
Title Improving the time complexity of message-optimal distributed
algorithms for minimum-weight spanning trees

Author(s) Chin, F; Ting, HF

Citation SIAM Journal On Computing, 1990, v. 19 n. 4, p. 612-626

Issued Date 1990

URL http://hdl.handle.net/10722/152228

Rights Creative Commons: Attribution 3.0 Hong Kong License

SIAM J. COMPUT.
Vol. 19, No. 4, pp. 612-626, August 1990

1990 Society for Industrial and Applied Mathematics

002

IMPROVING THE TIME COMPLEXITY OF MESSAGE-OPTIMAL
DISTRIBUTED ALGORITHMS FOR MINIMUM-WEIGHT SPANNING

TREES*

F. CHIN? AND H. F. TING:

Abstract. A distributed algorithm is presented that constructs the minimum-weight spanning tree of an
undirected connected graph with distinct node identities. Initially, each node knows only the weight of each
of its adjacent edges. When the algorithm terminates, each node knows which of its adjacent edges are

edges of the tree. For a graph with n nodes and e edges, the total number of messages required by this

algorithm is at most 5n log n +2e, where each message contains at most one edge weight plus 3 + log n bits.

Although the algorithm presented here has the same message complexity as the previously known algorithm
due to Gallager, Humblet, and Spira [ACM Trans. Programming Language and Systems, 5 (1983), pp. 66-77],
the time complexity of the algorithm presented improves from Gallager’s O(n log n) to O(n log* n) time
units, where log* k is the number of times the log function must be applied to k to obtain a result less than
or equal to one. A worst case of ll(n log* n) is also possible. In addition, when the network is synchronous,
the algorithm presented is modified further to solve the same problem with the same message complexity
but in O(n) time.

Key words, distributed algorithms, synchronous and asynchronous networks, minimum spanning trees,
communication complexity

AMS(MOS) subject classifications. 68M 10, 68Q25

1. Introduction. Given an undirected connected graph G with n nodes and e
edges, where each node has a unique identity, a spanning tree of G is a connected
subgraph of G with exactly n nodes and n- 1 edges. The weight of a spanning tree is
the sum of weights of all edges in the spanning tree. Our problem is to design a
distributed algorithm that finds a spanning tree of G whose weight is minimum, i.e.,
the minimum-weight spanning tree (MST) of G.

We assume that a processor exists at each node of the graph, and the processor
initially knows the weights of the edges adjacent to the node. Each node performs the
same local algorithm and two adjacent nodes can communicate with each other by
exchanging messages on the edge between them. A node can send (broadcast) or
receive messages on several adjacent edges simultaneously. Messages can be transmitted
independently in both directions on an edge, without error and in sequence. In an
asynchronous network, each message sent by a node to any of its neighbors arrives
within some finite but unpredictable time. However, in the synchronous network, there
is a global clock accessible by all nodes, and messages are allowed to be sent only at
integer pulses of the clock. During each clock pulse at most one message can be sent
over a given edge and the delay of each message is at most one time unit (i.e., one
pulse duration) of the global clock.

The time complexity of a synchronous algorithm is defined as the maximum number
of clock pulses passed between the sending of the first and the receiving of the last
message of the algorithm. In an asynchronous network, we assume the existence of a
hypothetical global clock. The processing and queueing time of each message is
negligible, and the transmission of each message takes at most one time unit. The time

* Received bythe editors January 20, 1987" accepted for publication (in revised form) September 15, 1989.
t Department of Computer Science, University of Hong Kong, Pokfulam, Hong Kong.
: Department of Computer Science, Princeton University, Princeton, New Jersey 08544.

612

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 613

complexity of an asynchronous algorithm is the maximum number of time units from
the start to the completion of the algorithm. This assumption is introduced only for
the purpose of performance evaluation and the algorithm can operate correctly with
arbitrary delays.

Since Minimum-Weight Spanning Tree (MST) is one of the most fundamental
structures of a graph, it is not surprising that the MST construction algorithm can
serve as building block for many other distributed algorithms, such as network syn-
chronization [2], breadth-first-search [3] and deadlock resolution [4]. Awerbuch has
proved in [5] that this problem is equivalent to a large class of problems (e.g., leader
selection, spanning tree construction, counting the number of nodes in a network and
computing a sensitive decomposable function).

To the best of our knowledge, all distributed algorithms that solve the MST
problem [5], [11], [12], [15], [18] employ the idea of Borfivka [7], [8], [14], the
so-called Sollin algorithm. A fragment is defined to be a subtree of a MST. Initially
each node is treated as a fragment, and fragments are merged together iteratively over
their minimum-weight outgoing edges. An edge e is an outgoing edge of a fragment if
one of its endpoints is in the fragment and the other is not. The algorithm terminates
when one fragment remains. Each fragment finds its minimum-weight outgoing edge
independently and has a designated edge called the core to coordinate action. The
algorithm proceeds in phases in which fragments are merged into larger ones. During
each phase, information must be broadcast from the core to every node in the fragment
and vice versa. Unfortunately, the message complexity of the obvious implementation
of this algorithm is 0(n2). Message complexity is worst when there is a large fragment
(say a fragment with n/2 nodes) that goes through n/2 phases by enlarging its size
one node at a time. Since during each phase at least n/2 messages are needed for the
communication between the core and all other nodes, O(n 2) messages are needed for
the algorithm.

Gallager, Humblet, and Spira [13] later proposed an improved algorithm that
solves this problem in 0(e+n log n) messages. When two fragments are merged,
Gallager’s algorithm ensures that the small fragment is merged into the large one and
work is only done by the small fragment. Since each fragment is always merged into
a fragment of at least its original size, each node can go through at most log n merges.
To implement this mechanism, a level field is associated with each fragment, with the
property that a fragment at level has at least 2 nodes; in particular, fragments with
a single node have 1--0. The level of a node is defined as the level of its containing
fragment. Thus, whenever two fragments at different levels join, the fragment at the
smaller level works harder, never waits, and assumes the name and level of the larger.
On the other hand, if a higher level fragment tries to merge with a lower level one,
the former fragment waits until the latter fragment reaches a level high enough for
combination. When two fragments at the same level join, both fragments go through
the name change and a new fragment with its level increased by one is formed.

As given in [13], (e) messages are necessary in constructing a spanning tree,
and as proved in [16], O(n log n) messages are needed to find a leader on a ring. It
follows that l(e + n log n) messages are necessary to construct a spanning tree in a
general network. Thus, Gallager’s algorithm is message-optimal. However its worst-case
time complexity is O(n log n). Let us consider a fragment of size n/2 but at a low
level, say 1. Because of its initially low level, this fragment can go through log n
merges before forming the final MST. Since each merge may take 0(n) time to update
the information of the fragment, Gallager’s algorithm might require O(n log n) time.
This happens because the size of a fragment is not reflected by its level. To be more

614 F. CHIN AND H. F. TING

specific, when one fragment joins another, high-level fragments must wait for low-level
ones to respond. But the size of those low-level fragments may be large and messages
may have to travel from one end of the fragment to the other end, in order to update
the level and identity of the fragment and to find its minimum-weight outgoing edge.
Thus, the waiting time can be unduly long.

In this paper, we modify Gallager’s algorithm by introducing the property that a
fragment at level has size bounded within 2 and 2/+1, otherwise its level will be
updated. Thus, if there exists a large fragment, its level will be increased accordingly
and its workload can therefore be reduced. The message complexity of this algorithm
remains 5n log n + 2e but the time complexity can be reduced to 15n log* n + 3n. The
detailed description of our algorithm is given in 2. In fact, similar observations and
results have also been obtained independently by Gafni [11]. In 2.4, an example that
uses 12(n log* n) time is presented.

In 3, we further modify the algorithm for a synchronous network so that a
high-level fragment can immediately terminate its waiting for another low-level frag-
ment’s response if the waiting time of the high-level fragment is unduly long. Should
this happen, the size of these low-level fragments must be large enough for merging
and thus the waiting of the high-level fragment can be terminated and be merged with
the low-level fragment correctly. Since the durations of all waitings that depend on
the levels of the corresponding fragments are bounded, the algorithm can be executed
in synchronized phases and terminates in 0(n) time. Recently, Awerbuch [5] has shown
that the asynchronous MST problem can also be solved in 0(n) time with O(e + n log n)
messages.

2. The asynchronous algorithm. Since our algorithm depends very much on the
one given by Gallager, Humblet, and Spira [13], we adopt similar notation in our
algorithm description. In particular, uppercase words stand for labels and states,
whereas italic words are for messages. Our algorithm starts with all n nodes awake.
This assumption can be relaxed by propagating an AWAKF_, message to all nodes
initially. This can be done with at most n- 1 extra time units and 2e extra messages.
Initially, each node is a fragment at level zero. Fragments are merged together iteratively
as described in Gallager’s algorithm. However, the method for determining a fragment
level and the mechanism for merging fragments are somewhat different.

As given in [13], we have the following definitions and properties:
(1) A node has two possible states: FIND and FOUND. Initially, all nodes are

in the FOUND state.
(2) An edge has three possible states. Initially, all edges are in the BASIC state.

An edge is in the SELECTED state if it is found to be a MST edge. It is in the
REJECTED state if it is known not to be a MST edge.

(3) Every fragment usually has a SELECTED edge as its core. The adjacent nodes
of the core act as the coordinators. For those fragments that do not have a core, a
node is designated as the coordinator.

(4) Every fragment has a fragment level and a fragment identity, which equals to
the weight of either its core or an edge incident to its coordinator (if there is no core
in the fragment).

2.1. How a fragment finds its minimum-weight outgoing edge. Whenever a new
fragment is formed, the coordinator(s) of the fragment broadcasts the message INITI-
ATE(F, 1, FIND) along the SELECTED edges of the fragment. As this set of SELEC-
TED edges forms a spanning tree of the fragment, all the nodes in the fragment are

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 615

informed about their new fragment identity F and their new fragment level /. At the
same time, all the nodes change their states to FIND in order to participate in finding
the fragment’s minimum-weight outgoing edge.

When a node u enters the FIND state, it finds the minimum-weight outgoing edge
by sending a TEST(F, l), message over its minimum-weight BASIC edge to, say, node
u’ in fragment F’ at level l’, and waits for a response. If the response message is
REJECT, i.e., F and F’ have the same identity, then u marks the edge REJECTED
and sends a TEST message over its next minimum-weight BASIC edge. The TEST
message will be sent until either an ACCEPT message is received or there are no more
BASIC edges adjacent to u. If u receives an ACCEPT message on a BASIC edge,
there it will remember the edge as min_edge and its weight as rain_weight. On the other
hand, if there is no outgoing edge from u, min_weight is set to infinity.

When a node u’ in fragment F’ at level l’ receives a TEST(F, l) message on a
BASIC edge, node u’ responds with a REJECT message and marks the edge as
REJECTED if F and F’ are equal. If F and F’ are different and -< l’, then u’ responds
to u immediately with an ACCEPT message. On the other hand, if > l’, u’ will wait
until 1’=>/.

A node u in state FIND will eventually send a REPORT(W, SZ) message along
the SELECTED edges to its coordinator, where W stands for the weight of the
minimum-weight outgoing edge and SZ for the size of the subfragment root at u.
Assume W/ and SZi are the minimum-weight outgoing edge and the size of the
subfragment rooted at u’s ith son. If u is a leaf node, W u’s min_weight and SZ 1,
otherwise, W the minimum of min (W/) and u’s min_weight and SZ 1 + SZi. At
the same time, node u marks the minimum-weight outgoing edge of the subfragment
rooted at itself, i.e., its min_edge or the edge leading to its son that has the minimum
W/. Node u sends a REPORT(W, SZ) message to its father and changes its state to
FOUND only after it has found its min_weight and has received all REPORT(Wi, SZi)
messages from its sons (if any). When the coordinator(s) of a fragment receives all
REPORT messages from its sons, the fragment size and the weight of the minimum-
weight outgoing edge can be determined.

The algorithm terminates when the returned value W in the REPORT message
at the coordinator is infinity. This implies there are no outgoing edges and there is
only one fragment in the graph.

As shown in [13], when the coordinators receive all the REPORT messages, it
must be the case that SZ >= 21 where is the fragment level. But since the time the
fragment initiated the process of finding its minimum-weight outgoing edge, other
fragments may have merged into it and its fragment size and level may not be
commensurate, i.e., SZ >= 21+1. As we must make sure that the fragment level always
reflects its size, the coordinator(s) compares SZ with 21+1. If SZ>=21+1, the coor-
dinator(s) broadcasts another INITIATE(F, l’, FIND) message to all nodes in the
fragment to update their level as if a new fragment at level l’ has just formed, where
l’ is the largest integer such that SZ >-_ 2 r. Note that this level-updating process may
be repeated many times until the fragment size and level are commensurate (i.e.,
21 <- SZ < 2/+1). On the other hand, if SZ < 2+1, then the fragment is ready to combine
with another fragment to form a new fragment with a new core. The coordinator(s)
sends a message CHANGECORE following the path of the marked edges to the node
adjacent to the minimum-weight outgoing edge.

2.2. How fragments are merged together. When the CHANGECORE message in
a fragment at level reaches node u, to which the minimum-weight outgoing edge

616 F. CHIN AND H. F. TING

(u, u’) is incident, u attempts to merge its fragment with the fragment F’ at level I’
that contains u’ by sending a CONNECT(l) message over (u, u’). After receiving this
CONNECT(l) message, u’ compares with its fragment level l’. There are two possible
outcomes, l’ or < l’. The outcome > l’ is not possible because levels are nondecreas-
ing and a TEST message must have been sent and responded to before this CON-
NECT(l) message is sent.

Case 1. l’. If u’ has previously sent a CONNECT(I’) message over edge (u, u’)
to u, then the two fragments will have the same minimum-weight outgoing edge, and
will be merged immediately together to form a new fragment F" at level + 1 with
edge (u, u’) as its new core. Edge (u, u’) is marked SELECTED. INITIATE(F",
l+ 1, FIND) messages are then broadcast to all nodes in F". In all other cases, u’ will
wait until it sends a CONNECT(l’) message to u and proceeds as previously described,
or until it increases its level l’, in which case it does the following.

Case 2. < l’. Normally, fragment F is merged with fragment F’. Because of our
strategy of never making a low-level fragment wait, node u’ immediately marks edge
(u, u’) as SELECTED and sends an INITIATE (F’, l’, S’) message to u, where F’, l’,
and S’ stand for fragment identity, level, and state, respectively, of u’.

If S’- FIND, then u’ has not sent its REPORT message. Fragment F simply joins
fragment F’ and participates in finding the minimum-weight outgoing edge of the
enlarged fragment. Node u marks edge (u, u’) as SELECTED, changes its state
to FIND, fragment identity to F’, fragment level to l’, and also relays the
INITIATE(F’, l’, S’) message to all other nodes in F. Meanwhile, u’ waits for the
REPORT message from u before sending its REPORT message.

If S’= FOUND, then u’ has already sent its REPORT message. Thus the size of
fragment F cannot be reported to the coordinator of F’. However, we want to make
sure that its size is reflected at the next level update. Under such. circumstances,
fragment F will not be merged with F’ immediately but instead will be treated as a
new fragment with a new identity and a new level. Basically, node u will be the new
coordinator of the fragment. It changes its fragment identity to w, the weight of a
SELECTED edge incident to u, its state to FOUND, its level to /’, broadcasts an
INITIATE(F, l’, FOUND) message with F w to all ther nodes in the fragment, and
waits for their REPORT messages. As edge (u, u’) remains the minimum-weight
outgoing edge for this new fragment, state FOUND is assigned to all nodes in the
fragment. Note that u will not mark edge (u, u’) as SELECTED, whereas on the other
hand, u’ has already sent its REPORT message and has marked edge (u, u’) as
SELECTED. Thus, messages can still be transmitted from u’ to u as if they are in the
same fragment, so it is possible for u to receive another INITIATE message from u’
before u receives all its sons’ REPORT messages. In order to ensure that every
INITIATE message has been reported before another INITIATE message is issued,
node u may have to delay its action on the second INITIATE message until it has
received all the REPORT messages from its first INITIATE message. Hence, there is
at most one such pending INITIATE message from u’.

Having received all its sons’ REPORT messages, u compares its fragment size
SZ with 2 r+l. F and F’ are combined together only when SZ < 2 r+. In other words,
when the size of F is small enough and is reflected by its new level, the size of F does
not have to be reported to the coordinator of F’ and F can be merged into F’ without
problem. On the other hand, if the size of F is sufficiently large, F will not be combined
with F’. In order to prevent a large fragment from merging with a small one, we delay
the process in F and make F wait by increasing its level sufficiently. Thus there are
two cases:

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 617

(a) SZ </’+1. Fragment F can be absorbed into fragment F’. Node u will mark
edge (u, u’) as SELECTED. If there is a waiting INITIATE message, u will process
the second INITIATE message as if it had just been received. Even though F and F’
have different identities in this merged fragment for an uncertain period before this
second INITIATE message is processed in F, this does not create any problems in
checking whether an edge is an outgoing edge from F’ to F. This is because if a TEST
message is sent over an edge, say (u’, u) from F’ to F, then the fragment level of u

will be less than that in the TEST message (i.e., the fragment level of u’). Node u
would delay making any response until it receives the second INITIATE message and
obtains the same fragment identity and level as node u’. Thus, that TEST message
will be rejected eventually.

(b) SZ >= 2 !’+1. Let l" be the largest integer such that SZ >- 2’. Node u will change
its level to l", its state to FIND, and will send a REPORT(w, 0) to u’, where w is the
weight of the edge (u, u’). Furthermore, node u will broadcast the INITI-
ATE(F, l", FIND) to all its sons as if a new fragment has just been formed. On
receiving a REPORT(w, x) message with x=0 over a SELECTED edge, node u’
remarks that edge as BASIC and handles the REPORT message as usual. From then
on, fragment F and F’ are treated as separate fragments.

2.3. Analysis of the algorithm. The correctness proof and message complexity
analysis are same as given in Gallager, Humblet, and Spira [13]. For the correctness
proof, we only need to prove that in our modified algorithm, deadlock will not be
created and an edge is a branch of the MST if and only if it is SELECTED. From the
description of our algorithm in the previous section, our only modifications are to
raise the level of a fragment when its size is too large and to delay the merging of the
fragments when its resultant size cannot be reflected by its level. However, these
modifications would not change the fact that only the minimum-weight outgoing edge
of a fragment will be marked SELECTED and that the smallest-level fragments never
wait. With the same argument as in [13], fragments remains to be subtrees of the MST
and there is no deadlock in the algorithm.

As far as the message complexity is concerned, it seems that more messages are
required to ensure the size of each fragment is reflected by its level. However, this
increase of messages is always associated with a level change of a fragment and each
node at any given level still transmits/receives at most five messages [13]. Since
fragments are always merged into larger fragments and their levels only increase, a
node can go through at most log n levels and this accounts for the O(n log n) messages.
With the fact that an edge can be rejected only once, and each rejection requires two
messages, there are at most 2e messages leading to rejections. Thus, the total message
complexity remains O(e + n log n).

In order to prove the upper bound on time complexity, we have the following
definitions. A fragment F is the largest minimum-spanning subtree whose vertices have
the fragment identity F. A subfragment of F is a fragment whose next fragment identity
is F. If F,/),. o., Fm are all the subfragments of F, it can be shown easily that all
Fi’s are disjoint, F U i-= F, and SZ i= SZi, where SZ and SZ stand for the sizes
of the fragment F and Fi, respectively.

For 0-<_-. i-__2-" log n, let r be the minimum time of the hypothetical global clock at
which all nodes in the graph have level at least and a =ri- -_. A critical node at

We now briefly descAbe a modification of the algorithm that is used to improve its complexity. If the
waiting INIT1ATE message is o|" level at least l", then it can be processed immediately without broadcasting
the INITIATE(F, g", FIND) message to all the nodes in F.

618 F. CHIN AND H. F. TING

ri is the node that changes from a level less than to a level at least at time "/’i A
critical fragment at zi is the fragment containing a critical node at ri at time r. Note
that there may be several critical nodes at z, and likewise, several critical fragments.
Since all the critical fragments are disjoint and the same argument can be applied to
them, without loss of generality, let us consider a particular critical node and the
corresponding critical fragment. An active node set, ANi, at ri is the set of nodes in
the critical fragment at r with level less than at time z_l. From the definition of
z_l, these nodes are at level i-1. If the active node set at z is nonempty, this set of
nodes may belong to several subfragments at level i-1 of the critical fragment at ri.

As all nodes are initially AWAKE, Zo 0. If is the fragment level when the algorithm
terminates, then z r for I-< <-log n. Define,

log n if k 1,
log(k) n=

log(log(k-)n) ifk>l.
logIt is obvious that ro. i--1 a. We now partition the indices into sets. Let

(k) be the index set (i: (log n-log) n)i-(logn-log’+1) n)). For example,
S(1) (1, 2, , log n log) n), , S(log* n 2) (log n 3, log n 2), S(log* n
1) {log n 1) and $(log* n) {log n). The a’s are partitioned into classes according
to these index sets, such that all the a’s whose indices belong to the same index set
are in the same class. We want to show that the sum of all a’s in any class is O(n).
Since there are log* n classes in all, we havero. O(n log* n).

Let us consider the kth class. The elements in (k) are partitioned into two
groups, S’(k) and $"(k), according to the value ofthe corresponding a’s. S’(k) contains
the indices of all the small ai’s and S"(k) contains the indices of the large ones; more
precisely, S’(k) {i S(k): a <-_ lOn/log(k) n} and S"(k) S(k) S’(k). Since S(k) con-
tains (log(k) n-log(k+l) n) elements and S’(k)_ S(k), the sum of all the small ai’s
whose indices are in S’(k) is no more than O(n). As for the large a’s corresponding
to S"(k), we will prove that the sizes oftheir corresponding AN’s, and their correspond-
ing critical fragments, cannot be small. Intuitively, this can be seen as follows. If the
AN corresponding to a large ai is small, then the time required to change the level
of these nodes in ANn’s is small, contradicting the fact that a is large. Since our
algorithm makes sure that sizes of fragments are reflected by their levels, the level of
each fragment containing a large AN will be increased accordingly. As AN, is large,
so is its level increase. Thus, the level of the nodes in these large ANn’s becomes so
high that these nodes cannot be in another ANj in the same class as ai. Thus, there
cannot be too many large a’s in the kth class corresponding to S"(k), and consequently
the sum of the large a’s whose indices are in S"(k) is also O(n). We now make these
observations precise.

LEMMA 1. a _--< 5[AN[, where ai is the time required to increase the level of all nodes
with level less than at ’i-1, which includes the active node set AN, to a level at least i.

Proof. The lemma holds true for ag =0. Assuming a > 0, we have r > z_ and
ANi . At time Zg_l, every node v in ANi has received the INITIATE message at
level i- 1 and is ready to send or has sent some TEST messages. Let us consider the
situation when v must send some TEST messages to find its min_weight. All nodes
in the fragment to which v belongs at time z_ must be at level i-1, and the size of
this fragment is at most [AN[. Hence, v will send at most [AN[TEST messages and
will receive at most [AN[-1REJECT messages before an ACCEPT message is
received. As v’s level is the lowest in the graph, the TEST messages will be responded
to without any delay, and thus after at most 2[ANi[time units, all the leaf nodes in

AN relative to the tree corresponding to the critical fragment can report. As there are

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 619

IANil active nodes, there will be at most [ANiIREPORT messages,
]ANiICHANGECORE/CONNECT messages, and IANiIINITIATE messages from
within the critical fragment. Thus, it takes at most 31ANI extra time units before all
nodes in ANi rise to a level at least i. Thus, we have

COROLLARY 1. If ai > 5m, then IAN, > m, where rn is any positive integer.
LEMMA 2. Let be a node in fragment F at level at time t. On its next level update,

will change its level from to l’ such that 21’+1> IF[.
Proof The proof follows directly from the description of the algorithm. The size

of the fragment must be reported after every INITIATE message, which is the only
way to change the level of a fragment. The new level is assigned according to the
fragment size.

21g*Let R(k)=iS(k ai for 1 < k<log* n. Then Zlogn k=l R(k).
LEMMA 3. R(k)>=15nfor l_-<k_-<log* n.

Proof. S(k) is partitioned into S’(k) and S"(k). R(k)= R’(k)+ R"(k) where

R’(k)= 2 ai and R"(k)=
iS’(k)

Since ai <- 1On/log(k) n for all i S’(k), we have

iS"(k)

R’(k) 2
iS’(k)

[lOn)ai < (log(k) n-log(k+l n) -< lOn.\log(k n

As ai> lOn/log(k n for all iS"(k), from Corollary 1 we have IANil>2n/log(k n.
The initial level of a new fragment may not reflect its size, but by Lemma 2, all nodes
in ANi will raise their level to greater than log n -log(k+l n at their next level update.
From then on, by the definition of S(k), these nodes will never belong to any any
other active node set corresponding to S(k), i.e., they can only belong to some active
node set AN in some S(k’), with k’> k. Thus, before this level update, all these nodes
in the graph may belong to at most one active node set corresponding to S"(k). Using
this fact and Lemma 1, we have R"(k) --2iS"(k) ai<=ieS"(k) 5[ANi[<-5n. Hence R(k)=
R’(k)+R"(k)<__lSn.

log*Using Lemma 3 and the equality Zog=k=l R(k), we have the following
theroem.

THEOREM 1. ’/’logn 15n log* n.
After Zogn and before the algorithm terminates, at most 3n time units are required

for the TEST, REJECT, and REPORT messages as desdcribed in the proof of Lemma
1. Thus, our algorithm takes no more than 15n log* n / 3n time units.

2.4. Example with time complexity [l(n log* n). Let us consider two extreme
situations. Ifthere are many small fragments merging in pairs, each node may participate
in log n level changes before the algorithm terminates. However, under this situation,
our algorithm allows a large amount of parallelism in message exchanges and each
fragment doubles its size at each merging or level change. Since the time delay for
each level change is proportional to the fragment size, the total time delay of the
algorithm would still be O(n). If, on the other hand, there is a large fragment, our
algorithm guarantees that the fragment’s level will be raised appropriately. Even though
there might be a long delay for this level update, this time loss can be compensated
by the large level increase and the algorithm can still be finished in O(n) time. We
can show that the worst time complexity of our algorithm occurs when there is a
sequential waiting of the fragments with size n/log n, and after O(n) time, the number
of fragments can at most be reduced from n to log n. This process can be repeated for
log* n times until a single fragment remains. Here is a sketch of our example whose

620 F. CHIN AND H. F. TING

execution requires at least log*n stages with each stage takes fl(n) time. Thus, the
whole execution of our example requires fl(n log* n) time.

Let us first consider log k rows of nodes, each row has k nodes, connected in a
line as shown in Fig. 1, which is an example with k 8. The nodes in each row are
further subdivided into groups; the ith row is divided into k/2i-1 groups, each with
2i-1 nodes (the nodes in each oval form a group). The nodes in each group are linked
together with edges of lowest weight, and thus they will first merge together to form
supernodes of level i-1 (for nodes in the ith row). Furthermore, these groups are
connected in a line with edge weights strictly ascending from left to right. When the
minimum-weight spanning tree algorithm is executed, the nodes in the ovals form
supernodes in each row. Let us consider the supernodes of the ith row where > 1.
They are at level i-1 and their leftmost supernode sends a TEST message over an
edge of the highest weight (the 1,000 link in Fig. 1) to a supernode of the (i- 1)st row
at level i-2. This TEST message will be responded to when all the nodes in the
(i- 1)st row have merged into a single fragment with its level increased to log k. Then,
the leftmost two supernodes in the ith row will merge together to form the core of a
new fragment. The other supernodes in the same row will then merge one after another
without concurrency in a strictly left to right fashion. Finally, all the nodes in each
row will merge into a fragment of level log k, with the leftmost intersupernode edge
as the core.

1000

1000

1 1 1 1 1 1

100

100

FIG.

Although each row will eventually form a single fragment, this cannot happen
until all the nodes in the preceding row have merged together and have had their levels
updated to log k. Since there are log k rows and the level update of all the nodes in
each row takes O(k) time units, it takes O(k log k) time for all the rows to become
fragments. If we let k be about n/log n, then it takes O(n) time for all the rows to
form single fragments.

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 621

Let Fi be the fragment formed by the ith row. Fi is at level log k and, except for
the last row, sends a TEST message over the edge of the second highest weight (the
100 links in Fig. 1) to a node at the last row which is at level (log k-1). Since that
TEST message goes to a fragment at a lower level than F, Fi must wait until the last
row has formed a single fragment before connecting to another fragment. Basically,
these second highest weight edges (the 100 links) are for the purpose of synchronizing
each stage.

The above construction is repeated for several stages by treating each Fi as a
supernode. At each stage, the number of supernodes is the logorithm of the number
of nodes (supernodes) in the preceding stage. So, this whole process will be done in
f(log* n) stages and it will take II(n log* n) time to complete the entire algorithm. In
order that the execution of each stage is not affected by what is done in the preceding
stages, without loss of generality, let us consider the second stage. Two new nodes a,
b are introduced for each fragment Fi, and they are connected with edges of weight
x, which is larger than those on any of the edges of but less than those edges between
the Fi’s, as in the Fig. 2.

a x /" "N x b
C O

FIG. 2

Let the two new nodes a, b be the left and right handles of F, respectively. By
making the edges connected to the handles are of weight larger than x, the handle will
join the subfragments of F at an early stage, and will have no effect on the preceding
stage. In addition, any edges attached to the handles will not affect the execution of
the preceding stage either. In other words, F is formed in the first stage even with the
handles. Fragments F’s are then connected into the same structure as in Fig. 1 by
treating each F, together with its handles, as a supernode.

With k, the number of nodes (fragments) in each row, equals to log n/log log n,
there will be enough fragments F. The supernodes are then connected in such a way
that edges coming into the left of the supernode are attached to its left handle, and
those connected to the right are connected to the right handle to make sure that the
second stage could not start until the first stage is complete. The weights of the new
edges will all be larger than x and in the mid-range (say 50, if Fig. 1 is used as an
indicator of weights in the preceding stage). That is, they will be larger than the weights
of the branches within each Fi, and they will be less than the previous stage’s edges
between the F/.

We start in the first stage the construction with k nodes in each row and log k
rows. With k n/log n, there are about (n/log n)(log n-log log n) nodes. Since each
fragment F requires a pair of handles, it requires at most 2 log n handles at the
first stage. Similarly, 2 log log n for the second stage. Thus, there are a total of no more
than 2(log n +log log n +... nodes added. So for large n, the number of nodes in
the final graph is less than n. Note that the graph can be padded out to just n nodes
in any reasonable fashion.

3. The synchronous algorithm. Let us consider the above algorithm in more detail
and understand why the nonlinear time bound still exists. The worst-case time com-
plexity occurs when there is sequential waiting ofmedium-size fragments. The nonlinear
characteristic of the time complexity is due to the fact that the level of a fragment

622 F. CHIN AND H. F. TING

cannot be increased gradually step by step. If many mergings to fragment F occur
almost at the same time, there may be a large level increase of fragment F, say from
to l’, after 2r time units. In the meantime before F changes its level to l’, another

fragment F" at a slightly higher level than F, say l", where </"<< l’, may have sent a
TEST message to fragment F and is waiting for the level change of fragment F to l’
in order to raise its own level from l" to l"+ 1. Since the waiting can be unnecessarily
long (up to 2r time units) for one unit of level increase from l" to l"+ 1, the time
complexity of the algorithm is nonlinear.

In this section, we propose a synchronous version of our previous algorithm for
solving this MSTproblem in 0(n) time with the same 0(e + n log n) message complexity.
This algorithm is a modification of the algorithm by Gallager, Humblet, and Spira
13] and tackles the above problem with an approach different from that of Awerbuch

[5]. Awerbuch’s approach is to reimburse fragment F" for its time loss by hooking
fragment F" onto fragment F and subsequently inheriting level l’. In this case, fragment
F" has got its reward through its long waiting. Instead of hooking fragment F" with
fragment F through the minimum-weight outgoing edge as in the traditional methods,
an arbitrary edge is chosen and a spanning tree is found instead of a minimum-weight
one.

In order to see how our synchronous MST algorithm can be finished in O(n)
time, without loss of generality, let us assume that all the nodes awake simultaneously
and execute the algorithm at the same time. Let T be the minimum time2 when all
the fragments in the graph have sizes at least 21 (clearly, To=0). Thus, if a TEST
message is sent after T/ from fragment F of level through an interfragment edge to
another fragment F’, the TEST message can be accepted immediately regardless of
the current level of F’. On the other hand, if the TEST message is sent through an
intrafragment edge and if fragment F is of size less than 21+1, all its node’s identities
and levels would have been updated by time tB + 2+1, where tB is the broadcast time
of the INITIATE message by the coordinators and the TEST message would be
rejected (assuming that the TEST message is sent after tn + 2/1). If, however, the size
of fragment F => 2/+1, i.e., its size is not reflected by its level, the core will broadcast
another INITIATE message and will command all the nodes to re-find the minimum-
weight outgoing edge again. Based on this observation, if we modify our algorithm so
that the INITIATE message is broadcast by the core only after T, i.e., tn > T/, and
all the nodes participate in finding the minimum-weight outgoing edge after time

tn +21+1, the TEST messages can be responded to immediately without considering
the levels of the fragments, and the minimum-weight outgoing edge can be found
correctly.

For every increase in fragment size, messages such as INITIATE, REPORT, and
CHANGECORE may have to traverse from one end of the fragment to another, but
this takes at most O(2I+) time units. Since all messages are responded to without
delay, the time T/+, which guarantees that all fragments are of size at least 21+1, can
be bounded by the inequality T// =< T/+ O(2//). Based on the recurrence formula for
T/+I we can show that Tlogn’-" 0(j’lgn

,,1=1 21)=O(n), i.e., the time complexity of the
algorithm is O(n). We shall prove later that this recurrence inequality for Tt/ can
also account for the fact that the nodes may not execute the algorithm simultaneously.

The algorithm can be described as follows. It starts by broadcasting AWAKE
messages to all nodes across the whole network and any newly formed fragment starts

Note that Tt is different from ’t. In all cases Tt N rt because a fragment is formed before all the nodes
in the fragment obtain their fragment level and identity.

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 623

to find its minimum-weight outgoing edge by broadcasting an INITIATE (F, l, S, tn)
message from its core, where the arguments stand for the fragment identity, fragment
level, fragment state, and the broadcast time of the message. In order to guarantee
the minimum size of fragments, we must have the broadcast time tn >= tv + TI + 2/+1
where tF is the wake-up time of the fragment F, i.e., the minimum wake-up time of
its coordinator(s) and T will be defined later. Each node v in the fragment then starts
finding its own minimum-weight outgoing edge independently after time tn + 2//1. This
ensures that the process of finding the minimum-weight outgoing edge is synchronized
among all nodes in the fragment.

Node v sends a TEST(F) message through its minimum-weight adjacent BASIC
edge and waits for a response in exactly two time units. Note that there is no level
argument in the TEST message and the response is immediate without considering
their levels. The responded message is REJECT when F and F’ have the same identity,
and ACCEPT otherwise. Immediately after the minimum-weight outgoing edge of a
node is found, REPORT(W, SZ) messages are reported to the core. CHANGECORE
and CONNECT messages are sent as in Gallager’s algorithm.

Note that if the level of the fragment cannot reflect its reported size, another phase
of INITIATE messages may be needed. However, when fragment F’ at level l’ receives
a CONNECT message from fragment F at level l, this situation can be slightly different
because the case > l’ is possible. Should this happen, fragment F waits until fragment
F’ has reached a level high enough for combination in order to guarantee that the
message complexity be bounded by O(e + n log n), and then F’ sends an INITIATE
message to F as described in the previous algorithms.

As a digression, Awerbuch [6] defined an H-partition problem which is to partition
a given graph into disjoint fragments such that each of which has at least H nodes.
The construction of an H-partition for a graph is useful in a number of applications
[1], [17]. If our algorithm terminates at Tl for l_--__ log n, we can guarantee that all the
fragments are of size at least 21 Thus, we can also solve the H-partition problem in
O(H) time and with O(e+ n log H) messages as given in [6].

3.1. Correctness and complexity analysis. For proving the validity of our proposed
synchronous algorithm, we must show in Lemma 4 that if TI is defined as

+ 28 21, if 1--> 1,
T+I 0 otherwise,

then any fragment F with size SZ satisfying 21-1<= SZ < 21 will correctly find its
minimum-weight outgoing edge by time tv + T-2I. Thus, we can guarantee that F
would have merged into a larger fragment of size at least 21 by time tF + Tl.

LEMMA 4. Any fragment F with size SZ satisfying 21-1 =< SZ < 21 can correctly find
its minimum-weight outgoing edge for merging before time tv + T-21, where tF is the
wake up time offragment F.

Proof The proof is by induction on the level /. Initially, every node has size
SZ 1, thus the hypothesis is true for 1. For the induction step, assume that the
hypothesis is true for <= k. Let us consider any fragment F, with size 2k-< SZ <2k+l.
We want to show that the sizes of all the subfragments of F are less than 2k, and thus
we can apply the induction hypothesis to show that the subfragments can find their
minimum-weight outgoing edge and merge together to form F within a bounded period,

This state information FIND/FOUND can be omitted and this algorithm will also work with the
assumption that each node is always in the FIND state.

624 F. CHIN AND H. F. TING

i.e., tF + Tk + 2k+l. Since all the messages, such as INITIATE, TEST,
REJECT REPORT, can be transmitted without delay and SZ <2k+l, we
can show that the minimum-weight outgoing edge of F can be found within the time
bound (i.e., tF + Tk-1--2k+l as stated in the hypothesis).

First, we shall prove by contradiction that all the subfragments of F are of size
less than 2k. Assume that there exists a subfragment Fi of F with size 2k=< SZi < 2k/l.
Fi will either merge into and obtain the level of another higher level fragment F, or
merge with F over the same outgoing edge. For the former case, since SZ >-_ 2k, SZj --> 2k

and F_ F t_J F, we have SZ>-_ SZ/ SZ-->2k+l, which leads to a contradiction. For
the latter case, it is required that we show that tc < tF, + Tk + 2k+l, where tc is the time
when a CONNECT message is sent from F to F. From our algorithm, the coor-
dinator(s) of Fi will only broadcast the INITIATE(Fi, k, S, tB,) message at time
where tB > tF, + Tk + 2k+l; thus we have tn, > tc if the inequality relation for t is true.
This would imply that F has merged with F before F sends a TEST(F) message to

F; this would then lead to a contradiction that Fi and F are merged together over
the same outgoing edge. The remaining paragraph will prove the inequality relation
for t. Since SZ <- SZ SZ < 2k, fj will find its minimum-weight outgoing edge before
time tF + Tk- 2k, from the induction hypothesis, and will take less than 2k time units
to send a CONNECT message to Fi thus, t < tFj + Tk. AS the distance between the
coordinator of F and any nodes in F is less than 2k+l, we have tF < tF, +2k+l and
t < tF + Tk < tF, + Tk + 2k+l

Using the argument in the previous paragraph, since all subfragments F of F are
of sizes less than 2k, tc, the time when the CONNECT message is sent out from each
F, will be strictly less than tF / Tk. Since tFj < tF/2k+l, we have tc < tF/ Tk /2k+l

which in term is also less than F’s broadcast time of the INITIATE(F, k, S, tni
messages, tB. Thus, all nodes in F would have received their corresponding fragment
identity no later than tn + 2k+l. AS fI’om the algorithm, all the TEST messages are only
sent after time t +2k+l, no intrafragment edge will be accepted and the minimum-
weight outgoing edge can be correctly found.

Now, let us find an upper bound for the time when F finds its minimum-weight
outgoing edge. Let ko be the level of F when it is initially formed. Without loss of
generality, let us assume that before F determines its minimum-weight outgoing edge,
there is a series of level updates from ko to k, to k2," ", and finally to k. Because
there are at most 2k,+ INITIATE, TEST, REJECT REPORT messages for
the ith level update and all the messages are transmitted without delay, each level
update will not be broadcast after tF / Tk / 2k/l, the time when all subfragments would
have been merged together, the total time for F to find its minimum-weight outgoing
edge is less than

F / Tk / 2k+l / 4 (2 kl+ / 2 k2+l /" / 2k+l / 2k+l)
< tF / Tk / 2k+l + 4. (21 + 22 +. + 2k+l + 2k+) < tF / Tk / 26.2

g

--2k+l [-Itz + Tk+l
THEOREM 2. The time complexity of our algorithm is 55n.
Proof. From Lemma 4, the algorithm terminates by time F / Tlogn+ -2lgn+l.

Since tz < n and Tlogn+ < 56n, we have < 55n.
The message complexity of our algorithm is 4n log n + 4e rather than 5 n log n + 4e

(including the initial 2e AWAKE messages). This is because ACCEPT messages are
not needed in our algorithm; the reception of a TEST message can be assumed by
default if no message is reported within two time units after it is sent. From Theorem

DISTRIBUTED ALGORITHM FOR MINIMUM SPANNING TREES 625

2, at most log n + 6 bits are needed to encode the broadcast time. The fragment level
can be encoded in log log n bits and fragment size in log n bits. As three bits are
enough to distinguish different types of messages, each message contains at most one
edge weight or one node identity plus (log n + log log n +9) bits.

4. Conclusion. We have improved the time complexity of the asynchronous and
synchronous distributed algorithms for the minimum-weight spanning tree problem.
Since our algorithms work for any arbitrary graph, it is obvious that O(n) time
complexity is needed for the problem. Our synchronous distributed algorithm for
finding the minimum-weight spanning tree is not only message-optimal but also
time-optimal. Even though Awerbuch has shown that O(n) time is also achievable in
the asynchronous network for this problem, it is not surprising to notice that a
synchronous algorithm for a problem can always outperform its asynchronous counter-
part [2], [9]-[11]. One of the open problems is to determine what extra information
a synchronous algorithm has over an asynchronous one.

We have improved the time complexity of the Gallager, Humblet, and Spira’s
asynchronous algorithm for finding the MST of a graph to O(n log* n). Although the
worst-case message complexity remains O(e+ n log n), our algorithms seem to have
a larger message complexity because REPORT messages must be sent whenever a new
fragment is formed. On the other hand, we can argue that our algorithms may use
fewer messages on the average because whenever a large fragment is formed, its level
will be increased sufficiently at the earliest possible instance and this may eliminate a
number of unnecessary messages. It would be interesting to conduct some simulations
to study the complexities of our algorithms when compared with Gallager’s.

Acknowledgments. The authors thank M. Y. Chan for her careful reading and for
pointing out a mistake in our synchronous algorithm. The authors are indebted to the
anonymous referees who have given various valuable comments in improving the
readability of the paper, in particular, the simplified example with time complexity
12(n log* n) for the asynchronous algorithm.

REFERENCES

B. AWERBUCH, Hierarchical routing with small memoryper node, unpublished manuscript, October 1985.
[2] ., Complexity of network synchronization, J. Assoc. Comput. Mach., 32 (1985), pp. 804-823.
[3] B. AWERBUCH AND R. G. GALLAGER, Distributed breadth-first-search algorithms, in Proc. 26th Annual

IEEE Symposium on Foundations of Computer Sciences, IEEE Computer Society, Washington,
DC, 1985, pp. 250-256.

[4] B. AWERBUCH AND S. MICALI, Dynamic deadlock resolution protocols, in Proc. 27th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1986.

[5] B. AWERBUCH, Optimal distributed algorithmsfor minimum weight spanning tree, counting, leader election
and related problems, in Proc. 19th Annual ACM Symposium on Theory of Computing, Association
for Computing Machinery, New York, 1987, pp. 230-240.

[6] ,Linear time algorithmfor minimum networkpartition, TR Memo MIT/LCS/TM-350, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, March 1988.

[7] O. BORUVKA, Ojistdm probldmu minimdlnim, Price Mor. Pfirodovd. Spol. v Brn6 (Acta Societ. Scient.
Natur. Moravicae), 3 (1926), pp. 37-58.

[8], Pispvek k egeni otdzky ekonomick stavby elektrovodnich siti, Elektrotechnick, obzor, 15
(1926), pp. 153-154.

[9] M. Y. CHAN, Election and symmetry breaking in synchronous general networks, TR-B7-86, University
of Hong Kong, Hong Kong, July 1986.

[10] E. GAFNI AND Y. AFEK, Time and message bounds for election in synchronous and asynchronous
complete networks, in Proc. 4th Annual ACM Symposium on Principles of Distributed Computing,
Association for Computing Machinery, New York, 1985, pp. 186-195.

11 E. GAFNI, Improvements in the time complexity of two message-optimal electron algorithm, in Proc. 4th
Annual ACM Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1985, pp. 175-185.

626 F. CHIN AND H. F. TING

12] R. G. GALLAGER, Finding a leader in a network with O(E + N log N) messages, Massachusetts Institute
of Technology, Cambridge, MA, 1977.

[13] R. G. GALLAGER, P. A. HUMBLET, AND P. M. SPIRA, A distributed algorithm for minimum-weight
spanning trees, ACM Trans. Programming Languages and Systems, 5 (1983), pp. 66-77.

14] R. L. GRAHAM AND P. HELL, On the history ofthe minimum spanning tree problem, Ann. Hist. Comput.,
7 (1985), pp. 43-57.

[15] P. A. HUMBLET, A distributed algorithm for minimum wieght directed spanning trees, IEEE Trans.
Comm., 31 (1983), pp. 756-762.

16] J. PACHL, E. KORACH, AND D. ROTEM, Lower bounds for distributed maximum-finding algorithms,
J. Assoc. Comput. Mach., 31 (1984), pp. 905-918.

17] D. PELEG AND E. UPFAL, A tradeoffbetween size and efficiencyfor routing tables, in Proc. 20th Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York,
1988, pp. 43-52.

[18] P. M. SPIRA, Communication complexity of distributed minimum spanning tree algorithms, in Proc. 2nd
Berkeley Conference on Distributed Data Management Computing Networks, Berkeley, CA,
June 1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

