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ABSTRACT 
Motivation: Next-generation sequencing allows us to sequence 
reads from a microbial environment using single cell sequencing or 
metagenomic sequencing technologies. However, both technologies 
suffer from the problem that sequencing depth of different regions of 
a genome or genomes from different species are highly uneven. 
Most existing genome assemblers usually have an assumption that 
sequencing depths are even. These assemblers fail to construct 
correct long contigs.  
Results: We introduce the IDBA-UD algorithm that based on the de 
Bruijn graph approach for assembling reads from single cell se-
quencing or metagenomic sequencing technologies with uneven 
sequencing depths. Several non-trivial techniques have been em-
ployed to tackle the problems. Instead of using a simple threshold, 
we use multiple depth relative thresholds to remove erroneous k-
mers in both low-depth and high-depth regions. The technique of 
local assembly with paired-end information is used to solve the 
branch problem of low-depth short repeat regions. To speed up the 
process, an error correction step is conducted to correct reads of 
high-depth regions that can be aligned to high confident contigs. 
Comparison of the performances of IDBA-UD and existing assem-
blers (Velvet, Velvet-SC, SOAPdenovo and Meta-IDBA) for different 
datasets shows that IDBA-UD can reconstruct longer contigs with 
higher accuracy. 
Availability: The IDBA-UD toolkit is available at our website 
http://www.cs.hku.hk/~alse/idba_ud. 

1 INTRODUCTION  
Because over 99% of microbes cannot be cultivated, single cell 
sequencing and metagenomic sequencing technologies are used to 
study these microbes (Chitsaz, et al., 2011; Wooley, et al., 2010). 
Single cell sequencing technology amplifies and sequences ge-
nome of an individual cell without cultivation (Chitsaz, et al., 
2011).  Because of the amplification bias, the sequencing depths at 
different regions of the genome can be extremely uneven. Meta-
genomic sequencing studies a microbe community as a whole 
(Wooley, et al., 2010) and has similar problem of uneven sequenc-
ing depths of genomes because different species in a sample have 
different abundances. Almost all existing de novo assembly tools 
were designed for single genome with uniform sequencing depth 

   
*To whom correspondence should be addressed.  

and were used by some recent studies on microbes (Rodrigue, et al., 
2009; Woyke, et al., 2009). However, these tools may not be able 
to produce long contigs when applying to data with highly uneven 
sequencing depths. 
 
Many existing de novo assembly tools for the next generation se-
quencing (NGS) reads adopt the de Bruijn graph approach (Butler, 
et al., 2008; Chaisson, et al., 2009; Li, et al., 2010; Peng, et al., 
2010; Pevzner, et al., 2001; Simpson, et al., 2009; Zerbino and 
Birney, 2008) in which a vertex represents a unique length-k sub-
string called k-mer and an edge connects vertices u and v if and 
only if u and v appear consecutively in a read. Each read is repre-
sented by a path of k-mers in the de Bruijn graph. After error detec-
tion and removal, a simple path in the de Bruijn graph represents a 
contig. 
 
There are three major problems in this approach (Peng, et al., 
2010): 
a) Incorrect k-mers: Sequencing errors introduce many incorrect 

k-mers (vertices) that make the de Bruijn graph complicated.  
b) Gap problem: When k is large, especially in regions with low-

er sequencing depths, some k-mers (i.e., vertices, also edges, 
in the de Bruijn graph) are missing. 

c) Branching problem: Due to repeat regions or erroneous reads, 
many branches are introduced in the de Bruijn graph especial-
ly when k is small. 

 
For  Problem (a), some of these errors can be removed by the topo-
logical structure of the graph. For the remaining errors, based on 
the assumption of uniform sequencing depth and the observation 
that the multiplicity of an erroneous k-mer is usually smaller than 
that of a correct k-mer, existing tools use a simple threshold to 
either prune contigs if the contigs are formed by k-mers of low 
multiplicity (e.g., Velvet (Zerbino and Birney, 2008; Zerbino, et al., 
2009) and Abyss (Simpson, et al., 2009)) or directly remove k-
mers with low multiplicity (IDBA(Peng, et al., 2010) and EULER-
SR(Chaisson and Pevzner, 2008)). Note that this also solves some 
of the branching problems (Problem (c)) due to incorrect k-mers. 
For Problems (b) and (c), using a small k will induce more branch-
es while using a large k will result in more gaps. Most existing 
tools (e.g. Velvet (Zerbino and Birney, 2008) and SOAPdenovo (Li, 
et al., 2010)) just pick an appropriate k, some intermediate value, 
to balance the two problems. On the other hand, the IDBA assem-
bler (Peng, et al., 2010) provides a better solution which, instead of 
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using a single k, iterates from k = kmin to k = kmax. At each iteration, 
the constructed contigs are used as reads for the next iteration. 
These contigs carry the k-mers of the current iteration, which may 
be missing in the next iteration, to the next iteration, thus solving 
some of the gap problems. It then relies on larger k to resolve the 
branches for the repeat regions.  
 
However, when applying to single cell or metagenomic assembling, 
highly uneven sequencing depth aggravates these problems further 
that affect the performance of these tools substantially due to the 
following issues. Issue (A): erroneous vertices and branches in 
high-depth regions; Issue (B): gaps in low-depth short repeat re-
gions.  
 
Problems (a) and (c) due to Issue (A):  
Due to highly uneven sequencing depth, the assumption of an in-
correct k-mer having lower multiplicity is not valid. Those incor-
rect ones in the high-depth regions may even have higher multi-
plicity than the correct ones in the low-depth regions, thus simply 
using a single threshold to remove incorrect vertices will not work. 
Setting the threshold too low induces many incorrect vertices and 
edges (those in high-depth regions) in the graph. Setting the 
threshold too high will remove many correct vertices and edges in 
low-depth regions. We remark that there exist some error correc-
tion algorithms for reads/k-mers (Chaisson and Pevzner, 2008; 
Kelley, et al., 2010; Medvedev, et al., 2011), but they do not per-
form very well in data sets with very uneven sequencing depths. 

 
Problems (b) and (c) due to Issue (B):  
Recall that most existing assemblers do not have a good method to 
resolve Problems (b) and (c) probably except IDBA. Even for 
IDBA, in low-depth short repeat regions1, when k is small, the 
branching problem makes it difficult to construct a contig to be 
passed to the next iteration. When k is increased, due to the low-
depth issue, we still have the missing k-mer problem (the gap prob-
lem).  
 
Velvet-SC (Chitsaz, et al., 2011) is the only tool that tries to ad-
dress the assembling problem of single cell sequencing data with 
very uneven sequencing depths. Following Velvet, Velvet-SC picks 
an appropriate k to balance the gap and the branching problem; and 
uses variable thresholds to address problems related to Issue (A). 
Short erroneous contigs are filtered iteratively using different 
thresholds from low to high sequencing depths based on a global 
average of the multiplicity of all k-mers. Its performance is already 
better than existing tools designed for even sequencing depth. 
However, problems related to Issue (B) are not yet handled. In this 
paper, we propose an assembler called IDBA-UD for de novo as-
sembly of reads with uneven sequencing depths that tackles both 
issues.  
 

To resolve Issue (A), IDBA-UD extends and enhances the idea of 
variable thresholds of Velvet-SC (Chitsaz, et al., 2011) to filter out 
erroneous contigs. In order to cater for very extreme sequencing 
depths, instead of using a global average of the multiplicity of all 
k-mers, we adopt variable relative thresholds depending on the 
sequencing depths of their neighboring contigs based on the idea 
that short contigs with much lower sequencing depths than their 
neighboring contigs tend to be erroneous. For the gap and branch-

   
1 For very long repeats (longer than the whole span of a paired-end read), it 
is almost impossible to resolve it.   

ing problems, we follow the approach of IDBA and iterate from a 
small k to a large k so that the missing k-mers for large k can be 
obtained from contigs constructed in the iterations of small k.  
 
Then we tackle Issue (B) as follows. The problem of Issue (B) is 
due to the low-depth short repeat regions such that using small k, 
we cannot get the contig out since it is a repeat region and the 
branches may be complicated due to the ambiguity of using a small 
value of k. When k increases, however, due to the low sequencing 
depths some k-mers are missing. Even if we iterate from small k to 
large k, this problem of missing k-mers cannot be resolved.  So, we 
employ the technique of local assembly with paired-end infor-
mation to handle these cases. Paired-end reads with one end 
aligned to some long confident contigs are grouped together. Local 
assembly is performed on the unaligned ends. Since we consider 
only the read pairs with one end aligned to the contig, the ambigui-
ty due to small k is removed. If the insert size is longer than the 
repeat involved, it is likely that we can extend the contig over this 
repeat region, thus constructing the missing k-mers for large k.  
Note that this local assembly step can also help to resolve some 
branching problems in high-depth regions too. 
 
To further reduce the size of the de Bruijn graph and to speed up 
the assembly process, at every iteration, we conduct an additional 
error correction step by aligning the erroneous reads from the high-
depth regions to confident contigs (i.e., with many supporting 
reads) which turns out to be very effective.  
 
We compared the performance of IDBA-UD with other assemblers 
on data in actual situations when the sequencing depths are ex-
tremely uneven, e.g., with the ratios larger than 100 : 1. Experi-
ments on both simulated and real data sets showed that IDBA-UD 
produces much longer contigs than existing assemblers with higher 
coverage and precision. 

2 METHODS 
A flowchart of the major steps of IDBA-UD is shown in Figure 1. 
IDBA-UD iterates the value of k from kmin to kmax. In each iteration, 
an accumulated de Bruijn graph Hk for a fixed k is constructed 
from the set of input reads and the contigs (Ck-s and LCk-s)  
constructed in previous iterations, i.e. these contigs are treated as 
input reads for constructing Hk. In each iteration, IDBA-UD also 
progressively increases the value of depth cutoff thresholds for 
removing some low-depth contigs so as to get longer confident 
contigs (Ck) in Hk. Error in reads are corrected by aligning the 
reads to some confident contigs. Some missing k-mers in reads can 
be recovered from those contigs (LCk) reconstructed by local 
assembling a small set of paired-end reads with one end aligned to 
a confident contig. Information of these missing k-mers will be 
passed to the next iteration through these contigs (LCk) for the 
construction of Hk+s. Finally, all outputted contigs are used to form 
scaffolds using paired-end reads information.  
 
 
Algorithm 1 shows the pseudocode of IDBA-UD for assembling a 
set of paired-end reads R with insert distance d and standard 
derivation δ. In the first iteration when k = kmin, Hk is equivalent to 
a de Bruijn graph for vertices whose corresponding k-mers have 
multiplicity at least m (2 by default) times in all reads. During all 
the subsequent iterations, some sequencing errors are first removed 
according to the topological structure of Hk, e.g., dead-end contigs 
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and bubbles (Steps (b) and (c)). The dead-end contigs (tangling 
paths in Hk of lengths shorter than 2k) are likely to be false posi-
tives (Li, et al., 2010; Simpson, et al., 2009; Zerbino and Birney, 
2008). Paths (bubbles) representing very similar contigs except at 
one position and with the same starting vertex and ending vertex 
are likely to be caused by an error or an SNP and they should be 
merged together into one contig (Hernandez, et al., 2008; Simpson, 
et al., 2009; Zerbino and Birney, 2008). When constructing Hk+s 
from Hk, each length s+1 path in Hk is converted into a vertex 
((k+s)-mer) and there is an edge from between two vertices if the 
corresponding (k+s+1)-mer appears f (1 by default) times in reads 
or once in contigs in Ck ∪ LCk. In the following subsections, we 
will describe the other steps of IDBA-UD in details. 
 
2.1 Progressive Relative Depth 
The sequencing depth, depth in short, of each simple path (contig) 
in Hk (H'k which is a copy of Hk is used in Algorithm 1 so as to 
preserve Hk after the implementation of this step) is used to remove 
errors. The depth of a contig is the average number of reads cover-
ing each k-mer in the contig. Note that long contigs are usually 
correct, because long simple paths can unlikely be formed by erro-
neous reads; similarly for high-depth contigs which have supports 
from many reads. For a contig, whether its length is long or short 
and whether its depth is high or low cannot be judged by its abso-
lute values as the length of a contig depends on the value of k and 
the depth of a contig depends on the depths of its neighboring con-
tigs (neighboring contigs can be identified by their adjacency in the 
de Bruijn graph). Even though wrong contigs in high-depth regions 
may have higher depths than correct contigs from low-depth re-
gions, short (< 2k) and relatively low-depth (< a fraction β of its 
neighboring contigs’ average depth) contigs are likely to be erro-
neous and can be removed.  

 
There is still a risk of removing short and relatively low-depth 
correct contigs, because some relatively low-depth correct contigs 
with high-depth neighbors may be broken into short contigs by 
some wrong contigs (as branches in Hk). Based on the observation 
that these short and relatively low-depth correct contigs usually 
have higher depths than the short wrong contigs, we can filter out 
these wrong contigs first by increasing the depth cutoff threshold 
progressively from low to high. After the wrong contigs or branch-
es are removed by a low depth cutoff threshold, the relative low-
depth correct contigs will be linked together to form long confident 
contigs which will be considered as reads for the next iteration. 
 
The key idea to consider the depth progressively and relatively is 
shown in Algorithm 2. T(c) represents the depth of contig c and 
Tneighbor(c) represents the mean depth of c’s neighboring contigs. 
The filtering depth cutoff threshold t is increased by a factor α 
progressively (α is about 10%).   A geometric increase, instead of 
absolute increase (as used in Velvet-SC), in the depth cutoff 
threshold value improves implementation efficiency because the 
threshold difference is more sensitive at the low-depth values than 
the high-depth values. In each iteration, short contig c is removed 
if its depth T(c) is lower than the minimum of cutoff threshold t 
and the relative threshold β*Tneighbor(c) where β is in the range of 
0.1 to 0.5. 
 
Algorithm 1 IDBA-UD(R, d, δ ) :  
1 Pre-Error-Correction (optional) 
2 Repeat from k := kmin to kmax with step s 

a) If k = kmin, then construct Hk from R 
 else construct Hk from Hk-s and R ∪ Ck-s ∪ LCk-s 
b) Remove dead-ends with length < 2k 
c) Merge bubbles 
d) H'k := Hk 
e) Progressive-Relative-Depth(H'k, k) 
f) Get all potential contigs Ck of H'k 
g) Error-Correction(Ck, R) 
h) LCk := Local-Assembly(Ck , R, d, δ ) 

3 Construct scaffolds 
4 return Ckmax and scaffolds 
 
Algorithm 2 Progressive-Relative-Depth(G, k) :  
1 t := 1 
2 repeat 
3     for each contig c in G 
4         if len(c) < 2k and T(c) < min(t, β*Tneighbor (c)) 
5              remove c from G 
6    t := t * (1+α) 
7 until t  t > maxc∈G T(c)  
 
2.2 Local Assembly 
IDBA makes use of the contigs (containing the information of 
some missing k-mers for larger k) constructed in each iteration for 
the construction of the de Bruijn graphs of larger k. These missing 
k-mers may not exist in any of the reads but they might help to fill 
the gaps in the de Bruijn graphs for larger k. This approach still has 
a limitation that not all the missing k-mers, i.e., contigs containing 
these k-mers, can be constructed (so not all the gaps can be filled) 
because of branches. The main contribution of local assembly is to 
construct these contigs for the missing k-mers, especially in the 
low-depth regions, based on the information of paired-end reads to 

Paired-end 

Construct de Bruijn for k = kmin 

Progressive Depths 

Error Correction 

Local Assembling 

Construct de Bruijn 
for larger k

Scaffolding 

Fig. 1. Flowchart of IDBA-UD. 
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eliminate the branches introduced from other parts of the genome. 
 
We shall illustrate this main idea of local assembly through an 
example (Figure 2). Let us consider the construction of a de Bruijn 
Graph for k=3, based on two reads, ...AACT and ACTG..., we have 
a simple path connecting the 3-mers, AAC, ACT and CTG. IDBA 
can reconstruct the missing 5-mer AACTG (not appeared in any 
reads) by forming a simple path containing it. However, as given in 
Figure 2, when ACT is a length-3 repeat in the genome (the repeat 
regions are apart by more than the insert distance) and there are 
reads covering the region ...TACTT... containing the other repeat. 
The 3-mer ACT in the de Bruijn graph for k=3 now has two in-
branches and two out-branches (refer to the left diagram of Figure 
3 where vertex v represents the 3-mer ACT; vertices u, w, u’ and 
w’ are for 3-mers AAC, CTG, TAC and CTT respectively). Under 
this situation, even when k is increased to 4 and 5 in IDBA (this 
part of graph will be disconnected in H4 and H5), the missing criti-
cal 5-mers AACTG cannot be reconstructed because of the branch-
es. However, when considering the de Bruijn graph when k=3, 
IDBA-UD will align the paired-end reads to the contig 
ACGATCGTAGCTGA (Figure 2) while the reads of the other ends 
covering the repeat regions will only be ...AACT and ACTG... 
(reads covering the other repeat region ...TACTT... are not in-
volved because they are far away). Thus local assembly (by con-
sidering the reads locally) can produce a simple path containing the 
critical 5-mer AACTG to resolve branches as if there were no re-
peats.  
Algorithm 3 Local-Assembly(C, R, d, δ ) :  
1 Remove contigs shorter than 2l from C 
2 Align reads in R to contigs in C 
3 For each (r, s) ∊ R 
4  if r uniquely aligned to last d+3δ bases of c, Rc := Rc ∪ {s} 
5  if r uniquely aligned to last d+3δ bases of crc, Rc

rc := Rc
rc ∪ 

{s} 
6 For each c ∊ C 
7 LCc := IDBA({last  d+3δ bases of c} ∪ Rc ) 
8 LCc

rc := IDBA({last d+3δ bases of crc} ∪ Rc
rc ) 

9 return ∪c∈G(LCc∪ LCc
rc)  

Let Ck be the set of contigs (simple paths) in Hk. The set of paired-
end reads Rc are those with one read aligned with the ends of each 
long contig c (with length at least twice of read length) in Ck (crc 

stands for the reverse complement of contig c).  The other una-
ligned ends of these aligned paired-end reads, which would cover 
the genome regions extended about an insert distance beyond each 
end of a long contig, are extracted separately.  Assume the insert 
distances of paired-end reads satisfy the normal distribution N(d, δ). 
IDBA-UD groups the last d + 3δ bases of c/crc and Rc/Rc

rc together, 
and then locally assembles them into the set of local contigs 
LCc/LCc

rc
 using IDBA (Algorithm 1 without step e, g and h) as 

shown in Algorithm 3. Since those reads which are far away from 
the contig c will not be mixed up with these unaligned ends, the 
contig c and these unaligned ends (reads) of Rc can be used to con-
struct a smaller and simpler de Bruijn graph whose simple paths 
(represented by the set of contigs LCc) might reconstruct some of 
the missing k-mers and be considered as reads for the next iteration. 
Thus, the contigs can be extended longer and longer at each itera-
tion. The expected number of resolved branches can be computed 
by Theorem 3 (Appendix). 
 
2.3 Error-Correction 
To reduce the errors in reads, error correction on some erroneous 
bases is performed based on the alignment between reads and con-
fident contigs. Errors in reads are corrected only if they can be 
aligned to contigs with certain similarity, say 95%.  The reads 
which can be multi-aligned to different contigs will not be consid-
ered for corrections.  This approach of error correction is especially 
effective for high-depth regions because the confident contigs are 
well supported by many reads.  
 
A position of a contig is labeled as “confirmed” if one base type 
appears over 80% in all reads aligned to that position.  Each read, 
aligned to a contig region with all positions confirmed and the 
number of different bases no more than 3, will be corrected accord-
ing to the confirmed bases.  
 
A pre-error-correction step for improved efficiency can be used to 
remove errors in high-depth regions as the first step in IDBA-UD 
if the sequencing depths are extremely uneven. A medium k value 
and filtering threshold will be used to assemble reads to form con-
tigs and errors in reads are corrected based on its alignment with 
the output contigs. 
 
2.4 Scaffold 
Last, reads are aligned to contigs so as to build a scaffold graph in 
which each vertex u represents a contig and each edge (u, v) repre-
sents the connection between u and v with a support of more than p 
(3 by default) paired-end reads. After the scaffold graph is built, 
scaffold algorithm (Li, et al., 2010) will be applied to further con-
nect contigs. 

3 RESULTS 
In order to evaluate the performance of our algorithm, experi-
ments2 are carried out on several data sets with different properties. 
Results on existing general purpose assemblers like Velvet 
(Zerbino and Birney, 2008), SOAPdenovo (Li, et al., 2010), IDBA 
(Peng, et al., 2010) and special purpose assemblers like Velvet-SC 
(Chitsaz, et al., 2011), Meta-IDBA (Peng, et al., 2011) were com-
pared. Different k values were tried for each assembler and the 

   
2 All experiments were done on a machine with 8-core 2.40GHz Intel CPU 
and 144GB memory. The tested assembler was run with multiple threads, if 
it supports.  

u'v  vw' w' 

u  w 
v 

uv  vw 

u' 
Fig. 3. Example of resolving repeats by iteration from k to k+1. 
The repeat region is a single k-mer, uvw and u'vw' appear in the 
genome. After the iteration, repeat v is resolved. 

ACGATCGTAGCTGA......AACTG....TACTT...

Fig. 2. Example of reconstructing missing k-mer in local assem-
bly. ACT is a repeat region in the genome and no reads containing 
AACTG or TACTT for resolving repeat branches. In local assem-
bly, ACT is no longer a repeat so that a simple path (local contig) 
covering AACTG can be reconstructed from local reads.  
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result with best performance are shown and compared.  
 
Two most important statistics N50 and coverage are calculated to 
evaluate the contiguity and completeness of assembly results. N50 
is the length of the longest contig such that all the contigs longer 
than this contig cover at least half of the genome being assembled. 
(Earl, et al., 2011) Coverage is the proportion of the genome being 
covered by output contigs. In this paper, only correct contigs are 
considered in the calculation of N50 and coverage. A contig is 
considered as correct if it can be aligned to the genome reference 
by BLAT (Kent, 2002) with 95% similarity. For correct contigs, the 
substitution errors are computed by comparing the alignment be-
tween contigs and genome reference. For unaligned contigs, the 
number of contigs and number of bases are recorded for compari-
son. 
 
# errors # corrected  # TP #FP 
1856822 1627727 1626929 (99.95%) 798 (0.05%) 
Table. 1 Error correction result on  simulated 100x length-100 reads of 
Lactobacillus delbrueckii (~1.85Mb) with 1% error rate.  
 
3.1.Error Correction 
The performance of our error correction algorithm is assessed by 
correcting the simulated reads sampled from Lactobacillus del-
brueckii genome (~1.85Mb). The simulated data set contains 1.85 
million length-100 reads (100x) uniformly sampled from the refer-
ence with 1% error rate. The error correction algorithm was exe-
cuted on this data set with output contigs of IDBA with k = 60 (kmin 
= kmax in this case). The correction result is shown in Table 1. There 
are 1856822 error bases in the data set. Our algorithm corrected 
1627727 bases with 1626929 (99.95%) being true positive. Note 
that our target of error correction is to reduce the errors without 
introducing other errors. The remaining erroneous reads either 
contains too many errors to be aligned to contigs or are from those 
regions which cannot be assembled correctly. This high-precision 
and low-sensitivity error correction algorithm is suitable for IDBA-
UD, because the remaining errors could be handled by other means 
in the later iterations. Note that error correction which simplifies 
the graph for next iterations improves efficiency tremendously. 
 
3.2. Low depth assembly 
Lactobacillus plantarum (~3.3Mb) was used as genome reference 
for simulating low-depth data set. 10x length-100 paired-end reads 
were simulated for testing. The assembly results of IDBA-UD, 
Velvet, SOAPdenovo and IDBA are shown in Table 2.  
 
IDBA-UD has the longest N50 (36523), which is several folds of 
the N50 of Velvet, SOAPdenovo and IDBA (1584, 13761, and 
8350). IDBA-UD also has the highest coverage (99.56%), which is 
higher than the coverage of Velvet, SOAPdenovo and IDBA 
(98.36%, 98.09% and 98.52%). IDBA-UD and IDBA have the 
least number of erroneous bases. Only 10 contigs (4437 bases) 
constructed by IDBA-UD and 3 contigs (3301 bases) by IDBA 
cannot be aligned to the genome reference, compared to 1079 con-
tigs (112505 bases) by SOAPdenovo and 5 contigs (15921 bases) 
by Velvet. Among aligned contigs, all assemblers have similar 
substitution error rate. 
 
IDBA-UD also constructed the longest scaffolds with N50 being 
194322, which is nearly twice of N50 of scaffolds constructed by 
other assemblers. Although N50 of scaffolds generated by different 
assemblers are similar, the coverage of scaffolds generated by all  
assemblers are much lower than that of contigs except IDBA-UD. 

IDBA-UD made the least misassembly during the scaffolding pro-
cess, because of having longer and more accurate contigs.  
In general, IDBA-UD achieved its best performance by iterating k 
from 20 to 100, while Velvet, SOAPdenovo and IDBA had best 
performance when k is set to a small value (21, 31 and 20-40, re-
spectively). Because the Local-Assembly procedure can recon-
struct missing k-mers, IDBA-UD can iterate k to a large value to 
construct very long contigs. The other assemblers are not able to 
reconstruct missing k-mers so that a reasonably small k is used to 
balance the gaps and branches problem. The running time and 
memory cost are more or less the same among all assemblers. 
 
k 29 39 49 59 69 79 89 99 
All branches 5509 2117 1019 618 375 288 195 149 
IDBA-UD 
(expected) 5507 2115 1018 616 373 284 190 142 

IDBA-UD 5328 2025 962 557 331 223 129 98 
IDBA(expected) 5499  2103  1000  584  329  215  103  33  
IDBA 5298 1986 933 513 280 156 65 32 
SOAPdenovo 5259 1861 795 282 41 27 20 0 
Velvet 3515 1356 617 219 35 27 20 0 
Table. 3 Expected numbers of resolved branches by IDBA-UD, IDBA and 
the real number of all assemblers on the same data set in Table 2. 
 
3.3 Local Assembly 
The expected number of resolved branches (Theorem 3 in Appen-
dix) by IDBA-UD, IDBA and the actual numbers by all assemblers 
for different repeat lengths k are shown in Table 3. We ran all as-
semblers with a specific k (kmax) and measured repeats with length 
[k – 10, k). Because SOAPdenovo and Velvet cannot handle even 
values of k due to the palindrome problem, 29, 39, etc are consid-
ered in Table 3. The number of resolved branches by IDBA-UD is 
slightly smaller than the expected number because some of the 
(k+2)-mers are removed as dead-end. As the k value increases, the 
number of resolved branches drops and the number of wrong con-
tigs also increases because of the missing (k+2)-mers. Comparing 
to other assemblers, IDBA-UD can resolve more repeats by in-
creasing k and gets longer contigs. 
 
3.3. Single cell assembly 
Two single cell short read sequencing data set E.coli (lane 1) and 
S.aureus (Chitsaz, et al., 2011)3 were used to test the performance 
of IDBA-UD, SOAPdenovo, Velvet and Velvet-SC4. Genome se-
quence of Escherichia coli str. K-12 substr. MG1655 and Staphylo-
coccus aureus subsp. aureus USA300_FPR3757 was downloaded 
from NCBI were used as reference for validation. The statistics of 
the assembly results of different assemblers are summarized in 
Table 4 and Table 5.  
 
3.3.1 De novo assembly of E.coli 
According to (Chitsaz, et al., 2011), the average sequencing depth 
of single cell sequencing data of E.coli is about 600x and the reads 
are sampled very unevenly. For contigs, SOAPdenovo and Velvet 
have similar N50 (6428 and 7679); Velvet-SC has the second best 
N50 (34454), as it considers the property of uneven depth to re-
move errors; IDBA-UD has the longest N50 (82007), as it consid-
ers uneven relative depth to remove errors and uses local assembly 
to reconstruct missing k-mers in low-depth regions. The contigs 
   
3 http://bix.ucsd.edu/projects/singlecell/ 
4 Velvet-SC was run after EULER error correction as the authors suggested. 
The assembly result we presented is slightly different from that in Velvet-
SC paper, because we calculated the N50 for aligned contigs rather than all 
contigs. 
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constructed by IDBA-UD also have the highest coverage. IDBA-
UD and Velvet-SC have the least number of substitution errors. All 

assemblers constructed some contigs cannot be aligned to the ref-
erence. Some of them are really misassembled contigs, but the 
alignment of reads against contigs and reference showed that some 
non-aligned contigs are from regions with structure variations.   
 
After scaffolding, all assemblers produced longer scaffolds and 
lower coverage, but the difference between contigs and scaffolds is 
not much except SOAPdenovo. SOAPdenovo increased the N50 
from 6428 to 25244, but the coverage dropped from 92.42% to 
86.49%. That means the uneven depth of single cell assembly 
makes the scaffolding very difficult so that assemblers either can-
not construct long scaffolds or make many mistakes in scaffolding 
procedure. Since IDBA-UD produced very long contigs, although 
scaffolding did not connect many contigs, the scaffolds generated 
by IDBA-UD have the longest N50 and highest coverage.  
 
3.3.2 De novo assembly of S.aureus 
The sequencing depth of single cell sequencing data of S.aureus is 
about 2300x, much higher than that of E.coli. SOAPdenovo and 
Velvet performed better for data set with higher sequencing depth. 
The contig N50 of SOAPdenovo and Velvet became 12214 and 
15800, about twice of that of E.coli. IDBA-UD and Velvet-SC had 
similar performance as before, and handle reads with uneven depth 
quite well. Generally, higher sequencing depth does not affect the 
quality of assembly result much. The scaffolding also increases 
N50 and reduces coverage. The substitution error rates are very 
low for all assemblers for this high sequencing depth.  
 
SOAPdenovo is the fastest assemblers among four assemblers. 
IDBA-UD took about twice of time of SOAPdenovo to perform de 
novo single cell assembly. The memory cost of IDBA-UD is much 
less than the others, as it did the filtering on k-mers. Depending on 
the nature of assemblers, different assemblers achieved its best 

performance with different k values. SOAPdenovo got its best 
performance by using a relatively large k (75 and 95) to reduce 

errors in high depth regions and introducing more gaps problem at 
the same time. It then relies paired-end information to connect 
contigs to form scaffolds. Therefore, it produced more and shorter 
contigs and more gaps in its scaffolds than the others. Velvet pre-
ferred a relatively small k (45 and 55) value, probably because it 
contains a very sophisticated algorithm to remove the errors in de 
Bruijn graph. Velvet-SC had best performance with a moderate k 
(55) value and relies on iteratively removing low depth erroneous 
contigs to form long contigs. IDBA-UD is able to iterate k values 
from small to large to build a de Bruijn graph with less gaps and 
less branches and obtain the best performance, through local as-
sembly producing missing k-mers and iterate depth for reducing 
the errors.  
 
3.4. Metagenomic assembly 
3.4.1 De novo assembly of simulated metagenomics data 
To evaluate the performance of IDBA-UD on metagenomic data, 
we considered a simulated data set with extremely uneven depth. 
This data set was synthesized by combining simulated reads of 
three species Lactobacillus plantarum (~3.3Mb), Lactobacillus 
delbrueckii (~1.85Mb) and Lactobacillus reuteri F275 Kitasato 
(~2Mb)  from the same genus. Length-100 reads were sampled 
from these three species with sequencing depth 10x (low depth), 
100x (moderate depth) and 1000x (high depth) respectively with 
1% error rate. The simulated paired-end reads have an insert dis-
tance following normal distribution N(500, 50). IDBA-UD, 
SOAPdenovo, Velvet and Meta-IDBA were executed on this simu-
lated metagenomic sequencing data set. Because the depth is high-
ly uneven, the Pre-Error-Correction of IDBA-UD was activated to 
remove errors. The experiment results are showed in Table 6. In 
addition to the statistics we presented before, the sequencing depth 
of each species was considered for comparison. 
  

  k  contigs  Scaffolds time mem
    No.  N50  Max len  Cov(%)  Sub.err err # (len)  No. N50 Max len Cov(%) Sub.err  err # (len) 
IDBA‐UD  20‐100 210  36513 201860  99.56  0.0225% 10 (4437) 83 194322 406269 99.55% 0.0218%  5(3784) 63s 432M
SOAPdenovo  31  3346 1584  8691  98.36  0.0572% 1079(112k) 147 121214 246514 92.50% 0.0483%  1087(283k) 31s 852M
Velvet  21  473  13761 48489  98.09  0.0323% 5(15k) 111 111871 225438 96.81% 0.0291%  6(67k)  43s 526M
IDBA  20‐40  672  8350  37391  98.52  0.0164% 3(3301) 60 119931 308798 97.55% 0.0161%  3(9420) 24s 414M

 

Table. 2 The assembly results on simulated 10x lenght‐100 reads of Lactobacillus plantarum (~3.3Mb) with 1% error rate. 
 
  k  Contigs  Scaffolds time mem
    No.  N50  Max len  Cov(%)  Sub.err err # (len)  No. N50 Max len Cov(%) Sub.err  err # (len) 
IDBA‐UD  40‐100 187  82007 224018  95.01  0.0017% 87(347k) 148 98306 224018 95.00 0.0016%  73(346k) 35m 3.2G
SOAPdenovo  75  6008 6428  50965  92.42  0.0421% 693(335k) 4419 25244 118128 86.49 0.0448%  588(653k) 30m 19G
Velvet  45  1736 7679  68395  92.69  0.0095% 160(266k) 1707 7795 68395 92.59 0.0095%  154(272k) 91m 11G
Velvet‐SC  55  372  34454 157931  92.74  0.0019% 78(279k)     46m 8.3G

Table. 4 The assembly results on real single cell sequencing data of Escherichia coli (~4.64Mb). The read length is 100, insert distance is about 215, and the 
average depth is about 600x. 
 

  k  Contigs  Scaffolds time mem
    No.  N50  Max len  Cov(%)  Sub.err err # (len)  No. N50 Max len Cov(%) Sub.err  err # (len) 
IDBA‐UD  60‐100 122  87502 175236  94.46  0.0027% 14(247k) 78 100895 308777 93.54 0.0019%  17(271k) 29m 3.8G
SOAPdenovo  95  1005 12214 92978  96.63  0.0067% 791(220k) 696 22632 149602 91.44 0.0072%  746(364k) 11m 12G
Velvet  55  520  15800 67677  94.14  0.0043% 79(99k) 516 16038 67677 94.13 0.0042%  77(100k) 135m 15G
Velvet‐SC  55  322  29719 221773  93.12  0.0042% 43(312k)     224m 41G

 

Table. 5 The assembly result on real single cell sequencing data of Staphylococcus aureus (~2.87Mb). The read length is 100, insert distance is about 265, 
and the average depth is about 2300x.  
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SOAPdenovo and Velvet did not perform well on this simulated 

metagenomic data set. N50 of SOAPdenovo and Velvet are only 
461 and 418 respectively. The contigs constructed by SOAPdenovo 
and Velvet covered most regions of moderate-depth species 
(95.39% and 95.24%) and low-depth species (95.45% and 94.66%) 
but a small portion of high-depth regions (39.40% and 16.66%). It 
is because they make a tradeoff between low-depth and high-depth 
regions and cannot handle them together. SOAPdenovo and Velvet 
have the best performance in N50 and coverage when k = 45. 
Small k is chosen because the genome size of low-depth species 
(~3.3Mb) is larger than high-depth species (~2Mb). In fact, their 
performance for k = 55 are similar except that the coverage of low-
depth species decreases, the coverage of moderate-depth species 
remains the same and the coverage of high-depth species increases.  
Meta-IDBA designed for metagenomic assembly iterates k from 
small to large to capture both low-depth and high-depth regions. At 
each iteration, missing k-mers in low-depth and moderate-depth 
regions introduce fragmentation in the assembly result. Thus, Me-
ta-IDBA outperforms SOAPdenovo and Velvet, but performs 
worse than IDBA-UD. The contigs constructed by Meta-IDBA 
covered over 99% of the regions in high-depth species, slightly 
less than 90% of the regions in low-depth species and moderate-

depth species.  

 
As expected, IDBA-UD outperforms SOAPdenovo, Velvet and 
Meta-IDBA in all aspects. N50 (44879) of contigs constructed by 
IDBA-UD is about 10 times of the second best N50 (4588) of con-
tigs constructed by Meta-IDBA. IDBA-UD also has the best cov-
erage (99.15%), about 10% higher than the second highest by Me-
ta-IDBA. The contigs constructed by IDBA-UD covered almost all 
the region of three species, the uneven depth does not affect the 
assembly quality of IDBA-UD. Similar to single cell assembly, 
scaffolding in all assemblers produced longer contigs but lower 
coverage. As for substitution error rate, IDBA-UD and Meta-IDBA 
have much higher accuracy and IDBA-UD constructed the least 
number of misassembled contigs. The running times of all assem-
blers are similar, but IDBA-UD and Meta-IDBA used about half of 
memory as SOAPdenovo and Velvet.  
 
3.4.2 De novo assembly of human gut microbial short read data  
Real human gut microbial sequencing data was used to assess the 
performance of IDBA-UD. The data set (SRR041654 and 
SRR041655) were downloaded from NCBI for assembly. The 
reads were generated by Illumina Genome Analyzer II with read 

  k  contigs  Scaffolds  time mem
    No.  N50  Cov(%)  10x  100x   1000x  err # (len)  No. N50 cov 10x 100x   1000x   err # (len) 
IDBA‐UD  20‐100 546  44879 99.15  99.31  98.48  99.52 9(4k) 335 104696 97.80 99.23 95.90  97.21  10(69k) 35m 6.9G
SOAPdenovo 45  16266 461  79.57  95.45  95.39  39.40 1347(166k) 10036 1356 74.01 83.43 95.37  39.28  1404(641k) 30m 18G
Velvet  45  12018 418  72.73  94.66  95.24  16.66 6200(710k) 11976 418 72.58 94.34 95.24  16.66  6219(724k) 91m 18G
Meta‐IDBA  20‐100 2636  4588  89.62  85.29  86.96  99.09 127(292k)       46m 6.2G

 

Table. 6 The assembly result on simulated metagenomic data set of Lactobacillus plantarum (~3.3Mb), Lactobacillus delbrueckii (~1.85Mb) and Lactobacil-
lus reuteri F275 Kitasato (~2Mb). The sequencing depth of these species are 10x, 100x and 1000x respectively.  The read length is 100, error rate is set to 
1% and the insert distance follows normal distribution N(500, 50). 
 
  k  contigs  Scaffolds Gene # time  mem 
    No.  N50  max len  Total Length No. N50 max len Total Length  
IDBA‐UD  20‐100 39221  18658 39221  18658  37512 20737 673651 98243412 66298 138m  11G 
SOAPdenovo 55  99213  2066  113678  92059177  93961 4575 319705 90788489 41093 61m  31G 
Velvet  55  33165  3476  171410  65630428  30419 5065 358885 65887174 40914 176m  35G 
Meta‐IDBA  20‐100 20‐100 19978 7710  325768  48693 49m  12G 

 

Table. 7 The assembly results on human gut microbial short read data (SRR041654 and SRR041655) from NCBI. The read  length  is 100 and the  insert dis‐
tance is 260.  
 

  k  contigs Scaffolds 
Genus    No.  N50  Cov(%)  10x  100x  1000x  err # (len)  No. N50 cov 10x  50x   250x err # (len) 
IDBA‐UD  20‐100  713 177198 94.90 93.16 96.06 95.52 6(81k) 394 318240 87.72 81.41 89.66 92.13 14(593k) 
SOAPdenovo  45  20427 6438 80.40 85.87 89.14 64.76 184(24k) 12938 155694 72.13 69.16 84.25 59.97 551(883k) 
Velvet  45  21904 660 91.69 91.72 94.96 88.70 1334(179k) 21904 660 91.69 91.72 94.96 88.70 1334(179k)
Meta‐IDBA  20‐100  2283 26504 86.38 74.25 90.20 95.19 143(551k)    
Family    No.  N50  Cov(%)  10x  100x  1000x  err # (len)  No. N50 cov 10x  50x   250x  err # (len) 
IDBA‐UD  20‐100  904 163720 98.98 97.96 99.28 99.94 6(35k) 475 393540 96.45 96.58 98.28 95.06 8(119k) 
SOAPdenovo  45  23908 6673 88.74 93.65 98.44 71.54 195(29k) 14449 160345 80.73 73.21 97.59 70.37 419(1160k)
Velvet  45  24785 795 95.48 93.03 97.82 95.83 1208(171k) 24785 795 95.48 93.03 97.82 95.83 1208(171k)
Meta‐IDBA  20‐100  3014 22311 80.53 66.38 88.13 89.96 233(1057k)    
Class    No.  N50  Cov(%)  10x  100x  1000x  err # (len)  No. N50 cov 10x  50x   250x  err # (len) 
IDBA‐UD  20‐100  488 236177 99.64 99.30 99.94 99.62 3(18k) 253 849606 96.42 95.30 98.76 97.59 3(60k) 
SOAPdenovo  45  20111 7319 90.34 95.28 99.60 70.97 157(24k) 11610 329675 85.84 84.65 99.57 69.98 290(601k) 
Velvet  45  20736 766 96.27 94.49 99.30 94.79 1025(148k) 20736 766 96.27 94.49 99.30 94.79 1025(148k)
Meta‐IDBA  20‐100  2657 43332 90.19 80.76 96.74 94.41 86(398k)    

 

Table. 8 The assembly results on simulated metagenomic data sets in different taxonomic levels. For each level, 5 test cases with three randomly selected 
species are generated for testing. The depths of three species are set to 10x, 50x and 250x respectively. The read length is 100, error rate is set to 1% and the 
insert distance follows normal distribution N(500, 50). The values presented in this table are results average 5 test cases. 
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length 100 and insert distance 260. IDBA-UD, SOAPdenovo, Vel-
vet and Meta-IDBA were compared on this data set (The Pre-
Error-Correction of IDBA-UD was activated.). Because there is no 
reference, we used the largest total contig size of all assemblers as 
the estimated genome size (98407199) for N50 calculation, and 
cannot analyze completeness of assembly by comparing genome 
coverage. MetaGeneAnnotator (Noguchi, et al., 2008)5 was applied 
to the output of each assembler to predict the number of genes 
recovered. The statistics of assembly results are summarized in 
Table 7.  
 
The contigs of SOAPdenovo and Velvet have similar N50, while 
SOAPdenovo produced much more contigs than Velvet. The total 
contig size of SOAPdenovo is 92059177. Meta-IDBA produced 
the smallest number of contigs, but N50 of contigs constructed by 
Meta-IDBA is larger than SOAPdenovo and Velvet. According to 
the analysis of the assembly result of simulated data, it is probably 
because Meta-IDBA reconstructed most of high-depth regions but 
missed some low-depth regions. IDBA-UD has the largest total 
contig size and the highest N50 (18658). The contigs constructed 
by IDBA-UD contain the largest number of predicted genes 
(66298), which is 50% more than that of SOAPdenovo and Velvet. 
The results reveal that IDBA-UD can assemble metagenomic data 
better than all the other assemblers. The running time of IDBA-UD 
is between SOAPdenovo and Velvet. The memory cost of IDBA-
UD and Meta-IDBA is also about half of SOAPdenovo and Velvet. 
 
3.4.3 De novo assembly of simulated  metagenomic  data  with 
different similarity level 
To show the performance of IDBA-UD on data with different simi-
larity level, we constructed three kinds of data sets with genomes 
in same genus, family and class. For each similarity level, 5 test 
cases with three species are selected randomly and sampled with 
low depth (10x), middle depth (50x) and high depth (250x).  The 
average of assembly results are shown in Table 8.  
In general, all assemblers have the best performance on data set in 
class level and the worst performance on data set in genus level. 
Contigs and scaffolds generated by IDBA-UD have the largest N50 
and highest coverage in all three kinds of data sets. Velvet generat-
ed the second highest coverage, but it produced the shortest N50. 
The scaffolds generated by SOAPdenovo have the second largest 
N50, but they covered the least portion of genomes. Meta-IDBA is 
somehow in the middle, because it is designed to handle similar 
subspecies problem rather than different expression levels. In the 
assembly results of IDBA-UD, all species got similar coverage. All 
the other assemblers generated high coverage for middle-depth 
(50x) species but lower coverage for low-depth and high-depth 
species, because they balanced the gap problems in low-depth 
species and high-depth species and benefited the middle-depth 
species. Consistent with previous experiments, IDBA-UD outper-
formed all the existing assemblers in sequencing data with highly 
uneven depth in all these experiments. 

4 DISCUSSION AND CONCLUSION 
In this paper, we proposed a new assembler IDBA-UD, an exten-
sion of IDBA, to assemble short sequencing reads with highly 
uneven depth. Besides iterating k from small to large, IDBA-UD 
reconstructs missing k-mers by local assembly and removes errors 
   
5 Only complete genes predicted by MetaGeneAnnotator are considered as 
recovered.  

by iteratively removing low-depth contigs. The experiment results 
on both simulated and real data sets showed that IDBA-UD outper-
formed all existing assemblers in assembling data sets with highly 
uneven depth. For metagenomic data, there are more common k-
mers between genomes from subspecies of the same species than 
genomes from different species. This information is used in Meta-
IDBA for assembling metagenomic data. As a future work, we 
should study how to integrate this information in IDBA-UD for 
better performance.   
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Appendix 
 
Branches may be caused by erroneous reads (k-mers), variations 
(SNPs) or repeats. The branches caused by erroneous k-mers can 
be solved by the graph structure, such as dead-end or bubbles. The 
branches caused by a length-k repeats can be resolved if we have a 
(k+2)-mers covering the repeat, which can be obtained if the corre-
sponding (k+2)-mers covering the repeat are sampled in reads or 
the (k+2)-mer is obtained by local assembly.  
 
Figure 3 shows an example of Hk and Hk+1 for resolving a length-k 
repeat v and its associated branches. Because it is impossible to 
resolve these branches by Hk itself, reads and contigs are consid-
ered in each iteration from Hk to Hk+1 for resolve them. If the 
(k+2)-mers covering repeat v, e.g., uvw and u’vw’, exist in reads, 
these (k+2)-mers can be used to convert branches to simple paths. 
If some of these (k+2)-mers are missing in reads due to low depth 
or errors, then local assembly can be used to reconstruct them as 
shown in Figure 2. 
 
In this section, we try to calculate the expected number of branches 
caused by repeats that can be resolved by (k+2)-mers which are 
already existing in reads or reconstructed by locally assembly. 
Theorem 2 gives the expected number of (k+2)-mers covering a 
repeat being sampled f times (applied by IDBA). Theorem 3 gives 
the expected number of (k+2)-mers covering a repeat being sam-
pled f times or reconstructed by local assembly (applied by IDBA-
UD). Thus, the difference between these two expected numbers as 
given in Theorems 2 and 3 indicates the expected number of re-
peats resolved by local assembly.  
 
Theorem 1: Assume t length-l reads are uniformly sampled from a 
length-g genome with error rate e, the probability that a k-mer v 
appearing x (g >> x)  times in the genome being sampled at least m 
times is at least 
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Theorem 2: Assume t length-l reads are uniformly sampled from a 
length-g genome with error rate e and Rk is the set of repeats with 
length k. If the support requirement for resolving a branch is f, then 
the expected number of resolved branches Sk from k to k+1 is at 
least 
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where Y(r) is the set of the (k+2)-mers covering repeat r in the 
genome and x(b) is the number of times that b appear in the ge-
nome. 
Proof: 
In order to resolve a repeat of length k, a (k+2)-mer appearing at 
least f times in the reads is needed and the probability of such 
(k+2)-mer is Pk+2,f,x(b) (Theorem 1).     ⎕ 
If reads are localized to a specific region of genome, then the 
branches caused by distant repeats may disappear and convert to 
simple paths. In this way, local assembly may generate local con-
tigs which help to resolve branches. 
 
Theorem 3: Assume t length-l reads are uniformly sampled from a 
length-g genome with error rate e, Rk is the set of repeats with 
length k and LRk is the set of length-k repeats occurring at least 
twice in the genome within insert distance. If the support require-
ment for resolving a branch is f and IDBA-UD is applied on the 
data from k to k+1, then the expected number of resolved branches 
LSk is at least 
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where Y(r) is the set of the (k+2)-mers covering repeat r in the 
genome and x(b) is the number of times that b appears in the ge-
nome. 
Proof: 
If a repeat does not appear twice within insert distance, then it can 
be resolved by IDBA-UD, i.e., |Rk - LRk| and those repeats occur-
ring more than once within the insert distance can only be resolved 
by the (k+2)-mers appearing at least f times in reads (Theorem 2). 
 


