
Title Online pricing for multi-type of Items

Author(s) Zhang, Y; Chin, FYL; Ting, HF

Citation

The 6th International Frontiers of Algorithmics Workshop (FAW
2012) and 8th International Conference on Algorithmic Aspects
of Information and Management (AAIM 2012), Beijing, China, 14-
16 May 2012. In Lecture Notes in Computer Science, 2012, v.
7285, p. 82-92

Issued Date 2012

URL http://hdl.handle.net/10722/152045

Rights The original publication is available at www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37972953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Online Pricing for Multi Type of Items

Yong Zhang1,2⋆, Francis Y.L. Chin2⋆⋆, and Hing-Fung Ting2⋆ ⋆ ⋆

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
2 Department of Computer Science, The University of Hong Kong, Hong Kong

{yzhang,chin,hfting}@cs.hku.hk

Abstract. In this paper, we study the problem of online pricing for
multi-type items. Given a seller with k types of items where the amount
of each type is m, a sequence of users {u1, u2, ...} arrive one by one. Each
user is single-minded, i.e., each user is only interested in a particular
bundle of items. The seller must set the unit price and assign some
amount of bundles to each user upon his/her arrival. Bundles can be
sold fractionally. Each ui has his/her value function vi(·) such that vi(x)
is the highest unit price ui is willing to pay for x bundles. The objective
is to maximize the revenue of the seller by setting the price and amount
of bundles for each user. In this paper, we first show that the lower bound
of the competitive ratio for this problem is O(log h+log k), where h is the
highest unit price to be paid among all users. We then give a deterministic
online algorithm Pricing, whose competitive ratio is O(

√
k · log h log k).

The lower and upper bounds match with the optimal result O(log h)
asymptotically when k = 1.

1 Introduction

Economy, a very important facet in the world, has received deep-and-wide stud-
ies by scientists from economy, mathematics, and computer science for many
years. In computer science, researchers often build theoretical models for some
economic events, then solve the problems by using techniques derived from al-
gorithm design, combinatorial optimization, randomness, etc.

In this paper, we study the problem of item pricing, which is one of the most
important problems in computational economy. Item pricing contains two kinds
of participators: the seller and the user. The seller has some items, which will
be sold to the users at some designated prices; the user will buy the items at an
acceptable price. The objective is to maximize the total revenue of the seller by
assigning items to the users. To achieve this target, the prices of the items must
be sold dynamically, i.e., the prices of items are different for different users, at
different times, in different locations, with different amounts, ... If the designated

⋆ Research supported by NSFC (No. 11171086) and Shanghai Key Laboratory of In-
telligent Information Processing, China. Grant No. IIPL-2010-010

⋆⋆ Research supported by HK RGC grant HKU 7117/09E
⋆ ⋆ ⋆ Research supported by HK RGC grant HKU-7171/08E

2 Yong Zhang et al.

price is higher than the expected price of an user, this user will reject the item;
otherwise, this user will accept the item.

Formally speaking, given a seller with k types of items, i1, i2, ..., ik, the
amount of each type is m, thus, the total amount of items is m ·k. A sequence of
users {u1, u2, ...} come one by one, each user is single-minded, i.e., each user is
only interested in a particular bundle of items. For example, user u’s interested
bundle is Iu = {i1, i2} (or Iu = {1, 2}). The bundles can be sold fractionally, but
the amount of each item in the sold bundle must be the same. Still considering
the above example on user u, the seller may sell half bundle to u, i.e., half i1 and
half i2. The seller must set the unit price and sell a certain number of bundles to
each user on his/her arrival. In this paper, easy of computation and comparison,
the unit price is defined on items, not on bundles, even though, one can convert
to the other easily. For example, the seller sells 1.5 bundles Iu = {1, 2} to u at
price 3, then the unit price is 1. Actually, if we define the unit price on bundle,
the results in this paper still hold, because unit price on bundle I can be regarded
as |I| times the unit price on item. However, define the unit price on item is more
convenient since different bundles can be compared easily. Each ui has his/her
value function vi(·) such that vi(x) is the highest unit price ui is willing to pay
for x bundles. Generally, the more bundles an user buys, the lower unit price he
expects. Thus, in this paper, we assume that vi(x) is non-increasing. Let h be
the highest value among all vi(x), i.e., vi(x) ≤ h for all i and x. When user u
comes with his interested bundle Iu, assuming that the seller sets unit price p
and assigns ℓ bundles to u. If p > vi(ℓ), user u cannot accept this price, thus,
no bundle is bought by u. Otherwise, p ≤ vi(ℓ), u will accept this price and pay
p · ℓ · |Iu| to the seller.

To understand this model clearly, consider the example as shown in Figure
1. The seller has k = 3 types of items, and each type contains m = 2 items.
There are three single-minded users who want to buy these items. User 1’s
interested bundle is I1 = {1, 2}; the unit prices at which user 1 is willing to buy
his interested bundle are 5 and 5 for buying 1 and 2 bundles respectively, i.e.,
v1(1) = v2(1) = 5. User 2’s interested bundle is I2 = {2, 3}; the unit prices at
which user 2 is willing to buy his interested bundle are 6 and 4 for buying one
and two bundles respectively, i.e., v2(1) = 6 and v2(2) = 4. User 3’s interested
bundle is I3 = {1, 3}; the unit prices at which user 3 is willing to buy his
interested bundle are 7 and 4 for buying one and two bundles respectively, i.e.,
v3(1) = 7 and v3(2) = 4.

When user 1 comes, to maximize the seller’s revenue on this user, the seller
will assign 2 bundles of I1 = {1, 2} at unit price 5 to him. When user 2 and
user 3 come, there is no item 1 and item 2 left. In this case, user 2 and user
3 cannot buy anything and the total revenue of the seller is 20. However, the
optimal strategy can achieve a total revenue of 36 by assigning one bundle of I1
at unit price 5 to user 1, one bundle of I2 = {2, 3} at unit price 6 to user 2, and
one bundle of I3 = {1, 3} at unit price 7 to user 3.

Online Pricing for Multi Type of Items 3

item 1

item 2

item 3

user 1

user 2

user 3

(5, 5)

(6, 4)

(7, 4)

(2)

(2)

(2)

Fig. 1. An example of online pricing for multi items.

We consider the online version of this problem, i.e., before the i-th user
comes, the seller has no information of the j-th user for j ≥ i. To measure the
performance of online algorithms, competitive analysis is generally used, i.e.,
to compare the outputs between the online algorithm and the optimal offline
algorithm (which assumes all information is known in advance). Given the seller
with item set B and an user sequence σ, let A(B, σ) and O(B, σ) denote the
total revenue received by the seller according to the online algorithm A and the
optimal offline algorithm O, respectively. The competitive ratio of the algorithm
A is

RA = sup
B,σ

O(B, σ)

A(B, σ)
.

The pricing problem for items has been well studied in the past few years.
Both multi-type and single-type items have been considered. Previous work has
been focused on two supply models: the unlimited supply model [1, 2, 6, 10, 12]
where the number of each type of item is unbounded and the limited supply
model [1, 3–5, 7, 11, 13, 14] where the number of each type of item is bounded by
some value. As for the users, there are several users’ behaviors studied, including
single-minded [7–10, 12, 14] (each user is only interested in a particular set of
items), unit-demand [2–6, 12, 14] (each user will buy at most one item in total)
and envy free [1, 5, 7, 10, 12] (after the assignment, no user would prefer to be
assigned a different set of items with the designated prices, loosely speaking,
each user is happy with his/her purchase). Most of the previous studies have
considered a combination of the above scenarios (e.g. envy-free pricing for single-
minded users when there is unlimited supply). In [15], Zhang et al. considered
a more practical and realistic model in the sense that the seller has a finite
number of items (one type of item with limited supply) and users can demand
more than one items and arrive online. They proved that the lower bound of
the competitive ratio is O(log h), moreover, they gave a deterministic online
algorithm with competitive ratio O(log h), where h is the highest unit price.

4 Yong Zhang et al.

In this paper, besides generalizing the problem to more than one type of
items and bundles of items required by users, the idea used in our proposed
online pricing algorithm is rooted by considering the amount of remaining items
in additional to the user’s value function in determining the price and amount of
items to be sold. The proof in establishing the upper bound is more complicated
by employing a fine price partition. The result in this paper can also match the
optimal result O(log h) [15] asymptotically when there is only one type of item
(k = 1) in the model.

This paper is organized as follows: Section 2 proves the lower bound of the
competitive ratio for this variant to be O(log h + log k); in Section 3, a deter-
ministic online algorithm whose competitive ratio is O(

√
k log h log k) is given.

2 Lower Bound of the Competitive Ratio

In this part, our target is to show the lower bound of the competitive ratio of
the online pricing problem for multi type of items is O(log h+ log k), where h is
the highest unit price and k is the number of types.

To easily analyze the lower bound, we assume that h = 2ℓ and k = 2j , i.e.,
log h and log k are both integers. The lower bound is proved step by step. In each
step, the adversary sends an user to the seller. In this proof, all value functions
are flat, particularly, the value function v(x) is some power of 2 for all x.

In the first log k steps, the value function v(x) = 1.

Step 1:

The adversary sends user u1 to the seller, and u1’s interested bundle is {1}.
If the seller assigns x1 bundles to u1 such that x1 ≤ m/(log h + log k), the

adversary stops. In this case, the revenue of the seller is at mostm/(log h+log k),
while the maximal revenue is m by assigning all m bundles to u1. Thus, the ratio
in this case is at least O(log h+ log k).

Otherwise, the seller assigns more than m/(log h+ log k) bundles to u1. The
adversary will send the next user to the seller.

Step 2:

The adversary sends user u2 to the seller, u2’s interested bundle is {1, 2}.
If the seller assigns x2 bundles to u2 such that x1 + x2 ≤ 2m/(log h+ log k),

the adversary stops. In this case, the revenue of the seller is at most x1 +2x2 ≤
3m/(log h+ log k), while the optimal revenue is 2m by assigning all i1 and i2 to
user u2. Thus, the ratio in this case is at least O(log h+ log k).

Otherwise, the seller assigns x2 bundles to u2 such that x1+x2 > 2m/(log h+
log k).

...
Step ℓ: (1 < ℓ ≤ log k)

Online Pricing for Multi Type of Items 5

The adversary sends user uℓ to the seller such that uℓ’s interested bundle is
{1, 2ℓ−2 + 1−−2ℓ−1}.

If the seller assigns xℓ bundles to uℓ such that
∑ℓ

t=1 xt ≤ ℓ ·m/(log h+log k),
the adversary stops. In this case, the revenue achieved by the seller is

x1 + 2x2 + ...+ (2ℓ−2 + 1)xℓ (1)

Lemma 1. If the adversary stops at step ℓ, the total revenue is at most

(2ℓ−1 + ℓ− 1)m

log h+ log k
.

Proof. From previous steps, we have

t∑
p=1

xp ≥ tm

log h+ log k
(1 ≤ t < ℓ),

thus,
ℓ∑

p=t+1

xp ≤ (ℓ− t)m

log h+ log k
(1 ≤ t < ℓ).

Therefore, Equation (1) achieves the maximal value (2ℓ−1+ℓ−1)m
log h+log k when each xp

equals to m/(log h+ log k). ⊓⊔

The optimal revenue is (2ℓ−2 +1)m by assigning all m bundles to uℓ. There-
fore, in this case, the competitive ratio is still bounded by O(log h+ log k).

Otherwise, the adversary sends the next user to the seller.
...

In the following log h steps (step log k+1 ≤ ℓ ≤ log k+ log h), the interested
bundles are {1, k/2+1−−k}, and the value functions are v(x) = 2ℓ−log k at step ℓ.

Step log k + 1:
The adversary sends user ulog k+1 to the seller.

If the seller assigns xlog k+1 bundles to ulog k+1 such that
∑log k+1

ℓ=1 xℓ ≤
(log k+1)m/(log h+log k), the adversary stops. In this case, the revenue achieved
by the seller is

x1 + 2x2 + ...+ (k/2 + 1)xlog k + 2 · (k/2 + 1)xlog k+1 (2)

Similar to the proof in Lemma 1, we can find that the revenue achieved is at
most

(3k/2 + log k + 1)m

log k + log h
.

The optimal revenue is (k + 2)m by assigning all m bundles to ulog k+1.
Therefore, in this case, the competitive ratio is still bounded by O(log h+log k).

6 Yong Zhang et al.

Otherwise, the adversary sends the next user to the seller.

The analysis on Steps until Step log k+log h−1 are similar to the above one.

Step log k + log h:
The adversary sends user ulog k+log h to the seller and the seller assigns

xlog k+log h bundles to the user. Since all interested bundles include i1, thus,
the total number of all assigned bundles is no more than m. Thus, the adversary
must stop at this step. Similar to the previous analysis, we can say that the ratio
between the optimal solution and the revenue achieve by the online algorithm is
at least O(log k + log h).

Therefore, we have the following conclusion.

Theorem 1 For the online pricing for multi type of items, the lower bound of
the competitive ratio is O(log h+ log k).

3 Online Algorithm

To maximize the revenue of the seller on a particular user u with interested
bundle I, a straightforward idea is finding unit price p and amount of bundles b
such that p is acceptable when buying b bundles, and b · p is maximized. If we
assign b bundles with unit price p to u, the revenue is b ·p · |I|, which is maximal.

In our algorithm, we assign unit price 2ℓ (ℓ ≥ 0) to each user. In this way, we
have no need to consider all possible prices, and we will show that the perfor-
mance doesn’t be affected too much. Let (b, p) be the assignment such that b·p·|I|
is maximal. W.l.o.g., suppose 2i ≤ p < 2i+1, note that v(x) is non-increasing,
we have v−1(2i+1) ≤ b ≤ v−1(2i). Thus,

b · p ≤ v−1(2i) · p ≤ v−1(2i) · 2i+1 = 2 · v−1(2i) · 2i.

If we choose the unit price equals to some power of 2, (v−1(2i), 2i) is a candidate
of the assignment, which is at least half of the maximal value.

In our algorithm, we partition the amount of each type of item into ⌊log h⌋
stages, from stage 1 to stage ⌊log h⌋. The amount of items in stage i can be only
assigned with unit price 2i−1. Furthermore, partition the items in each stage into
⌊log k⌋ + 1 levels, from level 0 to level ⌊log k⌋. For type i, items in level ℓ can
be only assigned to users such that type i is in the user’s interested bundle and
the size of the bundle is within [2ℓ−1+1, 2ℓ]. For example, an user u’s interested
bundle is {1, 2, 3, 4}, thus, in our algorithm, we choose items from level 2 in some
stage to satisfy this user.

Let δs,ti denote the available amount of items of type i in stage s level t.
Initially, δs,ti = m/(⌊log h⌋(⌊log k⌋+ 1).

Next, we will formally describe the pricing algorithm for multi type of items.
According to the algorithm Pricing, if an user u with interested bundle I

cannot be satisfied, that means in each acceptable stage s, at least one type of
item in I at level ⌈log |I|⌉ are all assigned to other users.

Online Pricing for Multi Type of Items 7

Algorithm 1 Pricing

1: Let I be the interested bundle of the coming user u.
2: Let ℓ = ⌈log |I|⌉ ◃ ℓ denotes the level which may assign items to user i.
3: Let xj be the largest amount of bundles that user i is willing to buy given unit

price 2j and satisfying xj ≤ m.
4: Let yj = min{xj ,mini∈I{δj+1,ℓ

i }}.
5: Let s = argmaxj yj · 2j such that yj > 0.
6: if no such s exists then
7: Assign 0 bundles to user u.
8: else
9: Set the unit price p = 2s.
10: Assign ys bundles to user u.
11: δs+1,ℓ

i = δs+1,ℓ
i − ys for all i ∈ I.

12: end if

For an user sequence {u1, u2, ...}, let ALG denote the total revenue received
from the algorithm Pricing, let OPT be the revenue achieved by the optimal al-
gorithm. Next, we give the competitive ratio of the algorithm Pricing, i.e., prove
the upper bound of the ratio between OPT and ALG.

After the processing of Pricing, for each type of item, some levels in some
stages are full, the others still contain some available items. Classify all levels
into two classes: Lf

i denotes the levels of type i which are full, i.e., if δs,ti = 0,

level t in stage s of type i belongs to Lf
i ; L

n
i denotes the levels of type i which

contain available items, i.e., δs,ti > 0 for the corresponding levels.
Compare the assignments from the optimal algorithm and Pricing, we also

partition the assignments from the optimal algorithm into two classes according
to Lf

i and Ln
i . In the optimal solution, consider the assignment to an user with

interested bundle I, suppose the unit price p ∈ [2ℓ, 2ℓ+1). In the assignment from

Pricing, if there exist i ∈ I such that δ
ℓ+1,⌈log |I|⌉
i = 0, i.e., this level belongs to

Lf
i , we say the revenue of this assignment from the optimal algorithm belongs to

Of . Otherwise, if for any i ∈ I, δ
ℓ+1,⌈log |I|⌉
i > 0 in the assignment w.r.t. Pricing,

the revenue of this assignment belongs to On.
Moreover, we partition the assignment according to the size of the bundle.

If |I| ≤
√
k, we say the size of the bundle is small, otherwise, the size is large.

The revenue of the assignment from the optimal algorithm is further partitioned
into four classes: Os

f , O
l
f , O

s
n, and Ol

n, where Os
f and Os

n denote the revenue

from small bundles, Ol
f and Ol

n denote the revenue from large bundles. Note

that Os
f + Ol

f = Of and Os
n + Ol

n = On. Next, we compare these four classes
with ALG respectively.

Lemma 2.
Os

f

ALG ≤ O(
√
k · log h log k).

Proof. By the optimal algorithm, consider an assignment A of a bundle I with
unit price p ∈ [2ℓ, 2ℓ+1). Assume that |I| ≤

√
k and in the assignment from

8 Yong Zhang et al.

Pricing, at least one type i ∈ I at level ⌈log |I|⌉ in stage ℓ+1 is full. The optimal
revenue of the assignment A is

p ·m · |I| (3)

From the algorithm Pricing, the revenue at level ⌈log |I|⌉ in stage ℓ+ 1 of type
i is

2ℓ ·m/(⌊log h⌋(⌊log k⌋+ 1)) (4)

The ratio between (3) and (4) is

O(
√
k · log h log k).

Suppose by the optimal algorithm, more than one assigned small bundles,
I1, I2, ..., Ij with unit prices p1, p2, ..., pj satisfy pj′ ∈ [2ℓ, 2ℓ+1) for 1 ≤ j′ ≤ j
and all ⌈log |Ij′ |⌉ (1 ≤ j′ ≤ j) are equal, if these bundles share an item i such
that in the assignment from Pricing, level ⌈log |I1|⌉ in stage ℓ + 1 of item i is
full, the total revenue for these bundles in the optimal solution is at most

max{pj′} ·m ·max{|Ij′ |} 1 ≤ j′ ≤ j (5)

Compare the value in Equation (5) with the revenue from Pricing at level
⌈log |I|⌉ in stage ℓ+ 1 of type i (Equation (4)), the ratio is also

O(
√
k · log h log k).

From the optimal pricing, all assignments in Os
f can be partitioned into parts,

each part contains the assignments mentioned above. Since the total revenues
on such full levels is a lower bound of ALG, we have

Os
f

ALG
≤ O(

√
k · log h log k).

⊓⊔

Lemma 3.
Ol

f

ALG ≤ O(
√
k · log h log k).

Proof. By the optimal algorithm, consider some amount of bundle I with unit
price p ∈ [2ℓ, 2ℓ+1) is assigned to an user. Assume that |I| >

√
k and there exist

an item i ∈ I such that in the assignment from Pricing, level ⌈log |I|⌉ in stage
ℓ+1 of item i is full. Note that in Pricing, items in this level can be only assigned
to bundles with size in between (2⌈log |I|⌉−1, 2⌈log |I|⌉], thus, the total revenue on
level ⌈log |I|⌉ in stage ℓ+ 1 is at least

2ℓ ·m · 2⌈log |I|⌉−1

⌊log h⌋(⌊log k⌋+ 1)
(6)

Note that the optimal revenue for bundles with unit price p ∈ [2ℓ, 2ℓ+1) is at
most

2ℓ+1 ·m · k (7)

The ratio between the above two equations is O(
√
k · log h log k). Combine

all revenues in Ol
f , we can say that this lemma is true. ⊓⊔

Online Pricing for Multi Type of Items 9

Lemma 4.
Os

n

ALG ≤ O(
√
k · log h log k).

Proof. Again, consider an assigned bundle I from the optimal algorithm, such
that the revenue on I belongs to Os

n and the unit price is p ∈ [2ℓ, 2ℓ+1). The
algorithm Pricing chooses the unit price 2j such that 2j · yj is maximized. Note
that (2ℓ, yℓ) is also a candidate for satisfying bundle I.

– If Pricing assigns (2ℓ, yℓ), since after the assignment, δ
ℓ+1,⌈log I⌉
i > 0 for all

i ∈ I, the revenue achieved on I by Pricing is at least half of the optimal
revenue on this bundle.

– Otherwise, Pricing assigns (2j , yj) such that j ̸= ℓ. From the choosing crite-
ria, 2j · yj ≥ 2ℓ · yℓ.
• If δ

ℓ+1,⌈log I⌉
i > yℓ for all i ∈ I, from above analysis, we can say the

revenue on I by Pricing is at least half of the optimal revenue on this
bundle.

• Otherwise, δ
ℓ+1,⌈log I⌉
i = yℓ for some i ∈ I. Since 2j · yj ≥ 2ℓ · yℓ, the

revenue achieved on I by Pricing plus the current revenue on level ⌈log I⌉
in stage ℓ+ 1 of type i is at least

2ℓ ·m
⌊log h⌋(⌊log k⌋+ 1)

(8)

This is because if we assign (2ℓ, yℓ) for this bundle, level ⌈log I⌉ in stage
ℓ+ 1 of type i is full.
Similar to the analysis in Lemma 2, suppose more than one assigned
small bundles I1, I2, ... with unit price p1, p2, ... within [2ℓ, 2ℓ+1) and
the sizes of these bundles are all within (2⌈log |I1|⌉−1, 2⌈log |I1|⌉], if all these
bundles share type i, the total revenue on such bundles by the optimal
scheme is at most

2ℓ+1 ·m · 2⌈log |I1|⌉ (9)

The ratio between the above two terms is O(
√
k · log h log k).

Mapping the assignments of Os
n to the corresponding assignments of Pric-

ing described above, each assignment by Pricing is counted at most TWICE.
Combining the above analysis, we can say that

Os
n

ALG
≤ O(

√
k · log h log k).

⊓⊔

Lemma 5.
Ol

n

ALG ≤ O(
√
k · log h log k).

Proof. The proof of this lemma is similar to the proofs in Lemma 3 and Lemma
4. Consider an assigned bundle I from the optimal algorithm, such that the
revenue on I belongs to Ol

n and the unit price is p ∈ [2ℓ, 2ℓ+1). The algorithm
Pricing chooses the unit price 2j such that 2j · yj is maximized. Since any level
⌈log |I|⌉ in stage ℓ+ 1 of item i ∈ I is not full, (2ℓ, yℓ) is a candidate.

10 Yong Zhang et al.

– If Pricing assigns (2ℓ, yℓ), since after the assignment, δ
ℓ+1,⌈log I⌉
i > 0 for all

i ∈ I, the revenue achieved on I is at least half of the optimal revenue on
this bundle.

– Otherwise, Pricing assigns (2j , yj) such that j ̸= ℓ. From the choosing crite-
ria, 2j · yj ≥ 2ℓ · yℓ.
• If δ

ℓ+1,⌈log I⌉
i > yℓ for all i ∈ I, from above analysis, we can say the

revenue on I by Pricing is at least half of the optimal revenue on this
bundle.

• Otherwise, δ
ℓ+1,⌈log I⌉
i = yℓ for some i ∈ I. Since 2j · yj ≥ 2ℓ · yℓ, the

revenue achieved on I by Pricing plus the current revenue on level ⌈log I⌉
in stage ℓ+ 1 is at least

2ℓ ·m · 2⌈log |I|⌉−1

⌊log h⌋(⌊log k⌋+ 1)
(10)

This is because if we assign (2ℓ, yℓ) for this bundle, level ⌈log I⌉ in stage
ℓ+1 of type i is full, and the size of each bundle on this level is at least
2⌈log |I|⌉−1.
From the optimal scheme, the total revenue on assignments from unit
price in between [2ℓ, 2ℓ+1) and bundle size in between (2⌈log |I|⌉−1, 2⌈log |I|⌉]
is at most

2ℓ+1 ·m · k (11)

The ratio between the above two terms is O(
√
k · log h log k)

Mapping the revenue of assignments in Ol
n to the assignment by Pricing,

from the above analysis, each assignment is counted at most twice. Thus,

Ol
n

ALG
≤ O(

√
k · log h log k).

⊓⊔

Now we give the main conclusion of this paper.

Theorem 2 The competitive ratio of the algorithm Pricing is at most

O(
√
k · log h log k).

Proof. From the definition of Os
f , O

l
f , O

s
n, and Ol

n, these four classes are disjoint.
Note that if a requested bundle cannot be satisfied, it must belongs to Os

f or

Ol
f . Combining Lemma 2 until Lemma 5, we can say that the competitive ratio

of the algorithm Pricing is O(
√
k · log h log k). ⊓⊔

Online Pricing for Multi Type of Items 11

References

1. N. Balcan, A. Blum, and Y. Mansour. Item pricing for revenue maximization. In
Proc. of the 9th ACM Conference on Electronic Commerce (EC’08), pp. 50-59.

2. Nikhil Bansal, Ning Chen, Neva Cherniavsky, Atri Rurda, Baruch Schieber, Maxim
Sviridenko. Dynamic pricing for impatient bidders. ACM Transactions on Algo-
rithms Vol. 6 Issue 2, March 2010.

3. Patrick Briest. Uniform Budgets and the Envy-Free Pricing Problem. Proceedings
of the 35th international colloquium on Automata, Languages and Programming,
Part I, July 07-11, 2008, Reykjavik, Iceland

4. Patrick Briest , Piotr Krysta. Buying cheap is expensive: hardness of non-
parametric multi-product pricing. Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, p.716-725, January 07-09, 2007, New
Orleans, Louisiana

5. Ning Chen and Xiaotie Deng. Envy-Free Pricing in Multi-item Markets In Proc.
of the 35th international colloquium on Automata, Languages and Programming
(ICALP 2010), pp. 418-429.

6. Ning Chen, Arpita Ghosh, Sergei Vassilvitskii. Optimal envy-free pricing with
metric substitutability. In Proc. of the 9th ACM conference on Electronic commerce
(EC’08), pp. 60-69.

7. Maurice Cheung and Chaitanya Swamy. Approximation Algorithms for Single-
minded Envy-free Profit-maximization Problems with Limited Supply. In Proc. of
49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008),
pp. 35-44

8. Khaled Elbassioni, Rajiv Raman , Saurabh Ray , René Sitters. On Profit-
Maximizing Pricing for the Highway and Tollbooth Problems. Proceedings of the
2nd International Symposium on Algorithmic Game Theory, p.275-286, October
18-20, 2009, Paphos, Cyprus

9. Khaled Elbassioni, René Sitters, and Yan Zhang. A quasi-PTAS for profit-
maximizing pricing on line graphs. In Proc. of the 15th annual European conference
on Algorithms (ESA’07), pp. 451-462.

10. Amos Fiat and Amiram Wingarten Envy, Multi Envy, and Revenue Maximization.
In Proc. of the 5th International Workshop on Internet and Network Economics
(WINE 2009), pp. 498-504.

11. Alexander Grigoriev, Joyce van Loon, René Sitters and Marc Uetz How to Sell a
Graph: Guidelines for Graph Retailers. In Proc. of the 32nd International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG 2006), pp. 125-136.

12. V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On
Profit-Maximizing Envy-Free Pricing. In Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 05), pp. 1164-1173, 2005.

13. Sungjin Im, Pinyan Lu and Yajun Wang Envy-Free Pricing with General Supply
Constraints. In Proc. of the 6th International Workshop on Internet and Network
Economics (WINE 2010), pp. 483-491.

14. Robert Krauthgamer, Aranyak Mehta , Atri Rudra. Pricing commodities. Theo-
retical Computer Science, v.412 n.7, p.602-613, February, 2011

15. Yong Zhang, Francis Chin, Hing-Fung Ting. Competitive Algorithms for Online
Pricing. In Proc. of the 17th Annual International Computing and Combinatorics
Conference (COCOON 2011), LNCS 6842, pp. 391-401.

