembly
Lactobacillus plantarum (~3.3Mb) was used as genome reference
for simulating low-depth data set. 10x length-100 paired-end reads
were simulated for testing. The assembly results of IDBA-UD,
Velvet, SOAPdenovo and IDBA are shown in Table 2.

IDBA-UD has the longest N50 (36523), which is several folds of
the N50 of Velvet, SOAPdenovo and IDBA (1584, 13761, and
8350). IDBA-UD also has the highest coverage (99.56%), which is
higher than the coverage of Velvet, SOAPdenovo and IDBA
(98.36%, 98.09% and 98.52%). IDBA-UD and IDBA have the
least number of erroneous bases. Only 10 contigs (4437 bases)
constructed by IDBA-UD and 3 contigs (3301 bases) by IDBA
cannot be aligned to the genome reference, compared to 1079 con-
tigs (112505 bases) by SOAPdenovo and 5 contigs (15921 bases)
by Velvet. Among aligned contigs, all assemblers have similar
substitution error rate.

IDBA-UD also constructed the longest scaffolds with N50 being
194322, which is nearly twice of N50 of scaffolds constructed by
other assemblers. Although N50 of scaffolds generated by different
assemblers are similar, the coverage of scaffolds generated by all
assemblers are much lower than that of contigs except IDBA-UD.

IDBA-UD made the least misassembly during the scaffolding pro-
cess, because of having longer and more accurate contigs.
In general, IDBA-UD achieved its best performance by iterating k
from 20 to 100, while Velvet, SOAPdenovo and IDBA had best
performance when k is set to a small value (21, 31 and 20-40, re-
spectively). Because the Local-Assembly procedure can recon-
struct missing k-mers, IDBA-UD can iterate k to a large value to
construct very long contigs. The other assemblers are not able to
reconstruct missing k-mers so that a reasonably small k is used to
balance the gaps and branches problem. The running time and
memory cost are more or less the same among all assemblers.

k 29 39 49 59 69 79 89 99
All branches 5509 2117 1019 618 375 288 195 149
IDBA-UD
(expected) 5507 2115 1018 616 373 284 190 142

IDBA-UD 5328 2025 962 557 331 223 129 98
IDBA(expected) 5499 2103 1000 584 329 215 103 33
IDBA 5298 1986 933 513 280 156 65 32
SOAPdenovo 5259 1861 795 282 41 27 20 0
Velvet 3515 1356 617 219 35 27 20 0
Table. 3 Expected numbers of resolved branches by IDBA-UD, IDBA and
the real number of all assemblers on the same data set in Table 2.

3.3 Local Assembly
The expected number of resolved branches (Theorem 3 in Appen-
dix) by IDBA-UD, IDBA and the actual numbers by all assemblers
for different repeat lengths k are shown in Table 3. We ran all as-
semblers with a specific k (kmax) and measured repeats with length
[k – 10, k). Because SOAPdenovo and Velvet cannot handle even
values of k due to the palindrome problem, 29, 39, etc are consid-
ered in Table 3. The number of resolved branches by IDBA-UD is
slightly smaller than the expected number because some of the
(k+2)-mers are removed as dead-end. As the k value increases, the
number of resolved branches drops and the number of wrong con-
tigs also increases because of the missing (k+2)-mers. Comparing
to other assemblers, IDBA-UD can resolve more repeats by in-
creasing k and gets longer contigs.

3.3. Single cell assembly
Two single cell short read sequencing data set E.coli (lane 1) and
S.aureus (Chitsaz, et al., 2011)3 were used to test the performance
of IDBA-UD, SOAPdenovo, Velvet and Velvet-SC4. Genome se-
quence of Escherichia coli str. K-12 substr. MG1655 and Staphylo-
coccus aureus subsp. aureus USA300_FPR3757 was downloaded
from NCBI were used as reference for validation. The statistics of
the assembly results of different assemblers are summarized in
Table 4 and Table 5.

3.3.1 De novo assembly of E.coli
According to (Chitsaz, et al., 2011), the average sequencing depth
of single cell sequencing data of E.coli is about 600x and the reads
are sampled very unevenly. For contigs, SOAPdenovo and Velvet
have similar N50 (6428 and 7679); Velvet-SC has the second best
N50 (34454), as it considers the property of uneven depth to re-
move errors; IDBA-UD has the longest N50 (82007), as it consid-
ers uneven relative depth to remove errors and uses local assembly
to reconstruct missing k-mers in low-depth regions. The contigs

3 http://bix.ucsd.edu/projects/singlecell/
4 Velvet-SC was run after EULER error correction as the authors suggested.
The assembly result we presented is slightly different from that in Velvet-
SC paper, because we calculated the N50 for aligned contigs rather than all
contigs.

Peng et al.

6

constructed by IDBA-UD also have the highest coverage. IDBA-
UD and Velvet-SC have the least number of substitution errors. All

assemblers constructed some contigs cannot be aligned to the ref-
erence. Some of them are really misassembled contigs, but the
alignment of reads against contigs and reference showed that some
non-aligned contigs are from regions with structure variations.

After scaffolding, all assemblers produced longer scaffolds and
lower coverage, but the difference between contigs and scaffolds is
not much except SOAPdenovo. SOAPdenovo increased the N50
from 6428 to 25244, but the coverage dropped from 92.42% to
86.49%. That means the uneven depth of single cell assembly
makes the scaffolding very difficult so that assemblers either can-
not construct long scaffolds or make many mistakes in scaffolding
procedure. Since IDBA-UD produced very long contigs, although
scaffolding did not connect many contigs, the scaffolds generated
by IDBA-UD have the longest N50 and highest coverage.

3.3.2 De novo assembly of S.aureus
The sequencing depth of single cell sequencing data of S.aureus is
about 2300x, much higher than that of E.coli. SOAPdenovo and
Velvet performed better for data set with higher sequencing depth.
The contig N50 of SOAPdenovo and Velvet became 12214 and
15800, about twice of that of E.coli. IDBA-UD and Velvet-SC had
similar performance as before, and handle reads with uneven depth
quite well. Generally, higher sequencing depth does not affect the
quality of assembly result much. The scaffolding also increases
N50 and reduces coverage. The substitution error rates are very
low for all assemblers for this high sequencing depth.

SOAPdenovo is the fastest assemblers among four assemblers.
IDBA-UD took about twice of time of SOAPdenovo to perform de
novo single cell assembly. The memory cost of IDBA-UD is much
less than the others, as it did the filtering on k-mers. Depending on
the nature of assemblers, different assemblers achieved its best

performance with different k values. SOAPdenovo got its best
performance by using a relatively large k (75 and 95) to reduce

errors in high depth regions and introducing more gaps problem at
the same time. It then relies paired-end information to connect
contigs to form scaffolds. Therefore, it produced more and shorter
contigs and more gaps in its scaffolds than the others. Velvet pre-
ferred a relatively small k (45 and 55) value, probably because it
contains a very sophisticated algorithm to remove the errors in de
Bruijn graph. Velvet-SC had best performance with a moderate k
(55) value and relies on iteratively removing low depth erroneous
contigs to form long contigs. IDBA-UD is able to iterate k values
from small to large to build a de Bruijn graph with less gaps and
less branches and obtain the best performance, through local as-
sembly producing missing k-mers and iterate depth for reducing
the errors.

3.4. Metagenomic assembly
3.4.1 De novo assembly of simulated metagenomics data
To evaluate the performance of IDBA-UD on metagenomic data,
we considered a simulated data set with extremely uneven depth.
This data set was synthesized by combining simulated reads of
three species Lactobacillus plantarum (~3.3Mb), Lactobacillus
delbrueckii (~1.85Mb) and Lactobacillus reuteri F275 Kitasato
(~2Mb) from the same genus. Length-100 reads were sampled
from these three species with sequencing depth 10x (low depth),
100x (moderate depth) and 1000x (high depth) respectively with
1% error rate. The simulated paired-end reads have an insert dis-
tance following normal distribution N(500, 50). IDBA-UD,
SOAPdenovo, Velvet and Meta-IDBA were executed on this simu-
lated metagenomic sequencing data set. Because the depth is high-
ly uneven, the Pre-Error-Correction of IDBA-UD was activated to
remove errors. The experiment results are showed in Table 6. In
addition to the statistics we presented before, the sequencing depth
of each species was considered for comparison.

 k contigs Scaffolds time mem
 No. N50 Max len Cov(%) Sub.err err # (len) No. N50 Max len Cov(%) Sub.err err # (len)
IDBA‐UD 20‐100 210 36513 201860 99.56 0.0225% 10 (4437) 83 194322 406269 99.55% 0.0218% 5(3784) 63s 432M
SOAPdenovo 31 3346 1584 8691 98.36 0.0572% 1079(112k) 147 121214 246514 92.50% 0.0483% 1087(283k) 31s 852M
Velvet 21 473 13761 48489 98.09 0.0323% 5(15k) 111 111871 225438 96.81% 0.0291% 6(67k) 43s 526M
IDBA 20‐40 672 8350 37391 98.52 0.0164% 3(3301) 60 119931 308798 97.55% 0.0161% 3(9420) 24s 414M

Table. 2 The assembly results on simulated 10x lenght‐100 reads of Lactobacillus plantarum (~3.3Mb) with 1% error rate.

 k Contigs Scaffolds time mem
 No. N50 Max len Cov(%) Sub.err err # (len) No. N50 Max len Cov(%) Sub.err err # (len)
IDBA‐UD 40‐100 187 82007 224018 95.01 0.0017% 87(347k) 148 98306 224018 95.00 0.0016% 73(346k) 35m 3.2G
SOAPdenovo 75 6008 6428 50965 92.42 0.0421% 693(335k) 4419 25244 118128 86.49 0.0448% 588(653k) 30m 19G
Velvet 45 1736 7679 68395 92.69 0.0095% 160(266k) 1707 7795 68395 92.59 0.0095% 154(272k) 91m 11G
Velvet‐SC 55 372 34454 157931 92.74 0.0019% 78(279k) 46m 8.3G

Table. 4 The assembly results on real single cell sequencing data of Escherichia coli (~4.64Mb). The read length is 100, insert distance is about 215, and the
average depth is about 600x.

 k Contigs Scaffolds time mem
 No. N50 Max len Cov(%) Sub.err err # (len) No. N50 Max len Cov(%) Sub.err err # (len)
IDBA‐UD 60‐100 122 87502 175236 94.46 0.0027% 14(247k) 78 100895 308777 93.54 0.0019% 17(271k) 29m 3.8G
SOAPdenovo 95 1005 12214 92978 96.63 0.0067% 791(220k) 696 22632 149602 91.44 0.0072% 746(364k) 11m 12G
Velvet 55 520 15800 67677 94.14 0.0043% 79(99k) 516 16038 67677 94.13 0.0042% 77(100k) 135m 15G
Velvet‐SC 55 322 29719 221773 93.12 0.0042% 43(312k) 224m 41G

Table. 5 The assembly result on real single cell sequencing data of Staphylococcus aureus (~2.87Mb). The read length is 100, insert distance is about 265,
and the average depth is about 2300x.

Sequencing Data with Highly Uneven Depth

7

SOAPdenovo and Velvet did not perform well on this simulated

metagenomic data set. N50 of SOAPdenovo and Velvet are only
461 and 418 respectively. The contigs constructed by SOAPdenovo
and Velvet covered most regions of moderate-depth species
(95.39% and 95.24%) and low-depth species (95.45% and 94.66%)
but a small portion of high-depth regions (39.40% and 16.66%). It
is because they make a tradeoff between low-depth and high-depth
regions and cannot handle them together. SOAPdenovo and Velvet
have the best performance in N50 and coverage when k = 45.
Small k is chosen because the genome size of low-depth species
(~3.3Mb) is larger than high-depth species (~2Mb). In fact, their
performance for k = 55 are similar except that the coverage of low-
depth species decreases, the coverage of moderate-depth species
remains the same and the coverage of high-depth species increases.
Meta-IDBA designed for metagenomic assembly iterates k from
small to large to capture both low-depth and high-depth regions. At
each iteration, missing k-mers in low-depth and moderate-depth
regions introduce fragmentation in the assembly result. Thus, Me-
ta-IDBA outperforms SOAPdenovo and Velvet, but performs
worse than IDBA-UD. The contigs constructed by Meta-IDBA
covered over 99% of the regions in high-depth species, slightly
less than 90% of the regions in low-depth species and moderate-

depth species.

As expected, IDBA-UD outperforms SOAPdenovo, Velvet and
Meta-IDBA in all aspects. N50 (44879) of contigs constructed by
IDBA-UD is about 10 times of the second best N50 (4588) of con-
tigs constructed by Meta-IDBA. IDBA-UD also has the best cov-
erage (99.15%), about 10% higher than the second highest by Me-
ta-IDBA. The contigs constructed by IDBA-UD covered almost all
the region of three species, the uneven depth does not affect the
assembly quality of IDBA-UD. Similar to single cell assembly,
scaffolding in all assemblers produced longer contigs but lower
coverage. As for substitution error rate, IDBA-UD and Meta-IDBA
have much higher accuracy and IDBA-UD constructed the least
number of misassembled contigs. The running times of all assem-
blers are similar, but IDBA-UD and Meta-IDBA used about half of
memory as SOAPdenovo and Velvet.

3.4.2 De novo assembly of human gut microbial short read data
Real human gut microbial sequencing data was used to assess the
performance of IDBA-UD. The data set (SRR041654 and
SRR041655) were downloaded from NCBI for assembly. The
reads were generated by Illumina Genome Analyzer II with read

 k contigs Scaffolds time mem
 No. N50 Cov(%) 10x 100x 1000x err # (len) No. N50 cov 10x 100x 1000x err # (len)
IDBA‐UD 20‐100 546 44879 99.15 99.31 98.48 99.52 9(4k) 335 104696 97.80 99.23 95.90 97.21 10(69k) 35m 6.9G
SOAPdenovo 45 16266 461 79.57 95.45 95.39 39.40 1347(166k) 10036 1356 74.01 83.43 95.37 39.28 1404(641k) 30m 18G
Velvet 45 12018 418 72.73 94.66 95.24 16.66 6200(710k) 11976 418 72.58 94.34 95.24 16.66 6219(724k) 91m 18G
Meta‐IDBA 20‐100 2636 4588 89.62 85.29 86.96 99.09 127(292k) 46m 6.2G

Table. 6 The assembly result on simulated metagenomic data set of Lactobacillus plantarum (~3.3Mb), Lactobacillus delbrueckii (~1.85Mb) and Lactobacil-
lus reuteri F275 Kitasato (~2Mb). The sequencing depth of these species are 10x, 100x and 1000x respectively. The read length is 100, error rate is set to
1% and the insert distance follows normal distribution N(500, 50).

 k contigs Scaffolds Gene # time mem
 No. N50 max len Total Length No. N50 max len Total Length
IDBA‐UD 20‐100 39221 18658 39221 18658 37512 20737 673651 98243412 66298 138m 11G
SOAPdenovo 55 99213 2066 113678 92059177 93961 4575 319705 90788489 41093 61m 31G
Velvet 55 33165 3476 171410 65630428 30419 5065 358885 65887174 40914 176m 35G
Meta‐IDBA 20‐100 20‐100 19978 7710 325768 48693 49m 12G

Table. 7 The assembly results on human gut microbial short read data (SRR041654 and SRR041655) from NCBI. The read length is 100 and the insert dis‐
tance is 260.

 k contigs Scaffolds
Genus No. N50 Cov(%) 10x 100x 1000x err # (len) No. N50 cov 10x 50x 250x err # (len)
IDBA‐UD 20‐100 713 177198 94.90 93.16 96.06 95.52 6(81k) 394 318240 87.72 81.41 89.66 92.13 14(593k)
SOAPdenovo 45 20427 6438 80.40 85.87 89.14 64.76 184(24k) 12938 155694 72.13 69.16 84.25 59.97 551(883k)
Velvet 45 21904 660 91.69 91.72 94.96 88.70 1334(179k) 21904 660 91.69 91.72 94.96 88.70 1334(179k)
Meta‐IDBA 20‐100 2283 26504 86.38 74.25 90.20 95.19 143(551k)
Family No. N50 Cov(%) 10x 100x 1000x err # (len) No. N50 cov 10x 50x 250x err # (len)
IDBA‐UD 20‐100 904 163720 98.98 97.96 99.28 99.94 6(35k) 475 393540 96.45 96.58 98.28 95.06 8(119k)
SOAPdenovo 45 23908 6673 88.74 93.65 98.44 71.54 195(29k) 14449 160345 80.73 73.21 97.59 70.37 419(1160k)
Velvet 45 24785 795 95.48 93.03 97.82 95.83 1208(171k) 24785 795 95.48 93.03 97.82 95.83 1208(171k)
Meta‐IDBA 20‐100 3014 22311 80.53 66.38 88.13 89.96 233(1057k)
Class No. N50 Cov(%) 10x 100x 1000x err # (len) No. N50 cov 10x 50x 250x err # (len)
IDBA‐UD 20‐100 488 236177 99.64 99.30 99.94 99.62 3(18k) 253 849606 96.42 95.30 98.76 97.59 3(60k)
SOAPdenovo 45 20111 7319 90.34 95.28 99.60 70.97 157(24k) 11610 329675 85.84 84.65 99.57 69.98 290(601k)
Velvet 45 20736 766 96.27 94.49 99.30 94.79 1025(148k) 20736 766 96.27 94.49 99.30 94.79 1025(148k)
Meta‐IDBA 20‐100 2657 43332 90.19 80.76 96.74 94.41 86(398k)

Table. 8 The assembly results on simulated metagenomic data sets in different taxonomic levels. For each level, 5 test cases with three randomly selected
species are generated for testing. The depths of three species are set to 10x, 50x and 250x respectively. The read length is 100, error rate is set to 1% and the
insert distance follows normal distribution N(500, 50). The values presented in this table are results average 5 test cases.

Peng et al.

8

length 100 and insert distance 260. IDBA-UD, SOAPdenovo, Vel-
vet and Meta-IDBA were compared on this data set (The Pre-
Error-Correction of IDBA-UD was activated.). Because there is no
reference, we used the largest total contig size of all assemblers as
the estimated genome size (98407199) for N50 calculation, and
cannot analyze completeness of assembly by comparing genome
coverage. MetaGeneAnnotator (Noguchi, et al., 2008)5 was applied
to the output of each assembler to predict the number of genes
recovered. The statistics of assembly results are summarized in
Table 7.

The contigs of SOAPdenovo and Velvet have similar N50, while
SOAPdenovo produced much more contigs than Velvet. The total
contig size of SOAPdenovo is 92059177. Meta-IDBA produced
the smallest number of contigs, but N50 of contigs constructed by
Meta-IDBA is larger than SOAPdenovo and Velvet. According to
the analysis of the assembly result of simulated data, it is probably
because Meta-IDBA reconstructed most of high-depth regions but
missed some low-depth regions. IDBA-UD has the largest total
contig size and the highest N50 (18658). The contigs constructed
by IDBA-UD contain the largest number of predicted genes
(66298), which is 50% more than that of SOAPdenovo and Velvet.
The results reveal that IDBA-UD can assemble metagenomic data
better than all the other assemblers. The running time of IDBA-UD
is between SOAPdenovo and Velvet. The memory cost of IDBA-
UD and Meta-IDBA is also about half of SOAPdenovo and Velvet.

3.4.3 De novo assembly of simulated metagenomic data with
different similarity level
To show the performance of IDBA-UD on data with different simi-
larity level, we constructed three kinds of data sets with genomes
in same genus, family and class. For each similarity level, 5 test
cases with three species are selected randomly and sampled with
low depth (10x), middle depth (50x) and high depth (250x). The
average of assembly results are shown in Table 8.
In general, all assemblers have the best performance on data set in
class level and the worst performance on data set in genus level.
Contigs and scaffolds generated by IDBA-UD have the largest N50
and highest coverage in all three kinds of data sets. Velvet generat-
ed the second highest coverage, but it produced the shortest N50.
The scaffolds generated by SOAPdenovo have the second largest
N50, but they covered the least portion of genomes. Meta-IDBA is
somehow in the middle, because it is designed to handle similar
subspecies problem rather than different expression levels. In the
assembly results of IDBA-UD, all species got similar coverage. All
the other assemblers generated high coverage for middle-depth
(50x) species but lower coverage for low-depth and high-depth
species, because they balanced the gap problems in low-depth
species and high-depth species and benefited the middle-depth
species. Consistent with previous experiments, IDBA-UD outper-
formed all the existing assemblers in sequencing data with highly
uneven depth in all these experiments.

4 DISCUSSION AND CONCLUSION
In this paper, we proposed a new assembler IDBA-UD, an exten-
sion of IDBA, to assemble short sequencing reads with highly
uneven depth. Besides iterating k from small to large, IDBA-UD
reconstructs missing k-mers by local assembly and removes errors

5 Only complete genes predicted by MetaGeneAnnotator are considered as
recovered.

by iteratively removing low-depth contigs. The experiment results
on both simulated and real data sets showed that IDBA-UD outper-
formed all existing assemblers in assembling data sets with highly
uneven depth. For metagenomic data, there are more common k-
mers between genomes from subspecies of the same species than
genomes from different species. This information is used in Meta-
IDBA for assembling metagenomic data. As a future work, we
should study how to integrate this information in IDBA-UD for
better performance.

ACKNOWLEDGEMENTS
This work was supported in part by HKU GRF funding (HKU
7116/08E, HKU 719709E, HKU 7111/12) and HKU Genomics
SRT funding.

REFERENCES
Butler, J., et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads, Genome Res, 18, 810-820.

Chaisson, M.J., Brinza, D. and Pevzner, P.A. (2009) De novo fragment assembly with

short mate-paired reads: Does the read length matter?, Genome Res, 19, 336-346.

Chaisson, M.J. and Pevzner, P.A. (2008) Short read fragment assembly of bacterial

genomes, Genome Res, 18, 324-330.

Chitsaz, H., et al. (2011) Efficient de novo assembly of single-cell bacterial genomes

from short-read data sets, Nat Biotechnol, 29, 915-921.

Earl, D., et al. (2011) Assemblathon 1: A competitive assessment of de novo short

read assembly methods, Genome Res, 21, 2224-2241.

Hernandez, D., et al. (2008) De novo bacterial genome sequencing: millions of very

short reads assembled on a desktop computer, Genome Res, 18, 802-809.

Kelley, D.R., Schatz, M.C. and Salzberg, S.L. (2010) Quake: quality-aware detection

and correction of sequencing errors, Genome Biol, 11, R116.

Kent, W.J. (2002) BLAT--the BLAST-like alignment tool, Genome Res, 12, 656-664.

Li, R., et al. (2010) De novo assembly of human genomes with massively parallel

short read sequencing, Genome Res, 20, 265-272.

Medvedev, P., et al. (2011) Error correction of high-throughput sequencing datasets

with non-uniform coverage, Bioinformatics, 27, i137-141.

Noguchi, H., Taniguchi, T. and Itoh, T. (2008) MetaGeneAnnotator: detecting

species-specific patterns of ribosomal binding site for precise gene prediction in

anonymous prokaryotic and phage genomes, DNA Res, 15, 387-396.

Peng, Y., et al. (2011) Meta-IDBA: a de Novo assembler for metagenomic data,

Bioinformatics, 27, i94-101.

Peng, Y., et al. (2010) IDBA- A Practical Iterative de Bruijn Graph De Novo

Assembler. RECOMB. Lisbon.

Pevzner, P.A., Tang, H. and Waterman, M.S. (2001) An Eulerian path approach to

DNA fragment assembly, Proc Natl Acad Sci U S A, 98, 9748-9753.

Rodrigue, S., et al. (2009) Whole genome amplification and de novo assembly of

single bacterial cells, PLoS One, 4, e6864.

Simpson, J.T., et al. (2009) ABySS: a parallel assembler for short read sequence data,

Genome Res, 19, 1117-1123.

Wooley, J.C., Godzik, A. and Friedberg, I. (2010) A primer on metagenomics, PLoS

Comput Biol, 6, e1000667.

Woyke, T., et al. (2009) Assembling the marine metagenome, one cell at a time, PLoS

One, 4, e5299.

Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs, Genome Res, 18, 821-829.

Sequencing Data with Highly Uneven Depth

9

Zerbino, D.R., et al. (2009) Pebble and rock band: heuristic resolution of repeats and

scaffolding in the velvet short-read de novo assembler, PLoS One, 4, e8407.
Appendix

Branches may be caused by erroneous reads (k-mers), variations
(SNPs) or repeats. The branches caused by erroneous k-mers can
be solved by the graph structure, such as dead-end or bubbles. The
branches caused by a length-k repeats can be resolved if we have a
(k+2)-mers covering the repeat, which can be obtained if the corre-
sponding (k+2)-mers covering the repeat are sampled in reads or
the (k+2)-mer is obtained by local assembly.

Figure 3 shows an example of Hk and Hk+1 for resolving a length-k
repeat v and its associated branches. Because it is impossible to
resolve these branches by Hk itself, reads and contigs are consid-
ered in each iteration from Hk to Hk+1 for resolve them. If the
(k+2)-mers covering repeat v, e.g., uvw and u’vw’, exist in reads,
these (k+2)-mers can be used to convert branches to simple paths.
If some of these (k+2)-mers are missing in reads due to low depth
or errors, then local assembly can be used to reconstruct them as
shown in Figure 2.

In this section, we try to calculate the expected number of branches
caused by repeats that can be resolved by (k+2)-mers which are
already existing in reads or reconstructed by locally assembly.
Theorem 2 gives the expected number of (k+2)-mers covering a
repeat being sampled f times (applied by IDBA). Theorem 3 gives
the expected number of (k+2)-mers covering a repeat being sam-
pled f times or reconstructed by local assembly (applied by IDBA-
UD). Thus, the difference between these two expected numbers as
given in Theorems 2 and 3 indicates the expected number of re-
peats resolved by local assembly.

Theorem 1: Assume t length-l reads are uniformly sampled from a
length-g genome with error rate e, the probability that a k-mer v
appearing x (g >> x) times in the genome being sampled at least m
times is at least

iti
m

i
xmk pp

i
t

P −
−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑)1(1

1

0
,,

 where ke
lg

xklp)1(
1
)1(

−×
+−
+−

=

Proof:
Pr(v is sampled in a read)
≤ Pr(a read containing v is sampled) Pr(v is sampled | a read con-
taining v is sampled)

= ke
lg

xkl)1(
1
)1(

−×
+−
+−

The probability that a correct k-mer v appears less than m times is

at most iti
m

i
pp

i
t −

−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑)1(
1

0
, so the result follows. ⎕

Theorem 2: Assume t length-l reads are uniformly sampled from a
length-g genome with error rate e and Rk is the set of repeats with
length k. If the support requirement for resolving a branch is f, then
the expected number of resolved branches Sk from k to k+1 is at
least

∑ ∑
∈ =

+
kRr rYb

bxfkP
)(

)(,,2

where Y(r) is the set of the (k+2)-mers covering repeat r in the
genome and x(b) is the number of times that b appear in the ge-
nome.
Proof:
In order to resolve a repeat of length k, a (k+2)-mer appearing at
least f times in the reads is needed and the probability of such
(k+2)-mer is Pk+2,f,x(b) (Theorem 1). ⎕
If reads are localized to a specific region of genome, then the
branches caused by distant repeats may disappear and convert to
simple paths. In this way, local assembly may generate local con-
tigs which help to resolve branches.

Theorem 3: Assume t length-l reads are uniformly sampled from a
length-g genome with error rate e, Rk is the set of repeats with
length k and LRk is the set of length-k repeats occurring at least
twice in the genome within insert distance. If the support require-
ment for resolving a branch is f and IDBA-UD is applied on the
data from k to k+1, then the expected number of resolved branches
LSk is at least

∑ ∑
∈ =

++−
kLRb rYb

bxfkkk PLRR
)(

)(,,2||

where Y(r) is the set of the (k+2)-mers covering repeat r in the
genome and x(b) is the number of times that b appears in the ge-
nome.
Proof:
If a repeat does not appear twice within insert distance, then it can
be resolved by IDBA-UD, i.e., |Rk - LRk| and those repeats occur-
ring more than once within the insert distance can only be resolved
by the (k+2)-mers appearing at least f times in reads (Theorem 2).

