
A MODEL-DRIVEN APPROACH TOWARDS
DESIGNING AND ANALYSING SECURE

SYSTEMS FOR MULTI-CLOUDS

SHAUN SHEI

PhD 2018

A MODEL-DRIVEN APPROACH TOWARDS
DESIGNING AND ANALYSING SECURE

SYSTEMS FOR MULTI-CLOUDS

SHAUN SHEI

A thesis submitted in partial fulfilment of the
requirements of the University of Brighton

for the degree of Doctor of Philosophy

April 2018

The University of Brighton

Abstract

Cloud computing is a paradigm that is utilised by cloud service providers to offer
computational resources as procurable services to consumers. Whereby security is
a primary concern to both consumers and cloud service providers, as confidential
data and processes are offloaded to third party providers when utilising cloud ser-
vices. Addressing security is therefore a non-trivial task due to the importance of the
enabling technology, such as virtualisation, coupled with social factors considering
consumer needs and physical properties such as geo-location influencing jurisdiction
on resources and processes. Consumers have security needs to ensure their data and
processes are kept secure, where cloud service providers are responsible for identify-
ing security requirements in cloud computing environments and providing assurance
that security needs are satisfied through transparency. In order to provide transpar-
ency of security requirements in cloud computing environments, concepts unique to
the cloud computing paradigm such as multi-tenancy, dissemination of resources and
responsibility needs to be captured. By adapting a security requirements engineering
approach, security issues are identified early in the software development life-cycle.
This ensures the security needs within a system is identified and well-understood be-
fore committing to implementation and deployment, where it is exponentially more
difficult to address underlying security issues.

In this thesis we present the Secure Cloud Environment Framework(SCEF), a
decision support framework enabling developers to elicit cloud security requirements
from cloud computing environments. The SCEF consists of a cloud modelling lan-
guage, a secure cloud process and a set of cloud security analysis techniques. In
the SCEF we make explicit, the exact definition and relationship of cloud secur-
ity requirements within the scope of a cloud computing environment, encompassed
and expressed at an organisational, application and infrastructure level of abstrac-
tion. The overall contribution to knowledge is the SCEF, which allows developers
to model cloud computing environments in order to understand and address cloud
security issues. The cloud modelling language is a contribution as it extends the
Secure Tropos methodology, which enhances the existing security paradigm through
domain-specific cloud computing concepts. The secure cloud process is a contribu-
tion as it provides developers with a methodological approach when applying the

I

SCEF to elicit cloud security requirements. The cloud security analysis techniques
is a contribution as it facilitates semi-automated reasoning and enrichment of know-
ledge. Visual modelling and reasoning capabilities is supported by the SectroCloud
module in the Apparatus Software Tool.

II

Contents

1 Introduction 1
1.1 Cloud Computing and Security Challenges 2
1.2 Security Requirements Engineering Approaches 4
1.3 Motivating Cloud Adoption Scenario 7
1.4 Research Questions and Outcomes . 9

1.4.1 Research Questions . 9
1.4.2 Research Aims and Objectives 9
1.4.3 Research Contributions . 10

1.5 Thesis Structure . 14
1.6 Publications . 15

2 Literature Review 18
2.1 Cloud Computing Properties . 19

2.1.1 Definitions, Taxonomies and Modelling the Cloud 19
2.1.2 Security Issues and Challenges in Cloud Computing 23

2.2 Security Requirements Engineering 28
2.2.1 Requirements Engineering Approaches 28
2.2.2 Security Requirements Engineering Approaches 30

2.3 Secure Tropos . 36
2.3.1 Secure Tropos Modelling Language 36
2.3.2 Secure Tropos Syntax . 43

2.4 The Secure Cloud Environment Framework 48
2.4.1 Overview of the Secure Cloud Environment Framework 49

2.5 Chapter summary . 50

III

3 Cloud Security Modelling Language 52
3.1 Requirements of the Modelling Language 52
3.2 Cloud Computing Concepts . 53
3.3 Relationships . 57
3.4 Properties . 64
3.5 Syntax . 84
3.6 Cloud Computing Models . 91

3.6.1 Organisational Cloud View . 92
3.6.2 Application Cloud View . 93
3.6.3 Infrastructure Cloud View . 94
3.6.4 Cloud Environment Model . 95

3.7 Chapter summary . 96

4 Secure Cloud Process 97
4.1 Overview of the Secure Cloud Process 97
4.2 Activity 1: Organisational Goal Model 98
4.3 Activity 2: Organisational Cloud System 99
4.4 Activity 3: Holistic Cloud Model . 104
4.5 Activity 4: Cloud Analysis . 110
4.6 Chapter summary . 113

5 Semi-Automated Reasoning Support 114
5.1 Formal Analysis Concepts . 115
5.2 Security Knowledge . 129

5.2.1 Common Weakness Enumeration 130
5.2.2 Common Vulnerabilities and Exposures 134
5.2.3 National Vulnerability Database 136
5.2.4 Cloud Control Matrix . 138

5.3 Cloud Analysis Techniques . 140
5.3.1 Cloud Security Analysis . 143
5.3.2 Security Mitigation Analysis 148
5.3.3 Transparency Analysis . 152

5.4 Tool Support for the Secure Cloud Environment Framework 155

IV

5.4.1 SectroCloud Interface . 156
5.4.2 Visualisation of Concepts and Relationships 159
5.4.3 Properties of Concepts and Relationships 160
5.4.4 Views and Filters . 161

5.5 Chapter summary . 163

6 Evaluation of the Secure Cloud Environment Framework 165
6.1 Use-case Scenarios . 165

6.1.1 Software as a Service . 166
6.1.2 Platform as a Service . 172
6.1.3 Infrastructure as a Service . 175

6.2 VisiOn Case Study: Municipality of Athens 178
6.2.1 Application and Outcome of the Secure Cloud Environment

Framework . 180
6.3 Chapter summary . 189

7 Conclusion and Future Work 190
7.1 Conclusions . 190

7.1.1 Secure Cloud Environment Framework 191
7.1.2 Cloud Security Modelling Language 191
7.1.3 Secure Cloud Process . 192
7.1.4 Semi-Automated Reasoning Support 193

7.2 Future Work . 194

Bibliography 195

V

List of Figures

1.1 Example of a company outsourcing business intelligence processes to
a cloud provider. 7

1.2 Example of a virtual machine image weakness resulting in comprom-
ised data on dependent cloud services. 12

1.3 Example showing how compromised user credential can be used to
gain access to cloud data located in different physical locations. . . . 13

1.4 Model of the thesis structure showing the research questions, chapters
and research objectives. 14

2.1 From left to right, the graphical notation of an actor, cloud actor and
malicious actor. 36

2.2 Graphical notation of a goal as a dark green elongated oval. 37
2.3 Graphical notation of a resource as a stretched yellow rectangle. . . . 38
2.4 Graphical notation of a threat as a light red pentagon. 38
2.5 Graphical notation of a vulnerability as a dark red elongated oval. . . 39
2.6 Graphical notation of an attack method as a dark yellow heptagon. . 39
2.7 Graphical notation of a security constraint as a red octagon. 40
2.8 Graphical notation of a security objective as a blue hexagon. 41
2.9 Graphical notation of a security mechanism as a green stretched

hexagon. 42
2.10 The Meta-Model of the Secure Tropos methodology 44
2.11 An example of an organisational view in Secure Tropos 45
2.12 An example of a security requirements view in Secure Tropos 47
2.13 An example of a security attacks view in Secure Tropos 47
2.14 An example of a cloud analysis view in Secure Tropos 48

VI

2.15 Components of modelling methods from Karagiannis D. & Kühn
H. (Karagiannis & Kühn, 2002). 49

2.16 An overview of the Secure Cloud Environment Framework. 50

3.1 A fragment of the Secure Tropos metamodel showing the concepts
which are extended in our work. 54

3.2 The conceptual representation of the cloud service in the metamodel. 55
3.3 The conceptual representation of the virtual resource in the metamodel. 55
3.4 The conceptual representation of the physical infrastructure in the

metamodel. 56
3.5 The conceptual representation of the infrastructure node in the mod-

elling language. 57
3.6 The cloud service is a specialisations of the goal concept. 58
3.7 The virtual resource, infrastructure node and physical infrastructure

are all specialisations of the resource concept. 59
3.8 The composition relationship from infrastructure node concept to the

physical infrastructure concept. 59
3.9 The permeates relationship between the virtual resource and infra-

structure node concept. 60
3.10 The requires relationship between the resource, goal and cloud service

concepts. 61
3.11 The owns relationship between the resource, actor and cloud service

concepts. 62
3.12 The manages relationship between the actor and cloud service concepts. 63
3.13 Highlighting the Cloud Actor concept with extended properties and

the enumeration CloudActorType. 65
3.14 Highlighting the Owns relationship with extended properties and the

enumeration Ownership. 67
3.15 Highlighting the Cloud Service concept with extended properties and

the enumerations DeploymentModel and ServiceModel. 68
3.16 Highlighting the Manages relationship with extended properties. . . . 69
3.17 Highlighting the Resource concept with extended properties. 71

VII

3.18 Highlighting the Virtual Resource concept with extended properties
and the enumerations ResourceType and Visibility. 72

3.19 Highlighting the Physical Infrastructure concept with its extended
property and the enumeration Jurisdiction. 73

3.20 Highlighting the Infrastructure Node concept with extended proper-
ties and the enumerations NodeType and Tenancy. 74

3.21 Highlighting the Security Constraint concept with extended proper-
ties and the enumeration SecurityProperty. 76

3.22 Highlighting the Requires relationship with its extended property. . . 77
3.23 Highlighting the Threat concept with extended properties. 79
3.24 Highlighting the Vulnerability concept with extended properties. . . . 80
3.25 Highlighting the Security Mechanism concept with extended properties. 82
3.26 Highlighting the Security Objective concept with extended properties. 83
3.27 Concrete syntax of a cloud service. 85
3.28 A Cloud Actor is visualised as a light pink circle. 85
3.29 A virtual resource is visualised as a yellow rectangle with thin dashed

outlines. 87
3.30 A physical infrastructure visualised as a yellow rectangle with thick

outlines. 87
3.31 An infrastructure node visualised as a yellow rectangle with thick

dashed outlines. 88
3.32 A security constraint visualised as a red octagon with a black outline. 89
3.33 A vulnerability visualised as a red rectangle with a black outline. . . 89
3.34 A threat visualised as a light red pentagon with a black outline. . . . 90
3.35 An security mechanism visualised as a green hexagon with black

dashed outlines. 90
3.36 An security objective visualised as an aqua hexagon with a black outline. 91
3.37 The organisation cloud view showing cloud actors, cloud services and

virtual resources. 92
3.38 The application view showing refinement of virtual resources, cloud

actor relationships and security concepts. 94
3.39 The infrastructure view showing the refinement of infrastructure nodes,

cloud actor relationships and security concepts. 95

VIII

4.1 An overview of the Secure Cloud Process. 98
4.2 Simple organisational goal model of hospital processes. 99
4.3 The Cloud Service Template. 100
4.4 Default fields in a cloud service with a list of candidate cloud services. 101
4.5 A view showing the default candidate cloud services generated during

step 2.1. 102
4.6 Configuring selected cloud services from the running example. 103
4.7 A view showing the user-configured cloud services. 104
4.8 Example of the cloud environment view during Activity 3 in the secure

cloud process. 106
4.9 Example of two atomic cloud services in the cloud service output

during Activity 2 in the secure cloud process. 107
4.10 Example of one composite cloud service in the organisational cloud

service view during Activity 3 in the secure cloud process. 108

5.1 Graphical example of a cloud service, the resources required and in-
frastructure. 118

5.2 Graphical example of the owns, manages and poses relationships. . . 120
5.3 Graphical example of a secure dependency relationship. 122
5.4 Graphical example of relationships in a cloud vulnerability model. . . 126
5.5 Graphical example of relationships in a cloud threat model. 128
5.6 Process illustrating three types of cloud analysis techniques with in-

puts from and updates to the cloud environment model. 141
5.7 A cloud model as input for the vulnerability analysis. 145
5.8 A new vulnerability is identified and generated from the vulnerability

analysis. 145
5.9 Identifying a threat exploiting a vulnerability and impacting a resource.147
5.10 Creating a security constraint which mitigates a threat and restricts

a resource. 149
5.11 Creating a security objective which satisfies a security constraint. . . 150
5.12 Creating a security mechanism which implements a security objective

and protects a vulnerability. 152

IX

5.13 Cloud environment model showing the security needs of a system-
under-design. 154

5.14 The main SectroCloud interface in ASTo. 157
5.15 Adding concepts to the model in SectroCloud as nodes. 159
5.16 Adding relationships between nodes in SectroCloud as edges. 160
5.17 Examining the properties of a node. 160
5.18 Examining the properties of an edge. 161
5.19 Editing the properties of a node. 161
5.20 Filtering the model using the cloud-service concept. 162
5.21 Filtering the model using the application view. 163

6.1 Cloud Environment model for the BitDefender use-case scenario. . . . 168
6.2 Organisational view of the cloud model. 169
6.3 Properties of the “Hypervisor” infrastructure node instance. 169
6.4 The cloud environment model after performing semi-automated reas-

oning techniques. 171
6.5 Cloud environment model of the network security scenario. 173
6.6 Identified vulnerability and security mechanism in the network secur-

ity scenario. 174
6.7 Cloud environment model showing how to mitigate the virtualisation

vulnerability affecting an infrastructure node. 176
6.8 Organisational goal model of the VisiOn Municipality of Athens scen-

ario. 181
6.9 View of the model using the organisation filter. 183
6.10 Visualisation of the holistic cloud model. 185
6.11 Fragment of the model in the VisiOn case study. 188

X

Acknowledgments

First and foremost I would like to thank my family for their continued support
throughout my studies. My dad for his advice from an academics perspective and
my mom and brother for their fairly unbiased opinions. I would like to give special
thanks to the supervisory team for their mentoring and advice over the years. This
work would not have been possible without their guidance. Professor Haralambos
Mouratidis for the opportunity to work on this project, his expert knowledge and
wealth of ideas. Dr Aidan Delaney for his prompt and applicable advice. Dr Stelios
Kapetanakis who provided advice outside of the academic box. A big shout-out and
thanks to all my friends and colleagues from CEM, it has been a pleasure to share
this journey with all of you. I will miss the caffeine-fueled discussions we’ve had
over these years. Finally last but not least, extra thanks to my friend David Ren
for proof-reading this thesis and brainstorming ideas from the beginning.

XI

Declaration

I declare that the research contained in this thesis, unless otherwise
formally indicated within the text, is the original work of the author.
The thesis has not been previously submitted to this or any other
university for a degree, and does not incorporate any material
already submitted for a degree.

Signed:

Dated:

Released under the Creative Commons Attribution licence available at
http://creativecommons.org/licenses/by/3.0/

XII

http://creativecommons.org/licenses/by/3.0/

Chapter 1

Introduction

The premise of the cloud computing paradigm is that computing resources are offered
by third party providers as a form of commodity accessed through network connec-
tions (Armbrust et al., 2010; Mell, Grance et al., 2011). In comparison to traditional
IT solutions, this lowers the capital needed and abstracts away implementation and
infrastructure details by allowing cloud users to select from pre-configured comput-
ing services. Cloud computing systems are represented as a pool of resources, which
consists of one or more physical servers. But because the configuration and delivery
of resources in a cloud computing system is vendor specific, the cloud infrastructure
can be distributed across multiple geographical locations with disparate jurisdic-
tions. This poses several security challenges from a technical standpoint due to the
outsourcing of data and processes to third party providers. Factors such as the
co-tenancy of data and mutually distrusting users sharing the same physical servers
also raises security issues with legal and jurisdictional implications. This is com-
pounded by the complexity of determining the security requirements and properties
of cloud computing systems involving multiple cloud services, service providers and
consumers.

In this chapter we examine the security issues found in cloud computing sys-
tems, which combines the existing problems of traditional software systems with the
new challenges introduced when outsourcing business operations and data to third
party providers. We assess the challenges from an early requirements perspective,
specifically focusing on goal-oriented security requirements engineering approaches

1

with a visual language component. The aim of the work presented is to provide
semi-automated reasoning support for developers, throughout the decision making
process, in order to understand and address cloud security issues. In this thesis
the term developer refers to a practitioner with speciality in security requirements
engineering or cloud computing, where their role is to analysis the security require-
ments of cloud computing systems. We discuss the limitations of existing security
requirements engineering approaches in the literature when addressing the security
challenges in cloud computing. In Section 1.1 we provide motivation for adopting
cloud computing, describing the security challenges limiting the cloud paradigm. In
Section 1.2 we describe the advantages of adapting a security requirements engineer-
ing approach when addressing cloud security challenges from the early requirements
stage. Section 1.3 presents a motivating example demonstrating the benefits of cloud
computing systems and the security issues discussed in this chapter. In Section 1.4
we derive three research questions in order to address the identified cloud security
challenges. We propose a framework, which is further refined through research aims
and we conclude with the anticipated contributions to knowledge. Section 1.5 out-
lines the structure of the thesis. Finally Section 1.6 provides a list of publications
supporting the thesis.

1.1 Cloud Computing and Security Challenges

The National Institute of Standards and Technology (NIST) defines cloud computing
as: “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.”, where
the cloud model is composed of “five essential characteristics, three service models,
and four deployment models.” (Mell, Grance et al., 2011). The NIST definition is
used throughout this thesis to provide a consistent reference for cloud computing
terminology.

Cloud computing resources are provisioned through an “utility model” (Buyya,
Yeo, Venugopal, Broberg & Brandic, 2009) and offers numerous benefits to end users
in comparison to traditional IT solutions; such as rapid deployment, self-servicing,

2

high availability and competitive costs. In a traditional IT approach, new infra-
structure need to be purchased, delivered and installed. Software licences need to be
secured and renewed. New personnel also need to be hired and trained to configure,
use and maintain systems. Rapid deployment in cloud computing offers cloud users
automated provisioning and de-provisioning of computing resources, where the tech-
nical implementations are managed by the cloud providers. This allows the cloud
users to focus on business operations without worrying about how it is achieved.
Self-servicing refers to the selection of ready-to-use computing and business solu-
tions offered by cloud providers as cloud services. As an example a cloud user is
able to select business intelligence and data backup services, in order to begin the
process of integrating their business data into a cloud computing environment with
minimal start-up time. High availability is achieved by distributing computational
processes across the resource pool in a cloud computing infrastructure, thereby re-
ducing risks incurred from a single point of failure where processes are hosted on
individual terminals. The distribution of the workload across the resource pool is
primary managed by the cloud service provider, where the computational processes
and data may span across different geographical zones belonging to multiple third
party cloud service providers. Therefore in comparison to traditional IT approaches,
the major advantages for small to medium enterprises (SMEs) is the reduction of
up-front capital costs, increased availability of business processes and a self-service
approach when adapting cloud computing systems (Adam & Musah, 2014).

However one of the prerequisites for cloud computing, the outsourcing of data and
processes to third parties, raises several security (Subashini & Kavitha, 2011; Sen-
gupta, Kaulgud & Sharma, 2011) and legal questions (Almorsy, Grundy & Müller,
2016). To the cloud user, cloud computing is a black box where the user has little
to no control over how or where their data is processed. Multi-tenancy in cloud
computing refers to multiple cloud users running independent logical processes but
sharing the same physical components, such as CPU, RAM and storage. Virtualisa-
tion is the enabling technology for virtual machines(VM), which emulates a physical
server and is managed through software known as hypervisors. Therefore a single
physical server can host a hypervisor, which manages one or more instances of vir-
tual machines. Each instance of a virtual machine is allocated to a cloud user, which
provides the cloud services required by a cloud user. However from a cloud comput-

3

ing context, the mutual distrust in multi-tenancy environments brings up questions
about the security of user data when sharing physical infrastructure (Lombardi &
Di Pietro, 2011; Li, Cuppens-Boulahia, Crom, Cuppens & Frey, 2016). Consider the
scenario where two rival companies are using virtual machines hosted on the same
physical server. A VM escape vulnerability (Luo, Lin, Chen, Yang & Chen, 2011)
would enable one company to access the sensitive data of their rival company. This
attack has been demonstrated by Ristenpart et al. (Ristenpart, Tromer, Shacham
& Savage, 2009), using the Amazon EC2 service as a case study, where they explore
the practicality of mounting a cross-VM attack in third-party compute clouds in
order to extract information from a co-residing virtual machine.

In the case of self-servicing, the cloud user depends on the cloud service provider
to manage service configurations, enforce security policies and ensure compliance to
security standards. When computing resources are automatically provisioned and
de-provisioned, the cloud user has no control over where their data and processes are
stored (Kandukuri, Rakshit et al., 2009). How are they able to ensure that processes
running in the cloud system meet their jurisdictional requirements? These are some
of the security issues which need to be addressed before a cloud user can fully commit
their data and processes to the cloud (Jamshidi, Ahmad & Pahl, 2013; Ahmad &
Babar, 2014).

1.2 Security Requirements Engineering Approaches

Security is a factor that is most effective when integrated as early as possible in the
software development life-cycle (Kissel et al., 2008). In order to understand how
security issues affect user data and processes in cloud systems, an understanding of
the users needs is required. More importantly an understanding of the system-to-be
and the relationships between the concepts need to be captured. These needs are
known as the user requirements (Pohl, 2010). Requirements engineering is a process
towards precisely describing the problems a system should solve in a given envir-
onment (Cheng & Atlee, 2007). One method for tackling this area is by adopting
an agent-oriented requirements engineering approach (Wooldridge, 1997), where the
focus is placed on characterising active elements in the environment such as hu-
mans or machines to elicit requirements for the target system (E. Yu & Mylopoulos,

4

1998). Another approach is to adapt a goal-oriented requirements engineering ap-
proach to capture, at different levels of abstraction, the objectives the system should
achieve (Van Lamsweerde, 2001). The key motivation for considering approaches
at the requirements level is to support a developers understanding of system pro-
cesses, objectives and relations. Stakeholder needs are described through textual
and visual representations, where developers create models representing the system-
under-design. An example of an agent-oriented approach is Tropos (Bresciani, Per-
ini, Giorgini, Giunchiglia & Mylopoulos, 2004), which is based on i* (E. S. Yu, 1997),
a goal-oriented requirements engineering approach.

By adapting a goal-oriented requirements engineering approach to cloud sys-
tems, we are able to capture high level concepts such as stakeholders, goals and
resources. In model-driven approaches, a modelling language expresses stakeholder
needs and system requirements through generalised models (Belaunde et al., 2003).
Models can be visualised using graphical notation to help developers understand
the concepts, processes and rationale behind the system design (Lapouchnian, 2005;
Ellis-Braithwaite, Lock, Dawson & Haque, 2012; Faily, 2011). These models allow
developers to examine and analyse stakeholder requirements by visualising compon-
ents and interactions through an abstract birds-eye view of the cloud system. Thus
model-driven approaches with a consistent visual language element can assist de-
velopers in visualising cloud-specific characteristics in systems, such as the security
needs and responsibilities of third parties. Goal-oriented Requirements Language
(GRL) (Amyot et al., 2010), i* (Eric, 2009) and KAOS (Darimont, Delor, Massonet
& van Lamsweerde, 1997) are all examples of goal-oriented requirements engineering
approaches with a visual language.

The cloud computing paradigm builds upon existing technologies and paradigms,
such as distributed systems, virtualisation and Service-Oriented architecture (SOA).
This creates a complex scenario where we need to consider security from multiple
perspectives. Thus an understanding of existing security issues in these areas is
essential for understanding security in cloud computing (Dillon, Wu & Chang, 2010;
Jadeja & Modi, 2012). Many of the security challenges found in cloud computing
are acute examples of existing issues, which arise as a result of adapting the cloud
computing paradigm in traditional IT environments. As an example there are vari-
ous existing security challenges concerning virtualisation and web service technology

5

in the literature (Barry, 2003; Chow et al., 2009; Luo et al., 2011; Lombardi & Di
Pietro, 2011). However at the cloud computing level, many solutions to existing se-
curity issues are no longer applicable due to numerous factors such as involvement of
multiple third party providers, multi-tenancy processes, geographically distributed
user assets and data centres (Behl, 2011; Fernandes, Soares, Gomes, Freire & Inácio,
2014). While there are established research efforts in integrating security considera-
tions into the software development life-cycle, the recent trend in migrating towards
cloud computing solutions has revealed the need for techniques and methodolo-
gies to ensure the security and transparency of systems and services (Kanday, 2012;
Ramgovind, Eloff & Smith, 2010; Sengupta et al., 2011). This is possible through se-
curity requirements engineering approaches such as Secure i* (Elahi & Yu, 2007), Se-
cure Tropos (Mouratidis et al.) (Mouratidis & Giorgini, 2007), Secure Tropos (Mas-
sacci et al.) (Massacci, Mylopoulos & Zannone, 2010), SecureUML (Lodderstedt,
Basin & Doser, 2002) and UMLSec (Jürjens, 2002). However these approaches lack
the specific language requirements to describe cloud computing characteristics, in
order to model and perform security reasoning on cloud systems.

Another obstacle limiting the uptake of cloud computing in the industry and
public sector is the perceived lack of security when migrating towards cloud envir-
onments. Negative publicity include data-breaches (Depot, 2014; Alpeyev, Galante
& Yasu, 2011), security leaks (Alliance, 2011), interoperability and compatibility
issues (Bergmayr et al., 2013; Ferry, Rossini, Chauvel, Morin & Solberg, 2013; Frey
& Hasselbring, 2011).

The Dropbox breach in 20121 is an example of a high-profile attack on a pub-
lic cloud service provider, where leaked email addresses were targeted with spam
emails. In this case the credentials of an employee at Dropbox was compromised
on a third party website where attackers subsequent reused the same credentials to
gain access to the employees’ data on Dropbox; including a plain-text document
containing email addresses registered with Dropbox accounts2. By identifying the
security requirements of stakeholders in cloud-based systems, it is possible to model
vulnerabilities exploited via threats such as social engineering. Subsequently de-
velopers are able to understand the impact of an attack in cloud systems through

1http://www.theregister.co.uk/2012/08/01/dropbox breach/
2https://blogs.dropbox.com/dropbox/2012/07/security-update-new-features/

6

cloud-specific characteristics such multi-tenancy and service models, where multiple
users sharing the same physical infrastructure are affected through a single attack.
Developers are then able to devise measures taken to enforce security policies on
confidential assets; thus understanding the security needs and implication of users
in a cloud system. By adapting a security requirements engineering approach, de-
velopers can abstractly describe cloud system components and stakeholder needs
from a goal-oriented perspective. Developers are then able to integrate high level
security features without worrying about implementation-level mechanisms during
the early requirement stage.

1.3 Motivating Cloud Adoption Scenario

Business Intelligence
Cloud Service

Small Start-up Company

Rival Company

Confidential Business data

Cloud Service Provider

Cloud Storage

Figure 1.1: Example of a company outsourcing business intelligence processes to a
cloud provider.

Figure 1.1 illustrates a scenario where a small start-up company deploys a busi-
ness intelligence cloud service provided by a cloud service provider. The small
start-up company offloads confidential business data to the cloud service, which is
stored in a cloud storage owned by the cloud service provider. A rival company is
also a customer of the cloud service provider and makes use of the same business
intelligence cloud service. This scenario provides a highly abstract view of the stake-
holders in the cloud system, the cloud service consumed by the stakeholders and the
cloud concepts involved when consuming the cloud service.

Given this scenario, it is possible that the cloud storage is affected by a VM
escape vulnerability as they share the same physical server. In this case the rival
company is able to exploit the vulnerability and access data found in the cloud
storage, including confidential business data owned by the small start-up company.

7

However we lack the means to fully capture the required information in order to
model this scenario. In this scenario the stakeholders include the rival company, the
small start-up company and the cloud service provider. However this only provides
a high level view of the actors involved in a system. We need to define actors
with malicious intent, in order to trace the potential attacks that are carried out.
In this case the rival company is an example of an actor with malicious intent,
as they intend to access the business data of the small start-up company. Thus
a security requirements engineering approach would allow us to capture concepts
such as malicious actors, vulnerabilities such as VM escape and security needs of
stakeholders such as keeping the business data confidential.

We also need to support different categories or types of actors from a cloud
computing perspective. For example a cloud service provider has different goals
and relationships in comparison to a cloud consumer. A cloud service provider will
manage one or more cloud services and possess ownership over some physical in-
frastructure required to deliver cloud services. A cloud consumer however possess
ownership data, which is required by cloud services when a cloud consumer uses a
cloud service. Therefore one constraint between the cloud actors is that a cloud con-
sumer does not own physical infrastructure. The security requirements engineering
approaches discussed so far do not provide support for cloud-specific concepts, such
as multi-tenancy, service models or cloud services. To address this, we now define
areas of investigation:

• I1 Cloud Computing Properties: The first area of investigation is to de-
termine what cloud computing concepts are required to model a cloud comput-
ing system. More specifically we are interested in cloud computing concepts
with the level of abstraction allowing developers to model cloud computing
systems based on stakeholder requirements.

• I2 Modelling Secure Cloud Systems: The second area of investigation
is to determine what activities are required to support developers throughout
the course of modelling and designing secure cloud computing systems. In
particular we want to ensure that developers are able to consistently apply
our concepts.

8

• I3 Cloud Security Analysis: The last area of investigation is to determine
what can be done to enhance the security of the system-under-design. More
specifically, what sort of analysis can the developer perform to identify ad-
ditional information on the security issues and solutions from models of the
cloud system?

1.4 Research Questions and Outcomes

In this section we formulate research questions in order to address the identified gaps
between cloud computing and security requirements engineering. We then present
the anticipated contributions of the research after addressing the research questions.

1.4.1 Research Questions

• RQ1: How do we describe cloud computing concepts to capture cloud systems
from a security requirements engineering perspective? This research question
addresses the first area of investigation (I1).

• RQ2: How do we define a systematic process to guide security requirements
engineers in modelling cloud computing systems? This research question ad-
dresses the second area of investigation (I2).

• RQ3: What types of analysis are useful in order to identify cloud security
requirements in cloud systems? This research question addresses the third
area of investigation (I3).

1.4.2 Research Aims and Objectives

In order to answer the research questions, the research aim is to provide a model-
ling language to describe cloud computing concepts, a process supporting developers
through modelling and designing secure cloud systems and a set of analysis rules to
reason about security needs. Thus we propose a framework consisting of a modelling
language, process and supports analysis techniques. The purpose of the framework
is to provide an integrated set of domain-specific concepts and functionality, which

9

enables the systematic application of a rigorously defined process. Thus the frame-
work guides developers of cloud computing systems through the process of modelling
cloud systems and performing analysis to obtain cloud security requirements. We
now define a set of research objectives refining the research aim and describe deliv-
erables of the framework.

• RO1: We will extend existing security requirements approaches in a way which
captures the security and cloud needs of stakeholders from the early require-
ments stage. This contributes towards addressing RQ1.

• RO2: We will define a modelling language capable of modelling cloud com-
puting concepts and relationships from a security requirements engineering
perspective. This contributes towards addressing RQ1.

• RO3: We will systematically guide the developer through the process of map-
ping our modelling language to models of secure cloud systems. This contrib-
utes towards addressing RQ2.

• RO4: We will provide guidelines for modelling cloud systems in order to per-
form semi-automated analysis. This contributes towards addressing RQ3.

• RO4.1: The analysis will support threat and vulnerability identification to help
security requirements engineers understand security issues in cloud systems.
This contributes towards addressing RQ3.

• RO4.2: The analysis will propose mitigation techniques to help security re-
quirements engineers understand how to address security issues in cloud sys-
tems. This contributes towards addressing RQ3.

1.4.3 Research Contributions

The core contribution of this work is a framework providing decision support
for developers to elicit cloud security requirements from a cloud comput-
ing environment. The developer creates a model of the cloud computing system
in order to identify cloud services and assets in the system-under-design. Decision
support is provided through the identification of security issues in the model, and

10

the proposed mitigation strategy. The cloud security requirements elicited include
the concepts required in order to address identified security issues. This consists of
the security mechanisms, security objectives and security constraints identified to
mitigate the cloud services and assets at risk in the system-under-design. This work
contributes to addressing the lack of support in the Secure Tropos methodology for
expressing security needs in the cloud computing domain.

The framework consists of; a modelling language, a process, and a set of ana-
lysis techniques. The first contribution of the work is the extension of the
Secure Tropos modelling language for cloud security needs. This is a con-
tribution to the body of knowledge in the field of security requirements engineering,
specifically by extending the Secure Tropos modelling language in order to describe
cloud security needs across both hardware and software levels from an organisational
perspective. Our extensions to the Secure Tropos modelling language captures the
domain-specific cloud computing characteristics, properties and relationships. Spe-
cifically we define the concepts which enables the modelling language to describe
cloud-specific needs, including managing the security needs of multiple tenants in
a virtualised environment, enumerating the configuration of cloud services, physical
and virtual components and creating links between the cloud computing domain
and security requirements engineering domain.

Cloud Security Example 1 - Compromising cloud user data through
exploitation of virtual machine weaknesses:

In Figure 1.2 we illustrate an example using our graphical notation and cloud
concepts, where the discrete data of unassociated cloud users sharing a public cloud
service is compromised as a result of weaknesses in a virtual machine image.

From this model, the developer is able to identify a cloud threat impacting the
virtual machine image required by CS1, and take measures to ensure the impact
of the threat does not propagate beyond CS1 to CS2. Specifically the User backup
data in CS2 is compromised as a result of a virtual machine weakness from CS1.

Thus from the perspective of a developer under the employment of the cloud
service provider cloud actor, they are able to identify their responsibility in ensuring
their cloud service CS1 has the appropriate security measures in place to address
and mitigate the threat of virtual machine image weakness.

Thus our work supports the developers understanding of their cloud system,

11

where our approach of modelling the physical, virtual and organisational components
of cloud computing systems highlights the relationships and security needs.

Figure 1.2: Example of a virtual machine image weakness resulting in compromised
data on dependent cloud services.

The second contribution is our description of a process guiding de-
velopers in modelling the security needs of cloud computing systems. The
process describes the procedure for modelling cloud computing systems, applying
analysis techniques and enumerating cloud security needs. Users of our framework,
envisioned to be organisational developers, follow a well-defined approach to model
cloud and systems components at the organisational, application and infrastructure
layers. This iterative approach refines a cloud environment model, capturing how
concepts and relationships between different conceptual layers within a cloud sys-
tem are created and associated, to facilitate the developers understanding of cloud
security needs. This addresses the need for an approach which provides guidance,
specifically to organisational cloud system developers, in addressing cloud security
needs from a security requirements engineering perspective. In particular through-
out this process, the security needs of cloud stakeholders in a system-to-be and the
cloud characteristics of components are examined at multiple levels of abstraction.

Cloud Security Example 2 - Gaining access to cloud data through ac-

12

count hijacking: In Figure 1.3 we illustrate an example whereby a cloud users
credentials can be exploited in order to gain access to assets located in discrete
physical locations. Specifically this example is amplified if the cloud user creden-
tials, “User data”, is shared with infrastructure managed or owned by 3rd party
cloud service providers, namely the “Datacentre 2” with EU jurisdiction owned by
the cloud service provider “3rd party service user” where “Datacentre 2” composes
of “Storage 2” and “User data” also permeates to “Storage 2”. In which case a
malicious actor is able to gain access to assets residing on 3rd party infrastructure
using the same set of credentials, namely gaining access to “Company data”. Thus
the scope of the exploit in a cloud environment expands beyond the traditional
boundaries of a single organisational system.

Figure 1.3: Example showing how compromised user credential can be used to gain
access to cloud data located in different physical locations.

The third contribution of the work is a set of analysis techniques
to perform security analysis, develop mitigation strategies and validate
cloud relationships to generate a model with cloud security requirements.
This allows the developer to perform semi-automated security and cloud analysis
in order to validate cloud security needs in a cloud model. The cloud security
analysis identifies cloud threats and vulnerabilities given a cloud model. The mit-
igation strategy analysis enhances existing cloud models, by integrating security

13

knowledge from both traditional and cloud-specific domains describing mitigation
objectives and mechanisms. The transparency analysis resolves the cloud secur-
ity needs, describing parties responsible for the mitigation strategy and the cloud
security issues addressed. This is a contribution because the analysis provides semi-
automated guidance for the user to identify, determine impact of and realise cloud
security needs. Thus the analysis techniques enriches the Secure Tropos methodo-
logy and provides semi-automated decision support for developers designing secure
cloud computing systems.

1.5 Thesis Structure

Chapter 2: Literature

Review

Chapter 3: Cloud Security

Modelling Language

Chapter 4: Secure Cloud

Process

Chapter 5: Semi-Automated

Reasoning Support

Chapter 6: Evaluation

of the Secure Cloud

Environment Framework

Chapter 7: Conclusion and

Future Work

RO1 RO1 RO3 RO4 RO4.1 RO4.2

Figure 1.4: Model of the thesis structure showing the research questions, chapters
and research objectives.

The thesis organised as follows:

• Chapter 2 examines the current literature in order to derive concepts for the
cloud computing paradigm through a security requirements engineering per-
spective. We compare and contrast goal-oriented security requirements engin-
eering approaches at the early requirements level. We focus on approaches
representing concepts through a visual language.

• Chapter 3 describes the concepts, relationships, concrete syntax and instance
syntax of the cloud security modelling language required to model secure cloud
systems. We then describe models derived through instantiating subsets of
the modelling language, focusing on conceptual layers within a cloud system
to capture specific security requirements.

14

• Chapter 4 outlines the activities in order to systematically apply concepts from
the secure cloud environment framework through a practitioners perspective.

• Chapter 5 presents the formalised concepts of the modelling language. We
then describe three cloud analysis techniques supported through our formal
work;(i) cloud security analysis to identify threats and security vulnerabilities,
(ii) security mitigation analysis, to identify and validate security constraints,
objectives and mechanisms and (iii) transparency analysis to identify security
responsibilities of cloud actors and understand security needs.

• Chapter 6 demonstrates the validity of our approach through three use-cases
and a case study based on the VisiOn European project.

• Chapter 7 summarises our contributions, discussing limitations to the work
and proposes areas for future work.

1.6 Publications

Parts of the research presented in the thesis has been peer-reviewed and published
in journals, conferences and workshops.

1. Shei, S., Mouratidis, H., & Delaney, A. (2017). A Security Requirements
Modelling Language to Secure Cloud Computing Environments. In Enter-
prise, Business–Process and Information Systems Modeling (pp. 337–345).
Springer, Cham. (Shei, Mouratidis & Delaney, 2017). This publication sup-
ports Chapter 3 and Chapter 5.

2. Argyropoulos, N., Shei, S., Kalloniatis, C., Mouratidis, H., Delaney, A., Fish,
A., & Gritzalis, S. (2017, January). A Semi–Automatic Approach for Eliciting
Cloud Security and Privacy Requirements. In: Proc. 50th Hawaii Interna-
tional Conference on System Sciences (Argyropoulos et al., 2017). This paper
combines the research efforts of business process modelling with cloud secur-
ity requirements. This approach addresses high level organisational needs and
transforms them to operational cloud security requirements. This publication
supports Chapter 3 and Chapter 5.

15

3. Mouratidis, H., Argyropoulos, N., Shei, S., Dimitris Karagiannis, Heinrich
C. Mayr & John Mylopoulos (2016). Domain–Specific Conceptual Modeling.
Springer International Publishing (Mouratidis, Argyropoulos & Shei, 2016).
This book chapter presents the Secure Tropos methodology; the concepts,
process and tool-support. We outline our extensions to the Secure Tropos
methodology in order to model and reason about cloud security requirements.
This publication supports Chapter 2 and Chapter 3.

4. Shei, S., Kalloniatis, C., Mouratidis, H., & Delaney, A. (2016, September).
Modelling Secure Cloud Computing Systems from a Security Requirements
Perspective. In International Conference on Trust and Privacy in Digital
Business (pp. 48–62). Springer International Publishing (Shei, Kalloniatis,
Mouratidis & Delaney, 2016). In this publication we discuss our cloud mod-
elling language, the abstract concepts and a holistic model. We present a
meta-model to visualise the relationships between our cloud and security con-
cepts. The Cloud Environment Model captures the organisation, application
and infrastructure concepts of a cloud system. This is achieved by instantiat-
ing our concepts in the meta-model to represent corresponding components in
the cloud system. This publication supports Chapter 3.

5. Shei, S., Márquez Alcañiz, L., Mouratidis, H., Delaney, A., Rosado, D.G.,
Fernández-Medina, E. (2015, August). Modelling secure cloud systems based
on system requirements. In Evolving Security and Privacy Requirements En-
gineering (ESPRE), 2015 IEEE 2nd Workshop on (pp. 19–24). IEEE. (Shei,
Alcaniz et al., 2015). This publication discusses the mapping between three
conceptual layers in the cloud paradigm and how our proposed views cap-
ture this information. We demonstrate how our work complements the ana-
lysis stage in the cloud migration framework SMiLe2Cloud (Márquez, Rosado,
Mouratidis, Mellado & Fernández-Medina, 2015) to model cloud security re-
quirements. This publication supports Chapter 3 and Chapter 4.

6. Shei, S., Delaney, A., Kapetanakis, S., & Mouratidis, H. (2015). Visually Map-
ping Requirements Models to Cloud Services. In DMS (pp. 108-114) (Shei,
Delaney, Kapetanakis & Mouratidis, 2015). This publication presents the con-

16

cepts of the Secure Tropos modelling language and our extensions to support
cloud requirements. The paper proposes the idea of the goal-plan-resource
pattern which identifies requirements in order to model secure cloud systems.
This publication supports Chapter 3.

17

Chapter 2

Literature Review

In Chapter 1 we have discussed several security challenges specifically impacting
the cloud computing paradigm and motivated a security requirements engineering
approach to target these challenges. Section 2.1 investigates the unique characterist-
ics of the cloud computing paradigm to further our understanding of security in the
cloud computing domain. In order to capture cloud computing properties, we search
the literature for cloud computing definitions, taxonomies and modelling approaches
in Section 2.1.1. In Section 2.1.2 we review literature describing the specific security
issues and challenges faced in cloud computing.

However there is a broad range of research work in the field of security re-
quirements engineering. Thus in Section 2.2 we narrow down the scope of our
investigations by focusing on security requirements engineering approaches from the
early requirements stage. In Section 2.2.1 we examine goal-oriented requirements
engineering approaches as a precursor to recent security requirements engineering
approaches. Additionally in Section 2.2.2 we examine model-driven security require-
ments engineering approaches which include a visual modelling element to represent
the system-under-design.

18

2.1 Cloud Computing Properties

2.1.1 Definitions, Taxonomies and Modelling the Cloud

In order to perform security reasoning in cloud computing systems from a security
requirements engineering perspective, we first need to describe the concepts and re-
lationships within a cloud computing system. Therefore we need an understanding
of concepts and the level of detail required to create a model representing a cloud
computing system. We need to understand and model the stakeholders security
needs and objectives, from a developers point of view. Thus we approach from an
early requirements perspective, narrowing the scope to concepts at higher levels of
abstraction. A high level approach allows the developer to describe cloud computing
components and their relation to stakeholder needs, without the limitations of con-
sidering specific technical implementations. Thus in this subsection we review works
focusing on dissecting the cloud computing paradigm through common definitions,
taxonomic and modelling approaches.

There are many works in the state of the art which surveys current work to
determine a standard definition for cloud computing (Vaquero, Rodero-Merino,
Caceres & Lindner, 2008; Foster, Zhao, Raicu & Lu, 2008; Qian, Luo, Du & Guo,
2009; Armbrust et al., 2010). Vaquero et al. studies over twenty definitions in order
to extract a consensus and the minimum set of essential characteristics (Vaquero
et al., 2008). Foster et al. discusses the overlap between the cloud paradigm and
existing technologies such as grid computing and distributed systems in (Foster et
al., 2008). Both (Vaquero et al., 2008) and (Foster et al., 2008) make comparisons
between the grid paradigm and cloud computing, noting the similarities and high-
lighting the differences. For example virtualisation existed before cloud computing,
however it enables key cloud computing features such as on-demand resource pool-
ing and security by isolation. Qian et al. provides a reference architecture of the
cloud through a core stack and the management, where the core stack consists of
three layers; resource, platform and application (Qian et al., 2009). Qian et al.
also provide a classification of cloud computing using two categories; service bound-
ary and service type. They relate the context of each category to the target user
group, such as enterprises, developers and external parties. Moreno-Vozmediano

19

et al. presents the concept of services available on the Internet in the Internet of
Services (IoS) model (Moreno-Vozmediano, Montero & Llorente, 2013). In their
view some of the challenges encountered in cloud computing are based on areas that
are already defined in the existing literature, such as virtualisation, grid computing
and automated computing. CloudML-UFPE is a XML-based approach describing
services offered by cloud providers (Bergmayr, Wimmer, Kappel & Grossniklaus,
2014). The modelling language focuses on the infrastructure level in cloud offer-
ings, describing concepts such as cloud services and resources as nodes with links
between them. Bergmayr et al. provide detailed description of nodes at the hard-
ware level using properties such as CPU, storage and memory. Zhang et al. divides
the cloud computing environment into four layers; the hardware/datacenter layer,
the infrastructure layer, the platform layer and the application layer (Zhang, Cheng
& Boutaba, 2010). Zhang et al. examine the challenges in cloud data security, out-
lining the responsibility of infrastructure providers to maintain confidentiality when
accessing and transferring data and ensuring the auditability of application secur-
ity settings and policies. Due to the virtualised nature of the cloud environment,
Zhang et al. highlight the need to consider security on all four layers of the cloud
computing environment.

In addition to works in academia, we also examine the standards and specifica-
tions ensuring best practises in cloud computing. The standards provided by stand-
ards bodies and organisations aim to guide the development and adaption towards
cloud computing systems for enterprises. It also facilitates the trustworthiness,
interoperability and auditability of cloud computing systems through recommen-
ded guidelines. The Organization for the Advancement of Structured Information
Standards(OASIS) defines the Topology and Orchestration Specification for Cloud
Applications(TOSCA) in order to formally describe a “service template” which spe-
cifies the “topology” and “orchestration” of IT services (OASIS, n.d.). The formal
description of IT services include their structure, properties, and behaviour, in ac-
cordance to constraints and policies when achieving service level objectives. Thus
TOSCA provides a fine-grained formal description of services in the context of cloud
applications, including the operations, deployment and implementation artifacts.
These specifications allows a developer to describe cloud-specific technical details,
though this is more applicable towards the design and implementation stages of the

20

development process. Similarly the Open Commons Consortium(OCC) (formerly
the Open Cloud Consortium) supports the development of standards, benchmarks
and open source implementations for cloud computing and frameworks for interoper-
ability between clouds (Center for Computational Science Research, n.d.). However
the OCC focuses on large-scale data compute clouds, thus falling outside the scope
of our standardised approach to cloud computing. The Open Cloud Computing In-
terface(OCCI) is a set of specifications described by the Open Grid Forum (OGF),
applicable to cloud resource management (Metsch, Edmonds et al., 2010). As an
example, one of the area of focus is interoperability in the IaaS cloud API. Again
this falls outside the scope of identifying cloud computing concepts during the early
requirements stage, in order to produce an abstract model of the cloud system. The
Object Management Group (OMG) focuses on modelling and model-based stand-
ards. OMG formed the Cloud Standards Customer Council in 2011 (Group, n.d.),
which complements existing cloud standards and supports the transition from tra-
ditional IT environments by focusing on client-driven requirements. However their
modelling approach is from a business-oriented perspective with the Business Process
Model and Notation (BPMN) (Jordan & Evdemon, 2011). The Security, Trust &
Assurance Registry(STAR) is a security assurance program introduced by the Cloud
Security Alliance(CSA). This program covers three incremental levels of assurance
for providers and customers through the alignment of the Consensus Assessments
Initiative Questionnaire(CAIQ) with the Cloud Control Matrix(CCM) and “Secur-
ity Guidance for Critical Areas of Focus in Cloud Computing” (Alliance, 2011).
The CCM provides security principles cross–referencing cloud computing properties
with industry-accepted security standards, regulations, and controls. The CAIQ is
a questionnaire for measuring security properties and eliciting conformance of cloud
providers through a series of binary questions, which corresponds to the security
principles covering 16 domains and 133 controls in the CCM framework. Thus the
CCM provides a pattern library for developers to reference specific controls and
standards satisfied in a cloud computing system.

One common theme throughout these works is the classification of cloud comput-
ing using two categories; deployment and service models. The deployment models
describe the boundary of the cloud, while the service model describes the type of
service offered to users. This is further defined in the NIST definition (Mell, Grance

21

et al., 2011).
In the papers reviewed so far, the NIST definition is frequently referenced in

the state of the art and commonly accepted by academics and practitioners (Yang
& Tate, 2012; Rimal & Choi, 2012; Modi, Patel, Borisaniya, Patel & Rajarajan,
2013; Hoberg, Wollersheim & Krcmar, 2012). Expanding on the NIST definition of
cloud computing in 1.1, NIST (Mell, Grance et al., 2011) defines five characteristics,
three service models and four deployment models. The essential cloud computing
characteristics are on-demand self-service, broad network access, resource pooling,
rapid elasticity and measured service. The cloud service models are Software-as-
a-Service(SaaS), Platform-as-a-Service(PaaS) and Infrastructure-as-a-Service(IaaS).
These three cloud service models form the basis for all cloud services provided by
cloud service providers in cloud computing. The cloud deployment models are pub-
lic, private, community and hybrid. The public and private cloud deployment models
are more commonly seen in comparison to community or hybrid models. However a
private or hybrid model doesn’t imply a stronger sense of security, though the dif-
ference between the exposed attack surface should be taken into consideration (Sub-
ashini & Kavitha, 2011). These characteristics represent the standard terminology
used when examining cloud computing security issues and systems (Kumar & Va-
jpayee, 2016; Fernandes et al., 2014; Rong, Nguyen & Jaatun, 2013; Los, Shackleford
& Sullivan, 2013). For example the top ten cloud threats in (Los et al., 2013) are
mapped to cloud service models in terms of impact on assets, while in (Kumar &
Vajpayee, 2016) cloud threats are mapped to attack types and layers. Chou com-
pares the cloud security risks and threats from three various perspectives based
on the nature of the cloud service models, using real-world examples of cloud ex-
ploits to demonstrate the techniques which can be used against cloud computing
systems (Chou, 2013). Therefore the properties in the NIST definition are able to,
from the early requirements level, describe cloud computing models at an unified
level of detail. This balances generalisation of the fundamental cloud characteristics
with the possibility of providing formal and fine-grained technical details through
cloud standards and specifications.

22

2.1.2 Security Issues and Challenges in Cloud Computing

In order to understand how cloud security requirements can be satisfied, we need to
first define and capture the security issues and challenges in the cloud computing
paradigm. We will determine precisely, what assets we are protecting in the system-
under-design, how these assets can be compromised and what measures should be
taken to prevent this. More specifically in our approach, we will examine the lit-
erature to determine the correlation between cloud computing characteristics and
what constitutes a cloud-specific threat and vulnerability.

Grobauer et al. leverages the NIST definition of cloud computing characteristics
to reason about cloud computing issues, where the authors define four indicators
of cloud-specific vulnerabilities (Grobauer, Walloschek & Stocker, 2011). In no
particular order, a vulnerability is cloud specific if; it is intrinsic in a core cloud
computing technology, it is prevalent in established cloud offerings, the root cause is
one of the cloud computing characteristics defined by NIST, when a cloud-specific
feature makes it difficult or impossible to enforce established security controls. In
(Armbrust et al., 2010) Armbrust et al. focuses on examining cloud computing
environments from a SaaS users perspective. The authors present the top ten cat-
egories of obstacles and opportunities influencing the growth of cloud computing.
For example, in order to address availability and business continuity, the authors
propose the use of multiple cloud providers to distribute workload of processes and
data. The authors provide suggestions such as focusing on horizontal scalability
of virtual machines, rapid upward and downward scaling of software applications
and the optimisation of infrastructure software to increase performance of virtual
machines. From a security perspective, the proposed suggestions introduces new
issues at different levels of abstract. As an example, the use of multiple cloud pro-
viders indicates that the cloud user has place trust in that the providers are able to
satisfy their security needs and that security policies are actually implemented and
enforced.

Pearson et al. expand on the issues of privacy, security and trust in cloud com-
puting and provide the initial steps towards addressing these issues (Pearson &
Benameur, 2010). They highlight issues such as disparate distribution of physical
cloud computing resources in terms of geographical location, the impact of compli-

23

ance in the context of data traceability and the issues with legislation. They also
raise the question of the re-usability of existing security mechanisms in the cloud,
due to the shared issues with related paradigms such as web-based services and SoA.

The findings from these work infer that in order to address the current security
challenges in cloud computing, it is crucial to have an understanding of the exist-
ing security issues in areas and software systems that are considered traditional or
legacy. Specifically existing security issues are exacerbated in a cloud computing
environment (Takabi, Joshi & Ahn, 2010), primary due to the multidomain envir-
onment where security, privacy and trust requirements need to be considered.

Rong et al. highlights three areas of interest in current cloud computing chal-
lenges; trusted data sharing, extending or modifying the SLA to cover issues such as
confidentiality and integrity through security mechanisms aimed at cloud SLA and
holistic mechanisms to address accountability in public clouds (Rong et al., 2013).
The authors categorise cloud security issues into traditional and cloud-specific chal-
lenges. where the authors focus on concerns with the privacy and confidentiality of
user data. Standards and interoperability is another area that bears investigation,
as the authors point out that while there exists many standard bodies with a variety
of offerings and agendas, there are no currently no dedicated cloud standards. Our
approach is to identify the most comprehensive standard body, in this case the CSA
and apply their proposed framework towards a cloud standard with the CCM.

The concept of virtualization on data security is examined by Lou et al.(Luo et
al., 2011), where they present a Virtualization Security Framework towards improv-
ing the security, reliability and availability of virtual computing environments. The
framework consists of two parts; virtual system security and virtualization security
management which targets the risks cause by the current virtualization security and
management.

The Cloud Security Alliance (CSA) present the top issues during 2011 in cloud
computing with focus on the industrial sector in ”Security Guidance For Critical
Areas of Focus in Cloud Computing V3.0” (Alliance, 2011), categorising the issues
and challenges into 14 domains. While all domains are relevant to our research, we
are most interested in the compliance, information management and data security,
interoperability, application security and virtualization. A more recent white paper
published by CSA titled ”The Notorious Nine: Cloud Computing Top Threats in

24

2013” lists 9 critical challenges in cloud security in industry, with comments and
recommendations from experts (Los et al., 2013). These threats are decomposed into
impact, implications, links to security controls and the relevant domains described
by CSA in (Alliance, 2011).

We now discuss work which proposes security governance frameworks to align
cloud security standards with cloud service provider offerings or user requirements,
in order to ensure compliance and transparency are guaranteed. Ensuring that
security standards and guidelines are followed and certified is crucial for building
and maintaining a healthy relationship based on trust, assurance and transparency
between cloud service providers and customers (Hashizume, Rosado, Fernández-
Medina & Fernandez, 2013).

Rebollo et al. perform a systematic review of information security governance
frameworks in the cloud computing environment, where they define a comparative
framework to identify criteria and focus on the properties found in cloud mod-
els (Rebollo, Mellado & Fernández-Medina, 2012). They also present their own
information security governance framework ISGCloud in a real-life case study with
empirical evaluation validating the results (Rebollo, Mellado, Fernández-Medina &
Mouratidis, 2015).

The majority of related work in the literature attempts to align cloud security
standards with cloud service providers to assess compliance and quantitatively meas-
ure providers offerings (Ullah, Ahmed & Ylitalo, 2013; Pumvarapruek & Senivongse,
2014; Bhensook & Senivongse, 2012; Hale & Gamble, 2013; Thaweejinda & Senivongse,
2014; Ruo-xin, Cui, Gong, Ren & Chen, 2014). Very few authors focus on elicit-
ing the security requirements and constraints from existing systems or consider an
approach from the users perspective in this process.

Bhensook et al. identifies the compliance of cloud service providers to security
requirements using the Goal Question Metric (GQM), which brings three levels of
measurements; conceptual, operational and quantitative (Bhensook & Senivongse,
2012). They define a weighted scoring model for assessment. The security goals and
the questions that address the goals were based on the CCM and CAIQ from the
STAR programme by CSA, from which more refined questions and defined metrics
are created to help provide quantitative answers and placing focus on evidence of se-
curity compliance from the cloud service providers. The architecture of their scoring

25

system is based on CloudAudit, where they go on to assess the Amazon Web Service
(AWS) as an example in this paper. While they talk about security requirements
in this paper, the requirements are addressed to assess the compliance of the cloud
service providers to the pre-defined list questions found in the CAIQ. They do not
take the security requirements from the customers point of view into consideration
in their assessment process. In this respect, while the work presented here provides
a generic architecture for assessing the compliance of security requirements from the
service providers perspective, it is not sufficiently refined to take the multiple layers
of complexities introduced by real-life systems.

In a similar work, Thaweejinda et al. presents a semantic search framework based
on the CCM security controls, from which they construct a security ontology and
build provider profiles providing evidence of conformance to the security controls
and ranking data based on customer queries (Thaweejinda & Senivongse, 2014).
While their framework allows the customer to enter queries regarding compliance to
specific standards, they do not take the specific security requirements of a potential
system into account.

Pumvarapruek et al. adapts a text classification approach, where they extract
and classify the security conformance and compliance of cloud service providers
based on the published information provided by cloud service providers on their
web pages (Pumvarapruek & Senivongse, 2014). They study the CCM and CAIQ
to define a set of security concepts, from which they form the basis for compar-
ison against the cloud service providers to determine their security conformance
level. During the classification process, they compile a list of security principles
from the CCM and CAIQ, from which they build a security ontology with control
groups and domains. The customers will extract the HTML content consisting of
security concepts from the websites of cloud service providers, which is classified
using concept-based classification with the conformance to the CCM. The results
produced are degrees of conformance from 0 to 1 for each cloud service provider to
a control group or domain. In essence, the cloud computing characteristics Pum-
varapruek et al. compile in their security ontology is based on the proposed cloud
ontology presented by Youseff et al. (Youseff, Butrico & Da Silva, 2008). While the
text classification approach proposed by Pumvarapruek et al. seeks to determine
the conformance of cloud service providers to security concepts devised from the

26

CCM and CAIQ, they base their evaluation process on published information by
cloud service providers. The primary limitation in this case is that the requirements
of users are not taken into account, therefore the results of the classification are
presented as high level guidelines. Our approach considers the requirements of the
stakeholders during the early requirements stage, therefore the security needs of the
system-under-design are clear from the beginning.

Kao et al. introduces a framework for self-governance within cloud security (Kao,
Mao, Chang & Chang, 2012). Their approach is based on the secure system devel-
opment life cycle (SSDLC), with the addition of risk assessment. They consider the
process from the organizational perspective, where the system takes the security
concerns into consideration during each activity. In this work, the security meas-
ures are based on the guidelines, standards and vulnerabilities in cloud computing
identified by the CSA (Alliance, 2011; Los et al., 2013) and NIST (Kissel et al.,
2008). While the main novelty of the proposed governance framework builds on the
consideration of security concepts during each stage in the system development life
cycle, the authors mention but did not provide sufficiently detailed analysis of the
exact standards, security controls or mapping between cloud service and deployment
models towards the envisioned system.

Ruo-xin et al. propose a model to quantitatively assess cloud service providers
and their safety levels, through a security evaluation index system (Ruo-xin et al.,
2014). The evaluation index system is based on security assessment criteria derived
from two branches; technical and management requirements. This approach cannot
be carried out during the early requirements stage, as there is an insufficient level of
detail regarding technical or managerial requirements. However this would be more
suitable towards the design and implementation levels.

The work reviewed in this section are primary proposed as part of governance
frameworks, targeted at providing security compliance, legacy to cloud migration
and security policy guidance for cloud users and cloud service providers. The ma-
jority of approaches taken propose low level, technical implementation of security
mechanisms with a strong focus on addressing existing systems.

27

2.2 Security Requirements Engineering

2.2.1 Requirements Engineering Approaches

Modern organisations depend on complex information systems for business continu-
ity and deliver services of value to stakeholders (Armbrust et al., 2010). However
software projects are focused on rapid delivery of features and often go through
the development process without considering security issues or concepts (Howard
& Lipner, 2006). Security concepts are then tacked on as an afterthought in live
systems, often after the event of a security breach. This results in costly solutions
to address serious security shortcomings, which often requires a complete redesign
of the existing system. While the there has been interest and research targeting
this field, the concept of security requirements engineering is often not well under-
stood. For example developers may attempt to define security mechanisms in terms
of design solutions instead of describing the concept of the root cause and protec-
tion. Thus taking a security requirements engineering approach is critical in the
cloud computing environment in order to support developers in understanding their
stakeholder goals and security needs. An understanding of the complexities in cloud
computing systems facilitates the identification and selection of design alternatives
towards a secure system.

In the previous section, we have reviewed a subset of work which defines the
scope of cloud computing and the security issues and properties in cloud computing
systems. We now limit the research domain to approaches within requirements en-
gineering and security requirements engineering. Specifically we look at approaches
starting from the early requirements stage with a visual language and modelling com-
ponent. We now expand on the goal-oriented requirements engineering approaches
discussed in Chapter 1.

i* (Eric, 2009) is a highly influential agent-oriented framework in the field of re-
quirements engineering. The framework is designed to capture the strategic interests
of multiple agents in complex systems. We use the original i* framework defined
by Eric Yu (E. Yu, 2011) in his thesis dissertation as the primary reference in our
discussions. i* defines two models corresponding to different levels of abstraction
involving actors with strategic intentions; the Strategic Dependency(SD) model rep-

28

resents intentional concepts while the Strategic Rationale (SR) represents rational
concepts. The SD model describes actors, sets of dependencies and the dependum;
which can be a resource, task, goal or softgoal concept. The SR model refines the
intentional elements of an actor inside their boundary through the means-end and
task-decomposition links. While the i* framework can be able to capture the stra-
tegic intent of actors in a cloud system, it does not support the language concepts
or graphical notation for describing cloud specific components. In Section 2.2.2 we
discuss several extensions of i* which support security concepts (Elahi & Yu, 2007;
Liu, Yu & Mylopoulos, 2003).

Goal-oriented Requirements Language (GRL) is an internationally recognised
standard for goal-oriented modelling (Amyot et al., 2010), which integrates the core
concepts of i* (E. S. Yu, 1997) and the Non-Functional Requirements (NFR) frame-
work (Chung, Nixon, Yu & Mylopoulos, 2012). GRL offers a visual goal-modelling
language with a clear separation between model concepts and their graphical rep-
resentations. The modelling language supports qualitative and quantitative attrib-
utes, through contribution links with icons, numbers and text. The GRL syntax is
based on the i* language, sharing common concepts such as actor, goal, resource
and task. A GRL diagram describes the high level organisational business goals
and non-functional requirements of stakeholders with alternative ways to achieve
them. GRL supports evaluations by analysing trade-offs between conflicting goals,
through qualitative or quantitative satisfaction values. A strategy is the starting
point of evaluations, given initial satisfaction values between intentional elements.
Three directions of propagation is supported between linked intentional elements
while taking contribution types into account, providing a global assessment of a sys-
tem. The qualitative and quantitative attributes has the potential to support the
refinement and selection of cloud services based on user needs. However the GRL
language does not support the specialised concepts required to capture cloud-specific
characteristics, nor the security concepts found in cloud systems.

Tropos is an agent-oriented software development methodology, focusing on the
development life cycle from early requirements to implementation (Bresciani et al.,
2004). The Tropos modelling language is based on the i* framework, which describes
models in Tropos through instances from a metamodel (Susi, Perini, Mylopoulos &
Gi, 2005). The metamodel defines the abstract syntax of the modelling language,

29

in this case Tropos incorporates many concepts and relationships from i*. How-
ever instead of defining types of models such as the SD and SR in i*, Tropos uses
views to represent the different levels of abstraction between phases. The Tropos
methodology has five development phases: early requirements , late requirements,
architectural design, detailed design and implementation. Tropos focuses on the
early and late requirements stages.

KAOS (Darimont et al., 1997) is a goal-oriented requirements engineering method
which elaborating objectives to be achieved by the system-under-design into re-
quirements and assumptions, where the responsibilities are assigned to agents. The
method focuses on the feasibility, completeness and consistency of requirements
through a semi-formal graphical notation or formal when needed. In (Van Lam-
sweerde et al., 2007) van Lamsweerde consolidates all his previous research on
KAOS to include formalisation of requirements using linear time temporal logic
in (Dardenne, Van Lamsweerde & Fickas, 1993), analysis for conflicting require-
ments in (Van Lamsweerde, Darimont & Letier, 1998), and the use of anti-models
to elaborate security requirements in (Van Lamsweerde, 2004). The KAOS method
considers multiple stakeholders in a system-under-design and defines multiple views
corresponding to different models. For example in a goal model, stakeholder goals
are refined through an AND/OR refinement tree. Thus requirements are represented
through leafs assigned to agents. Again while the KAOS method allows refinement
of goals to represent stakeholder needs, the language lacks the expressiveness to
capture cloud specific concepts.

So far we have defined and motivated key requirements engineering approaches,
capturing stakeholder and system requirements from an agent and goal-oriented
perspective. We now describe work which extend these approaches to integrate
security concepts through a security requirements engineering approach.

2.2.2 Security Requirements Engineering Approaches

Mellado et al. presents their systematic literature review of existing work in se-
curity requirements engineering, providing a state-of-the-art of approaches in the
field (Mellado, Blanco, Sánchez & Fernández-Medina, 2010). Their process is based
on identifying initiatives in work adapting a security requirements approach and fo-

30

cusing from the early stages of the software development life-cycle. Thus the authors
work motivates our review of security requirements engineering approaches which
support modelling and reasoning about cloud security requirements.

Benjamin et al. proposes a conceptual framework to consolidate central con-
cepts used in security requirements engineering in (Fabian, Gürses, Heisel, Santen
& Schmidt, 2010). They review a range of approaches including UML-based, goal-
based, multilateral, problem frame-based, risk analysis-based and common criteria-
based. Thus Benjamin et al. provide a mapping between the diverse terminology
to their proposed framework, providing specific approaches according to the scope
of the issue. They stress the importance of accounting for multiple stakeholder
views, where only the Multilateral security requirements analysis (MSRA) (Gürses
& Santen, 2006), Security quality requirements engineering methodology (SQUARE)
(Mead & Stehney, 2005), Keep All Objectives Satisfied (KAOS) (Darimont et al.,
1997), and the Secure Tropos variants (Massacci, Mylopoulos, Zannone et al., 2007;
Mouratidis & Giorgini, 2007) address this issue.

STS-ml (Dalpiaz, Paja & Giorgini, 2011) is a security-oriented approach captur-
ing the security requirements of multi-agent socio-technical systems. The approach
focuses on describing the social interactions between social and technical actors in
a system-to-be. Specifically they define commitments to denote an agents secur-
ity needs, based on the satisfaction of security properties such as non-disclosure
of confidential data or non-repudiation of a delegated goal. While their approach
tackles socio-technical systems based on social interaction between agents, it does
not support a specialised vocabulary for capturing cloud computing concepts.

Secure Tropos (Mouratidis & Giorgini, 2007; Mouratidis, 2009) is a goal-oriented
software engineering methodology extending the Tropos methodology to model se-
curity concerns throughout the software system development process, based on the
notion of agents and related notions such as actors and goals and focusing on the
early analysis and design stages. Mouratidis et al. presents a framework to elicit
the security and privacy requirements of software systems and select a cloud ser-
vice provider based on satisfaction of the requirements. They define a modelling
language as part of the process, the language extends from several concepts in the
software engineering discipline, such as the i* framework, PriS (Kalloniatis, Kavakli
& Gritzalis, 2008) and Secure Tropos which provides specialization in requirements

31

engineering, security engineering and privacy engineering respectively (Mouratidis,
Islam, Kalloniatis & Gritzalis, 2013).

Bandara et al. carries out a comparative evaluation of model-based security
patterns to examine the extent of support of constructs provided by security re-
quirements engineering approaches. They cover three main categories of modelling
approaches; design, goal-oriented requirements and problem-oriented. Their res-
ults suggest that ”current approaches to security engineering are, to a large extent,
capable of incorporating security analysis patterns” (Nhlabatsi et al., 2010).

We now review recent work which tackles security issues in cloud computing
systems from a security requirements engineering approach. More specifically we
discuss approaches which support the developer during the modelling and design of
cloud computing systems, guiding them through the process of refining components
and security needs.

Kalloniatis et al. presents a methodology towards eliciting and analysing secur-
ity and privacy requirements of software systems and the selection of appropriate
cloud deployment models (Kalloniatis, Mouratidis & Islam, 2013). Their frame-
work provides a modelling language based on Secure Tropos (Mouratidis & Gior-
gini, 2007), the agent-oriented modelling language i* and the PRiS (Kalloniatis et al.,
2008) language, which incorporates concepts from security requirements engineering
and cloud engineering through a systematic process.

Beckers et al. proposes a pattern-based method to elicit cloud security require-
ments aimed at guiding cloud customers during the process of modelling cloud sys-
tems (Beckers, Côté, Faßbender, Heisel & Hofbauer, 2013). They define a meta-
model for the Cloud System Analysis Pattern (CSAP) in order to specify validation
conditions, serving as the basis for their eclipse-based tool support which enables
searching and instantiating cloud system analysis patterns and validating the se-
curity requirements against elements of the cloud. Our approach allows both cloud
users and cloud service providers to model cloud computing systems, where we ob-
tain a comprehensive and detailed view of the cloud components using a multi-layer
approach.

Zardari et al. argues that the Goal Oriented Requirements Engineering (GORE)
approach provides a paradigm which addresses the lack of requirements engineering
methodologies applicable in cloud adoption (Zardari & Bahsoon, 2011). To capture

32

user requirements at various levels of detail, they decompose goals down to business,
core and operational goals. Their proposed lifecycle facilitates the negotiation and
alignment of user requirements with cloud provider provisioning, taking into account
mismatches, trade-offs and risk management. Their outcome is the selection of the
optimal cloud service provider given a set of user requirements. Our approach
focuses on security requirements of cloud systems from a developers perspective,
while taking into account the security needs of cloud users through constraints. We
also consider the impact of cloud-specific characteristics such as virtualisation and
multi-tenancy, implicitly modelling these concepts in the system-under-design. This
allows developers to assess the system from a cloud perspective, identifying threats
unique to cloud systems.

Iankoulova et al. carries out a systematic review of work in the literature which
addresses security requirements in cloud computing. Their research goal was to
provide a comprehensive view of areas that are under-researched and most invest-
igated. They identified nine sub-areas; ”Access Control, Attack/Harm Detection,
Non-repudiation, Integrity, Security Auditing, Physical Protection, Privacy, Recov-
ery, and Prosecution” (Iankoulova & Daneva, 2012) where non-repudiation, physical
protection, recovery and prosecution were the most under-researched from a sample
of 55 selected papers. This work helped clarify the research gaps in the cloud com-
puting security domain, though a limitation is that the results of the study is dated.

Menzel et al. fosters a model-driven approach that allows the user to define
security requirements at the modelling layer and facilitate a transformation based
on security configuration patterns towards enforceable security policies (Menzel,
Warschofsky, Thomas, Willems & Meinel, 2010). The security requirements are as-
sumed to reside in security policies in service-based systems, in order to facilitate
negotiation between users and service providers. The authors state the challenges
in understanding and coding such policies, thus their approach integrates security
intentions and allows modellers to state basic requirements. Their cloud-based Ser-
vice Security Lab provides a virtualised testing environment for users to monitor
and analyse the enforcement of their security requirements and policies.

Paja presents a security engineering methodology for social-technical systems in
her doctoral thesis (Paja, 2014). One of her key contributions is the STS-ml mod-
elling language, which specifies security requirements as social contracts constrain-

33

ing the social interactions and responsibilities of actors in her STS methodology.
STS-ml also defines a set of formal semantics which allows automated reasoning
to support developers in modelling and reasoning around conflicts between security
requirements and actors’ business policies. Paja also proposes automated reasoning
techniques to calculate the impact of social threats on actors’ information and their
objectives. While Paja’s STS methodology focuses on security requirements in social
technical systems, there’s no support for cloud computing concepts.

Aljawarneh et al. proposes a generic framework to deal with security vulnerab-
ilities early in the Cloud Software Development Life Cycle (CSDLC) (Aljawarneh,
Alawneh & Jaradat, 2017), where they add an extra level for security concepts and
demonstrate the applicability through a case study. While their approach considers
security at an early level, specifically security vulnerabilities in the cloud SaaS model,
we argue that it is not sufficient to only focus on one stage. Our approach embeds se-
curity throughout the modelling process, where the goal is to help developers define
and understand the cloud security requirements of the system-under-design.

Lockheed Martin’s cyber kill chain (Martin, 2014) describes an multi-layered
defence approach in order to segment, analyze and mitigate a cyber attack. This
process includes seven stages; reconnaissance, weaponization, delivery, exploitation,
installation, command and control and actions on objectives. While the cyber kill
chain is intended to consider the mitigation strategy once an intrusion takes place,
the scope of our work focuses on eliciting the security requirements of a cloud com-
puting system to prevent intrusions during the requirements stage. Hahn et al.
proposes a security analysis framework (Hahn, Thomas, Lozano & Cardenas, 2015)
utilising a cyber–physical kill-chain, which builds upon the cyber kill chain to include
cyber–physical systems. While cloud computing systems fall within the domain of
cyber–physical systems, the approach proposed by Hahn et al. has a strong focus
on physical systems and their constituent parts, for example an unmanned aerial
system. We argue that a stronger focus on capturing and modelling the social and
software components and relationships in cloud computing systems is required, in
addition to the infrastructure encompassing a cloud computing environment.

Structured Threat Information Expression (STIX) is an open source language
and serialization format used to exchange cyber threat intelligence (Barnum, 2012).
The STIX standards are governed by the OASIS Cyber Threat Intelligence Tech-

34

nical Committee (CTI TC). The latest version of STIX as of July 2017 is STIX
2.0. STIX aims to provide a more expressive sets of indicators through the specific-
ation, capture, characterization and communication of standardized cyber threat
information in the practice of cyber threat information sharing. The twelve key
objects in the STIX language is as follows; attack pattern, campaign, course of ac-
tion, identity, indicator, intrusion set, malware, observed data, report, threat actor,
tool, vulnerability. While this language is specialised in the domain of threat mod-
elling, it lacks the expressions for describing requirements-stage or cloud computing
specific concepts in the scope of our work. Specifically it lacks the concept of goal-
oriented requirements engineering approaches, in order to capture the social and
organisational objectives and intents of actors in a cloud computing system. The
focus of STIX is placed towards the actions around threat actors and their approach
towards compromising a system. Our focus in this work is to support developers
in expressing the security requirements of cloud computing systems, through the
process of modelling their organisational environment to capture information on the
organisational, application and infrastructure level.

We have carried out a literature review of modelling languages and approaches
in the requirements engineering and security requirements engineering fields, sev-
eral of which are extended by the Secure Tropos methodology. We have chosen
to extend the Secure Tropos methodology (Mouratidis, 2011) because it combines
concepts and approaches from agent-oriented, goal-oriented and security-oriented
requirements engineering domains. This allows us to capture cloud computing char-
acteristics from a high levels of abstraction, while being able to model stakeholder
goals and security needs. In addition the methodology has a visual language com-
ponent which defines graphical notation for concepts and relationships to represent
software systems. Visual representations of system models provides a holistic view
of cloud systems, supporting developers in understanding relationships and reason
about security requirements from multiple perspectives. The Secure Tropos method-
ology begins from the early requirements stage, leading to late requirements, design
level and finally the implementation stage.

35

2.3 Secure Tropos

To recap, Secure Tropos is a security-enhanced, goal-oriented requirements engineer-
ing methodology which extends the Tropos methodology. The Tropos methodology
is an agent-oriented requirements engineering approach, which is based on the i*
framework, a goal-oriented requirements engineering approach supporting actor and
goal concepts from the early phase of system modelling.

2.3.1 Secure Tropos Modelling Language

We now present the concepts we will extend from the Secure Tropos modelling
language, following a definition, notation and example format.

Definition 2.3.1. Actor An actor represents an entity that has intentionality
and strategic goals within a software system or around the organisational envir-
onment (E. Yu, 2011; Mouratidis & Giorgini, 2007).

Type

Actor Cloud Actor Attacker

Figure 2.1: From left to right, the graphical notation of an actor, cloud actor and
malicious actor.

Secure Tropos represents stakeholders, entities or roles using the notion of an
actor, drawing from goal-based modelling approaches. The common categories of
stakeholders represented as actors are direct or indirect stakeholders, end-users of
the system and domain-specialists involved throughout the development process.
Entities can be components of a system or a physical entity.

Figure 2.1 shows the graphical notation for an actor, cloud actor (Specialisation
of Actor) and malicious actor (See Definition 2.3.2). The actors are visualised as a

36

pink circle with a textual description denoting the instance name. The cloud actor
also has a rectangle box with a shaded outline denoting the type of service model
associated with the cloud actor.

Definition 2.3.2. Malicious actor This is a specialisation of the actor that rep-
resents a stakeholder with the intentionality and strategic goals related to breaking
the security of the system (Mouratidis, 2011).

The graphical notation for a malicious actor is shown in Figure 2.1 as the pink
circle on the far right. The concept of an actor in requirements engineering ap-
proaches such as Tropos (Bresciani et al., 2004) and i* (Eric, 2009) do not explicitly
capture entities with goals and intentions focusing on compromising systems or as-
sets through misuse, exploits or threats. Thus a specialised class of actor is defined in
security requirements engineering approaches in order to capture stakeholders with
the intention of causing harm on the system, in this case the concept of an attacker
is proposed in Secure Tropos as a malicious actor. The malicious actor perform
attacks on systems in order to exploit vulnerabilities and compromise assets.

Consider a malicious insider, a threat to an organisation which is initiated from
stakeholders within the organisation. We are able to identify and model malicious
insiders using the concept of a malicious actor in order to differentiate between a
typical employee and an employee with malicious intent, such as compromising the
system by gaining access to credit card details through the abuse of authorised access
privileges.

Definition 2.3.3. Goal A goal represents the strategic interests of stakeholders
within the context of a system (Mouratidis & Giorgini, 2007).

Goal

Figure 2.2: Graphical notation of a goal as a dark green elongated oval.

The general description of a goal in requirements engineering is a way for actors
to achieve objectives (Eric, 2009; Darimont et al., 1997; Bresciani et al., 2004). In

37

Secure Tropos a goal represents the strategic interests of stakeholders within the
context of a system (Mouratidis & Giorgini, 2007). Figure 2.2 shows the graphical
representation of a goal as a dark green elongated oval.

Definition 2.3.4. Resource A resource represents a physical or informational en-
tity that one of the actors requires (Bresciani et al., 2004).

Resource

Figure 2.3: Graphical notation of a resource as a stretched yellow rectangle.

The graphical notation for a resource is shown in Figure 2.3 as a stretched yellow
rectangle with a textual description in the middle representing the name of the
resource. The main concern when dealing with resources is whether the resource is
available and who is responsible for its delivery.

Definition 2.3.5. Threat Threats represent circumstances that have the poten-
tial to cause loss; or problems that can put the security features of the system in
danger (Low, Mouratidis & Henderson-Sellers, 2010).

Figure 2.4: Graphical notation of a threat as a light red pentagon.

The graphical notation for a threat is shown in Figure 2.4 as a light red pentagon
with a textual description in the middle representing the name of the threat. The
concept of a threat is crucial when performing any security analysis on a system, as
it describes circumstances under which security properties are violated; leading to

38

an insecure system. Here we describe threats in a system using high-level descrip-
tions, as we do not have sufficient information at the early requirements stage to
describe fine-grained technical attributes from a security requirements engineering
perspective.

Definition 2.3.6. Vulnerability A weakness of an asset or group of assets that
can be exploited by one or more threats (ISO & Std, 2011)

Vulnerability

Figure 2.5: Graphical notation of a vulnerability as a dark red elongated oval.

The graphical notation for a threat is shown in Figure 2.5 as a dark red elong-
ated oval with a textual description in the middle representing the name of the
vulnerability. “Vulnerability is the intersection of three elements: a system suscept-
ibility or flaw, attacker access to the flaw, and attacker capability to exploit the
flaw.” (Hughes & Cybenko, 2014). In this context, a vulnerability is also known as
the attack surface.

Definition 2.3.7. Attack method An action aiming to cause a potential violation
of security in the system (Mouratidis, 2011).

Figure 2.6: Graphical notation of an attack method as a dark yellow heptagon.

The graphical notation for an attack method is shown in Figure 2.6 as a dark
yellow heptagon with a textual description in the middle representing the name of
the attack method. An attack method embodies a specific way of carrying out a

39

threat in order to exploit vulnerabilities in the system, causing harm to assets within
the system and the system itself.

Definition 2.3.8. Security constraint Security Constraints are used in the Secure
Tropos methodology to represent security requirements; where a security require-
ments is defined as “a manifestation of a high-level organisational policy into the
detailed requirements of a specific system.” (Mouratidis, 2011).

Figure 2.7: Graphical notation of a security constraint as a red octagon.

In Secure Tropos, a security constraint is a specialisation of the concept of a con-
straint (Mouratidis, 2011). Figure 2.7 shows the graphical notation for a security
constraint, which is represented as a red octagon. In the context of software engin-
eering, a constraint is usually defined as a restriction that can influence the analysis
and design of a software system under development by restricting some alternative
design solutions,by conflicting with some of the requirements of the system, or by
refining some of the system’s objectives. In other words, constraints can represent a
set of restrictions that do not permit specific actions to be taken or prevent certain
objectives from being achieved. Often constraints are integrated in the specification
of existing textual descriptions. However, this approach can often lead to misunder-
standings and an unclear definition of a constraint and its role in the development
process. Consequently, this results in errors in the very early development stages
that propagate to the later stages of the development process causing many problems
when discovered; if they are discovered. Therefore, in the Secure Tropos modelling
language we define security constraints, as a separate concept. To this end, the
concept of security constraint has been defined within the context of Secure Tropos

40

as: A security condition imposed to an actor that restricts achievement of an actor’s
goals, execution of plans or availability of resources. Security constraints are outside
the control of an actor. This means that, differently than goals, security constraints
are not conditions that an actor wishes to introduce but it is forced to introduce.

Definition 2.3.9. Security objective A security objective represents a set of
principles or rules that contribute towards the achievement of the system’s secur-
ity (Mouratidis, 2011).

Security Objective

Figure 2.8: Graphical notation of a security objective as a blue hexagon.

Figure 2.8 illustrates the graphical notation of a security objective, shown as a
blue hexagon. This concept is similar to the notion of a plan in requirements engin-
eering, which describes at an abstract level one approach for satisfying a goal. How-
ever the security objective focuses on security-oriented concepts, in that it provides a
description of the security-related criteria required to satisfy security needs. In this
sense a security objective embodies security policies as it systematically provides
description of conditions and steps required to ensure security needs are enforced in
a system. Thus security objectives are used when there exists unsatisfied security
needs in a system, indicating how a security need can be addressed and the steps
required to enforce this process.

Definition 2.3.10. Security mechanism A security mechanism represents stand-
ard security methods for helping towards the satisfaction of the security object-
ives (Mouratidis, 2011).

41

Figure 2.9: Graphical notation of a security mechanism as a green stretched hexagon.

The graphical notation for a threat is shown in Figure 2.9 as a stretched green
hexagon with a textual description in the middle representing the name of the se-
curity mechanism. Some standard security methods are able to prevent security
attacks, whereas others are able only to detect security breaches. It must be noted
that furthered analysis of some security mechanisms is required to allow developers
to identify possible security sub-mechanisms. A security sub-mechanism repres-
ents a specific way of achieving a security mechanism. For instance, authentication
denotes a security mechanism for the fulfilment of a protection objective such as
authorisation. However, authentication can be achieved by sub-mechanisms such as
passwords, digital signatures and biometrics.

A security objective may be enforced by one or more security mechanisms, where
the security mechanisms may share joint responsibility in order to enforce the secur-
ity objective; in this case the security mechanisms are annotated with the “AND”
notation to indicate the need to implement all connected security mechanisms to en-
sure the enforcement of a security objective. It is also possible to model alternative
options, where any of the proposed security mechanisms are able to enforce a security
objective without depending on the implementation of other security mechanisms.
This is indicated by the “OR” notation, where each linked security mechanism can
be independently implemented in order to enforce a security objective. It is the se-
curity experts responsibility for selecting and realising security mechanisms during
the implementation stage, where they decide the most suitable security mechanism
through our cloud models. In order to facilitate this decision, we provide attributes
in our concepts which contribute towards the weighting determining the degree of
satisfaction and suitability of security concepts.

42

2.3.2 Secure Tropos Syntax

This subsection discusses the syntax of the Secure Tropos modelling language in re-
lation to Secure Tropos Views. Secure Tropos is a security requirements engineering
methodology aimed at fully capturing the properties of software systems and the
organizational environment, focusing on modelling security (Mouratidis & Giorgini,
2007). The language extends the concepts of an (social) actor, goal, task, resource
and social dependency from the i* modelling language and redefining existing con-
cepts introduced in the Tropos language and development process (Nhlabatsi et al.,
2010). The Secure Tropos methodology closely follows the software development life-
cycle with emphasis on security and privacy requirements, allowing the developer
to incrementally refine models of the system-to-be during the analysis and design
stage.

The Secure Tropos notation is fully defined in (Mouratidis & Giorgini, 2007).
The meta-model of the Secure Tropos methodology is presented in Figure 2.10.
The white boxes indicate different classes in the modelling language. The grey
boxes indicate the relationships which link different classes together. The concrete
notation is presented within views below, where each view denotes a specific phase
of activity in the modelling process. We now discuss Secure Tropos Views.

Organisational View
The diagram in Figure 2.11 illustrates the main nodes of an organisational view

of Secure Tropos. It depicts a node-link diagram enclosed in a bounding rectangle.
The nodes in the node-link diagram vary in shape according to the type of Secure
Tropos element that they depict. The links similarly vary.

1) Actor: The circular node depicts an actor. An actor can be a physical
or abstract manifestation, with strategic goals and intentions. An example actor
labelled “Actor 1” can be seen in Figure 2.11.

2) Goal: The semi-oval node depicts a goal. Goals represent an actors strategic
interests, which can be decomposed into sub-goals and combined using Boolean
operations. An example goal labelled “Goal 1” can be seen in Figure 2.11. Goals
are linked through a Dependency link, depicted by one semi-circles on each side of
the goal element.

3) Dependency: A Dependency link indicates that an actor depends on another

43

Figure 2.10: The Meta-Model of the Secure Tropos methodology

44

Figure 2.11: An example of an organisational view in Secure Tropos

actor in order to achieve some goal or to obtain a resource, where the direction the
semi-circle is pointing towards denotes the dependee. An example dependency link
can be found linking the goal “Goal 1” with the actor “Actor 1” who depends on
the actor “Actor 2” to achieve the goal.

4) Security Constraint: Security Constraints are depicted by the octagon
node. Security constraints define security requirements through a set of restrictions
that limit the way goals can be carried out. An example of a security constraint
“Security Constraint 1” can be found from the actor “Actor 1” to the goal “Goal 1”.

5) Secure Dependency: A secure dependency defines a case where given a
dependum of type goal or resource with a depender and dependee actor, the de-
pender actor imposes on the dependee actor zero or more security constraints which
restricts the dependum and conversely the dependee actor imposes on the depender
actor zero or more security constraints which restricts the dependum. As an example
the depender actor “Actor 1” has the security constraint “Security Constraint 1” re-
stricting the dependum “Goal 1”, where the security constraint is imposed on the
dependee actor “Actor 2”.

Security Requirements View
The diagram in Figure 2.12 illustrates the security requirements view, which provides
a detailed analysis of the organisational view. This view depicts a node-link diagram
enclosed in a bounding circle, defined by an actor that is delegated as the solution

45

“system”. Several new elements are introduced in this view.
1) Plan: The elongated hexagon node depicts a Plan. A plan specifies the

details and conditions under which a goal or measure is operationalised. “Plan” is
an example of a plan that is linked to a goal, in this case “Sub Goal 1”.

2) Resource: The rectangle node depicts a Resource. Resource represent a
physical or virtual entity. Resource can be linked to goals using a Requires link. An
example of a resource is “Resource” which is linked to the goal “Sub Goal 1” via a
requires link. The requires link indicates that the goal requires this specific instance
of a resource in order achieve and satisfy the goal.

3) Threat: The pentagon node depicts a Threat. A threat indicates the po-
tential loss or problems that can put the system at risk. For example, “Threat” is
linked via the Impacts link to the goals “Sub Goal 1” and “Sub Goal 2”, indicating
that both goals are impacted by this threat.

4) Security Objective: The hexagon node depicts a Security Objective. An
example of a security objective addressing a security constraint is indicated by “Se-
curity Objective”, which is linked to “Security Constraint” via the Satisfies link. The
Security Mechanism “Security Mechanism 1” and “Security Mechanism 2” fulfils the
Security Objective, which is indicated by the Implements link.

5) Security Mechanism: The hexagon node with two parallel horizontal lines
depicts a Security Mechanism. A security mechanism is a method or procedure that
enforces security objectives.

6) Restricts: The Restricts link shows that the security constraint places a
restriction upon a goal, as an example “Security Constraint” which restricts the
goal “Sub Goal 2”.

7) Service Identification: As part of the ongoing work towards modelling and
analysing cloud-based security, we have proposed a Goal-Plan-Resource pattern
for identifying services based on the existing notations found in Secure Tropos (Shei,
Delaney et al., 2015). We are then able to build around the services to generate an
infrastructural view of a cloud deployment, thus allowing us to identify threats and
vulnerabilities on the cloud level.

Cloud Analysis View
In the cloud analysis view shown in Figure 2.14, we provide a visual indication to

46

Figure 2.12: An example of a security requirements view in Secure Tropos

Figure 2.13: An example of a security attacks view in Secure Tropos

facilitate the selection of appropriate cloud service providers based on the security
requirements identified in the previous views. In particular, we evaluate how specific
service providers satisfy the security mechanisms identified in the previous views.

1) Cloud Service Provider: The circular node indicates a cloud service pro-
vider, which provides resources such as services and infrastructure.

2) Satisfiability: A metric between not satisfied (0) and fully satisfied (1)
indicates how well the cloud service provider satisfies the linked security mechanism.

47

Figure 2.14: An example of a cloud analysis view in Secure Tropos

SecTro2 Tool

“SecTro2”1 is a CASE tool based on the ADOxx meta-modelling platform, which
allows system modelling using Secure Tropos methodology. Besides standard model-
ling activities it also aids developer in validating created models and running various
analyses against them. “SecTro2” supports generating graphical images as well as
producing Word and PDF reports of the created models and their features.

SecTro’s workspace consists of the drawing canvas in the centre, on the top
there is a series of tabs for showing the developed diagrams for each stage of Secure
Tropos and on the left a toolbox containing the graphical representations of all
the concepts of Secure Tropos (Pavlidis, Islam & Mouratidis, 2011). The different
supported views along with their notations have been introduced in the previous
section.

2.4 The Secure Cloud Environment Framework

We have presented the semantics and syntax of the Secure Tropos modelling lan-
guage in Section 2.3.1 and Section 2.3.2, providing the background knowledge re-
quired to understand our work. We now discuss the extension of Secure Tropos
concepts through our Secure Cloud Environment Framework.

We now propose a framework in order to answer our three research questions.
1Available at: http://austria.omilab.org/psm/content/sectro/info

48

In our work we examine cloud computing systems from a security requirements en-
gineering perspective. Specifically we define a visual language to graphically model
secure cloud systems from the early requirements stage. Our approach for modelling
secure cloud systems is based on the components shown in Figure 2.15, namely de-
fining a modelling language, procedure and analysis techniques. The Secure Cloud
Environment framework consists of three components; the Cloud Security Modelling
Language combines the concepts in cloud computing and security engineering, the
Secure Cloud Process provides a systematic approach for modelling and analysing
cloud systems and a set of formal analysis concepts with three cloud analysis tech-
niques is proposed to enable the semi-automatic analysis and enrichment of cloud
security requirements.

Figure 2.15: Components of modelling methods from Karagiannis D. & Kühn
H. (Karagiannis & Kühn, 2002).

2.4.1 Overview of the Secure Cloud Environment Frame-
work

An overview of the framework is shown in Figure 2.16. In order to fulfil the re-
quirements of the framework specified previously, our Secure Cloud Environment
Framework will address these issues in a systematic and semi-automated manner.

49

Figure 2.16: An overview of the Secure Cloud Environment Framework.

In the framework we provide:

• The Secure Cloud Modelling Language to define the concepts and relationships
required when modelling cloud-based systems at varying degrees of granular-
ity, capturing the level of abstraction required for generating cloud security
requirements.

• The Secure Cloud Process describing the activities which practitioners should
follow, in order to apply our concepts and construct models representing cloud
system components, properties and security needs.

• Semi-Automated Reasoning Support defines formal analysis concepts and cloud
security techniques to facilitate semi-automated reasoning. Tool-support is
provided through extensions to an existing visual modelling tool.

2.5 Chapter summary

In this chapter we have reviewed literature on cloud computing characteristics, prop-
erties and provided an overview of security challenges and issues in cloud computing.
We then examined security requirements engineering approaches in the literature,

50

focusing on goal-oriented methodologies and languages. With goal-oriented ap-
proaches we are able to capture stakeholders, their security needs and how to achieve
them. We have reviewed approaches focusing on the early requirements stage, in
order to describe systems at an abstract level without considering implementation
details. We highlighted approaches supporting a visual modelling language to graph-
ically represent abstract models of systems. A selection of reasoning techniques were
presented in the supported approaches, such as validation of models and elements,
constraint resolution, propagation and evaluation of satisfaction of security needs.

Thus in our approach we have extended the Secure Tropos methodology. We
address the language limitations of the Secure Tropos methodology by extending
the expressiveness of the modelling language with cloud computing concepts. We
then propose enhancements for a systematic approach to support developers in the
modelling and understanding of security requirements in cloud computing systems.
Finally we define three types of cloud analysis in order to support semi-automated
reasoning in order to validate and derive cloud security requirements from cloud
environment models.

51

Chapter 3

Cloud Security Modelling
Language

In this chapter we present our cloud modelling language which enables the expression
of concepts and relationships of cloud computing systems from a security require-
ments engineering perspective.

In Section 3.1 we specify the requirements of the cloud modelling language in
order to answer our research question (RQ1 in Section 1.4) and research object-
ives (RO1, RO2 in Section 1.4.2). In Section 3.2 we present our concepts for de-
scribing cloud computing from a security requirements engineering perspective. In
Section 3.3 we define the relationships between our cloud computing concepts and
security concepts. In Section 3.4 we define the properties of our concepts, in order
to capture cloud security characteristics from a fine-grained perspective. The con-
crete syntax and instance syntax of our cloud modelling language is presented in
Section 3.5. Finally in Section 3.6, we present four models capturing layer specific
security properties in cloud computing systems.

3.1 Requirements of the Modelling Language

We have determined through the survey of the literature, the cloud computing char-
acteristics and security concepts which need to be captured, in order to model and
understand security requirements in cloud computing environments. In order to an-

52

swer the research question RQ1 and address the research objectives RO1 and RO2,
we now define the requirements of the modelling language:

1. Extending the Secure Tropos modelling language in order to capture security
concepts in the cloud computing domain.

(a) The modelling language will capture the concept of stakeholders from a
cloud computing perspective. Addressed by: Def. 3.4.1

(b) The modelling language will capture the concept, specifications and re-
lationships of a cloud service. Addressed by: Def. 3.2.1, Def. 3.4.3

(c) The modelling language will distinguish between the physical and virtual
components of cloud computing assets. Addressed by: Def. 3.2.2,
Def. 3.2.3, Def. 3.2.4

(d) The modelling language will support instance-specific descriptions of cloud
computing characteristics using properties. Addressed in: Section 3.4,
Def. 3.4.1 to Def. 3.4.14

2. The modelling language will aggregate platform-specific concepts in cloud com-
puting systems through fine-grained models.

(a) The modelling language will describe a model focusing on organisational
concepts and relationships. Addressed by: Def. 3.6.1

(b) The modelling language will describe a model focusing on application-
oriented concepts and relationships. Addressed by: Def. 3.6.2

(c) The modelling language will describe a model focusing on infrastructure-
based concepts and relationships. Addressed by: Def. 3.6.3

3.2 Cloud Computing Concepts

In this section we discuss the concepts required to model cloud computing systems.
We demonstrate how our concepts are applied from a practitioners perspective using
the health-care example introduced in Section 1.3. Figure 3.1 illustrates the concepts

53

S
ec

ur
ity

 M
ec

ha
ni

sm

D
ep

en
de

e
S

C

D
ep

en
de

r
S

C

R
es

ou
rc

e

G
oa

l

D
ep

en
du

m

S
ec

ur
e

D
ep

en
de

nc
y

D
ep

en
de

nc
y

A
ct

or

 M
al

ic
io

us
 A

ct
or

Im
pa

ct
s

S
ec

ur
ity

 O
bj

ec
tiv

e

V
ul

ne
ra

bi
lit

y

T
hr

ea
t

S
ec

ur
ity

 C
on

st
ra

in
t

A
tta

ck
 M

et
ho

d

E
xp

lo
its

 p
re

ve
nt

ab
le

: B
oo

le
an

P
ro

te
ct

s

M
iti

ga
te

s

S
at

is
fie

s

Im
pl

em
en

ts

R
eq

ui
re

s

R
es

tr
ic

ts

C
lo

ud
 A

ct
or

 d
ep

lo
ym

en
tM

od
el

: S
tr

in
g

0.
..* 1.
..*

1.
..*

0.
..*

1

0.
.*

co
nt

ai
ns

0.
.*

1

de
pe

nd
er

0.
.*

1

de
pe

nd
ee

1

0.
.*

0.
.*

1

0.
.*

1

1

0.
.*

ha
s

0.
.*

1 af
fe

ct
s

0.
.*

1

af
fe

ct
s

1

1.
.*

po
se

s

1

0.
.*

1

1.
.*

0.
.*

0.
.*

im
po

se
d

to

1.
.*

1.
.*

em
bo

di
ed

 b
y

10.
.*

0.
.*

1

1

0.
.*

0.
.*

1

10.
.*

0.
.*

1

0.
..*

1

0.
.*

1

1

0.
.*

0.
.*

1

1

0.
.* 1

0.
.*

0.
.*

1

1

0.
.*

0.
.*

1

0.
.*

1

Figure 3.1: A fragment of the Secure Tropos metamodel showing the concepts which
are extended in our work.

54

from a fragment of the Secure Tropos metamodel (modelled in UML) which are
extended in our work.

We now present our cloud computing extensions by systematically constructing a
metamodel, highlighting each addition of a concept through a definition, description
and example format.

Definition 3.2.1. Cloud service A cloud service provides a specific computing
capability, is managed and owned by actors and requires virtual and physical re-
sources in order to deliver its capability.

Cloud Service

Figure 3.2: The conceptual representation of the cloud service in the metamodel.

Figure 3.2 highlights the concept of the cloud service in our metamodel. The
cloud service concept is a specialisation of the goal concept because a cloud service
embodies a way to achieve a specific stakeholder need through cloud computing
capabilities. The cloud computing capability is delivered through a combination of
virtual and physical resources, which are owned or managed by various stakeholders.

Definition 3.2.2. Virtual Resource A virtual resource represents intangible as-
sets in a cloud computing system.

Cloud Service

Virtual Resource

Figure 3.3: The conceptual representation of the virtual resource in the metamodel.

55

Figure 3.3 highlights the concept of the virtual resource in our metamodel. In
order to differentiate between tangible and intangible resources, we create a special-
isation of the resource concept to represent intangible resources as virtual resources.
An example of an intangible resource is patient data, which has an owner rep-
resenting an entity that produces the original copy as well as responsible parties
representing entities handling the data.

Definition 3.2.3. Physical Infrastructure A physical infrastructure represents
a tangible system which, given a geographical location, hosts a group of physical
assets within its local proximity.

Cloud Service

Virtual Resource

Physical Infrastructure

Figure 3.4: The conceptual representation of the physical infrastructure in the
metamodel.

Figure 3.4 highlights the concept of the physical infrastructure in our metamodel.
We define this concept as a specialisation of the resource concept, given that cloud
computing resources are hosted in physical infrastructure such as a data-centre.
This is essential as properties belonging to the physical infrastructure contain fields
such as geographical location, ownership and responsible parties; which is required
for performing security analysis.

Definition 3.2.4. Infrastructure Node An infrastructure node represents a single
instance of a computing component such as a server, data storage or network con-
nection.

56

Cloud Service

Virtual Resource

Physical Infrastructure

Infrastructure Node

Figure 3.5: The conceptual representation of the infrastructure node in the modelling
language.

Figure 3.5 highlights the concept of the infrastructure node in our metamodel.
In this case a tangible resource is defined as a specialisation of the resource concept
using the notion of an infrastructure node. Each infrastructure node is part of
a physical infrastructure, to conceptually represent that an infrastructure node is
physically hosted within a structure or area. This allows us to capture the prop-
erties of individual nodes through fields such as multi-tenancy, physical location
and responsible parties. This is essential for capturing cloud computing concepts at
the physical components level, in order to facilitate cloud security analysis from a
security requirements engineering perspective.

3.3 Relationships

In this section we outline the relationships linking together concepts from the cloud
computing and security requirements engineering domains. We now define the rela-
tionships in our modelling language by building upon the metamodel in the previous
section, following a definition, description and example format.

Definition 3.3.1. Specialisation of Goal The Cloud Service concept is a special-
isation of the goal concept.

A cloud service represents a fine-grained way to achieve a goal based on the cloud
computing paradigm, in the context of a cloud computing system. A cloud service

57

Virtual Resource

Physical Infrastructure

Infrastructure Node

Resource

Cloud Service

Goal

Figure 3.6: The cloud service is a specialisations of the goal concept.

involves relationships with concepts such as actors, resources and dependencies.
Thus we define the cloud service concept as a specialisation of the goal concept,
which allows the inheritance of properties and relationships from the goal concept.
This relationship is indicated in Figure 3.6, where the arrow shows that the cloud
service concept is a specialisation of the goal concept.

Definition 3.3.2. Specialisations of Resource The Virtual resource, infrastruc-
ture node and physical infrastructure are all specialisations of the resource concept.

In order to model the concept of tangible and intangible resources, we define
three specialisations using the resource concept. The first specialisation is the virtual
resource which represents virtual data, the infrastructure node represents individual
physical nodes, while the physical infrastructure represents a structure or container
composed of zero or more infrastructure nodes. This relationship is indicated in
Figure 3.7, where the arrow shows that the virtual resource concept, infrastructure
node concept and the physical infrastructure concept are all specialisations of the
resource concept.

Definition 3.3.3. Infrastructure Node Composition The infrastructure node
concept is part-of the physical infrastructure concept, indicating that a physical

58

Figure 3.7: The virtual resource, infrastructure node and physical infrastructure are
all specialisations of the resource concept.

Figure 3.8: The composition relationship from infrastructure node concept to the
physical infrastructure concept.

infrastructure can contain zero or more instances of infrastructure nodes.

Figure 3.8 highlights the composition relationship between the infrastructure
node concept and the physical infrastructure concept. A physical infrastructure
concept has zero or more infrastructure nodes, which conceptually represents the
grouping of physical computational resources within an infrastructure.

Definition 3.3.4. Permeates This indicates the relationship which interrelates
data-in-transit and data-at-rest from the virtual resource concept to the infrastruc-
ture node concept.

Note that we follow the notation used in the Secure Tropos metamodel, which
is loosely based on version 2.0 of Unified Modelling Language(UML). Figure 3.9
highlights the permeates relationship between the virtual resource and infrastructure
node concept. A virtual resource is said to be traceable to an infrastructure node

59

Figure 3.9: The permeates relationship between the virtual resource and infrastruc-
ture node concept.

if the physical component hosts the virtual resource. For example if user data is
stored on a physical hard drive, the data is traceable to the hard drive.

Definition 3.3.5. Requires A goal, cloud service or resource requires a cloud
service or resource, in order to satisfy a stakeholder need, fulfil a capability or
collaborate with other resources or cloud services.

Figure 3.10 highlights the Requires relationship between the goal, cloud service
and resource concepts. This relationship indicates the resource or cloud service in-
stances required by a goal, cloud service or resource. A cloud service requires zero or
more resources to deliver their capability, where the resource can be of the type vir-
tual resource, physical infrastructure or infrastructure node. For example the cloud
service Patient Details Service requires Virtual Resource: Patient Data, indicating
that the cloud service requires digital patient records to perform computational tasks
such as creating, editing and deleting data.

Definition 3.3.6. Owns Indicates an actors’ level of responsibility where they
possess ownership over a physical asset, is the creator of a virtual asset or has data
ownership over a virtual asset.

Figure 3.11 highlights the Owns relationship between the actor, resource and
cloud service concepts. This relationship is used to depict the level of responsibility

60

Figure 3.10: The requires relationship between the resource, goal and cloud service
concepts.

61

Figure 3.11: The owns relationship between the resource, actor and cloud service
concepts.

62

Figure 3.12: The manages relationship between the actor and cloud service concepts.

an actor posses in relation to a cloud service or resource. It is important to define
the difference between the data creator, data ownership and physical ownership.
The data creator refers to the case where an actor produces data, and thus is the
creator of the data in the legal sense. Data ownership refers to the case where data
is physically stored on assets owned by third party providers, therefore the third
party providers are responsible for the handling of the data. Physical ownership
refers to the case where an actor is the owner of a physical asset, such as a server
or data-centre.

Definition 3.3.7. Manages Indicates an actors level of responsibility in the con-
figuration and delivery of a cloud service.

Figure 3.12 highlights the Manages relationship between the actor concept and
the cloud service concept. An actor can have zero or more Manages relationships,
indicating that some actors are not involved in the management of cloud services. A
cloud service can be the target of one or more Manages relationships from a range
of actors, indicating that a cloud service is managed by one or more actors.

63

One or more actors are responsible for managing a cloud service. We use the
term manage to represent parties responsible for providing resources required by
cloud services, configuring cloud components and ensuring security and jurisdictional
requirements are fulfilled.

3.4 Properties

In this section we define properties in order to describe an instance of a concept
in more detail. A concept has different types of supporting information, which
ranges from technical specifications to high level descriptions. For instances, given
the concept of an infrastructure node, a highly abstract description of an instance
would be called “Disk Storage”. We can further specify the “Disk Storage” instance
by adding additional detail to properties, such as “Multi-tenancy” to the Tenancy
property, “Seagate” to the Vendor property, “Storage” to the ResourceType property
and “ST2000DM001” to the Version property. This allows the developer to provide
both abstract and technical details to instances of a concept, therefore supporting
varying degrees of granularity when describing the system-under-design. The level
of analysis which can be performed on a model is dependent on the granularity of
the properties provided. In other words, as more information is provided in a model,
the richer the analysis results.

Definition 3.4.1. Cloud Actor The cloud actor concept has three properties;
Description of the instance, DeploymentModel representing the deployment model
and Type to determine the types of cloud actors an instance plays.

• Description: String

• DeploymentModel: String

• Type: «Enumeration» CloudActorType [1..*]

Figure 3.13 highlights the Cloud Actor concept with extended properties and the
enumeration CloudActorType. The Description provides additional details of the
instance .The DeploymentModel property represents the type of deployment model,
which is of type String. The Cloud Actor Type property represents the role the cloud

64

Figure 3.13: Highlighting the Cloud Actor concept with extended properties and
the enumeration CloudActorType.

65

actor plays in a cloud computing context. The enumerated values are based on the
five types of cloud actors defined by NIST in (Bohn, Messina, Liu, Tong & Mao,
2011); Cloud Service Provider, Cloud Consumer, Cloud Broker, Cloud Carrier and
Cloud Auditor. The type of the cloud actor determines the level of responsibility
in a manages or owns relationship. The type of the cloud actor also constrains the
validity of relationships with other concepts, based on pre-defined logic or a set of
rules defined by the developer. The Cloud Actor Type property consists of one or
more values from the enumeration CloudActorType. This represents the case where
a cloud actor may play more than one role simultaneously.

For example A2: Hospital is a cloud service provider because they provide cloud
service cloud service 1: Patient Details Service to the cloud consumer A1: Patient.
But A2: Hospital is themselves dependent on the cloud service provider A5: CSP
to provide computing components such as physical infrastructure as a cloud service.
Therefore in this example A2: Hospital is a cloud service provider due to the de-
pendency relationship with A1: Patient, however A2: Hospital is also involved as a
cloud consumer in a dependency relationship with A5: CSP.

Definition 3.4.2. Owns The Owns relationship has the property Responsibility,
which indicates the type of ownership an actor possess in relation to a cloud service
or a resource and its specialisations.

• Responsibility: «Enumeration» Ownership

Figure 3.14 highlights the Owns relationship and its property, in addition to
the enumeration Ownership. An actor can initiate zero or more Owns relationships
to a cloud service, resource or their specialisation. A cloud service, resource or
their specialisation can be the target of zero or Owns relationships initiated from an
actor. The enumeration Ownership contains the following values; data creator, data
ownership and physical ownership. The data creator represents an actor that gener-
ates virtual resources, for example personal information created by a patient. The
data ownership represents an actor in possession of virtual resources, for example
a hospital is responsible for their patients medical records. The physical ownership
represents actors who are responsible for processing resources through their own
physical infrastructure, for example a cloud service provider has physical ownership
over customer data stored on the cloud service providers physical infrastructure.

66

Figure 3.14: Highlighting the Owns relationship with extended properties and the
enumeration Ownership.

Definition 3.4.3. Cloud Service The Cloud service concept has the properties
Capability, Security Property, Deployment Model and Service Model, indicating the
specific computing capability, security property, cloud service deployment model and
the service model.

• Capability: String

• Security Property: «Enumeration» SecurityProperty [1..*]

• Deployment Model: «Enumeration» DeploymentModel

• Service Model: «Enumeration» ServiceModel

Figure 3.15 highlights the Cloud Service concept and its properties, in addition
to the enumerations DeploymentModel and ServiceModel. The capability property
is of type string, which provides a description of the strategic value or work the
cloud service is capable of delivering. The Security Property property describes one

67

Figure 3.15: Highlighting the Cloud Service concept with extended properties and
the enumerations DeploymentModel and ServiceModel.

or more security properties of the security constraint, which is selected from the
enumeration SecurityProperty (Defined later in 3.21) consisting of; Confidentiality,
Integrity, Availability, Accountability, Auditability, Authenticity, Non-repuditation
and Privacy. The SecurityProperty enumeration also accepts custom values which
is optionally added by users. The Deployment Model property specifies which type of
cloud service deployment model is deployed by the cloud service, where the enumer-
ation DeploymentModel includes the values Public, Private, Hybrid and Community.
The Service Model property specifies the service model of the cloud service, where
the enumeration ServiceModel includes the values SaaS, PaaS, IaaS and XaaS.

Definition 3.4.4. Manages The Manages relation has the properties Cloud Ser-
vice, Deployment Model, Service Model and Manager, indicating the instance of the
cloud service managed by the actor, the deployment model and service model the
actor is responsible for and the instance of the actor initiating the relationship.

• Cloud Service: Cloud Service

68

• Deployment Model: «Enumeration» DeploymentModel

• Service Model: «Enumeration» ServiceModel

• Manager: Actor

Figure 3.16: Highlighting the Manages relationship with extended properties.

Figure 3.16 highlights the Manages relationship and its properties. The Cloud
Service property holds an instance of the Cloud Service concept, representing the
target of the manage relationship. The Deployment Model property specifies which
type of cloud deployment model is managed, where the enumeration Deployment-
Model includes the values Public, Private, Hybrid and Community. The Service
Model property specifies which level of the service model an actor manages, where

69

the enumeration ServiceModel includes the values SaaS, PaaS, IaaS and XaaS. The
Manager property holds an instance of the Actor concept, representing the actor
managing the cloud service.

Definition 3.4.5. Resource The Resource concept has the properties Description,
Value, Security Property, Product, Vendor and Version.

• Description: String

• Value: Float

• Security Property: «Enumeration» SecurityProperty [1..*]

• Product: String

• Vendor : String

• Version: String

Figure 3.17 highlights the Resource concept and its properties. The Description
property of type string provides a description of the resource. The Value property of
type float represents a numerical value associated with user-defined metrics, which
assists users in carrying out semi-automated analysis. The Security Property prop-
erty describes one or more security properties of the security constraint, which is
selected from the enumeration SecurityProperty consisting of; Confidentiality, In-
tegrity, Availability, Accountability, Auditability, Authenticity, Non-repuditation and
Privacy. The SecurityProperty enumeration also accepts custom values which is
added by the developer. The Product, Vendor and Version properties are values
which is specified by the developer to refine the granularity of resources. Note that
all properties of the resource concept are inherited by the specialised concepts of
resource; the virtual resource, physical infrastructure and the infrastructure node.

Definition 3.4.6. Virtual Resource The Virtual Resource concept has the prop-
erties Type and Visibility.

• Type: «Enumeration» ResourceType

• Visibility: «Enumeration» Visibility

70

Figure 3.17: Highlighting the Resource concept with extended properties.

Figure 3.18 highlights the Virtual Resource concept and its properties. The Type
property denotes the type of resource using the enumeration ResourceType, with
values; Data and Software. The Visibility property denotes the level of visibility of
a resource, using the enumeration Visibility with values; Public, Private and Group.

Definition 3.4.7. Physical Infrastructure The Physical Infrastructure concept
has the properties Jurisdiction.

• Location: «Enumeration» Jurisdiction [1..*]

Figure 3.19 highlights the Physical Infrastructure concept and its properties. The
Location property denotes one or more jurisdictional constraints on the physical in-

71

Figure 3.18: Highlighting the Virtual Resource concept with extended properties
and the enumerations ResourceType and Visibility.

frastructure using values defined in the enumeration Jurisdiction, which consists of
the values; GDPD. The values defined in the enumeration Jurisdiction is optionally
defined by the user, where they are able to input custom entries. This represents
which jurisdiction the asset falls under, and therefore has to adhere to. As an
example, the developer may identify a process which should adhere to the juris-
dictional requirements set in the EU. However given a physical infrastructure with
the jurisdiction value of “US”, the developer is able to determine the conflict in the
jurisdictional requirements in the between the concepts and propose an alternative
approach.

Definition 3.4.8. Infrastructure Node The Infrastructure Node concept has the

72

Figure 3.19: Highlighting the Physical Infrastructure concept with its extended prop-
erty and the enumeration Jurisdiction.

properties Type and Tenancy.

• Type: «Enumeration» NodeType

• Tenancy: «Enumeration» Tenancy

Figure 3.20 highlights the Infrastructure Node concept and its properties. The
Type property denotes the type of infrastructure node, which is defined through the
enumeration NodeType using the values Compute, Network and Storage. The Ten-
ancy property denotes the tenancy of the infrastructure node, which is enumerated
through Tenancy with the values Single and Multiple.

73

Figure 3.20: Highlighting the Infrastructure Node concept with extended properties
and the enumerations NodeType and Tenancy.

Virtualisation is one of the cloud computing characteristics defined in the lan-
guage. This characteristic is captured using the concept of virtual machines and
hypervisors. Specifically a virtual machine is represented as an instance of a vir-
tual resource. A hypervisor is represented using an instance of an infrastructure
node. The relationship between an instance of a virtual machine and an instance
of a hypervisor is captured through the permeates relationship, where an instance
of a hypervisor is associated, through the permeates relationship, to one or more
instances of a virtual machine. This relationship determines the tenancy of the
hypervisor instance, which we now explain.

Multi-tenancy is another cloud computing characteristic defined in the language.

74

The concept of tenancy is captured through the Tenancy property of the infrastruc-
ture node concept, where the value “Single” defines a single-tenant instance and the
value “Multiple” defines a multi-tenant instance. When there is one or less instances
of a virtual resource connected to an infrastructure node through the “Permeates”
relationship, the infrastructure node has the value “Single” in the Tenancy prop-
erty. When there is two or more instances of a virtual resource connected to an
infrastructure node through the “Permeates” relationship, the infrastructure node
has the value “Multiple” in the Tenancy property.

The enumeration Jurisdiction consists of the following items: “US”, “UK”, “EU”
and “Asia”. This represents which jurisdiction the asset falls under, and therefore
has to adhere to. The enumeration Tenancy indicates whether a process is limited
to a single tenant, through “Single”, or if two or more cloud users are involved,
through “Multiple”.

Definition 3.4.9. Security Constraint The Security Constraint concept has the
properties Description and Security Property.

• Description: String

• Security Property: «Enumeration» SecurityProperty [1..*]

Figure 3.21 highlights the Security Constraint concept and its properties. The
Description property is of type string, which provides a description of the security
constraint. The Security Property property describes one or more security properties
of the security constraint, which is selected from the enumeration SecurityProperty
consisting of; Confidentiality, Integrity, Availability, Accountability, Auditability, Au-
thenticity, Non-repuditation and Privacy. The SecurityProperty enumeration also
accepts custom values which is optionally added by users.

Definition 3.4.10. Requires The Requires relationship has the property Filter
Security Property.

• Filter Security Property: «Enumeration» SPFilter

75

Figure 3.21: Highlighting the Security Constraint concept with extended properties
and the enumeration SecurityProperty.

76

Figure 3.22: Highlighting the Requires relationship with its extended property.

77

Figure 3.22 highlights the Requires relationship and its property. The Filter
Security Property property denotes the type of filter used to determine the security
properties inherited in the Requires relationship. The purpose of this property is
to allow the Requires relationship to associate security properties from the source
concept to the target concept.

Definition 3.4.11. Threat The Threat concept has the properties Description and
Security Property.

• Description: String

• Security Property: «Enumeration» SecurityProperty [1..*]

Figure 3.23 highlights the Threat concept and its properties. The Description
property is of type string, which provides a description of the threat. The Security
Property property describes one or more security properties of the security con-
straint, which is selected from the enumeration SecurityProperty consisting of; Con-
fidentiality, Integrity, Availability, Accountability, Auditability, Authenticity, Non-
repudiation and Privacy. The SecurityProperty enumeration also accepts custom
values which is optionally added by users.

Definition 3.4.12. Vulnerability The Vulnerability concept has the properties
Description, Attack Method, Vulnerability Metric and Security Property.

• Description: String

• Attack Method: String [1..*]

• Vulnerability Metric: String

• Security Property: «Enumeration» SecurityProperty [1..*]

Figure 3.24 highlights the Vulnerability concept and its properties. The Descrip-
tion property of type string provides a description of the vulnerability. The Attack
Method property describes one or more attack methods targeting an instance of
the vulnerability, using the enumeration AttackMethods consisting of default val-
ues and optionally values defined by the user. The Vulnerability Metric property

78

Figure 3.23: Highlighting the Threat concept with extended properties.

79

Figure 3.24: Highlighting the Vulnerability concept with extended properties.

80

of type string allows the user to define a numerical value associated with user-
defined metrics, which assists them in carrying out semi-automated analysis. The
Security Property property describes one or more security properties of the secur-
ity constraint, which is selected from the enumeration SecurityProperty consisting
of; Confidentiality, Integrity, Availability, Accountability, Auditability, Authenticity,
Non-repudiation and Privacy. The SecurityProperty enumeration also accepts cus-
tom values which is optionally added by users.

Definition 3.4.13. Security Mechanism The Security Mechanism concept has
the properties Description, Mechanism Metric and Security Property.

• Description: String

• Security Property: «Enumeration» SecurityProperty [1..*]

• Metric: String

Figure 3.25 highlights the Security Mechanism concept and its properties. The
Description property of type string provides a description of the security mechanism.
The Metric of type string allows the user to define a numerical value associated with
user-defined metrics, which assists them in carrying out semi-automated analysis.
The Security Property property describes one or more security properties of the se-
curity constraint, which is selected from the enumeration SecurityProperty consisting
of; Confidentiality, Integrity, Availability, Accountability, Auditability, Authenticity,
Non-repudiation and Privacy. The SecurityProperty enumeration also accepts cus-
tom values which is optionally added by users. The Metric property of type string
allows the user to define a numerical value associated with user-defined metrics,
which assists them in carrying out semi-automated analysis.

Definition 3.4.14. Security Objective The Security Objective concept has the
properties Description, Security Property and Objective Metric.

• Description: String

• Security Property: «Enumeration» SecurityProperty [1..*]

• Objective Metric: String

81

Figure 3.25: Highlighting the Security Mechanism concept with extended properties.

82

Figure 3.26: Highlighting the Security Objective concept with extended properties.

83

Figure 3.26 highlights the Security Objective concept and its properties. The De-
scription property of type string provides a description of the security objective. The
Security Property property describes one or more security properties of the secur-
ity constraint, which is selected from the enumeration SecurityProperty consisting
of; Confidentiality, Integrity, Availability, Accountability, Auditability, Authenticity,
Non-repudiation and Privacy. The SecurityProperty enumeration also accepts cus-
tom values which is optionally added by users. The Metric property of type string
allows the user to define a numerical value associated with user-defined metrics,
which assists them in carrying out semi-automated analysis.

3.5 Syntax

In this section we present the concrete syntax of the modelling language. The con-
crete syntax is visualised using graphical notation, where each concept in the model-
ling language is mapped to an unique graphical notation. The shapes of the graphical
notation was chosen arbitrarily in order to distinguish between the original Secure
Tropos notation and our novel cloud computing concepts. The graphical notation
is rendered using the SectroCloud tool, which is described later in Section 5.4. Note
that the concept attribute shown in the figures with the properties of the concrete
syntax is automatically generated by the SectroCloud tool, therefore it is not part
of the model.

We also describe the instance syntax of the modelling language. The instance
syntax is a textual encoding of the concrete syntax which provides an one-to-one
mapping of a concept from our cloud metamodel to an instance of a concept. The
purpose of the instance syntax is to provide a formal representation of concept
instances, in a machine readable format in order to perform analysis on cloud models
through tool-support. Thus the instance syntax allows the unambiguous encoding of
concepts in a textual format, which describes the instantiated concepts from a cloud
model to facilitate security analysis. For the purpose of clarity and presentation in
this section, properties without values are not full described. As an example, instead
of writing INSTANCE(A,B,C,D) as INSTANCE(„,test) where the only non-empty
property is D with the value “test”, we write INSTANCE(test).

84

Definition 3.5.1. Cloud Service The instance syntax of a cloud service is
CS(D,CAP,SP,DM,SM). The instance syntax for a cloud service describes the fol-
lowing: CS() describes an instance of a cloud service with associated concepts en-
capsulated inside the parenthesis, D provides a description of the cloud service, CAP
describes the capability of the cloud service, SP determines the security properties
of the instance which is selected from zero or more security properties in the list
of enumerated values SecurityProperty, DM is the deployment model selected from
a list of enumerated values and SM is the service model selected from a list of
enumerated values.

Figure 3.27: Concrete syntax of a cloud service.

Figure 3.27 shows the concrete syntax of a cloud service, which is represen-
ted as a light green rectangle with a solid black outline. The textual descrip-
tion inside the rectangle on the left denotes the properties of the cloud service
instance. The instance syntax in this case is CS(Business intelligence, monitor-
ing and alert,Public,SaaS)

Definition 3.5.2. Cloud Actor The instance syntax of a cloud actor is CA(D,{T}).

Figure 3.28: A Cloud Actor is visualised as a light pink circle.

The instance syntax for a cloud actor describes the following: D is a description of
the cloud service provider, {T} is a set denoting one or more roles played by a

85

cloud actor. The type of role played by a cloud actor is selected from the enumer-
ation CloudActorType with the following list of roles; Cloud Service provider(csp),
Cloud Consumer(cu), Cloud Broker(cb), Cloud Carrier(cc), and Cloud Auditor(ca).
For example a cloud service provider with the description hospital is encoded as
CA(hospital,{csp}). In case of cloud actors playing multiple roles, for example
dropbox who is a cloud service provider and also a cloud consumer is encoded as
CA(dropbox,{csp,cu}).

Figure 3.28 shows the concrete syntax of a cloud actor, which is represented as
a light pink circle. The text in the rectangle on the left denotes the properties of
the cloud actor. In Figure 3.28 a range of cloud actor types are shown, where the
properties of each instance is located above the light pink circle for the purpose of
demonstration. Note that the Dropbox cloud actor has both the cloud service pro-
vider and a cloud consumer types, as indicated by the {csp,cu} textual description.
This means the Dropbox cloud actor is responsible for the role of a cloud service
provider, while also playing the part of a cloud consumer.

Definition 3.5.3. Virtual Resource The instance syntax of a virtual resource
is VR(D,VAL,SP,T,VEN,VER,RT,VIS). The instance syntax for a virtual resource
describes the following: D is the description of the virtual resource instance, VAL
denotes the value of the asset which can be used to calculate metrics such as mitig-
ation costs or determining impact on assets, SP determines the security properties
of the instance which is selected from zero or more security properties in the list of
enumerated values SecurityProperty, T specifies the technical type of the instance,
VEN describes the organisational vendor of the instance, VER is the version number
of the instance, RT is the resource type selected from a list of enumerated values,
VIS is the visibility type selected from a list of enumerated values. For instance the
virtual resource Patient data with the description Patient data, resource type data
and visibility type private is encoded as VR(Patient data,data,private).

Figure 3.29 shows the concrete syntax of a virtual resource, which is represented
as a yellow rectangle with a dashed yellow outline. The textual description inside
the rectangle on the left denotes the properties of the virtual resource instance.

Definition 3.5.4. Physical Infrastructure The instance syntax of a physical
infrastructure is PI(D,VAL,SP,T,VEN,VER,L). The instance syntax for a phys-

86

Figure 3.29: A virtual resource is visualised as a yellow rectangle with thin dashed
outlines.

ical infrastructure describes the following: D is the description of the physical in-
frastructure, VAL denotes the value of the asset which can be used to calculate
metrics such as mitigation costs or determining impact on assets, SP determines
the security properties of the instance which is selected from zero or more security
properties in the list of enumerated values SecurityProperty, T specifies the tech-
nical type of the instance, VEN describes the organisational vendor of the instance,
VER is the version number of the instance, L is an enumerated list of jurisdic-
tions which the physical infrastructure falls under. For example the physical in-
frastructure hospital information system with the description hospital information
system and jurisdiction General Data Protection Regulation (GDPR) is encoded as
PI(hospital information system,GDPR).

Figure 3.30: A physical infrastructure visualised as a yellow rectangle with thick
outlines.

Figure 3.30 shows the concrete syntax of a physical infrastructure, which is rep-
resented as a yellow rectangle with a solid black outline. The textual description
inside the rectangle on the left denotes the properties of the physical infrastructure
instance.

87

Definition 3.5.5. Infrastructure Node The instance syntax of a cloud service is
IN(D,VAL,SP,T,VEN,VER,NT,TE). The instance syntax for an infrastructure node
describes the following: D is the description of the infrastructure node, VAL denotes
the value of the asset which can be used to calculate metrics such as mitigation
costs or determining impact on assets, SP determines the security properties of
the instance which is selected from zero or more security properties in the list of
enumerated values SecurityProperty, T specifies the technical type of the instance,
VEN describes the organisational vendor of the instance, VER is the version number
of the instance, NT determines the type of the infrastructure node from a list of
enumerated values, TE determines the type of tenancy from a list of enumerated
values. As an example the infrastructure node amazon server 1 with the compute
node type and single tenancy is encoded as IN(amazon server 1,compute,single).

Figure 3.31: An infrastructure node visualised as a yellow rectangle with thick
dashed outlines.

Figure 3.31 shows the concrete syntax of an infrastructure node, which is rep-
resented as an yellow cylinder with a black outline. The text inside the rectangle on
the left denotes the description of the infrastructure node.

Definition 3.5.6. Security Constraint The instance syntax of a security con-
straint from is SC(D,SP,SR). The instance syntax for a security constraint describes
the following: D is the description of the instance, SP determines the security prop-
erties of the instance which is selected from zero or more security properties in the
list of enumerated values SecurityProperty, SR determines the security requirements
of the instance which is entered by the developer or through security analysis.

Figure 3.32 shows the concrete syntax of a security constraint, which is repres-
ented as a red octagon with a black outline. The text inside the rectangle on the

88

Figure 3.32: A security constraint visualised as a red octagon with a black outline.

left denotes the description of the security constraint node.

Definition 3.5.7. Vulnerability The instance syntax of a vulnerability is:
V(D,AT,VM,SP). The instance syntax for a vulnerability describes the following:
D is the description of the instance, AT represents zero or more attack methods for
exploiting the instance, VM denotes a value which can be used to calculate metrics
such as mitigation costs or determining impact on assets, SP determines the security
properties of the instance which is selected from zero or more security properties in
the list of enumerated values SecurityProperty.

Figure 3.33: A vulnerability visualised as a red rectangle with a black outline.

Figure 3.33 shows the concrete syntax of a vulnerability, which is represented
as an red rectangle with a black outline. The text inside the rectangle on the left
denotes the description of the vulnerability.

Definition 3.5.8. Threat The instance syntax of a threat is T(D,SP). The instance
syntax for a threat describes the following: D is the description of the instance, SP
determines the security properties of the instance which is selected from zero or
more security properties in the list of enumerated values SecurityProperty.

89

Figure 3.34: A threat visualised as a light red pentagon with a black outline.

Figure 3.34 shows the concrete syntax of an threat, which is represented as a
light red pentagon with a black outline. The text inside the rectangle on the left
denotes the description of the threat.

Definition 3.5.9. Security Mechanism The instance syntax of a security mech-
anism is SM(D,MM,SP). The instance syntax for a security mechanism describes
the following: D is the description of the instance, MM denotes a value which can
be used to calculate metrics such as mitigation costs or determining effectiveness
of counter-measures, SP determines the security properties of the instance which
is selected from zero or more security properties in the list of enumerated values
SecurityProperty.

Figure 3.35: An security mechanism visualised as a green hexagon with black dashed
outlines.

Figure 3.35 shows the concrete syntax of a security mechanism, which is rep-
resented as an green hexagon with black dashed outlines. The textual description
inside the hexagon denotes the description of the security mechanism.

Definition 3.5.10. Security Objective The instance syntax of a security ob-
jective is SO(D,OM,SP). The instance syntax for a security objective describes the
following: D is the description of the instance, OM denotes a value which can be

90

used to calculate metrics such as mitigation costs or determining the priority of ob-
jectives, SP determines the security properties of the instance which is selected from
zero or more security properties in the list of enumerated values SecurityProperty.

Figure 3.36: An security objective visualised as an aqua hexagon with a black out-
line.

Figure 3.36 shows the concrete syntax of a security objective, which is represented
as an aqua hexagon with a black outline. The text inside the rectangle on the left
denotes the description of the security objective.

3.6 Cloud Computing Models

Models are abstractions of a system, where we capture the elicited requirements
and specifications of components associated with the system. Models are construc-
ted using a modelling language, at various levels of granularity dependent on the
development stage. For example at the early requirements stage, models capture
the stakeholder requirements using goals and components such as resources and
dependencies. At the late requirements stage the goals are decomposed to refine
dependencies and determine responsible parties. Additional properties are captured
as the developer progresses through the various stages of development. For example
cloud properties such as multi-tenancy, single-tenancy and security properties are
added to existing concepts.

So far in this chapter we have described the concepts, relationships, properties
and concrete syntax of the cloud modelling language to address the first half of
RQ1. To recap, RQ1 is: “How do we describe cloud computing concepts to capture
cloud systems from a security requirements engineering perspective?”. We now de-
scribe how we capture the information in cloud computing systems through models,
based on the modelling language we have defined. Specifically we describe three

91

views derived from the cloud environment model, focusing on the different level of
abstraction offered in each view.

3.6.1 Organisational Cloud View

Figure 3.37: The organisation cloud view showing cloud actors, cloud services and
virtual resources.

We begin our approach for capturing security requirements in cloud computing
systems by modelling cloud services based on stakeholder needs. We make the as-
sumption that the developer has completed the requirements elicitation process and
has the requirements of the stakeholders at hand. Thus the developer begins the
modelling process from the organisational cloud view, capturing the stakeholders,
goals, security needs and resources. More specifically the organisational cloud view
consists of the following concepts and relationships: Goal, cloud service, actor, cloud
actor, virtual resource, security constraint, restricts, has, requires, dependency. Fig-
ure 3.37 illustrates an example of the organisational cloud view using the graphical
notation of the cloud modelling language.

Stakeholder Needs

This conceptual layer captures organisational needs from a social perspective through
properties such as roles played by actors, delegation of responsibilities and relation-
ship resolution. The organisational view allows the developer to model stakeholders,
the roles played and their relationships to required components. Thus the model

92

guides the developer through the process of identifying direct and indirect stake-
holders as actors or cloud actors with roles determined through their interaction
with cloud services and components. Each type of role plays a part when capturing
the security needs of stakeholders, for example a cloud service provider will have
different responsibilities and relationships compared to a cloud consumer.

Stakeholder needs are modelled using a cloud actor as the depender, a cloud
actor as the dependee and a cloud service as the dependum. This is the dependency
relationship where the depender is a cloud stakeholder that depends on another
cloud stakeholder to deliver a cloud service in order to satisfy their needs. System
component needs are modelled from a resource or goal, to a resource or cloud service.
This is the requires relationship which indicates that a system component requires a
specific resource or cloud service. For example a database may depend on storage to
backup data, or a cloud service may depend on other cloud services to deliver specific
functions. Security constraints capture the security needs of stakeholders. In the
organisational view security constraints are placed by stakeholders on their needs,
which corresponds to goals of cloud actors. Thus a security constraint is placed
onto a cloud service from an actor to another actor in indicate the satisfaction of
the stakeholder needs by the latter actor.

3.6.2 Application Cloud View

The application cloud view captures the software-oriented concepts of the cloud
computing paradigm, realised through fine-grained descriptions of cloud services. In
this view the developer refines the virtual resources, cloud actor relationships and
decomposes cloud services. More specifically the application cloud view consists of
the following concepts and relationships: Cloud service, actor, cloud actor, virtual
resource, security constraint, threat, vulnerability, restricts, has, requires, dependency,
impacts and affects. Figure 3.38 shows an example of the application cloud view,
building on the cloud model refined in the organisational cloud view.

This layer represents the abstract concepts for software and applications in the
system-under-design, centring around cloud services, components interacting with
cloud services and the security impacts. In our running example we model two
cloud services, the security issues impacting them, the virtual resources they require

93

Figure 3.38: The application view showing refinement of virtual resources, cloud
actor relationships and security concepts.

and partial solutions for mitigation. The service and deployment models of each
cloud service determines the actors that owns the cloud service, actors responsible
for managing the cloud service, security issues and propagation of dependencies.

3.6.3 Infrastructure Cloud View

This view describes the hardware-oriented concepts supporting cloud services, where
the goal is to capture tangible cloud computing components. Thus the developer
describes assets such as computing servers, storage devices and networks, where
properties such as geographical location and managing actors are identified in each
instance. More specifically the infrastructure cloud view consists of the following
concepts and relationships: Cloud service, actor, cloud actor, virtual resource, phys-
ical infrastructure, infrastructure node, security constraint, restricts, has, requires,
dependency, impacts, affects, threat, vulnerability, security objective and security
mechanism. Figure 3.39 shows an infrastructure cloud view with refinements to
the infrastructure components and additional properties, such as multi-tenancy in
infrastructure nodes.

We define this layer to abstractly model physical components required to realise
cloud computing services, which we capture as infrastructure nodes belonging to one

94

Figure 3.39: The infrastructure view showing the refinement of infrastructure nodes,
cloud actor relationships and security concepts.

or more physical infrastructure containers representing IT infrastructure.

3.6.4 Cloud Environment Model

Existing approaches in security requirements engineering and cloud security cap-
ture system and stakeholders needs through disparate models, where each model
describes properties unique to self-contained domains. However by adapting a dis-
crete and isolated approach to elicit requirements, critical properties are omitted
during the process. The cloud environment model is thus refined by the developer
throughout the three views to provider finer granularity to the cloud system. By
providing the required level of detail, specific analysis can be carried out to support
the developer when performing reasoning on the security requirements of the cloud
system.

95

3.7 Chapter summary

This chapter presents the cloud security modelling language, which extends the
secure tropos methodology Mouratidis and Giorgini, 2007 with cloud computing
concepts, relationships and properties to describe security requirements in cloud
computing environments. The concepts used to capture cloud computing systems
are defined as the cloud service, virtual resource, infrastructure node and physical
infrastructure. Interactions between the proposed cloud computing concepts and
security concepts are described using relationships, namely through the concept of
ownership, management and permeate. Properties are enumerated in the language
to facilitate analysis techniques, describing in detail the configurations and specifica-
tions of an instance. As an example an instance of the cloud service concept has the
properties service level and deployment model, which specifies the category security
issues affecting the instance. A concrete syntax is defined using graphical notation,
mapping instances of concepts to visual representations, allowing visual modelling of
cloud computing systems. An instance syntax of the language is then defined, where
the information of an instance is encoded textually and this is machine-readable.
The instance syntax facilitates security analysis, in order to perform algorithmic
functions such as pattering matching for known vulnerabilities on cloud models en-
coded in the machine-readable instance syntax. Finally we describe how the cloud
environment model is constructed using the concepts, relationships and properties
defined in this chapter.

96

Chapter 4

Secure Cloud Process

This chapter outlines our systematic approach in order to model the alignment
of organisational needs with security concepts in the context of cloud computing
systems. This approach is intended to guide developers through the process of cap-
turing cloud computing systems through modelling techniques, defining stakeholder
requirements and security needs. Each step of the process procedurally constructs
a holistic view of the system-under-design, represented through models comprising
system needs and cloud-specific security properties from a security requirements en-
gineering perspective. The approach outlines the types of analysis supported and
the prerequisites the developer should follow in order to perform semi-automated
reasoning. We also indicate where input from security requirements engineers or
cloud computing experts are required.

4.1 Overview of the Secure Cloud Process

We describe an iterative process which supports developers to systematically cap-
ture and refine cloud computing relationships, security properties and organisational
needs. Each activity defines a step which contributes towards defining and construct-
ing a cloud environment model representing the system-under-design. An overview
of the Secure Cloud Process is shown in Figure 4.1 with the following activities:

• Organisational goal model: identify organisational needs, stakeholders,
assets and relationships, producing an organisational goal model as output.

97

Figure 4.1: An overview of the Secure Cloud Process.

• Organisational cloud system: identify and configure cloud services, gener-
ating a list of cloud services as output.

• Holistic cloud model: refinement of layer-specific concepts through a fine-
grained approach, focusing on the organisational, application and infrastruc-
ture levels of the system-under-design to output a cloud environment model.

• Cloud analysis: performing analysis techniques from the cloud security ana-
lysis, security mitigation analysis and transparency analysis to help developers
identify and understand the cloud security requirements of the system-under-
design. .

4.2 Activity 1: Organisational Goal Model

This is the first activity of the secure cloud process, where the input is either an ex-
isting goal model, or constructed by the developer based on existing requirements.
In the latter case, we assume that the process of eliciting system needs, analysis
and production of requirements has been carried by security requirements engin-
eers and the developer has access to the requirements of the system-under-design.
This assumption is made on the basis that the process for producing goal models of
existing software systems or from initial requirements falls out of the scope of this
thesis. Due to the maturity of established work in requirements engineering, we do
not attempt to redefine the existing process of goal modelling. Instead we focus on
extending the existing work to capture security requirements issues in cloud comput-

98

ing, building upon goals models to represent these concepts. In this case the SecTro
modelling tool is used to create organisational models from existing requirements,
because the Secure Tropos methodology provides a goal-oriented approach in area of
security requirements engineering. The organisation goal model includes the follow-
ing concepts; actor, resource, goal and security constraint. Thus the organisation
goal model would be the output of this step, which can be generated using existing
approaches such as Secure Tropos.

4.3 Activity 2: Organisational Cloud System

The goal of the second activity of the secure cloud process is to identify a list of
cloud services based on the requirements of the system-under-design. We take as
input an organisational goal model from Activity 1 and produce, as output, a list
of cloud services. This activity adds the following concepts in order to refine the
organisation goal model from the previous activity; cloud service, cloud actor and
virtual resource.

Figure 4.2: Simple organisational goal model of hospital processes.

99

In order to demonstrate the steps involved in this activity, we now refer to the
health-care running example presented in Chapter 1, where a goal model is produced
using existing security requirements engineering approaches, as shown in Figure 4.2.
The goal model describes a scenario where one hospital wishes to partially offload
their patient records management system to the cloud, in order to facilitate health
information exchange through the availability and interoperability of patient records.
We now demonstrate how to identify and specify cloud services.

Step 2.1: Cloud Service Identification

We begin this step by taking the organisation goal model produced in the previous
step as input, identifying and selecting from the organisational goals a list of cloud
services and generating as output the list of cloud services identified. By default the
cloud service selection criteria is defined such that each goal corresponds to a cloud
service in an one-to-one mapping. However the developer is able to define their own
selection criteria, such as identifying their own cloud services, creating compositions
consisting of one or more cloud services and modifying attributes based on their
needs.

Figure 4.3: The Cloud Service Template.

We use the organisational goal model as input and apply the Cloud Service
Template shown in Figure 4.3 to identify and generate a list of candidate cloud
services. The purpose of the Cloud Service Template is to provide a set of guidelines
assisting developers through the process of identifying cloud services. Practically the
Cloud Service Template is used to map each selected goal in the goal model into
a candidate cloud service, extracting the information required to describe a cloud

100

Figure 4.4: Default fields in a cloud service with a list of candidate cloud services.

101

service based on our definition. An example of a candidate list of cloud services is
shown in Figure 4.4. Practically the developer will use pen and paper to produce a
list of candidate cloud services, before creating a model using tool-support. Fields
which require user input will be left blank at this step i.e. the service and deployment
models. We use the term candidate to describe the extracted cloud services due to
the fact that at this stage in the activity, essential attributes such as service and
deployment models which abstractly determine how cloud services are instantiated
have yet been finalised, in addition to logical aggregation of similar activities such
as self-contained capabilities which contribute towards a common primary function
or goal. The output of this sub-step is a list of candidate cloud services, in this
case a list of cloud services that have yet been fully instantiated. The user then
has a choice of either visualising the selected cloud services in Step 2.2 through
the organisational cloud service view, or to specify and configure their chosen cloud
services in Step 2.3.

Step 2.2: Cloud Service View

Figure 4.5: A view showing the default candidate cloud services generated during
step 2.1.

We use the generated list of candidate cloud service from Step 2.1 as input,
presenting a visual model of the actors, cloud services, resources and relationships.
This view offers a high level graphical representation of how cloud services interact,
what resources are required and the actors involved. From this step the user can
proceed to the next step and specify the exact configuration of cloud services. An

102

example of this view is shown in Figure 4.5, illustrating the dependencies from the
actors Patient, Hospital, Doctor and Pharmacy to cloud services and the security
constraints.

Step 2.3: Cloud Service Configuration

Figure 4.6: Configuring selected cloud services from the running example.

During this step the user refines the attributes of cloud services, such as the
cloud service and deployment models for each cloud service. They are also able to
view lists of candidate cloud services in order to aggregate related cloud services or
modify existing connections. Figure 4.6 shows an example of three cloud services,

103

where the user completes the cloud service configuration step by entering the desired
deployment level, service level and any missing attributes for each cloud service.
Optionally they are able to visualise the cloud services to reflect the impact of

Figure 4.7: A view showing the user-configured cloud services.

selecting and aggregating different services by iterating through Step 2.2. Figure 4.7
shows an example view of cloud services after user input. Once the user is satisfied
that the set of cloud services defined sufficiently meets the stakeholder and system
needs, they proceed to Activity 3.

4.4 Activity 3: Holistic Cloud Model

The purpose of this activity is to model properties related to cloud services at dif-
ferent conceptual levels and granularity. We examine the identified cloud services
from previous activities and model the essential characteristics required for defin-
ing a cloud service, which is distributed through our three conceptual layers. The
organisation model embodies the social aspects of a software system, such as inter-
actions between stakeholders and the ownership and management of entities. The
Application model represents concepts related to the operational level of software
systems, where we primary focus on the detailed characterisation of cloud services

104

to represent entities capable of realising stakeholder and system needs. Finally the
infrastructure model provides an abstract mapping of how cloud services are en-
abled, through the enabling components residing on the physical level. In this step
we use the list of cloud services identified in the previous step as input and system-
atically generate cloud components and properties across three conceptual layers in
accordance to our transformation rules and optional user input.

At the organisational layer all actors involved in each of the cloud services are
populated in this model, eliminating duplicate entries as needed if they conceptually
represent the same actor e.g. references to doctor will be the actor group representing
the role of a doctor as opposed to a single personified doctor.

The cloud services are generated on the application layer as they are conceptually
offered and delivered at a software level through programming-enabled interfaces
i.e. web technologies, where users would interact with the cloud service through
application programming interfaces(API) or web-pages depending on their level of
access and role e.g. an application developer would have access to the cloud API,
enabling them to directly invoke capabilities and services in order to enhance their
development process. In this view cloud services with more than one capabilities
are expanded to encapsulate the capabilities they offer, thus providing a fine-grained
view of the exact offerings provided by each cloud service. This is visually indicated
using the requires relationship, where a cloud service requires one or more cloud
services to deliver their capability.

Conceptually this represents atomic and composite services, where a cloud ser-
vice may consist of one or more syntactically related capabilities that collaborate
to achieve a common high-level task. An atomic cloud service is synonymous to a
cloud service offering a single capability e.g. an example of an atomic cloud service
is one that converts a stream of floats to integers, as this embodies the object-
oriented design approach in programming where a software system is composed of
self-contained objects each capable of achieving a specific task. This encapsula-
tion approach allows programmers to conceptually define specialised objects with
re-usability and portability in mind, creating a set of atomic buildings blocks that
can be assembled to enable the design of complex systems. Thus a composite cloud
service may consist of one or more cloud services, which themselves may be either
atomic or composite services. While we are able to model these relationships se-

105

mantically using our cloud modelling language, visualising the fully expanded links
may generate graphically impractical models that are too complex to provide any
useful insights. Therefore we will instead generate unique instances of each cloud
service and capabilities such that any relationships representing encapsulation and
composite services will be indicated through the requires relationship between cloud
services.

In existing organisational goal models, stakeholder needs are represented through
security constraints on goals. This explicitly expresses one or more high-level se-
curity needs which should be satisfied during the process of realising stakeholders
goals.

Figure 4.8: Example of the cloud environment view during Activity 3 in the secure
cloud process.

In Figure 4.8 we illustrate an example of a view showing a cloud security-

106

Figure 4.9: Example of two atomic cloud services in the cloud service output during
Activity 2 in the secure cloud process.

enhanced model, generated based on the cloud services shown in Figure 4.9 and
Figure 4.10. In this model the cloud requirements engineer has indicated the satis-
faction of the security constraint “Correct credentials” restricting the cloud service
“E-presription”, through the enforcement of a security objective “User-group cre-
dentials”. The threat “Customer-data manipulation” posed by the malicious actor
exploits the vulnerability “Insecure interface and APIs” and is mitigated by “Cor-
rect credentials”. Additionally “User-group credentials” implements the security
mechanism “IAM Policies”, which protects against “Insecure interface and APIs”.
Therefore the developer is able to visualise the security challenges and mitigation
techniques by constructing a model of the system-under-design, using concepts and
relationships from our cloud modelling language.

Step 3.1: Organisation Concepts

This sub-step provides a fine-grained method of adding properties specific to an
organisational context. The output model is then taken as input in the next sub-
step, in order to build a complete view of the cloud system under design. Specifically
the developer focuses on the following range of concepts and relationships: goal,
cloud service, actor, cloud actor, virtual resource, security constraint, restricts, owns,
manages, requires and dependency. The initial step of this activity is to identify and
instantiate the stakeholders involved, which is based on the organisational model
generated in Activity 1. Alternatively the developer can also input stakeholders
based on existing models or their own knowledge. The actors are represented in the

107

Figure 4.10: Example of one composite cloud service in the organisational cloud
service view during Activity 3 in the secure cloud process.

model using the concrete notation of the actor concept, where the developer inputs
the name of each actor corresponding to each instance.

The developer then populates the model with the list of identified cloud services,
which can either be the output from Activity 2 or generated by the developer in
previous work. Each unique cloud service is instantiated using the concrete notation
of the cloud service concept. where the developer inputs the name of each cloud
service. The specific configurations of each cloud service is then defined through
properties; namely the label of the cloud service through description, a textual
description of the capability in the content of the cloud system through Capability,
the type of deployment model through DeploymentModel and the type of service
model through ServiceModel. Any assets required by a cloud service is visually
indicated by creating the requires relationship from a cloud service to a resource
or virtual resource. Security constraints is placed on a cloud service, resource or
virtual resource using the restricts relationship. A cloud actor has responsibility for
a cloud service or resource, indicated through the owns and manages relationships.
As an example, a cloud actor of type csp can posses intellectual and legal ownership
over a cloud service, indicated through the owns relationship. Consumers of cloud
services, indicated through the type cu, can be developers of cloud services where

108

they are responsible for managing the configuration and development of a cloud
service. Data ownership is indicated using the owns relationship from an actor
to a virtual resource. These concepts and relationships over goals, cloud services
and resources captures the high-level organisational needs in a cloud computing
environment.

Step 3.2: Application Concepts

This sub-step focuses on expressing concepts orientated around software properties,
specifically the relationships revolving around cloud services. Again the output is
a model of the cloud system, the CEM, which is taken as input during the next
sub-step. The developer focuses on the following range of concepts and relation-
ships: cloud actor, cloud service, virtual resource, owns, manages, threat, vulnerab-
ility, security constraint, security objective, security mechanism, restrictsresatisfies,
implements, mitigates, protects, exploits, impacts and requires. In particular the
developer specifies the configuration and details of applications during this stage,
by inputting and refining the properties of concepts such as cloud services and vir-
tual resources. As an example, the ResourceType narrows down the category of a
virtual resource, while the Vendor, Version and Type of a virtual resource is used
in the semi-automated reasoning techniques to identify vulnerabilities affecting spe-
cific iterations of a product or application according to expert knowledge in publicly
available vulnerability databases.

Step 3.3: Infrastructure Concepts

The third sub-step focuses on the tangible aspects of cloud computing, where the
supporting infrastructure and the components related to hosting cloud services are
modelled. This is crucial as it provides a view of entities and models the relationship
between physical properties and their interaction with virtual entities such as cloud
services and data, which enables us to express cloud properties such as multi-tenancy
and track stakeholders involved. Specifically the developer focuses on the following
range of concepts and relationships: infrastructure node, physical infrastructure,
virtual resource, composition, permeates, cloud actor, cloud service, owns, manages
and the range of security concepts from the modelling language. In particular, the

109

multi-tenancy cloud characteristic is expressed through the Tenancy property in the
infrastructure node concept. This property can be used to specify constraints on the
infrastructure node concept based on tenancy, limiting the number of relations with
specific concepts. As an example, an infrastructure node with the value “single” in
the Tenancy property has the constraint where it cannot be the target of more than
one permeates relationship. This can be further refined to check if the source of the
permeates relationships is associated with more than one cloud actor, given an owns
relationship.

4.5 Activity 4: Cloud Analysis

The purpose of this activity is to identify and model security components such as
vulnerabilities, threats and security constraints impacting cloud services and their
relationship with other components found at various levels of abstraction within
the cloud environment model. This activity can be carried out by cloud system
experts or organisational experts with little to no expertise in software security, as
the formal framework provides semi-automated guidance towards the identification
of security issues and provides a selection of security mitigation techniques.

In order to demonstrate the impact of cloud-specific threats and vulnerabilities
and the mitigation strategies, we have identified in the related work a baseline of
cloud security issues to guide our assessment of threat and vulnerabilities in our cloud
computing models. Our formal framework in allows the sourcing of known cloud
computing and software security issues from publicly available databases, which is
encoded into an expert knowledge-base. Thus the framework performs a series of
queries in order to identify security issues and determine mitigation techniques based
on the existing knowledge, thus providing an extensible framework for performing
cloud security analysis.

Step 4.1: Cloud Security Analysis

The goal of this sub-step is to take as input, the cloud environment model produced
in Activity 3, and perform security analysis to identify vulnerabilities and threats
on the system-under-design. During the vulnerability analysis, the specific security

110

properties identified are dependent on the examined layer or level of abstraction.
For example on the organisational layer, we model social attacks at a fine-grained
level, because the model provides the expressiveness required to capture social con-
cepts such as stakeholders, strategic needs and security requirements as security
constraints on cloud services. Any vulnerabilities identified from the security re-
quirements by the cloud security expert can be added to the cloud environment
model manually. Semi-automated assistance is provided through the formal frame-
work described in Chapter 5, which systematically identifies cloud services in the
working cloud model and queries the knowledge base in order to generate vulnerab-
ilities based on the attributes of each cloud service. Tool-support is also available
for developers, using the SectroCloud module described in Section 5.4 of Chapter 5
to create graphical models of the system-under-design.

Based on security issues of deployment and service models identified in the liter-
ature review chapter, we are then able to apply security properties to models through
pattern matching. For example given a known cloud threat which targets a specific
cloud service model, the analysis will identify cloud services in the cloud environ-
ment model matching these specific properties and assign the cloud threat to the
marked cloud services. Consider the cloud vulnerability “V06 vulnerability in hy-
pervisors” (Hughes & Cybenko, 2014) which affects cloud services deployed through
the Infrastructure as a Service (IaaS) service model, this will automatically gener-
ate the vulnerability “V06 vulnerability in hypervisors” and link all known cloud
services in the cloud environment model with the IaaS attribute to the vulnerability
through the “Affects” relationship.

Step 4.2: Security Mitigation Analysis

The goal of this sub-step is to guide the developers through the process of creating
a mitigation strategy, in order to address threats and vulnerabilities identified in
system-under-design. We take as input the cloud environment model, with the as-
sumption that there exists one or more threats or vulnerabilities. In the case where
there exists no threats or vulnerabilities in the system-under-design, performing this
analysis will not produce any new knowledge. By default, a security constraint is
unsatisfied given that there are no incoming relationships of type “implements” from

111

one or more security objectives. Therefore unsatisfied security constraints can be
enforced through security objectives, where each security objective associated with
a security constraint through the “implements” relationship is said to satisfy the
respective security constraint. In addition, any security properties in a security ob-
jective would address one or more of the corresponding security properties in the
security constraint. For example a security objective with the security property
“Integrity” will satisfy a security constraint with the security property “Integrity”,
given that the “implements” relationship exists from the security objective to the
security constraint. Thus when all security properties in a security constraint has
been fully addressed by one or more security objectives with corresponding security
properties, the security constraint is therefore said to be satisfied. Security object-
ives are realised through the implementation of security mechanisms and security
controls, where a security objective is said to be implemented given that one or
more security mechanisms with the “implements” relationship is associated with
the respective security objective. Similar to the satisfaction of security constraints,
a vulnerability is said to be unsatisfied given that it has no incoming relationships
of type “protects” from one or more security mechanisms. Therefore unsatisfied
vulnerabilities can be protected through security mechanisms, where each security
mechanisms would address one or more vulnerabilities. In the general case, the mit-
igation check is evaluated given that there exists at least one security mechanism
with is associated to a vulnerability through the “protects”, thus addressing and
mitigating the vulnerability from an abstract point of view. From a technical per-
spective, this method does not take into account the degree of satisfaction provided
by multiple potential solutions implemented through different security mechanisms.
The general case also does not provide a guarantee that the implementation of the
security mechanism will fully mitigate the vulnerability. Therefore the next step
required to provide fine-grained mitigation methods is through pattern-matching
and querying expert knowledge from a global security vulnerabilities database. The
formal framework defined in Section 5.1 of Chapter 5 supports the querying of a
knowledge base containing known cloud vulnerabilities and mitigation techniques,
which can be realised through the unification of a vulnerability with security mech-
anisms representing high-level implementations of mitigation techniques.

112

Step 4.3: Transparency Analysis

In this sub-step, the cloud security requirements of the system-under-design is sum-
marised from the cloud environment model, focusing on the cloud actors responsible
for compromising or protecting the system-under-design. Taking as input the cloud
environment model, we focus on enumerating the security constraints defined in the
system, the set of vulnerabilities and threats identified, mitigation strategy to ad-
dress identified issues and the cloud actors responsible for managing these issues.
The details of this sub-step is expanded in in Section 5.3 of Chapter 5, specifically
referring to the security analysis techniques.

4.6 Chapter summary

In this chapter the activities for eliciting the security requirements of a secure cloud
computing systems is described, taking into account the steps a security require-
ments engineer should follow when applying concepts from the cloud modelling
language. The key feature of the secure cloud process is to systematically define a
model of the cloud computing system using the concepts of cloud services, virtual
resources, infrastructure nodes, physical infrastructures and relationships between
cloud actors and their assets. To understand cloud security requirements, the model
of the cloud computing environment is examined from three perspectives, in terms
of the organisational, application and infrastructure aspects.

113

Chapter 5

Semi-Automated Reasoning
Support

Software systems in a cloud environment are complex and involve multiple actors,
each with their own individual goals, assets and security needs. In such cases en-
suring transparency in the cloud environment requires identifying and satisfying
security needs, where issues such as unsatisfied or conflicting security requirements
and ambiguous delegation of responsibility need to be resolved. However when de-
velopers apply the Secure Tropos methodology and by extension, our secure cloud
process, it is a manual task with multiple complex steps. Without automated reas-
oning support, the developer risks introducing issues such as missing system com-
ponents or creating conflicting requirements due to human error, especially as the
modelled system scale upwards in complexity. For example in a cloud system with
five cloud actors and thirty infrastructure nodes over ten cloud services, a developer
needs to examine the details of each infrastructure node to identify threats and vul-
nerabilities, trace the responsibility of the cloud actors through the cloud services
and determine the mitigation strategy to satisfy security needs.

Therefore in this chapter we describe three analysis techniques providing reason-
ing support through the process of deriving security requirements and cloud security
requirements from cloud models. Our contributions in this chapter enhances the Se-
cure Tropos methodology through the addition of semi-automated cloud security
analysis. The analysis provides developers with decision support throughout the

114

process of modelling and analysing cloud environments, to assist them in eliciting
cloud security requirements. For example given a cloud model describing the security
needs, assets and relationships of cloud actors in a cloud environment, we propose
the following set of analysis techniques: (i) the cloud security analysis identifies
cloud threats and security vulnerabilities, based on knowledge derived from public
security databases, (ii) the security mitigation analysis identifies and validates se-
curity constraints, objectives and mechanisms, proposing alternatives for mitigating
issues identified in the cloud security analysis, and (iii) is the transparency analysis
to identify the parties responsible for ensuring the satisfaction and implementation
of cloud security needs within the cloud environment. In Section 5.1 we unam-
biguously define concepts and relationships of the cloud analysis using the instance
syntax defined previously in Chapter 3.5. In Section 5.2 we describe the concepts
behind our security knowledge-base and how we extract and map information from
various vulnerability and cloud security controls data sources to our cloud model-
ling language, in order to enhance the automated reasoning through domain-specific
expert knowledge. In Section 5.3 we present our three analysis techniques and il-
lustrate the process of the security analysis, outlining each step of the analysis with
expected input and output.

5.1 Formal Analysis Concepts

This section introduces the syntax and semantics required to support semi-automated
cloud security analysis, building upon the instance syntax of the Secure Cloud Lan-
guage described in Section 3.5. In order to perform cloud security analysis, we take
as input cloud models constructed from our cloud modelling language. However
for the analysis to process the information in cloud models without ambiguity, we
need to first formally define the semantics of the modelling language. That is we
take the instance syntax which specifies the concepts and relationships of cloud
models as input for the analysis. In order to demonstrate our formal concepts, we
only present the full description of each instance using the instance syntax where
needed. As an example the instance syntax describing an instance of an infrastruc-
ture node will be shortened to IN1, unless the properties within the instance is
required to understand an example, in which case the full description is given as

115

IN1(VMWare,storage,multiple).
We extend a selection of the formal concepts presented by Paja (Paja, 2014),

which describes socio-technical systems (STS) from a requirements engineering per-
spective, where the concept of actors, relationships and technological components
are formalised in order to provide formal analysis and reasoning for conflicting re-
quirements. Cloud computing systems share common characteristics with STS, for
example in a social environment where actors interact with software systems and
the relationships between technical components such as software and infrastructure
nodes also require contextual descriptions. Therefore this provides a foundational
base to extend the security requirements engineering domain with cloud computing
concepts and enrich our research through formal analysis, in order to deduce cloud
security requirements.

Definition 5.1.1. (Resource knowledge base) There exists different types of
assets in a cloud computing environment, namely the physical, virtual resources
and their relationships. We define the concept of a resource knowledge base to
consolidate all known resources within the scope of the given cloud model, thus
providing the means for automated analysis techniques to parse the required data.

The resource knowledge base is a tuple RKB where:

RKB =
〈
V R, PI, IN, V PIR

〉
given VR is a set of virtual resources , PI is a set of physical infrastructure, IN
is a set of Infrastructure nodes, and VPIR is a set of relationships formalising the
composition and permeates relationships defined in Chapter 3.3. The composition
relationship indicates the geographical grouping of individual infrastructure nodes
over a physical infrastructure. The permeates relationship indicates the flow of data
between resources, which enables the propagation of security needs. We define the
composition and permeates relationships as follows:

• composition(IN, PI): infrastructure node IN is part of the physical infrastruc-
ture PI ;

• permeates(VR, IN): virtual resource VR permeates the infrastructure node
IN ;

116

For example given a scenario where the resource knowledge base contains the
hierarchical components of a data-centre, a query can be performed to identify all
virtual data of user records residing on a specific infrastructure node. Figure 5.1
illustrates a case where a cloud service requires virtual data permeating separate
instances across two geographically disparate physical infrastructure. In this case
given the graphical model shown in Figure 5.1, we obtain the resource knowledge
base:

RKB =
〈
{V R1, V R2}, {PI1, P I2}, {IN1, IN2}, {permeates(V R1, IN1),

permeates(V R1, IN2), permeates(V R2, IN2), composition(IN1, P I1),
composition(IN2, P I2)}

〉
Thus this format of representing information enables analysis techniques to

infer that the infrastructure node IN2 is part of the composition per composi-
tion(IN2,PI2), and that the physical infrastructure PI2 is geographically based in
the US from PI2(PI2,US). Additionally the permeates relationships on virtual re-
sources VR1 and VR2 in permeates(VR1,IN2) and permeates(VR2,IN2) indicates
that the infrastructure node IN2 hosts both virtual resources.

We extend the concepts of the “informational knowledge base” proposed by Paja
in (Paja, 2014) because concepts from the social domain in STS is crucial for captur-
ing stakeholder interactions and relationships in cloud computing systems. However
the information found in cloud systems also extends into the physical domain, in the
form of hardware components and resources. Therefore we use the concepts from the
application cloud model in 3.6.2 and the infrastructure cloud model in 3.6.3 to form-
alise the relationships between the physical components such as servers, networks
and storage and virtual resources such as customer data and virtual machines.

Definition 5.1.2. (Intentional Relationship) The intentional relationship defines
a relationship within the scope of an individual Actor A, describing their responsibil-
ities over the set of resources R and set of cloud services CS in a cloud environment.
This definition formalises the owns, manages and poses (poses is defined in Fig-
ure 3.1) relationships from actors to components defined in Section 3.2. Specifically
the owns relationship determines an actors ownership over resources, where an actor

117

Figure 5.1: Graphical example of a cloud service, the resources required and infra-
structure.

may own one or more cloud service, virtual resource, physical infrastructure or in-
frastructure nodes. The manages relationship identifies the parties responsible for
managing security controls and configuration of cloud services. The poses relation-
ship indicates a malicious actors intent to cause harm to the system through threats.
We define the relationships as follows:

• owns(A, R): actor A owns the set of resources R, where R={V1,...,Vn,PI1,...,
PIn,IN1,...,INn};

• owns(A, CS): actor A owns the set of cloud services CS, where CS={CS1,...,CSn};

• manages(A, CS): actor A manages the set of cloud services CS, where CS={CS1,
...,CSn};

• poses(MA, T): malicious actor MA poses the set of threats T, where T={T1,...,Tn}.

An actor may own zero or more resources, which can be of the type virtual resource,
physical infrastructure or infrastructure node. This represents the ownership of
tangible assets such as physical servers, data-centres or networks and the ownership

118

of virtual resources such as personal data, software and computational data. For
example in Figure 5.2 the cloud actor CSP1 owns the physical infrastructure PI1
and the infrastructure node IN1, indicated formally as:

owns(CSP1, {PI1, IN1})

Thus an analysis technique can use this information to determine the cloud actor
CSP1 as responsible for enforcing security measures to protect PI1 and IN1. The
cloud actor Developer manages the cloud service CS2, indicated formally as:

manages(Developer, {CS2})

This indicates the cloud actors responsibility to ensure any security needs placed
on the cloud service also extends to the resources required by the cloud service,
such as VR1. Finally the actor Malicious Actor represents an actor with malicious
intent to compromise the system, where they pose the threat Shared technology
vulnerabilities to exploit the infrastructure node IN1, which is indicated formally as:

poses(MaliciousActor, {Sharedtechnologyvulnerabilities})

This relationship captures the actors that poses threats on the system and traces
the impact of the threat to the specific components, allowing developers to model
the impact of a given threat on assets and identify the threatening party.

We now define the actor model to describe the assets and their relationships with
an actor within the scope of a single actor instance.

Definition 5.1.3. (Actor model) An actor model AM is a tuple, where

AM =
〈
A, CS, R, IRL, T

〉
given that A is an actor, CS is a set of cloud services, R is a set of resources, IRL is
a set containing the intentional relationships of actor A, and T is a set containing

119

Figure 5.2: Graphical example of the owns, manages and poses relationships.

the types of the cloud actor.

The actor model describes an instance of the actor concept, within the scope
of its relationships in a cloud environment. This definition encapsulates an actor
instance, cloud services associated with the actor, resources associated with the
actor, a set of intentional relationships to the actor and the set of cloud actor types.
Thus each instance of an actor model captures the specific resources required from
virtual resource, infrastructure node and physical infrastructure, the manages, owns
and poses (poses is defined in Figure 3.1) relationships and the types of the cloud
actor from Chapter 3.4.1. For example the actor model for the cloud actor Developer
in Figure 5.2 is as follows:

120

AM =
〈
Developer, {CS2}, {V R1, IN1}, {owns(Developer, V R1),

manages(Developer, CS2), permeates(V R1, IN1)}, {Cloud Service Provider}
〉

Definition 5.1.4. (Organisational relationship) The organisational relationship
defines a relationship of one or more actors in a cloud computing system within the
scope of an organisational context, given a resource, security need or dependency.
We now formally define the relationships presented in the previous chapters, spe-
cifically the Secure Tropos dependency and secure dependency in Section 2.3.2 and
the restricts and requires relationships in Section 3.3:

• dependency(A1, D, A2): dependee actor A1 depends on depender actor A2
for dependum D, where D can be a resource R or goal G;

• restrictsresource(SC, R, A): security constraint SC restricts the resource R
and is imposed to the actor A;

• restrictsgoal(SC, G, A): security constraint SC restricts the goal G and is
imposed to the actor A;

• securedependency(SC1, SC2, dependency(A1, D, A2)): given a dependency re-
lationship dependency(A1, D, A2), SC1 is a set containing restrictsresource(SC,
R, A) or restrictsgoal(SC, G, A) relationships where zero or more security con-
straints SC restricts the dependum D and is imposed to the actor A1, SC2 is
a set containing restrictsresource(SC, R, A) or restrictsgoal(SC, G, A) rela-
tionships where zero or more security constraints SC restricts the dependum
D and is imposed to the actor A2 ;

• requiresgoal(G, R): goal G requires the set of resources R, where R={V1,...,Vn,
PI1,...,PIn,IN1,...,INn};

• requiresresource(R1, R2): resource R1 requires the set of resources R2, where
R2={V1,...,Vn,PI1,...,PIn,IN1,...,INn};

• requiresgoalcs(G, CS): goal G requires the set of cloud services CS, where
CS={CS1, ...,CSn};

121

• requiresresourcecs(R, CS): resource R requires the set of cloud services CS,
where CS={CS1,...,CSn};

Figure 5.3: Graphical example of a secure dependency relationship.

The organisational relationship defines the validity of dependencies and security
needs of actors from an organisational perspective, with respect to the application
and infrastructure concepts. This enumerates and formally defines the dependency,
restricts and secure dependency relationships in Section 2.3.2. Therefore we are able
to enumerate dependencies between actors given a resource of type virtual resource,
infrastructure node or physical infrastructure, and a goal or cloud service. Secur-
ity needs on assets and the actor responsible for satisfying these needs is described
through the restricts relationship, where a security constraint restricts a resource or
goal and is imposed to an actor. We specify two types of the restricted relationship
dependent on the restrained entity, in order to differentiate between constraints on
resources and goals. The secure dependency relationship builds upon the depend-
ency and restricts relationships to define the relationship between two actors in order
to identify the security needs placed on resources or goals.

We also define the requires relationship through several specific definitions, in
order to capture all possible cases. Recall that the resource concept has three special-
isations; virtual resource, physical infrastructure and infrastructure node, therefore
a resource can be one of the three types defined. Additionally recall the goal concept
has the specialisation cloud service. Specifically to formalise all cases of the requires

122

relationship, we define the derivations where a goal requires a resource, a resource
requires another resource, a goal requires a cloud service and a resource requires a
cloud service.

Figure 5.3 illustrates a secure dependency relationship between two cloud actors,
with a cloud service dependum and two security constraints. The cloud actor “End-
user” is the dependee in the dependency relationship with the cloud actor “Cloud
Developer” as the depender and the goal “Provide services for data backup” as the
dependum. This dependency relationship is enumerated as follows: dependency(End-
user, Provide services for data backup, Cloud Developer). Both security constraints
in Figure 5.3 restrict the goal, which represents the security needs. This is enumer-
ated as:

restrictsgoal(SC1, P rovideservicesfordatabackup, CloudDeveloper)and

restrictsgoal(SC2, P rovideservicesfordatabackup, End− User)

Finally the security dependency relationship is enumerated as:

securedependency(SC1, SC2, dependency(End− user,

Provideservicesfordatabackup, CloudDeveloper))

where the set SC1 in the security dependency relationship is as follows (Note:
The SC1 inside the set is the instance SC1, not the set SC1 again):

SC1 = {restrictsgoal(SC1, P rovideservicesfordatabackup, CloudDeveloper)}

and the set SC2 in the security dependency relationship is as follows (Note: The
SC2 inside the set is the instance SC2, not the set SC2 again.):

SC2 = {restrictsgoal(SC2, P rovideservicesfordatabackup, End− User)}

Definition 5.1.5. (Cloud Service Model) A cloud system consists of one or more
cloud services, where each cloud service describes their service and deployment model
types and a set of required resources. Encoding this information through a cloud

123

service model allows the developer to perform automated reasoning on specific cloud
service instances, within the scope of the system. We define a cloud service model
CSM as a tuple:

CSM =
〈
CS, DM, SM, R, OR

〉
given that CS is an instance of a cloud service, DM is a cloud deployment

model of type public, private, hybrid or community, SM is a set consisting of one or
more unique cloud service model types SM={SaaS, PaaS, IaaS}, and R is a set of
resources R={VR1,...,VRn,PI1,...,PIn,IN1,...,INn} where |R| >= 1 and OR is a set
containing the organisational relationships between the cloud service and associated
resources or goals.

The cloud service model is encoded for each cloud service identified in the soft-
ware system, where instances of the cloud service model aggregates attributes, prop-
erties and relationships connected to each cloud service. The service model of the
cloud service indicates the level of abstraction in terms of resource allocation and
delegation of responsibilities. For instance a cloud service with a service level of IaaS
denotes the allocation of physical resources such as infrastructure nodes, where the
actors responsible for the cloud service and its components are indicated through
relationships such as manages, cloud dependency and owns.

The cloud service model SM is represented through a set consisting of one
or more unique types of cloud services; Software-as-a-service(SaaS), Platform-as-
a-Service(PaaS), Infrastructure-as-a-Service(IaaS).

The type of cloud service model associated with a cloud service determines the
category of threat and vulnerabilities impacting the specific instances of a cloud
service.

For example the CSM for the cloud service CS2 in Figure 5.2 previously is as
follows:

CSM =
〈
CS2, private, {SaaS}, {V R1}, {}

〉
Definition 5.1.6. Cloud vulnerability model We define a cloud vulnerability

124

model to describe the instances of vulnerabilities affecting assets and cloud services
in a cloud system. This model is defined in order to facilitate the construction
of analysis techniques, which require details of the vulnerabilities affecting specific
instances of the cloud service and resource concepts in a cloud model. The cloud
vulnerability model CVM is defined as a tuple

CV M =
〈
V, SM, CS, R, Rel

〉
where V is a set of vulnerabilities affecting goals and resources through the affects
relationship and |V | >= 0, SM is a set of security mechanisms protecting vulner-
abilities through the protects relationship and |SM | >= 0, CS is a set consisting of
goals and cloud services where |CS| >= 0, R is a set consisting of virtual resources,
infrastructure nodes and physical infrastructures where |R| >= 0 and Rel is a set
of relationships between these concepts. We now define the following relationships
based on the affects and protects relationships in the fragment of the Secure Tropos
metamodel shown in Figure 3.1 of Section 3.2:

• affects(Vul, R): the vulnerability Vul affects the resource R, where R can be
of type virtual resource VR, infrastructure node IN or physical infrastructure
PI.

• affects(Vul, G): the vulnerability Vul affects the goal G, which can be a cloud
service CS.

• protects(SecMech,Vul): the vulnerability Vul is protected by the set SecMech,
which contains one or more security mechanisms where SecMech={SecMech1,...
,SecMechn}.

The cloud vulnerability model describes vulnerabilities which affect an instance
of a cloud service, goal, resource, virtual resource, infrastructure node or physical
infrastructure. The security mechanisms required to protect against specific vul-
nerabilities are also described in the cloud vulnerability model. As an example
Figure 5.4 illustrates a generic case where a vulnerability V1 affects a cloud ser-
vice CS1 and is protected by the security mechanism SM1. Another vulnerability
V2 affects a virtual resource VR1. In this case the relationships are enumerated

125

Figure 5.4: Graphical example of relationships in a cloud vulnerability model.

through the cloud vulnerability model: CVM =
〈
{V1, V2}, {SM1}, {CS1}, {VR1},

{affects(V1,CS1),affects(V2,VR1), protects({SM1},V1)}
〉
.

Definition 5.1.7. Cloud threat model The cloud threat model captures the
threats impacting cloud services or resources in a cloud system. This enumerates the
threats targeting specific cloud services or resources in order to assist the developer
in identifying threats given a list of assets. The cloud threat model CTM is defined
as a tuple:

CTM =
〈
T, V, SO, SM, SC, CS, R, Rel

〉
where T is a set of threats exploiting vulnerabilities through the exploits relationship
and |T | >= 0, V is a set of goals and resources impacted by a threat through the
impacts relationship and |V | >= 0, SO is a set of security objectives satisfying
security constraints through the satisfies relationship and |SO| >= 0, SM is a set
of security objectives implementing security mechanisms through the implements
relationship and |SM | >= 0, SC is a set of security constraints mitigating threats
through the mitigates relationship and |SC| >= 0, CS is a set consisting of goals
and cloud services where |CS| >= 0, R is a set consisting of virtual resources,
infrastructure nodes and physical infrastructures where |R| >= 0 and Rel is a set

126

of relationships between these concepts. We now define the following relationships
based on the exploits, impacts, satisfies, implements and mitigates relationships in
Section 3.3:

• exploits(Thr, Vul): the threat Thr exploits the vulnerability Vul.

• impacts(Thr, G): the threat Thr impacts the goal G, which can be also be the
cloud service specialisation.

• impacts(Thr, R): the threat Thr impacts the resource R, which can be of type
virtual resource, infrastructure node or physical infrastructure.

• satisfies(SecObj, SecCo): the security objective SecObj satisfies the each ele-
ment in the set of security constraints SecCo, given a set of security constraints
SecCo1={SecCo1,...,SecCon} where |SecCo| >= 0.

• implements(SecObj, SecMech): the security objective SecObj implements the
each element in the set of security mechanisms SecMech, given a set of security
mechanisms SecMech={SecMech1,...,SecMechn} where |SecMech| >= 0.

• mitigates(SecCo,Thr): the security constraint SecCo mitigates the threat Thr.

The cloud threat model focus on threats which exploit identified vulnerabilit-
ies, how to satisfy security constraints using security objectives and which security
mechanisms are implemented. Referring to Figure 5.5, the example demonstrates
the exploits, impacts, satisfies and implements relationships. Specifically a threat T1
exploits a vulnerability V1, given the relationship exploits(T1,V1). T1 also impacts
the cloud service CS1, captured through the relationship impacts(T1,CS1). The
security objective SO1 satisfies a security constraint SC1 using the relationship
satisfies(SO1,{SC1}). Finally the security objectives SO2 implements the secur-
ity mechanism SM2, described through the relationship implements(SO2,{SM2}).
The information visualised in Figure 5.5 is enumerated through the cloud threat
model as follows: CTM =

〈
{T1},{V1},{SO1,SO2},{SM1,SM2},{SC1},{CS1},{},

{exploits(T1,V1), impacts(T1,CS1), satisfies(SO1,{SC1}), implements(SO2,{SM2}),
mitigates(SC1,T1)}

〉
.

127

Figure 5.5: Graphical example of relationships in a cloud threat model.

Definition 5.1.8. Cloud environment model
The information captured in a cloud environment is enumerated in a single con-

ceptual model in our framework, from which the organisational, application and
infrastructure views are derived to present information at a lower level of granular-
ity. By aggregating information into a single model, we ensure that any changes to
the system is consistent across different views. Each model defined in this section
is constructed according to the information given in the model definition, using the
instances of the system-under-design. That is, a model will use information given
from the system-under-design and ensure that consistency between each model is
maintained by only populating the defined set of values specific for each model. As
an example, a CVM will hold information extracted from the system-under-design
consisting of the following; a set of vulnerabilities, a set of security mechanisms, a
set of cloud services and goals, a set of consisting of resources, virtual resources,
infrastructure nodes, physical infrastructures and a set of relationships such as af-
fects and protects. Furthermore, tool support will provide a semi-automated way to
ensure that a consistent model for the cloud system is produced when these models
are grouped together. This can be achieved by defining a schema in the tool cor-

128

responding to the definitions provided for each model, which will ensure that only
the concepts associated with each model will be accepted. That is, the user of the
tool will not be allowed to create relationships or instances of concepts which are
not defined in the schema.

Therefore in order to maintain consistency between the models and relationships
defined in this section, we define the cloud environment model as a super-set con-
taining the resource knowledge base, actor model, organisational relationships, cloud
service model, cloud vulnerability model and cloud threat model. For example any
changes made to a subset of the cloud model are reflected in the super-set. We now
define the cloud environment model CEM as follows:

CEM =
〈
RKB, AM, OR, CSM, CV M, CTM

〉
where RKB is the resource knowledge base, AM is a set of actor models, OR is

a set of organisational relationships, CSM is a set of cloud service models, CVM is
a set of cloud vulnerability models and CTM is a set of cloud threat models.

5.2 Security Knowledge

The primary users of our cloud security framework are developers of cloud comput-
ing systems, with expertise in cloud security and requirements engineering. How-
ever the framework also supports developers without domain-specific knowledge
in cloud security, specifically regarding technical vulnerabilities, mitigation and
implementation-level details. This contributes towards a decision-support frame-
work allowing developers without in-depth knowledge of cloud security to model and
analyse cloud systems, increasing the accessibility and uptake of our work. This is
achieved through consulting publicly available sources of domain-specific knowledge,
such as expert databases on security vulnerabilities or cloud security controls.

In this subsection we describe how we examine and extract data from vulner-
ability databases and cloud security controls, in order to enhance our automated
reasoning techniques with expert knowledge. We present our techniques for extract-
ing data from the sources described and then define transformation rules mapped

129

to our cloud modelling language and formal analysis concepts.

5.2.1 Common Weakness Enumeration

The Common Weakness Enumeration(CWE) is a “formal directory of common soft-
ware weaknesses that can occur in software’s architecture, design, code or imple-
mentation that can lead to exploitable security vulnerabilities” 1. CWE is a free
open standard maintained by the MITRE Corporation, a government-funded organ-
isation focusing on providing standards for the information security community. The
CWE define software weaknesses as “ flaws, faults, bugs, vulnerabilities, and other
errors in software implementation, code, design, or architecture that if left unad-
dressed could result in systems and networks being vulnerable to attack.”. Based on
this definitions, they define software weaknesses as errors that can lead to software
vulnerabilities. Thus the CWE provides a common baseline for the identification
of weaknesses, mitigation and prevention in the scope of code security assessment.
That is, the CWE focuses on the underlying vulnerability, as opposed to an instance
within a specific product or system.

CWE also provide external groupings such as Top-N lists from OWASP, which
are expressed through subsets of entries. First we align the definitions from CWE
to our concepts, in order for our security analysis to express the required concepts
based on our definitions.

The term “Weakness” in CWE is “a type of mistake in software that, in proper
conditions, could contribute to the introduction of vulnerabilities within that soft-
ware.”. Thus a weakness in CWE corresponds to our concept of an Attack Method,
which is a property of the Vulnerability concept.

The term “Vulnerability” in CWE is “an occurrence of a weakness (or multiple
weaknesses) within software, in which the weakness can be used by a party to cause
the software to modify or access unintended data, interrupt proper execution, or
perform incorrect actions that were not specifically granted to the party who uses
the weakness.”. In this case our definition of a vulnerability coincides with the CWE
definition, so references to a vulnerability in CWE corresponds to a vulnerability
from our concepts.

1https://cwe.mitre.org/about/faq.html

130

The term “Resource” in CWE is “a vulnerability theory term for an object or
entity that is accessed or modified within the operation of the software, such as
memory, CPU, files, or sockets. Resources can be system-level (memory or CPU),
code-level (function or variable), or application-level (cookie or message).”. Thus
our concept of a resource is a generalisation, where our virtual resource concept
is a specialisation of resource, which represents code-level and application level re-
sources. Our infrastructure node concept is a specialisation of resource, which rep-
resents system-level resources. In addition our physical infrastructure concept is a
specialisation of resource, which represents a tangible resource in the operational
environment and aggregates one or more infrastructure nodes.

Another method for extracting data is to obtain the latest core content in a
schema such as XSD (XML Schema Definition), where we define rules for extraction
based on information stored in a pair consisting of a tag and value.

The term “tag” refers to the HTML definition: “Tags contain elements which
provide instructions for how information will be processed or displayed.”. A tag
consists of a pair of <> symbols, where the name of the tag is enclosed within
each pair. In this case a tag is opened with a <> symbol, followed by one or more
elements and closed with the < / >, as shown in the following code extract:

< tag > information or instructions enclosed here < /tag >

The term “value” refers to a description, parameter or variable enclosed between
a pair of tags, as shown in the following code extract where a pair of tags are used
to enumerate the threat ID 124:

< ThreatID > 124 < /ThreatID >

Alternatively a tag can also appear as a single entity, consisting of the < / >

symbol and one or more variable declarations enclosed within the tag to enumerate
values assigned to a variable using the = symbol, as shown in the following code
extract where a tag describing a threat contains two variables enumerating the threat

131

ID and threat level:

< Threat ThreatID = “124′′ ThreatLevel = “High′′/ >

We now explain the tags and values relevant to our extraction process, using
examples performed on a small set of data extracted from version 2.10 of the CWE
core content, available at https://cwe.mitre.org/data/ using a XSD file.

Weakness: this tag begins the description of a weakness in the core content of
CWE.

• “ID” parameter defines the CWE ID of the weakness.

• “Name” parameter defines the full name of the weakness.

• “Weakness Abstraction” parameter defines the the level of abstraction of the
weakness.

• “Status” parameter defines if the weakness is currently usable.

For example the following code provides the weakness entry for CWE 119:

<Weakness ID="119"
Name="Improper Restriction of Operations within the Bounds of a
Memory Buffer"
Weakness_Abstraction="Class"
Status="Usable">

Relationship: this tag defines a relationship between the weakness and classes,
bases, categories, chains, variants and views. With the following tags:

• Relationship Views tag with Relationship View ID parameter determines the
ID of the view.

• Relationship Chains tag with Relationship Chain ID parameter determines
the ID of the chain.

• Relationship Target Form tag determines the type of relationship.

132

• Relationship Nature tag determines the nature of the relationship from the
current weakness to a target weakness.

• Relationship Target ID tag determines the ID of the target weakness.

For example this extract of code defines the relationships between this CWE and
other entries:

<Relationship>
<Relationship_Views>

<Relationship_View_ID>1000</Relationship_View_ID>
</Relationship_Views>
<Relationship_Chains>

<Relationship_Chain_ID>680</Relationship_Chain_ID>
</Relationship_Chains>
<Relationship_Target_Form>Weakness</Relationship_Target_Form>
<Relationship_Nature>CanPrecede</Relationship_Nature>
<Relationship_Target_ID>119</Relationship_Target_ID>
<!--Improper Restriction of Operations within the Bounds
of a Memory Buffer--></Relationship>

Applicable Platforms: this tag defines the platforms applicable with the
weakness.

• Languages tag with Prevalence parameter defines the prevalence of languages
affected.

• Languages tag with Language Name parameter defines the name of the lan-
guage affected.

• Language Class tag with Language Class Description parameter defines de-
scribes general classes of languages affected by the weakness.

For example this extract of code describes the applicable platforms:

133

<Applicable_Platforms>
<Languages>

<Language Prevalence="Often" Language_Name="C"/>
<Language Prevalence="Often" Language_Name="C++"/>
<Language Language_Name="Assembly"/>
<Language_Class Language_Class_Description="Languages without
memory management support"/>

</Languages>

Common Consequences: this tag describes the security property goals af-
fected by the weakness.

• Consequence Scope tag indicates the scope of the security property affected by
the weakness.

• Consequence Technical Impact tag indicates the technical impact of the weak-
ness.

For example this block of code describes the common consequences on security
properties:

<Common_Consequences>
<Common_Consequence>

<Consequence_Scope>Integrity</Consequence_Scope>
<Consequence_Scope>Confidentiality</Consequence_Scope>
<Consequence_Scope>Availability</Consequence_Scope>
<Consequence_Technical_Impact>Execute unauthorised code or
commands</Consequence_Technical_Impact>

<Consequence_Technical_Impact>Modify memory</Consequence_
Technical_Impact>

5.2.2 Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures(CVE) is a “dictionary of common
names (i.e., CVE Identifiers) for publicly known cybersecurity vulnerabilities”. The
purpose of CVE is to provide an industry standard for vulnerability and exposure

134

names. Each CVE identifier includes an unique CVE identifier number i.e. “CVE-
2017-0038”, a brief description of the security vulnerability or exposure and any
pertinent references (i.e., vulnerability reports and advisories). CVE is an interna-
tional cybersecurity community effort, launched in 1999 by the MITRE Corporation
who are responsible for maintaining CVE and the public website. In comparison to
the CWE which focuses on underlying vulnerabilities, the CVE describes specific
instances within a product or system.

In order to extract information associated with vulnerabilities, we define the
following fields to transfer entries from CVE to our knowledge-base in a specific
format to support automated analysis. The field “CVE-ID” provides an unique
identifier for each specific vulnerability, through the format “CVE-” followed by a
four digit year indicating which year the CVE-ID was created or allocated, followed
by a four digit ID. The field “Vendor” indicates the actor that provides the product
or service. The field “Product” provides the name of the product or service. The
field “Version” indicates the version of the product or service, where the value is a
list containing zero or more values.

For example, given the XML file “allitems-cvrf-year-2017.xml” containing CVE
entries from 2017, the following tags are examined to extract data from the file:
Vulnerability: The relevant information we are interested in are enclosed in the
“vulnerability” tag. The “title” tag is a vulnerability entry corresponding to our
concept of a vulnerability instance in the model, for example “CVE-2009-4344”. The
“note” tag provides textual information of the vulnerability, where the “note type”
tag of type “description” indicates the description, version and attack details, for
example “Cross-site scripting (XSS) vulnerability in the ZID Linkliste (zid linklist)
extension 1.0.0 for TYPO3 allows remote attackers to inject arbitrary web script
or HTML via unspecified vectors.”. The “note type” tag of type “other” with the
tag “title” with “published” indicates the date the vulnerability was published, for
example “2009-12-17”. The “CVE” tag such as “CVE-2009-0057” is used to provide
the CVE entry of the vulnerability, with the “references” tag enclosing references
describing mitigation strategies from external sources, for example an external link
to the URL “http://typo3.org/teams/security/security-bulletins/typo3-sa-2009-020”
with the “description” tag “CONFIRM:
http://typo3.org/teams/security/security-bulletins/typo3-sa-2009-020”.

135

5.2.3 National Vulnerability Database

The National Vulnerabilities Database(NVD) is an U.S. government repository of
standards-based vulnerability management data. NVD is a product of the NIST
Computer Security Division, Information Technology Laboratory and is sponsored
by the Department of Homeland Security’s National Cyber Security Division. The
NVD is a superset of CVE and thus is synchronised such that any updates to CVE
appear immediately in the NVD. NVD integrates information from CWE into the
scoring of CVE vulnerabilities by providing a cross section of the overall CWE struc-
ture. NVD analysts score CVEs using CWEs from different levels of the hierarchical
structure.

We use the NVD CVE XML 2.0 schema in our work because this version includes
Common Weakness Enumeration (CWE) identifier(s) for each CVE, allowing us to
map CWE-IDs to the MITRE CWE List. The CVE provides a list of properties
which subsequently identifies specific vulnerabilities given an asset with the matching
properties. The CWE provides a list of mitigation strategies which maps to our
concepts of the security objective and security mechanism given a specific instance
of a vulnerability. Thus by mapping the information in the CVE to the CWE based
on cross-referencing entries in the NVD, we are able to extract the vulnerability,
properties of resources affected by said vulnerability, mitigation strategies for the
vulnerability as security objectives and security mechanisms and the consequences
on security properties, through security constraints.

For example the following wrapper tag in version 2.0 of the NVD XML Schema
describes the vulnerable version of the product, following the same tag and value
definitions described in Section 5.2.1:

<vuln:product>cpe:/o:apple:mac_os_x:10.12.0</vuln:product>

Additional information is provided in version 1.2.1 of the NVD XML Schema:

<vuln_soft>
<prod name="mac_os_x" vendor="apple">

<vers num="10.12.0" prev="1"/>
</prod>

</vuln_soft>

136

In this case the ”name” attribute in the ”prod” wrapper corresponds to the Product
property in our resource concept, the ”vendor” attribute corresponds to our Vendor
property and the ”num” attribute in the ”vers” wrapper corresponds to our Ver-
sion property. The ”prev” attribute indicates that versions previous to this ver-
sion number are also affected by this vulnerability, which is a Boolean. Therefore
given a resource instance with the following properties: V endor : apple, Product :
mac os x, V ersion : 10.12.0, we are able to detect and assign the vulnerability
”CVE-2016-4671”(and twenty three other matching records) via consulting the
NVD feed.

Using the Common Vulnerability Scoring System (CVSS) we support the usage
of metrics to determine impact on security properties, specifically providing metrics
for the CVSS Severity using version 3.0 or 2.0. In particular we capture the impact
of vectors in confidentiality, integrity and availability, ranked from none, partial
and complete. We then refer to CWE in order to model the threats, where several
levels of abstraction can be defined. For example given the vulnerability ”CVE-
2016-4671”, consulting the weakness entry CWE-787 in CWE defines at the high
level the weakness class ”CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer” from the following block:

<Relationship_Target_Form>Weakness</Relationship_Target_Form>
<Relationship_Nature>ChildOf</Relationship_Nature>
<Relationship_Target_ID>119</Relationship_Target_ID>

At lower levels the variants ”CWE-121: Stack-based Buffer Overflow” and ”CWE-
122: Heap-based Buffer Overflow”(This is found by searching for CWE-787 and tra-
cing all instances of relationships with other entries, such as parent of or child of).
For example finding a reference to CWE-787 and the relationship nature ChildOf,
then finding the weakness id of the entry:

<Relationship_Target_Form>Weakness</Relationship_Target_Form>
<Relationship_Nature>ChildOf</Relationship_Nature>
<Relationship_Target_ID>787</Relationship_Target_ID>

After identifying the vulnerability, threat and potential impact on security con-
straints, we define the mitigation strategy by generating security objectives and

137

mechanisms through consulting the CWE. In some cases a vulnerability has to
be decomposed to child or parent vulnerabilities, where details for mitigation are
provided. For example given the weakness entry CWE-787, we examine the mitig-
ation strategies for its parent class CWE-119 and variants CWE-121.

We categorise the level of abstraction according to the phase of mitigation, thus
modelling security objectives as higher level concepts and security mechanisms for
lower levels of abstraction. The level of categories can also be defined by the de-
veloper, though we will provide a default listing as follows: for phase requirements,
architecture and design the mitigation falls under security objectives. For the phase
Build and Compilation, Implementation and Operation, these are security mechan-
isms.

For example given CWE-119, the Mitigation ID MIT-3 in phase Requirements
and strategy Language Selection defines the textual description: ”Use a language
that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid. For example, many languages that perform their own
memory management, such as Java and Perl, are not subject to buffer overflows.
Other languages, such as Ada and C#, typically provide overflow protection, but the
protection can be disabled by the programmer. Be wary that a language’s interface to
native code may still be subject to overflows, even if the language itself is theoretically
safe.”. Thus this generates a security objective instance named MIT-3: Language
Selection with the description following the text block.

5.2.4 Cloud Control Matrix

We extract information from the top ten threats of 2013 defined by CSA (Los et
al., 2013), specifically the threat name, control IDs from CCM v3.0.1 (Saxena,
2013), applicable service models, CSA security guidance reference and threat ana-
lysis (STRIDE).

We then align each threat with recommendations from the CCM, in order to
generate a list of applicable scopes and security objectives. For example given the
threat Insecure Interfaces and APIs, the applicable security properties is confid-
entiality, integrity and authenticity (Yahya, Walters & Wills, 2015). The extracted
list of recommended controls are as follows:

138

AIS-01: Application & Interface Security – Application Security

• Architectural relevance: compute, storage, app, data

• Cloud service model applicability: SPI

• Security objective: Applications and programming interfaces (APIs) shall be
designed, developed, deployed, and tested in accordance with leading industry
standards (e.g., OWASP for web applications) and adhere to applicable legal,
statutory, or regulatory compliance obligations.

• Supplier relationship: CSP

AIS-04: Application & Interface Security – Data Security/Integrity

• Architectural relevance: network, compute, storage, app, data

• Cloud service model applicability: SPI

• Security objective: Policies and procedures shall be established and maintained
in support of data security to include (confidentiality, integrity, and availabil-
ity) across multiple system interfaces, jurisdictions, and business functions to
prevent improper disclosure, alteration, or destruction.

• Supplier relationship: CSP

IAM-08: Identity & Access Management – Trusted Sources

• Architectural relevance: data

• Cloud service model applicability: SP

• Security objective: Policies and procedures are established for permissible stor-
age and access of identities used for authentication to ensure identities are only
accessible based on rules of least privilege and replication limitation only to
users explicitly defined as business necessary.

• Supplier relationship: CSP, CU

IAM-09: Identity & Access Management – User Access Authorisation

139

• Architectural relevance: network, compute, storage, app, data

• Cloud service model applicability: SPI

• Security objective: Provisioning user access (e.g., employees, contractors, cus-
tomers (tenants), business partners, and/or supplier relationships) to data
and organisationally-owned or managed (physical and virtual) applications,
infrastructure systems, and network components shall be authorised by the
organisation’s management prior to access being granted and appropriately
restricted as per established policies and procedures. Upon request, provider
shall inform customer (tenant) of this user access, especially if customer (ten-
ant) data is used as part the service and/or customer (tenant) has some shared
responsibility over implementation of control.

• Supplier relationship: CSP, CU

In this case the architectural relevance applies to the virtual resources of the
same type, for example a virtual resource instance with the type storage will match
the relevant control i.e. AIS-01, AIS-04 and IAM-09. The cloud service model ap-
plicability will search for if one or more cloud services with the requires relationship
and listed service models in the property are associated with the resource instance.
The security objective generates a security objective instance with the details linked
to one or more security constraints with the security properties associated with the
threat. Finally the supplier relationship indicates the actors responsible for achiev-
ing the security objective.

So far we have defined the formal analysis concepts based on the cloud modelling
language in Section 5.1 and in this section we introduced how we extract information
from expert databases to enhance our automated reasoning support. In the next
section we define three analysis techniques using our formal analysis concepts and
how the information from the expert data-bases are utilised in the analysis.

5.3 Cloud Analysis Techniques

In this section we define security analysis techniques to support the developer
through the process of identifying threats and vulnerabilities in a cloud environment,

140

proposing alternative mitigation measures and validating cloud security needs. For
example the threat analysis identifies any threats impacting cloud assets, where the
developer is able to determine the impact of a threat in terms of the value metric
associated with the targeted assets. Following the security mitigation analysis, the
developer is able to determine the cost metric associated with implementing secur-
ity measures, such as any security mechanisms required mitigate threats or when
validating the satisfaction of security properties against user-defined rules.

Figure 5.6 illustrates the three supported cloud analysis techniques, with the
input and output of each analysis technique indicating which sub-set of the cloud
environment model(CEM) is used as input and updated respectively. The CEM
is used as input for all three analysis techniques, where the CEM describes the
system-under-design using the instance syntax introduced previously in Chapter 3.
The order of the analysis is interchangeable depending on the developer needs and
richness of the cloud environment model The analysis techniques can be performed
independently, therefore the developer is able to perform analysis techniques in the
order of their choosing. For example the developer can perform the security mitiga-
tion analysis on a cloud environment model containing pre-existing threats and vul-
nerabilities. On the other hand a cloud environment model with an empty resource
knowledge base i.e. no resources in the system, will not produce any vulnerabilities
or threats because there is no resource to analyse.

 1. Cloud Security Analysis

Cloud Environment Model (CEM)

1a. Vulnerability

Analysis

 2. Security Mitigation Analysis
3. Transparency Analysis

1b. Threat Analysis

 2a. Security Constraint

Resolution

2b. Security Objective

 Resolution

2c. Security Mechanism Resolution

3a. Cloud

Security

 Management

Resource

Knowledge

Base

(RKB)

Actor Model

(AM)

Cloud Service

Model (CSM)

Organisational

Relationships (OR)

Cloud Threat

Model (CTM)

Cloud

Vulnerability

Model (CVM)

AM
CTM

CVM

RKB CVM

OR

AMCTM RKB

CVMORCTM RKB CSM

input: RKB, CVM,

 CTM, AM

updates: CVM, CTM

updates: CTM,

CVM, AM

input: CTM, CVM,

 OR, AM, RKB

input: CTM, OR,

RKB, CSM, CVM

updates:

CTM, OR, CSM

updates

input

updates

updates

updates

input

input

updates

updates

input input

input

updates

input

input

updates

input

Figure 5.6: Process illustrating three types of cloud analysis techniques with inputs
from and updates to the cloud environment model.

141

We now summarise each analysis, describing the specific details of each technique
and how this contribute towards addressing the research question RQ3.

• Cloud Security Analysis 1a. Vulnerability analysis: We identify vulner-
abilities affecting resources in the system-under-design, represented through
the cloud environment model(CEM), by consulting the resource knowledge
base(RKB). We refine the CEM by enumerating specific vulnerabilities which
affects resources in the system, updating the cloud vulnerability model(CVM).
Thus the CVM contains information on which resources are exploitable and
the specific vulnerabilities affecting the system-under-design.

• Cloud Security Analysis 1b. Threat analysis: We identify threats which
exploit vulnerabilities in the system. According to the vulnerabilities ex-
ploited, we refine the CEM to enumerate in the cloud threat model(CTM),
which goals or resources are impacted by specific threats. Thus the CTM
provides information on which resources or goals are at risk as a result of
vulnerabilities identified in the CVM, and the specific threat exploiting the
associated vulnerabilities which impacts the security properties of resources
of goals in the system. The actor model(AM) identifies any malicious actors
posing a threat on the system.

• Security Mitigation Analysis 2a Security constraint resolution: We
identify security constraints by consulting the organisation relationships(OR),
given an AM, in order to mitigate threats in the system. The purpose of a
security constraint is to address the specific security property compromised by
threats identified in the CVM. We consult the CEM and update the AM to
show security constraints placed on the system as a result of identified threats.
Thus the AM provides information on what security constraints or security
needs need to be satisfied, in order to mitigate threats on the system-under-
design.

• Security Mitigation Analysis 2b. Security objective resolution: We
identify security objectives by consulting the CTM, in order to determine if all
the security constraints placed on the system are satisfied. We refine the CEM
to enumerate in the CTM security objectives and which security properties

142

they satisfy in relation to security constraints found in the AM. Thus the
CTM advises the developer of the specific security objectives which should
be implemented, in order to address the security constraints placed on the
system-under-design.

• Security Mitigation Analysis 2c. Security mechanism resolution:
We identify security mechanisms by consulting the CVM in order to protect
against the exploitation of vulnerabilities in the system-under-design. Security
mechanisms are implemented through security objectives, thus the CEM is
refined through the CVM and CTM to enumerate how vulnerabilities are
addressed by security mechanisms and which security objectives implements
the defined countermeasures respectively.

• Transparency Analysis 3a. Cloud Security Management This analysis
identifies the roles of cloud actors responsible for the management or ownership
of physical and virtual assets, by consulting the AM and cross-referencing the
organisational relationships(OR) with resources and goals found in the RKB.
The identified relationships enumerating these roles are reflected in the OR and
updates the CEM with any modifications made. The cloud actors respons-
ible for managing and implementing security measures are also identified by
consulting the CVM, CTM and AM. This analysis allows developers to sum-
marise the delegation of responsibilities in order to ensure the cloud security
requirements of the system is satisfied, updating the CTM and CSM.

The following subsections describes the steps of each stage in further detail,
providing a systematic process for developers to carry out cloud security analysis.
Note that the notation of the process is described using the instance syntax defined
earlier in Section 5.1, where capital letters in italic indicates variables holding values
i.e. X,Y, and the equals sign is the assignment operator i.e. X=Y assigns the value
in the variable Y to X.

5.3.1 Cloud Security Analysis

The first analysis takes as input a cloud model with the minimal concepts consisting
of goals, actors and resources as shown in Figure 5.7. Goals are required in order to

143

capture the general needs of the system. Cloud services are a specialisation of the
goal concept, in order to describe the cloud computing needs of the system-under-
design and stakeholders involved. Resources describe the components the system
and processes require in order to fulfil their needs, which includes specialisations
of the resource concept describing cloud computing assets; virtual resource repres-
enting intangible resources, infrastructure node representing tangible resources and
physical infrastructure representing boundary-specific components in scope of the
system. This analysis consists of two techniques; the vulnerability analysis and
threat analysis.

In order to map security knowledge to our cloud models, vulnerability, threat
and mitigation information is extracted from the NVD CVE XML 2.0 schema. We
define NVD as a set and say that a quadruple (cvename, product, vendor, version)
is in NVD if a NVD entry describes cvename in the entry element with name as the
attribute, product in the prod element with product as the name attribute, vendor
as the vendor attribute and version in the vers element with version as the num
attribute.

Vulnerability Analysis

Given a cloud environment model CEM, the vulnerability analysis examines the
RKB of the CEM and searches the properties of assets within RKB. Specifically this
analysis examines the properties of the set virtual resources VR, the set physical
infrastructure PI, the set infrastructure node IN and their relationships VPIR in
the RKB. Vulnerabilities are identified based on security knowledge and the CVM
is updated. The following definition describes the procedure in order to perform the
vulnerability analysis, where the NVD described in Section 5.2.3 and Section 5.3.1
is used to identify and generate vulnerabilities affecting assets in a cloud model:

Definition 5.3.1. Vulnerability analysis For each (product, version, vendor) in
a virtual resource, physical infrastructure or infrastructure node of RKB if (product,
version, vendor) is in NVD then update the CVM with a new instance of the vulner-
ability concept with the affects relationship to the virtual resource, physical infra-
structure or infrastructure node. The new vulnerability instance has the description
cvename where cvename is the matching NVD entry given the quadruple (cvename,

144

product, vendor, version).

Figure 5.7: A cloud model as input for the vulnerability analysis.

Figure 5.8: A new vulnerability is identified and generated from the vulnerability
analysis.

For example given the cloud environment model shown in Figure 5.7, there are
five entities in the RKB of the CEM ; VR1 Student response, VM 1 Instance HP,
CSP instance, CSP Datacentre and OS 1 Windows. The CVM has one existing
vulnerability entry, enumerated as: CVM(VM 1 Instance HP,Hypervisor weakness,
affects(VM 1 Instance HP,Hypervisor weakness)). When performing the vulnerab-
ility analysis, the properties in VR1 Student response, VM 1 Instance HP, CSP in-
stance and CSP Datacentre do not match any entries in NVD. However the virtual re-
source OS 1 Windows, which is enumerated as OS 1 Windows(Windows,Microsoft,

145

Windows 10), matches an entry in the NVD represented as a quadruple (CVE-
2016-0181,Windows,Microsoft,Windows 10). Therefore a new instance of the vul-
nerability concept was added to the CVM with the description CVE-2016-0181
and the relationship affects(CVE-2016-0181,OS 1 Windows). Figure 5.8 illustrates
the new vulnerability in the cloud model, after performing the vulnerability ana-
lysis. The CVM is now enumerated as: CVM((VM 1 Instance HP,OS 1 Win-
dows),(Hypervisor weakness,CVE-2016-0181),(affects(VM 1 Instance HP,
Hypervisor weakness),affects(CVE-2016-0181,OS 1 Windows)))

Threat Analysis

The threat analysis is the second analysis technique in the cloud security analysis,
taking as input a CEM. Given a set of vulnerabilities in the CVM, these vulner-
abilities can be exploited through threats posed by malicious actors in the AM to
compromise the confidentiality, integrity or availability of resources and processes
in the system. Therefore this analysis examines the CVM for vulnerabilities and
existing threats in the CTM, generating new threats in the CTM to indicate the
type of security property each threat impacts.

Definition 5.3.2. Threat analysis For each instance of a vulnerability V in the
CVM of the CEM with the relationship affects(V,R) or affects(V,G), if the descrip-
tion of V is in NVD then create a new instance of a threat T in the CTM with
the following two properties; (i) the description “Impact on (C,I,A)” where (C,I,A)
is a triple containing values from the corresponding NVD entry with CVSS vector
in the entry element and C,I,A as the attributes, (ii) the security property (C,I,A)
where (C,I,A) is a triple containing values from the NVD entry with CVSS vector
in the entry element and C,I,A as the attributes.

The new instance of the threat T has the following relationships; (i) the exploits
relationship to the corresponding vulnerability as exploits(T,V), (ii) the impacts
relationship to the resource R or goal G as impacts(T,R) or impacts(T,G).

The Common Vulnerability Scoring System(CVSS) is a free and open industry
standard for quantifying the severity of security vulnerabilities. The CVSS defines
the impact of an exploit on a system using three security properties: “The confid-
entiality (C) metric describes the impact on the confidentiality of data processed

146

Figure 5.9: Identifying a threat exploiting a vulnerability and impacting a resource.

by the system.”, “The Integrity (I) metric describes the impact on the integrity of
the exploited system.” and “The availability (A) metric describes the impact on
the availability of the target system. Attacks that consume network bandwidth,
processor cycles, memory or any other resources affect the availability of a system.”.
The current version of CVSS (CVSS v3.0) was released in June 2015.

Therefore we align the impact of exploiting a vulnerability in CVSS as the im-
pact of a threat on a resource and the exploitation of a vulnerability in our cloud
modelling language. Specifically we take the three security properties defined in
CVSS; confidentiality, integrity and availability to correspond to values defining se-
curity needs in the security property of our threat concept. That is we map on an
one-to-one basis given the exploitation of a vulnerability in CVSS, the impact on
one or more of the three security properties corresponds to a threat enumerating
these security properties.

For example Figure 5.9 illustrates the exploits relationship of a threat on a vulner-
ability, where the threat also impacts a resource. In this example the vulnerability
entry with the CVE identifier CVE-2016-0181 is found in the NVD vulnerabil-
ity data feed, where the following CVSS information is extracted for that entry;
< entryCV SSvector = ”(C : N/I : P/A : N) >. This extract from the CVSS indic-
ates that there is no impact on the confidentiality property of resources affected by
the vulnerability if exploited, partial impact on the integrity property of associated
resources and no impact on the availability property. Therefore the threat with the
name “Impact on integrity” with the set of security property [I : P] is generated

147

in the model, indicating the threat of partially impacting integrity if the associated
vulnerability is exploited.

5.3.2 Security Mitigation Analysis

The second type of analysis supported is the security mitigation analysis, where the
purpose is to examine threats and vulnerabilities from the CVM and CTM in order
to propose potential approaches for mitigation. This analysis takes a CEM as input,
given that there exists vulnerabilities in the CVM and threats in the CTM.

Security Constraint Resolution

Security constraints represent the security needs of the system on assets or processes,
where a security constraint needs to be satisfied in order to mitigate a threat. A
security constraint mitigates a threat, indicated by the mitigates(SC,T) relationship
in the CTM. A security constraint SC restricts a resource R and its specialisations
or a goal G and the cloud service specialisation, indicated through the relation-
ship restrictsresource(SC,R,A) and restrictsggoal(SC,G,A) in the OR. We define
this technique to identify security constraints, create the mitigates relationship from
a security constraint to a threat T and create the restricts relationship from a se-
curity constraint to a resource R or goal G. In the scope of this technique, R and G
refers to the entry in the impacts(T,R) or impacts(T,G) relationships of the CTM.
Therefore this analysis identifies the security needs of the system through security
constraints, in order to address threats impacting resources and goals.

Definition 5.3.3. Security constraint resolution For each threat T in the CTM
of the CEM where mitigates(SC,T) does not exist, then create an entry mitig-
ates(SC,T) in the CTM where SC has the following properties; (i) the description
“Protect (C,I,A) of (R—G)” where (C,I,A) is a triple in the security property of T
and R—G is a single in the description of R or G, (ii) the security property (C,I,A)
where (C,I,A) is a triple in the security property of T.

For each impacts(T,R) or impacts(T,G) in the CTM where there does not exist a
restricts(SC,R) or restricts(SC,G), create the following relationship with the security
constraint SC ; (i) restricts(SC,R) or restricts(SC,G) where R or G corresponds to
the entry found in the impacts(T,R) or impacts(T,G) relationships of the CTM.

148

Figure 5.10: Creating a security constraint which mitigates a threat and restricts a
resource.

For example Figure 5.10 shows a security constraint created in order to mitigate
a threat, while restricting a resource. Following the threat analysis, we identify the
threat named Impact on integrity in the cloud model, with the security property
containing the set of values I. Taking the name of the threat as Impact on integrity,
the target of the impacts relationship from the threat is identified as OS 1 Windows,
which is assigned to A. The security constraint with the name Protect integrity is
created, with the security property I. A mitigates relationship from the security
constraint Protect integrity to the threat Impact on integrity is then created. Finally
a restricts relationship from the security constraint Protect integrity to the resource
OS 1 Windows is created.

After performing this analysis we have created a security constraint with the
security property I, which has the mitigates relationship to the threat Impact on
integrity and the restricts relationship to the resource OS 1 Windows. This security
constraint therefore represents the security need which has to be satisfied to mitigate
the indicated threat, where the security need is the security property integrity. The
restricts relationship from the security constraint to the resource tells us which
component in the system has security needs, specifically it tells us which security
property needs to be satisfied.

149

Security Objective Resolution

The second part of the security mitigation analysis takes as input the CTM, AM
and RKB. The purpose of this analysis is to cross-reference CVE and CWE entries
between the NVD vulnerability data feed in Section 5.2.3 and the CWE core content
database in Section 5.2.1, in order to identify and create security objective entries in
the CTM. Therefore in this technique security objectives are identified to satisfy se-
curity constraints through the satisfies relationship, where properties of the security
objectives are extracted from entries in the NVD and CWE.

Definition 5.3.4. Security objective resolution For each security constraint
SC in the CTM of the CEM where satisfies(SO,SC) does not exist, then create
an entry satisfies(SO,SC) in the CTM where the security objective SO has the
following properties; (i) the description (M) where (M) is a single that exists in the
CWE core content database with the Mitigation Strategy element and M attribute
corresponding to the CWE entry, (ii) the security property (C,I,A) where (C,I,A)
is a triple that exists in the CWE core content database which describes (C,I,A)
in the Consequence Scope attribute of the Common Consequence element given a
corresponding CWE entry.

Figure 5.11: Creating a security objective which satisfies a security constraint.

Figure 5.11 shows the identification of a security objective as a result of con-
sulting the CVE during the security objective resolution. In this case the security
objective has the securityProperty of value I and the relationship satisfies(MIT-

150

5.1 Input validation,Protect integrity of hypervsior), which corresponds to the se-
curityProperty I in Protect integrity of hypervsior.

Security Mechanism Resolution

The final stage of the security mitigation analysis as input the CVM, CTM, AM and
RKB from the CEM. The purpose of this technique is to identify the security mech-
anisms required to address vulnerabilities in the system-under-design. Specifically
the CVE entry of vulnerabilities are cross-referenced through the NVD and CWE,
where matching entries specify the mitigation method through the protects(SM,V)
relationship.

Definition 5.3.5. Security mechanism resolution For each vulnerability V in
the CVM of the CEM where protects(SM,V) does not exist, then create an entry
protects(SM,V) in the CVM where the security mechanism SM has the following
properties; (i) the description (M) where (M) is a single that exists in the CWE
core content database with the Mitigation Description element and M attribute
corresponding to the CWE entry, (ii) the security property (C,I,A) where (C,I,A)
is a triple that exists in the CWE core content database which describes (C,I,A)
in the Consequence Scope attribute of the Common Consequence element given a
corresponding CWE entry.

For each protects(SM,V) in the CTM where there does not exist an imple-
ments(SO,SM) relationship, create the following relationships with the security ob-
jective SO; (i) an implements(SO,SM) where the responsibility property of imple-
ments is the actor A.

Figure 5.12 shows a security mechanism which implements a security objective.
In this case the security mechanism indicates how the security objective can be
implemented, not the technical implementation instance or method. This limita-
tion is due to the level of information provided in the security sources selected in
our security analysis process. We argue that in the scope of security requirements
engineering, providing exact technical implementation details during the early re-
quirements stage is difficult due to the abstraction of components and concepts.
That is during the design of the system-to-be, the developer does not posses enough

151

Figure 5.12: Creating a security mechanism which implements a security objective
and protects a vulnerability.

information to be able to provide or make use of precise technical implementation
level details.

5.3.3 Transparency Analysis

The analysis techniques defined previously have dealt with identifying security is-
sues and solutions in a cloud computing environment, based on the properties of
concepts such as cloud services and resources in the CEM. In order for developers
to understand how cloud computing characteristics impacts the security needs in a
cloud computing system, the responsibilities of cloud actors should be made clear.
In this case there are several factors which determine a cloud actors scope of secur-
ity responsibilities in a cloud computing environment. The primary concern is to
determine the ownership and management of processes, data and infrastructure in a
cloud computing system. Therefore by associating cloud actors with concepts in the
system-under-design, the tractability of security responsibilities can be determined.
As an example, given a cloud service with the SaaS cloud service model, the cloud
service provider will be responsible for managing the infrastructure and applications
required by the cloud service. Therefore the security implications in this example
is that the cloud service provider will be responsible for addressing any security
challenges that impact the infrastructure and applications associated with the cloud
service.

152

Cloud Security Management

The purpose of this analysis is to examine the security needs of a cloud computing
system, in order to identify cloud actors responsible for satisfying these security
needs. The analysis takes as input the CVM, CTM, OR, RKB and CSM. Specifically
the analysis examines the affects, exploits, impacts and restricts relationships in
the CVM, CTM and OR to determine the security challenges imposed on goals
and resources. The protects, satisfies, implements and mitigates relationships in
the CVM and CTM determine how to address security challenges in the system-
under-design. The owns, manages and poses relationships in the AM indicates the
association between cloud actors and the processes, data and infrastructure in the
cloud computing environment.

Definition 5.3.6. Cloud security management For each security constraint SC
of CEM, if SC is in OR where restrictsresource(SC,R,A) or restrictsgoal(SC,G,A)
and requiresgoal(G,R) exists then each SC has the following values appended to its
SecurityRequirement property;

• append “The cloud actor A is responsible for SC on G R: ” where the prop-
erties of A, SC, G and R is in the restrictsresource(SC,R,A) or restricts-
goal(SC,G,A) of OR

• for each affects(V,R), affects(V,G) and protects(SM,V) in CVM where R or
G is the same scope of SC then append “Security mechanism SM to protect
against vulnerability V ”

• for each exploits(T,V) and mitigates(SC,T) in CTM where T and SC is in the
same scope of SC then append “Security constraint SC mitigates the threat T
”

• for each satisfies(SO,SC) and implements(SO,SM) in the CTM where SC and
SM is in the same scope of SC then append “Security objective SO satisfies
security constraint SC and implements security mechanism SM”

Figure 5.13 illustrates a cloud environment model consisting of the following
concepts: cloud actor Career office admin and CSP1, cloud service Survey man-

153

Figure 5.13: Cloud environment model showing the security needs of a system-
under-design.

agement, virtual resource Student response, infrastructure node Hypervisor, phys-
ical infrastructure CSP Datacentre, vulnerability CVE-2016-0181, threat Impact on
confidentiality, security constraint Ensure confidentiality, security objective Separ-
ation of Privilege and security mechanism MIT-48. These concepts are formally
represented in

CEM = 〈RKB, AM, OR, CSM, CV M, CTM〉

where relationships such as restrictsresource(Ensure confidentiality,Hypervisor,CSP1)
in the OR, protects(MIT-48,CVE-2016-0181) in the CVM and satisfies(Separation of
Privilege,Ensure confidentiality) in the CTM are described. These relationships are
examined when performing the cloud security management analysis, describing the
security needs of the system. After performing this analysis, the security constraint
Ensure confidentiality in CEM has the following securityRequirement property rep-
resenting the security responsibility of a cloud actor:
“The cloud actor CSP1 is responsible for Ensure confidentiality on Hypervisor: Se-
curity mechanism MIT-48 to protect against vulnerability CVE-2016-0181, Security
constraint Ensure confidentiality mitigates the threat Impact on confidentiality, Se-
curity objective Separation of Privilege satisfies security constraint Ensure confiden-
tiality and implements security mechanism MIT-48”.

154

In summary, after performing the analysis techniques in the security analysis process,
a security-enhanced cloud model is produced by semi-automatically enriching the
model with security concepts such as vulnerabilities, threats, security constraints,
security objectives and security mechanisms. Specially the security constraints tells
us which resources and goals in the system is impacted by threats or affected by
vulnerabilities, and how they are restricted in terms of the security properties that
need to be protected. The security objectives provide high level descriptions of what
needs to be done in order to satisfy the security properties outlined in security con-
straints. The security mechanisms describe at a lower level, the method or technique
which need to be carried out in order to implement security objectives.

While the granularity of the proposed concepts and mitigation strategy do not
provide a direct way for developers to proceed to the implementation stage through
coding guidelines, we argue that this is a limitation given the level of information
provided from the security sources. Rather our security analysis approach guides the
developer of cloud systems in analysing the goals and resources of a system, drawing
from industry standard security sources to create and illustrate the relationships
and concepts to help developers understand the security needs of the system-under-
design.

5.4 Tool Support for the Secure Cloud Environ-
ment Framework

Apparatus Software Tool(ASTo) is an open source graphical security analysis tool for
Internet of Things(IoT) networks, providing tool support for the Apparatus security
framework (Mavropoulos, Mouratidis, Fish & Panaousis, 2017). In order to provide
developers with semi-automated tool support when applying our secure cloud en-
vironment framework, our contribution is the SectroCloud module, which extends
ASTo with cloud security requirements concepts. The automated reasoning support
includes a graphical interface improving quality-of-life through task automation, the
means to create visual models and perform semi-automated security analysis. The
contributions of the SectroCloud module is as follows:

• Visualisation of the concepts and relationships defined from Section 3.2 of our

155

cloud modelling language

• Graphical representation of the conceptual cloud environment model, with
three views focusing on the organisational, application and infrastructure level
of concepts

• Provides semi-automated reasoning based on the three cloud analysis tech-
niques defined in Section 5.3

• Quality-of-life utility and interface usability to support developers during the
modelling process, such as concept and relationship filters, baseline security
analysis techniques, data overview and model categorisation.

ASTo with the SectroCloud module is available for download from the authors online
repository 2. The instructions for installing the tool are provided in the online
repository. We now document the features offered through the SectroCloud module,
from a practitioners perspective.

5.4.1 SectroCloud Interface

ASTo is modular by design, which currently supports modules for modelling security
in IoT networks and cloud computing environments. We focus on the interface for
the SectroCloud module in this subsection. Figure 5.14 shows the main interface of
the SectroCloud module. The left sidebar contains the following buttons from top
to bottom:

• Add node: expands on hover to offer a list of all supported nodes. Clicking
on an item in the list creates an instance of the selected concept in the model,
with the corresponding visual representation.

• Add edge: expands on hover to offer a list of all supported edges. In order
to add an edge, the source node should be selected first, followed by selecting
the target node and clicking on an item in the add edge list. This generates an
edge from the source node to the target node. Note that the connection item

2https://github.com/NOMNUDS/apparatus

156

Figure 5.14: The main SectroCloud interface in ASTo.

in the list enumerates edges that are supported by default, while the other
items in the list are specific edges to avoid ambiguous conflicts.

• Remove: removes the current node or edge that has been selected. Removing
a node that is the target of multiple edges will also remove the corresponding
edges.

• Filter by concept: visually highlights all nodes in the model corresponding
to the type of concept selected, by applying a faded visual effect on all other
nodes and edges.

157

• Filter by group: visually highlights all nodes in the model corresponding to
the type of view selected, similar to the filter by concept feature.

• Layout option: offers a selection of model layouts such as breadth-first, circle
and grid allowing developers to specify the spatial arrangement of the visual
model.

• Show neighbours: highlights all edges and connected nodes of the selected
node.

• Threat verification: performs a check to determine and visually highlight
the total number of threats in the model and the number of threats that are
mitigated through security constraints.

• Vulnerability verification: similar to the threat verification, this performs a
check on the model to highlight and indicate the total number of vulnerabilities
in the model and the number of mitigated vulnerabilities through security
mechanisms.

• Vulnerability identification: examines the properties of resource and cloud
service nodes, comparing specific attributes against known vulnerabilities stored
in an external file and textually outputs the CVE details of identified vulner-
abilities.

• Model validation: checks the validity of relationships and properties of
nodes, according to a schema based on the cloud metamodel.

• Overview: generates a list summarising the total number of nodes in the
model, the concepts used and the number of nodes instantiated from each
concept.

• Save model: generates a json or js file containing data of the current working
model.

• Module selection: allows the user to switch to a different module in ASTo.

• Numerical buttons: the first button hides the labels of nodes and edges,
the second button shows the labels of nodes and edges, the third button shows

158

only the labels on nodes, the fourth button displays the id of nodes and the
fifth button shows the description of nodes as the label.

5.4.2 Visualisation of Concepts and Relationships

In this subsection we present how the concepts, relationships and properties from
our cloud metamodel are visualised using nodes and edges through the tool. Nodes
are visually represented as a shape with a textual label, where each node corresponds
to an instance of a concept. Edges are visually represented as a line connecting two
edges together, where each edge represents a relationship. From this point on the
term node is interchangeable with concept, and the term edge is interchangeable
with relationship when referred to.

Figure 5.15: Adding concepts to the model in SectroCloud as nodes.

Figure 5.15 shows the options in the first button on the sidebar to add concepts to
the model. All the concepts in the cloud metamodel in Section 3.2 can be visualised
as nodes. The shape and colour of each concept is inspired by the visual theme
employed in the Secure Tropos methodology.

Figure 5.16 shows the options in the second button on the sidebar to add rela-
tionships to existing nodes found on the model. All the relationships in the cloud
metamodel are visualised as edges between nodes, with the label on the edge in-

159

Figure 5.16: Adding relationships between nodes in SectroCloud as edges.

dicating the name of the relationship and the arrow indicating the direction of the
relationship.

5.4.3 Properties of Concepts and Relationships

Recall in the cloud metamodel where concepts and relationships have properties
specifying attributes unique to each instance.

Figure 5.17: Examining the properties of a node.

Figure 5.17 shows the properties of a cloud service instance, which is displayed
in a pop-up tool-tip when hovering the cursor over a concept. Each property of the
concept is indicated by a separate bullet-pointed line, where the property is described
first, followed by a colon and the attribute of the property. For example the cloud-
service concept has five properties, where the first property is the description with
the Amazon EC2 attribute.

Figure 5.18 shows the case where the properties of a relationship is displayed
in the pop-up tool-tip, when hovering the cursor over a relationship. The format

160

Figure 5.18: Examining the properties of an edge.

of the properties belonging to a relationship follows the same format as presented
in properties belonging to concepts. For example the manages relationship from
Amazon to Amazon EC2 has four properties; the first property cloud service with
the attribute Amazon EC2, the second property deployment model with the attrib-
ute Public, the third property service model with the attribute SaaS and the forth
property manager with the attribute Amazon.

Figure 5.19: Editing the properties of a node.

Additionally the developer is able to edit the properties of nodes and edges in a
model, by performing a right-click on the node or edge they wish to edit. Figure 5.19
shows an example where the developer has performed a right-click action on the
Amazon EC2 node, bringing up a form with the current properties of the selected
item. The developer is then able to edit the attributes of each property and save
changes by clicking the Submit button, committing the change to the model and
closing the form.

5.4.4 Views and Filters

One of the main issues in modelling complex systems in a cloud environment is the
scalability and visual presentation of data, when developers need to model cloud

161

systems with hundreds of nodes and relationships. With tool support, features
such as the visualisation and grouping of concepts within a specific scope helps
developers to uncouple complex models and understand the workings of the system
under design. In this subsection we present features of SectroCloud which presents
data within a specific scope.

Figure 5.20: Filtering the model using the cloud-service concept.

The filter by concept feature allows developers to focus only on instances of
the selected concept in the model. For example in Figure 5.20 the cloud-service
concept is selected in the filter by concept menu, which visually focuses on all nodes
belonging to the cloud-service concept while creating a faded out effect for the rest
of the nodes. This feature is helpful for identifying and examining specific concepts
in large and complex models.

The filter by group feature works similarly to the filter by concept feature, al-
lowing the developer to focus on groups of concepts in a predetermined scope. For
example in the schema we have defined the organisational, application, infrastruc-
ture, security and management views, which groups specific concepts from the cloud
metamodel. In Figure 5.21 the application option has been selected from the filter by
group menu, which focuses on the nodes that belong to the application view group,
while excluded nodes are visually faded out. This feature allows developers to focus

162

Figure 5.21: Filtering the model using the application view.

on a grouping of concepts in a specific scope, for example when they are interested
in application-specific aspects of a cloud system.

5.5 Chapter summary

This chapter presents formal concepts to support semi-automating reasoning for
cloud computing systems. To achieve this the instance syntax of the modelling lan-
guage defines, without ambiguity, the information in the cloud environment model.
Specifically the formal concepts define the following: a resource knowledge base
specifying cloud assets in a cloud environment model, the actor model with inten-
tional relationships and organisational relationships capturing the scope of cloud
actor interactions, the cloud service model describing instances of the cloud service
concept, the cloud vulnerability and cloud threat model enumerating security issues
on assets and finally the formal definition of the cloud environment model. The
procedure for extracting and mapping known vulnerabilities, threats and mitiga-

163

tion techniques from external security databases to our formal concepts is described
through the security knowledge section. Three cloud analysis techniques have been
presented, the cloud security analysis to identify vulnerabilities and threats, the se-
curity mitigation analysis to address identified security issues and the transparency
analysis to highlight the security responsibility of cloud actors in the cloud system.
To provide semi-automated reasoning, the functionality of ASTo and the proposed
SectroCloud module was described. The tool provides a visual modelling approach
for developers to create cloud environment models using the modelling language,
process and analysis techniques proposed in this thesis.

164

Chapter 6

Evaluation of the Secure Cloud
Environment Framework

In this chapter we evaluate the theoretical and practical components of the Secure
Cloud Environment Framework, in order to prove that our proposed approach is
a valid contribution in identifying, modelling and resolving cloud security require-
ments. We apply our framework through three use-case scenarios via self-evaluation
and one case study. The objective of self-evaluation is to demonstrate the express-
iveness of the modelling language, how the process is applied and the effectiveness of
the semi-automated reasoning techniques. We now evaluate the cloud environment
framework through three use-case scenarios and a case study.

6.1 Use-case Scenarios

Recall in Chapter 3 the cloud modelling language which defines the cloud comput-
ing concepts, relationships and properties for describing cloud computing environ-
ments. In order to demonstrate how the language is able to capture cloud computing
characteristics and how effective the reasoning techniques are when identifying and
specifying cloud security needs, we construct use-case scenarios based on real-world
systems and security challenges. These scenarios capture the various security issues
in cloud computing environments, from social interactions, to software configura-
tions and the properties of physical components, in order to assist developers in

165

modelling and understanding cloud security requirements. In each of the following
use-case scenarios, we apply the Secure Cloud Process from a practitioners per-
spective, with the SectroCloud providing semi-automated tool-support in graphical
modelling and analysis.

Recall the three cloud service models according to the NIST definition;

• Software as a Service(SaaS): In the SaaS model, software applications are
offered as a service to cloud users. The offered software applications can be
hosted and delivered on-premise from cloud computing infrastructure owned
by cloud service providers, or it may be deployed from infrastructure offered
by third party vendors.

• Platform as a Service(PaaS): The PaaS model allows cloud users to build
their own applications on top of the platform provided by a cloud service
provider or third party vendor.

• Infrastructure as a Service(IaaS): Cloud users at the IaaS model can
configure and manage virtual machines which are executed on hypervisors,
which resides on physical infrastructure provided by cloud service providers or
third party vendors.

We now demonstrate how our framework is applied within the scope of the three
cloud service models, identifying different entry points into cloud systems through
vulnerabilities and threats, how to address issues in security design through security
mechanisms and security objectives and how to specify cloud security requirements
through security constraints.

6.1.1 Software as a Service

In the SaaS cloud service model, the data of cloud users are stored on the data centre
belonging to the cloud service provider, or on the cloud computing infrastructure of
third party providers. The cloud user depends on the cloud service provider to ensure
appropriate measures are taken to keep the users data and processes secure. In the
case where the service provider leverages the cloud service from publicly available
sources, the same physical infrastructure may be shared with multiple disparate

166

users and providers. Therefore in order to address the lack of control and knowledge
over how the cloud users data is stored and secured in the SaaS model, cloud service
providers need to provide assurance that data and processes entrusted to them are
kept secure. Specifically developers should be able to identify the security needs
of the cloud computing system, focusing on the security responsibilities of cloud
service providers in multi-tenant environments. This relies on capturing ownership
and management relationships between cloud actors and resources in the system.

Data Security

In order to discuss data security in SaaS cloud service model deployments, we will
first construct an use-case loosely modelled on the media reports of an issue with
BitDefender in 2015 (Fox-Brewster, 2015). Based on the use-case we demonstrate
how our visual models could be used to mitigate common issues identified as the
following vulnerabilities:

• Cross-site request forgery

• Insecure storage

• CVE-2011-1576

• CWE-119: Buffer Errors

This use-case is based on an incident in July 2015, where BitDefender, an anti-
virus firm, had an undisclosed number of un-encrypted customer user-names and
passwords stolen due to a security vulnerability in its public cloud application,
which was hosted on Amazon Web Services(AWS). In this incident “DetoxRan-
some”, the hacker responsible for the attack on the public cloud application, de-
manded a ransom of 15,000 US dollars in exchange for a portion of the customer
user-names and passwords. As the specification and configuration of the infrastruc-
ture involved in this use-case isn’t publicly disclosed, we model this scenario using
high level concepts for the components of BitDefender and AWS. This approach was
taken in order to demonstrate and propose a solution which identifies the security
requirements that would have prevented such an attack. Figure 6.1 illustrates the
cloud environment model of this scenario using the SectroCloud tool-support. In

167

Figure 6.1: Cloud Environment model for the BitDefender use-case scenario.

the scope of the scenario, the cloud actor “BitDefender” has hosted their anti-virus
cloud application on infrastructure provided by a third party provider, in this case
“AWS”. The “BitDefender Anti-virus Application” cloud service in this scenario is
owned by “BitDefender” and managed by the cloud service provider “AWS”. The
“BitDefender Anti-virus Application” cloud service is composed of another cloud
service, the “Cloud Service Interface” interface which users such as “BitDefender”
and Unaffiliated Cloud User are able to access the “BitDefender Anti-virus Ap-
plication” cloud service by providing a set of valid credentials. The “BitDefender
Anti-virus Application” cloud service requires the virtual resource “VM Instance 1”,
representing an instance of the service running on a virtual machine dedicated to
the “BitDefender”. However the “Customer Data” and “Business processes” vir-
tual resources permeates the same “Hypervisor” infrastructure node and physical
infrastructure “Amazon Data-Centre” as the virtual resource “Personal Data” of
another unaffiliated cloud user “Tenant B”.

In order to perform analysis on the BitDefender scenario shown in Figure 6.1,
a summary of the CEM formally describing the system-under-design is provided
to highlight key relationships and properties given that CEM = 〈RKB, AM, OR,
CSM, CVM, CTM 〉:
The RKB = 〈{Business processes,Customer Data,VM Instance 1,Personal Data,
VM Instance 2},{Hypervisor}, {Amazon Data-Centre}, {permeates(VM Instance 1,
Hypervisor), permeates(VM Instance 2,Hypervisor), composition(Hypervisor,
Amazon Data-Centre)} 〉, the AM = 〈BitDefender, {BitDefender Anti-virus Ap-
plication}, {Business processes,Customer Data}, {owns(BitDefender,
Business processes), owns(BitDefender,Customer Data),{CU}〉, the CSM =

168

〈BitDefender Anti-virus Application(Public,{SaaS},{Business processes,Customer Data})〉.
At this stage the CVM and CTM are empty because no security concepts such as
threats or vulnerabilities have been identified.

Figure 6.2: Organisational view of the cloud model.

The organisational view shown in Figure 6.2 highlights the cloud actors and the
cloud services they manage or own. Here we examine the property of the cloud
service “BitDefender Anti-virus Application”, where key properties include the SaaS
service model and public deployment model. These properties determine the scope of
security issues and management, focusing on public SaaS cloud service deployments.

Figure 6.3: Properties of the “Hypervisor” infrastructure node instance.

We now describe the results after performing the semi-automated reasoning tech-
niques on the cloud model, detailing how the physical, virtual and personnel security
needs are transferred to the SaaS provider, AWS, when outsourcing applications from
a traditional on-premise model to a cloud environment. Therefore the SaaS provider
is responsible for ensuring security measures, such as access control policies and data

169

encryption techniques are implemented and enforced. In this case a malicious actor
can exploit weaknesses at the physical and logical levels, gaining access to sensit-
ive organisational data and processes. For example according to the Top 10 2013:
Cross-site Request Forgery(CSRF) by OWASP (Wichers, 2013) the “Cloud Service
Interface” is vulnerable to “Cross-site request forgery” if any links and forms lack
an unpredictable cross-site request forgery token, which is exploited by the threat
of “Social Engineering” when the attacker is able to trick the authenticated victim
into submitting a forged request.

By examining the properties of “Hypervisor”, the type, vendor and version at-
tributes shown in Figure 6.3 is used to identify matching vulnerabilities in expert
databases from sources such as the National Vulnerability Database(NVD). In this
case the properties type “enterprise linux”, vendor “redhat” and version “5” of “Hy-
pervisor” matches the vulnerability “CVE-2011-1576” from the NVD. The “Vulner-
ability identification” analysis generates an instance of a vulnerability in the cloud
model with the description “CVE-2011-1576” and relationship “affecting” the “Hy-
pervisor” node. In addition according to the entry data in the NVD, the “CVE-
2011-1576” vulnerability is associated to the vulnerability type “CWE-119: Buffer
Errors”, which is generated in the cloud model as “CWE-119: Buffer Errors” and
is composed of the originally identified vulnerability “CVE-2011-1576”. The “Mal-
ware” threat exploits the “Insecure storage” vulnerability affecting the “Hypervisor”
infrastructure node.

After identifying the vulnerabilities and creating instances in the cloud model,
the next step is to determine security mechanisms suitable for addressing these vul-
nerabilities. According to the secure cloud process, this is achieved either through
personal expert knowledge on the part of the developer, or through tool-assisted
analysis using security knowledge-bases for known mitigation strategies, such as the
NVD. For example the developer can refer to the entry for Cross-site request forgery
in the OWASP Top 10 Critical Web Application Security Risks (Wichers, 2013) and
find the security mechanism “Use of unique token in a hidden field” to protect against
the “Cross-site request forgery” vulnerability. The high level vulnerability “Insec-
ure storage” can be addressed by cryptography using security mechanisms such as
“Encryption” (Los et al., 2013) on passwords or data-sets. The security mechan-
ism resolution also identifies two security mechanisms; “Patch: RHSA-2011:0927-1”

170

Figure 6.4: The cloud environment model after performing semi-automated reason-
ing techniques.

and “Strategy: Language Selection”, in order to address the “CVE-2011-1576” and
“CWE-119: Buffer Errors” vulnerabilities respectively. These security mechanisms
were identified and modelled based on the mitigation details described in the vul-
nerabilities entries, when referring to the expert knowledge in the NVD.

Figure 6.4 shows a visual representation of the cloud environment model, after
performing the cloud security analysis, security mitigation analysis and the transpar-
ency analysis. The security responsibilities are enumerated through the two security
constraints:

• restrictsgoal(Ensure confidentiality, Cloud Service Interface, BitDefender) where
Ensure confidentiality has the securityRequirements property “The cloud actor
BitDefender is responsible for Ensure confidentiality on Cloud Service Interface:
Security mechanism Use of unique token in a hidden field to protect against
vulnerability Cross-site request forgery, Security constraint Ensure confidentiality
mitigates the threat Social Engineering”

• restrictsresource(Ensure confidentiality, Hypervisor, AWS) where
Ensure confidentiality has the securityRequirements property “The cloud actor
AWS is responsible for Ensure confidentiality on Hypervisor: Security mech-

171

anism Strategy: Language Selection to protect against vulnerability CWE-119:
Buffer Errors, Security mechanism Patch: RHSA-2011:0927-1 to protect against

vulnerability CVE-2011-1576, Security mechanism Encryption to protect against
vulnerability Insecure storage, Security constraint Ensure confidentiality mitig-
ates the threat Malware, Security objective Kernel security and bug fix update
satisfies security constraint Ensure confidentiality and implements security mech-
anism Patch: RHSA-2011:0927-1”

In summary BitDefender could have prevented the attack described in this scenario,
given that developers of the system is able to identify the security responsibilities
in this scenario.

6.1.2 Platform as a Service

In the context of a PaaS service model, the data and processes of the cloud user
needs to be obtained from their on-premise infrastructure, transmitted to the PaaS
application for processing and stored on the infrastructure of the PaaS provider.
This data transmission process is carried out through multiple network boundaries,
from the cloud user to the cloud service provider. Therefore all data-flow over these
networks need to be secured to prevent data-leakage. However the initial step is
to identify the points at which data flows between different boundaries, to ensure
appropriate measures are taken to address security according to the jurisdiction and
identify the parties responsible.

Figure 6.5 illustrates a scenario where the Business Data of an organisation
Business Owner is permeating from their on-premise network to the infrastructure
of their cloud service provider IaaS Provider. At this stage it is possible to identify
potential vulnerabilities affecting the network connection, when data is passed from
point to point, which may impact the security of the transmitted data or processes
on the end-point connection.

172

Network Security

We now discuss network security in the PaaS cloud service model and demonstrate
how our visual models could be used to mitigate the following vulnerability:

• Insecure SSL Trust configuration

Figure 6.5: Cloud environment model of the network security scenario.

In this scenario the “Business Data” permeates the infrastructure node “Net-
work connection”, which is part of the physical infrastructure “Business On-premise
Data-centre”. In turn the “Network connection” has the permeates relationship to
“VMInstance1”, indicating that the two nodes are connected. A summary of the
CEM formally describing the system-under-design is provided to highlight key re-
lationships and properties given that CEM = 〈RKB, AM, OR, CSM, CVM, CTM 〉:

The RKB = 〈{Business data,Customer Data,VMInstance1,Personal Data,
VMInstance2,Business processes},{Hypervisor,Network Connection},{Business On-
premise Data-centre,Third Party Data-Centre,}, {permeates(VMInstance1,
Network Connection),permeates(VMInstance2,Hypervisor),permeates(Business
processes,Hypervisor),permeates(Business data,Network Connection),permeates(

173

Personal Data,Hypervisor),composition(Hypervisor,Third Party Data-Centre)
,composition(Network Connection,Business On-premise Data-centre)} 〉, the AM =〈Business Owner,{Cloud Service Interface}, {Business processes,Business data,
Business On-premise Data-centre}, {owns(Business Owner,Business processes),
owns(Business Owner,Customer Data),owns(Business Owner,On-premise Data-
centre),manages(Business Owner,Cloud Service Interface){CU}〉, the CSM =〈{Cloud Service Interface(Public,{SaaS},{}),Business Process
Management(Public,{PaaS},{Business data,Personal data,VMInstance1})}〉. At this
stage the CVM and CTM are empty because no security concepts such as threats
or vulnerabilities have been identified.

Figure 6.6: Identified vulnerability and security mechanism in the network security
scenario.

During the vulnerability analysis the RKB is examined, where “Network connec-
tion” has the attribute ResourceType which contains “network”, indicating through
the NVD that vulnerabilities such as “Insecure SSL Trust configuration” affects the
node “Network connection”. According to OWASP (Wichers, 2013), “Require TLS
1.1+” is one of the potential security mechanisms which can be used to mitigate the
“Insecure SSL Trust configuration” vulnerability. Figure 6.6 illustrates the cloud en-
vironment model after performing the transparency analysis which shows, through

174

the neighbouring connections between the network node and the physical infrastruc-
ture, that the vulnerability “Insecure SSL Trust configuration” should be addressed
by the actor responsible for the physical infrastructure. In the transparency ana-
lysis, this responsibility is inferred from the composition relationship between the
infrastructure node “Network Connection” to the physical infrastructure “Business
On-premise Data-centre”, where the “Business On-premise Data-centre” is owned
by the cloud user “Business Owner”. The developer, with guidance from our visual
models, is therefore able to identify the potential security mechanisms for mitigating
the vulnerability “Insecure SSL Trust configuration” and the actors responsible for
ensuring the security constraint “Ensure data is kept confidential” is satisfied. In this
scenario the security responsibility is enumerated through the security constraint:

• restrictsresource(Ensure data is kept confidential,Business data,PaaS Provider)
where Ensure data is kept confidential has the securityRequirements property
“The cloud actor PaaS Provider is responsible for Ensure data is kept confidential
on Business data: Security mechanism Require TLS 1.1+ to protect against
vulnerability Insecure SSL Trust configuration”

6.1.3 Infrastructure as a Service

In the context of an IaaS service model, the cloud users share joint responsibility
with cloud service providers for the management of their security needs. While the
degree and scope of the responsibilities shared is vendor dependent, the cloud user
is responsible for configuring and managing the security controls and policies of the
applications they deploy. The cloud service provider is therefore responsible for the
security of the physical assets they own, for instance the cloud infrastructure and
underlying components such as networks and infrastructure nodes.

Therefore in order to understand and provide transparency on the security needs
of cloud users, the developers of a cloud system need to define the assets belonging
to each cloud user, the expected security challenges and how to mitigate such chal-
lenges. To demonstrate this, we now describe a scenario where a developer identifies
a vulnerability affecting their processes, how it impacts their application and how
they are able to address these issues. We then outline how the visual model shown
in Figure 6.7 helps developers describe the cloud security requirements to address

175

identified issues in this scenario.

Security Responsibilities

We now discuss the security responsibilities of cloud users and cloud service providers
in the IaaS cloud service model, in order to demonstrate how our visual models could
be used to mitigate the following vulnerability:

• Virtualization vulnerability

Figure 6.7: Cloud environment model showing how to mitigate the virtualisation
vulnerability affecting an infrastructure node.

The cloud environment model illustrated in Figure 6.7 was modelled from the
perspective of the cloud actor “Developer”, where their goal is to understand the
security needs of their cloud system-under-design and to provide transparency in
the security responsibilities. The “Developer” owns and deploys the cloud service
“Business intelligence” through the IaaS cloud service model, which is hosted on the
infrastructure owned by the cloud service provider “Amazon EC2”. The “Developer”
owns and is responsible for configuring the infrastructure node “VMWare instance”,
which represents a virtual machine instance. The specific properties of this instance
is shown on the top left of Figure 6.7.

Using the vulnerability analysis from Section 5.3.1, the “Developer” identifies,
based on the vendor, version and type properties of “VMWare instance”, the vul-
nerability “Virtualisation vulnerability”. Specifically the details of the vulnerability

176

is enumerated in the properties shown on the left of the Figure 6.7 where the de-
scription property contains the value “CVE-2017-4918”, representing the CVE entry
matching the product affected in “VMware instance”.

We then perform the threat analysis defined in Section 5.3.1, identifying the
threat “Improper sanitization” from CWE, specifically the entry “CWE–77: Im-
proper Sanitization of Special Elements used in a Command (“Command Injec-
tion”)”. The security constraint “Enforce data validation” is identified, using the
security mitigation analysis in Section 5.3.2. The security objective “Input valida-
tion strategy” implementing the security mechanism “Whitelisting” are then identi-
fied based on the CWE entry, as part of the security mitigation analysis. Therefore
the security challenges have been identified in the model, along with the mitigation
strategy.

The next step is to determine the scope of responsibility in order to address
the identified security issues through the enforcement of security controls. The
infrastructure node “VMWare instance” targeted in this model is part of the physical
infrastructure “Amazon datacentre”, which is owned by the cloud service provider
“Amazon EC2”. Therefore though the “owns” relationship, it is the responsibility of
“Amazon EC2” to ensure all identified vulnerabilities and threats associated through
the “composition” relationship with the object of ownership, “Amazon datacentre”,
is addressed. In this instance, the mitigation strategy is the identified security
constraint “Enforce data validation”, security objective “Input validation strategy”
and the security mechanism “Whitelisting”. Therefore in this scenario the security
responsibility is enumerated through the security constraint:

• restrictsresource(Enforce data validation,VMWare instance,Amazon EC2) where
Enforce data validation has the securityRequirements property “The cloud actor
Amazon EC2 is responsible for Enforce data validation on VMWare instance:
Security mechanism Whitelisting to protect against vulnerability CVE-2017-
4918, Security constraint Enforce data validation mitigates the threat improper
sanitization, Security objective input validation strategy satisfies security con-
straint Enforce data validation and implements security mechanism Whitelist-
ing”

In summary the developer has identified the vulnerability “Virtualisation vulner-

177

ability” and threat “Improper sanitization”, which targets the infrastructure node
“VMWare instance”. The mitigation strategy to address this has been identified
as the security objective “Input validation strategy” and the security mechanism
“Whitelisting”. The physical infrastructure “Amazon datacentre”, owned by the
cloud service provider “Amazon EC2”, is composed of the infrastructure node “VM-
Ware instance”. Therefore in order to provide transparency, the security responsibil-
ities of the cloud service provider “Amazon EC2” is to enforce the security objective
“Input validation strategy”, the security mechanism “Whitelisting” and the security
constraint “Enforce data validation”.

6.2 VisiOn Case Study: Municipality of Athens

In this section we evaluate our Secure Cloud Environment Framework using a scen-
ario from the Visual Privacy Management in User Centric Open Environment(VisiOn)1

European project case study. VisiOn is an integrated tool solution that organisa-
tions can connect to part or all of their systems within their infrastructure. The
VisiOn tool is accessed through a web interface by users such as citizens, allowing
them to interact with the public administration(PA) in order to search for inform-
ation, updates and requirements on the management of their data. This case study
was selected because of the relevancy between the VisiOn project and the cloud
computing needs of their stakeholders, specifically in scenarios where the cloud se-
curity requirements of stakeholders need to be understood as they transition from
traditional systems to a cloud computing environment.

The scenario from this case study was selected from one of three pilot scenarios
proposed by a local Greek government development company named ”City of Athens
IT Company” (DAEM) for the VisiOn project. In this scenario an Athenian city
resident, George, submits a request for an annual membership at a public swimming
pool in Athens, with a disability discount. In order to verify his current residence
and medical situation to be eligible for specific city services, the swimming pool fac-
ulty is responsible for verifying the birth and medical certificates of the applicant,
in order to approve the citizenship status and medical circumstances for a discount.

1http://www.visionprivacyplatform.eu

178

The swimming pool administration team will outsource their computing needs to
a third party cloud computing provider, where the business data and processes of
their system is stored and processed externally in a cloud computing environment.
The municipality of Athens is responsible for providing copies of various certificates
of citizens, where their data is accessed and stored by certified governmental cloud
computing providers. The clinic in this scenario stores the medical information and
certificate of citizens on certified health-care cloud computing infrastructure. There-
fore in this scenario the personal data of citizens is exchanged between the public
authority from the municipality of Athens, personnel at a clinic and the swimming
pool administration staff. This scenario is examined from the perspective of DAEM,
where they are responsible for determining the cloud security requirements of the
stakeholders in this scenario, and disseminating the identified requirements to the
appropriate parties.

The stakeholders in this case study are the representatives of the public author-
ity (Municipality of Athens), swimming pool administrator and Athenian citizens
(George), where their requirements are represented by DAEM.

The description and security requirements of the stakeholders in the Municipality
of Athens scenario were obtained as part of the deliverables in the VisiOn project,
where the document is accessible from 2. The security requirements is as follows:

• SR1 The actor SP Information System require Badge to authenticate in order
to achieve goal Badge issued.

• SR2 The actor SP Information System require unlinkability on Badge in order
to achieve goal Badge issued.

• SR3 The actor Municipality of Athens shall ensure the integrity of the required
resource Medical certificate permeating to SP information system is preserved.

• SR4 The actor Municipality of Athens shall ensure the confidentiality of the
required resource Medical certificate permeating to SP information system is
preserved.

2http://www.visioneuproject.eu/wp-content/uploads/2016/03/2015-VSN-RP-053-D2.2-
Citizens-and-Public-Administrations-Privacy-Requirements.pdf

179

• SR5 The actor Municipality of Athens shall ensure the integrity of the required
resource Birth certificate permeating to SP administrator is preserved.

• SR6 The actor Municipality of Athens shall ensure the confidentiality of the re-
quired resource Birth certificate permeating to SP administrator is preserved.

• SR7 The actor SP Information System shall ensure the confidentiality of the
required resource Bank details is preserved.

• SR8 The actor SP Information System shall ensure the integrity of the required
resource Bank details is preserved.

• SR9 The actor Clinic shall ensure the integrity of the required resource Medical
certificate is preserved when received by actor SP information system.

• SR10 The actor Clinic shall ensure the confidentiality of the required resource
Medical certificate is preserved when received by actor SP information system.

Taking these requirements into account, the aim of this scenario is to realise these
requirements in a cloud computing environment. This is achieved by applying the
Secure Cloud Environment Framework to refine cloud models and perform security
analysis in order to obtain cloud security requirements.

6.2.1 Application and Outcome of the Secure Cloud Envir-
onment Framework

In this subsection we report on the outcomes after applying the Secure Cloud En-
vironment Framework, mentioned in Chapter 4.1, to the Municipality of Athens
scenario. The application of the framework was carried out by the author, based on
information provided through requirements specification documents describing the
context and contents of the Municipality of Athens scenario in the VisiOn European
project. Here we outline the outcomes of each activity following the application of
the Secure Cloud Process, focusing on the output in terms of producing and refin-
ing cloud models throughout the modelling and security analysis activities without
detailing each step in full technical detail. We also describe the steps involved in
the application of the SectroCloud tool in a narrative format.

180

Organisational Goal Model

Figure 6.8: Organisational goal model of the VisiOn Municipality of Athens scenario.

The Municipality of Athens scenario describes a situation where the primary
goal of an Athenian citizens is a request for an annual membership for a local
swimming pool in Athens, which is processed by the administration staff. In the
process of determining the validity for a disability discount, the administration staff
at the swimming pool requests access to copies of the citizens birth and medical
certificates. This is carried out through communication with public administration
staff, represented as the actors Municipality of Athens and medical personnel at
a local clinic. Figure 6.8 shows a graphical representation of an organisational
goal model in the Municipality of Athens scenario, generated using the SectroCloud
tool. The organisational goal model was constructed by the author based on the
information found in stakeholder requirements and specification documents available
from the VisiOn European project. As our work builds upon and extends the Secure
Tropos methodology, the SectroCloud is fully capable of creating the organisational
goal model following the same notation and relationships defined in Secure Tropos.

181

We now describe the steps taken using the SectroCloud tool in order to produce the
an organisational goal model shown in Figure 6.8. The following concepts are used
in the creation of the organisational goal model; actor, resource, goal and security
constraint. The following relationships are used in the organisational goal model;
dependency, requires, restricts and composition. Note that when the user selects two
nodes and clicks the Add Edge button, the SectroCloud tool automatically assigns
the edge according to the rules of our proposed cloud metamodel. As an example,
if the user selects an Actor node and a Goal node, clicking on the Add Edge button
will create an edge called dependency from the first node selected to the second node
selected. If the two selected nodes has the option of selecting more than one type
of edge between them, the user is then required to select from a selection of edges,
such as owns, manages or permeates. With this set of concepts and relationships,
the user will create the organisational goal model by adding the nodes using the
buttons corresponding to the required concepts, populating the model with actor,
goal, resource and security constraint instances. Each instance can be renamed by
right clicking on the node and editing the properties. The user will then create the
relationships between nodes by selecting a pair of nodes and adding edges between
them using the ”Add Edge” button. The completion of these two activities using
the SectroCloud tool results in the creation of the organisational goal model shown
in Figure 6.8.

The actors in this scenario are; Athenian citizen George, SP Information System,
Municipality of Athens, SP administrator, Clinic and SP receptionist. The primary
goal of the actor Athenian citizen George in the scenario is Gain access to swimming
pool facility service. This is composed of the sub-goals Medical certificate issued and
Get registered. The model has six conceptual boundaries corresponding to each
actor, where each bounded area includes the goals and resources of each actor.
Several goals depend on the goals located in cross-boundary areas, denoting the
exchange of data outside the scope of individual organisations or stakeholders. For
example the Municipality of Athens depends on the SP administration to ensure the
medical certificate is confidential during transmission.

182

Figure 6.9: View of the model using the organisation filter.

Organisational Cloud System

Following the creation of the organisational goal model, the next activity focuses
on the identification and creation of cloud services, corresponding to the goals of
the system and stakeholders. As this activity is performed from the perspective of
DAEM, we identify the cloud services required in order to transmit, access and store
data towards achieving the primary goal of Gain access to swimming pool facility
service by the actor Athenian citizen George.

Therefore the following concepts are used in the creation of the organisational
cloud system; actor, cloud actor, goal, cloud service, security objective and security
constraint. The following relationships are used in the organisational cloud system;
dependency, requires, restricts, composition and mitigates. With this set of concepts
and relationships, the user will create the organisational goal model by adding the
nodes using the buttons corresponding to the required concepts, populating the
model with instances of the actor, cloud actor, goal, cloud service, security objective
and security constraint concepts. The relationships between each node is added in
the same way described in the SectroCloud tool, by using the Add Edge button.

183

The completion of this activity using the SectroCloud tool results in the creation of
the organisational cloud system shown in Figure 6.8.

Thus the following instances of cloud services have been identified during this
activity; SP payment service, Access monitoring service, Certificate management
service, PA banking service. The SP administration service represents a cloud service
which acts as a gateway to business processes essential for the operation of the
swimming pool. The Access monitoring service represents a cloud service which is
part of the SP administration service, specialising in capabilities within the scope
of monitoring membership access. The Certificate management service represents
a cloud service for managing the access, verification and issuing of medical and
citizenship certificates. The PA banking service represents a cloud service used
by public administration for banking services, such as accessing, withdrawing and
setting up payments for bank accounts.

The cloud service filter shown in Figure 6.9 showcases how the graphical high-
lighting of a specific concept helps developers narrow the scope of a cloud model
to cloud services. This filter can be accessed in the SectroCloud tool by clicking
on the organisational button in the toolbar. Thus given a large model composed of
complex relationships and concepts, developers are able to spot patterns and manip-
ulate the graphical representation of the cloud model to further their understanding.
This was useful in this scenario due to the requirements for modelling and visual-
ising the satisfaction of security properties, such as confidentiality and integrity on
components, which involves understanding visually complex chains of relationships
and properties. We now discuss how the relationships and properties of the cloud
services identified in this activity are refined in the following activity.

Holistic Cloud Model

The holistic cloud model is refined through organisational concepts, application con-
cepts and infrastructure concepts, in order to output the cloud environment model
in this activity. Building upon the organisational cloud system produced in the
previous stage, the activity begins by focusing on refining the organisational con-
cepts of the cloud computing environment. Specifically the following concepts are
used during this stage; goal, cloud service, actor, cloud actor, virtual resource, se-

184

Figure 6.10: Visualisation of the holistic cloud model.

185

curity constraint. In addition, the following relationships are used; restricts, owns,
manages, requires and dependency. Most crucially during the refinement of the or-
ganisational concepts, the properties of the cloud services identified are populated by
the developer. This is done in the SectroCloud tool by right clicking on a cloud ser-
vice instance to bring up the properties for that particular instance, where the user
is able to enter the following details; name of the cloud instance, capability, security
property, deployment model and service model. The manages and owns relation-
ship between cloud actors and cloud services are also created during this stage, using
the Add Edge button. The next stage focuses on refining the application concepts
of the cloud computing environment. Specifically the following concepts are used
during this stage; goal, cloud service, actor, cloud actor, virtual resource, security
constraint, threat, vulnerability, security mechanism, security objective. In addition,
the following relationships are used; restricts, owns, manages, requires, satisfies, im-
plements, mitigates, protects, exploits, impacts and dependency. In particular, the
properties of virtual resource instances are populated here, by right clicking on a vir-
tual resource instance to bring up the properties for that particular instance, where
the user is able to enter the following details; description, value, security property,
product, vendor, version, type and visibility. The third and final stage focuses on
refining the infrastructure concepts of the cloud computing environment. Specific-
ally the following concepts are used during this stage; goal, cloud service, actor,
cloud actor, virtual resource, infrastructure node, physical infrastructure, security
constraint, threat, vulnerability, security mechanism, security objective. In addition,
the following relationships are used; restricts, owns, manages, requires, satisfies, im-
plements, mitigates, protects, exploits, impacts, permeates and dependency. In this
instance, the properties of infrastructure node and physical infrastructure instances
are populated, again by right clicking on the instance to bring up the properties for
that particular instance.

In order to address the ten security requirements on the cloud system, repres-
ented through security constraints, the framework guides the developer through the
process of devising the mitigation strategy. Therefore during the organisational
modelling step, six security objectives were added to address the existing security
constraints. Nine security mechanisms were proposed to implement all identified se-
curity objectives. Specifically the security constraints Receiver authentication (SP)

186

and Receiver unlinkability (SP) are satisfied by the security objectives Ensure au-
thentication and Unlinkability, which are implemented by the security mechanisms
Username/password and Pseudonymizer tools respectively. The security constraints
Receiver confidentiality, Receiver confidentiality (Bank), Receiver integrity and Re-
ceiver integrity (Bank) are satisfied by the security objectives Ensure confidential-
ity and Ensure integrity, which are implemented by the security mechanisms En-
cryption, Host IDS and Network IDS respectively. Finally the last set of security
constraints Sender integrity and Sender confidentiality are satisfied by the security
objectives Ensure confidentiality and Ensure integrity, and is implemented by the
security mechanisms Encryption and Mirroring respectively. These security meas-
ures have been identified manually by the author and represents at a high level, a
mitigation strategy for the satisfaction of the cloud security needs.

Lessons Learned

In this sub-section we discuss the lessons learned after the application of our work in
the VisiOn case study. During the collaborative work with the requirement engineers
in the application of the tool, we have observed issues in the scalability of models
and visual presentation. Specifically the model in question was created from require-
ments specifying over eighty nodes, where several nodes had a high concentration of
incoming and outgoing edges. Nodes with multiple edges would partially obscure or
overlap with neighbouring nodes and edges, which resulted in models with sections
that were visually difficult to understand. This issue with visual presentation of
highly concentrated models was exacerbated in the figures produced in this thesis,
primary due to the limitation of presenting readable figures which still fits within
an A4 page. However in the models created by requirements engineers during the
collaborative phase, the spacing was more relaxed to allow for visualising systems
with higher complexity and density. This phenomenon was attributed to the fact
that in a practical work space, the practitioner focuses on fragments of a system.
For example Figure 6.11 shows a fragment of the cloud environment model gener-
ated for the VisiOn case study, where the spacing is relaxed. As such, they are not
bound by the limitation of presenting a visual model which scales down to fit an A4
page.

187

Figure 6.11: Fragment of the model in the VisiOn case study.

Therefore from this observation we conclude that from a practitioners perspect-
ive, the process of creating and editing models using the SectroCloud tool-support
is manageable for systems containing up to eighty nodes. In terms of scalability
and the impact on the visual presentation of models, nodes with multiple incoming
and outgoing edges are partially or fully obscured when located in areas with a
high density of nodes. This is further exacerbated when attempting to present the
entirety of the model in one view, in particular when scaling the image to an A4
page. This can be partially avoided by allocating additional work space and provid-
ing adequate spacing between each node, at the cost of creating models which are
not rendered readable when scaled down to an A4 sized page. Therefore with this
limitation in mind, we have proposed as future work to provide the functionality
of resizable nodes, in order to reshape nodes which has a high number of incoming
or outgoing edges, such that edges and labels no longer overlap. A functionality
should also be added to support modifications to the anchor points of edges, where
the path of edges can be manipulated by the developer.

Another observation was regarding the usability of the tool in terms of the graph-
ical notation and user interface. The participants involved in the development pro-
cess have provided comments on the usability of the tool, noting in comparison to

188

sketching models on papers and boards, the tool-assisted approach was more user
friendly. Specifically in one case a participant was involved in a meeting where they
were responsible for presenting system requirements to stakeholders. In this case
they were able to demonstrate in real time, using the tool, the requirements of the
system-under-design during the video conference.

6.3 Chapter summary

In this chapter the secure cloud environment framework was evaluated on three use-
cases and a case study. The use-cases demonstrate how the framework was applied to
model and address security issues specific to cloud service models. In each case a list
of vulnerabilities have been identified through the cloud analysis, where the affected
instances of cloud computing resources were highlighted. A mitigation strategy was
then created using security mechanisms and objectives to address identified security
issues. The results of the VisiOn case study was then reported, identifying the
security requirements of the stakeholders and how these requirements are satisfied
in the cloud computing system.

189

Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis we have presented the components of our security requirements engin-
eering framework, providing developers with semi-automated decision support for
the design and analysis of cloud computing environments, to elicit and understand
cloud security requirements. We are able to model and address security challenges
in cloud computing environments from several perspectives, such as social engineer-
ing at the social level, mis-configuration of cloud services at the application level
and hypervisor vulnerabilities leading to side-channel attacks at the infrastructure
level. The Cloud Security Modelling Language allows us to express components of
a cloud computing system using the concepts of a cloud service, virtual resource,
infrastructure node and physical infrastructure. The language describes the correla-
tion between cloud actors and resources through the manages, owns, permeates and
composition relationships. We have described properties capturing characteristics
specific to cloud computing, in particular virtualisation, multi-tenancy, jurisdiction,
service models and deployment models. The Secure Cloud Process defines a sys-
tematic approach for developers of cloud computing systems, describing the steps
required to model the cloud computing components of the system in order to identify
and address security issues. The Cloud Security Analysis proposes three analysis
techniques which, given a cloud environment model, identifies vulnerabilities and
threats posing a risk to the cloud computing resources, the security mechanisms,

190

security objectives and security constraints to address these issues and the security
responsibility of cloud actors over resources they manage or own.

We now summarise the contributions made in this thesis and how they answer
the research questions in Chapter 1.

7.1.1 Secure Cloud Environment Framework

The secure cloud environment framework provides semi-automated decision support
for cloud developers during the process of modelling, analysing and enforcing security
requirements in cloud computing systems. We argue that the security issues in a
cloud computing environment are not bound to a single domain. Therefore multiple
perspectives must be considered by a developer in order to capture the security needs
of cloud actors. The secure cloud environment framework addresses these limitations
by providing a modelling language with the expressive power needed to describe
cloud security needs at a high level of abstraction, without omitting technical details.
This is demonstrated through three separate views of a cloud model, representing
refinements at the organisational, application and infrastructure level. Each view
allows developers to focus on the concepts and relationships represented from a
specific perspective, culminating in a holistic cloud model with varying levels of
granularity. Therefore the security needs of stakeholders are considered from the
early requirements stage, refined through each of the three views, to describe the
cloud security requirements of the system.

7.1.2 Cloud Security Modelling Language

The Cloud Security Modelling Language presented in Chapter 3 answers the
first research question “RQ1: How do we describe cloud computing concepts to
capture cloud systems from a security requirements engineering perspective?”. Spe-
cifically we address the first research objective “RO1: We will extend existing se-
curity requirements approaches in a way which captures the security and cloud needs
of stakeholders from the early requirements stage.” in the work undertaken to ex-
tend the Secure Tropos methodology. The second research objective “RO2: We
will define a modelling language capable of modelling cloud computing concepts and
relationships from a security requirements engineering perspective.” is addressed

191

through our cloud computing concepts, relationships and properties, building upon
the extensions to the Secure Tropos modelling language.

We have defined the cloud security modelling language to capture cloud com-
puting concepts and relationships, enabling the description of components required
to construct conceptual models representing secure cloud computing systems. Spe-
cifically in order to describe a cloud computing system at a high level, we define the
concept of a cloud service, virtual resource, physical infrastructure and infrastruc-
ture node. To represent the idea of responsibility at a social level, we propose the
manages and owns relationships between actors and resources and the permeates
and composition relationship between resources. We define properties such as ser-
vice model, deployment model, tenancy and location in order to describe, with a
finer level of granularity, the technical specifications associated with each concept.

Our cloud security modelling language extends the Secure Tropos modelling lan-
guage (Mouratidis & Giorgini, 2007), incorporating a goal-oriented security require-
ments engineering approach in the scope of modelling secure cloud computing sys-
tems. Specifically in Chapter 2 we have reviewed the state of the art to determine the
characteristics of cloud computing systems, summarised the security issues in cloud
computing and presented the current limitations in security requirements engineer-
ing approaches to model secure cloud security systems. In Chapter 3 we present our
arguments that the language is able to describe cloud security requirements through
our definition of cloud computing concepts, relationships and properties.

7.1.3 Secure Cloud Process

The Secure Cloud Process presented in Chapter 4 answers the second research
question “RQ2: How do we define a systematic process to guide security require-
ments engineers in modelling cloud computing systems?”. Specifically the third
research objective “RO3: We will systematically guide the developer through the
process of mapping our modelling language to models of secure cloud systems.” is
addressed through the five activities of the secure cloud process, where guidance is
provided from early requirements to identification of cloud security requirements.

The secure cloud process provides practitioners with a comprehensive approach
to the secure cloud environment framework, ensure that they are able to consist-

192

ently understand and apply fundamental activities throughout the cloud security
requirements elicitation process. Specifically the process provides guidance from the
early requirements stage to the specification of cloud security requirements, from a
security requirements engineering perspective.

During the activities in the process, the developer is made aware of the input
and output artefacts, as well as the tasks to be performed during each activity.
The first activity is performed under the assumption that an organisational goal
model representing the requirements of the system-under-design is available. This
bridges the gap between existing goal-oriented security requirements engineering
approaches and provides the entry point to eliciting cloud security needs. The second
activity specifies the properties of cloud services, focusing on the unique offerings
of cloud computing, such as service models and deployment models, which will
later determine the scope of security issues and considerations. The third activity
focuses on guiding the developer through the application of concepts, relationships
and properties introduced in Chapter 3, in order to construct a cloud environment
model to represent the system-under-design. The key contribution of this chapter is
the differentiation between the organisational, application and infrastructure levels
of abstraction, and the refinement of concepts within the scope of each level. This
allows the developer to understand and model from different levels of abstraction,
ranging from high level concepts such as delegation of responsibilities and ownership
of resources, to technical specification of security mechanisms and configuration of
infrastructure nodes. The forth activity guides developers through the steps of
performing security analysis, focusing on three types of analysis techniques, which
is fully explained in Chapter 5.

7.1.4 Semi-Automated Reasoning Support

The Semi-Automated Reasoning Support presented in Chapter 5 answers the
third research question “RQ3: What types of analysis are useful in order to identify
cloud security requirements in cloud systems?”. Specifically the forth research ob-
jective “RO4: We will provide guidelines for modelling cloud systems in order to
perform semi-automated analysis.” is addressed through the formal work carried
out in Chapter 5.1. The fifth research objective “RO4.1: The analysis will sup-

193

port threat and vulnerability identification to help security requirements engineers
understand security issues in cloud systems.” is addressed through the SectroCloud
module described in Chapter 5.4. The sixth research objective “RO4.2: The ana-
lysis will propose mitigation techniques to help security requirements engineers un-
derstand how to address security issues in cloud systems.” is addressed by the cloud
security analysis and security mitigation analysis techniques defined in Chapter 5.3.

Here we have introduced the formal analysis concepts, which enables the semi-
automated analysis of cloud environment model constructed using our cloud secur-
ity modelling language. We presented three analysis techniques; (i) cloud security
analysis, identifying threats and security vulnerabilities, (ii) security mitigation ana-
lysis, identifies and validates security constraints, objectives and mechanisms, and
(iii) transparency analysis, identifying the security responsibilities of cloud actors
and understand security needs.

We have also presented our SectroCloud module, which extends the Apparatus
Software Tool(ASTo) to provide a graphical interface for practitioners. The tool
supports the visual modelling of cloud environment models using concepts from our
cloud security modelling language, with view filters for the organisational, applic-
ation and infrastructure level of abstraction. Security analysis on generated cloud
environment models are supported through the integration of the formal analysis
concepts and the three analysis techniques. In addition validity and well-formedness
checks can be performed on models to ensure compliance with our cloud security
modelling language. This provides semi-automated reasoning using existing cloud
environment models, visualising the results of analysis on the models to provide
feedback to the practitioner.

7.2 Future Work

Security Patterns Currently the SectroCloud module does not support import-
ing security patterns to a cloud environment model. While initial efforts have been
taken to identify patterns from several domains in the Cloud Controls Matrix (CCM)
provided by the Cloud Security Alliance (CSA), the process of replicating these se-
curity patterns using tool support is manual. This involves the creation of security
controls as models using concepts from our proposed language, which can be saved

194

as a pattern using the SectroCloud tool support. The bulk of the work is in devising
a method for the automated transformation of security patterns from expert data-
bases to our proposed language. Further work is needed to allow the importing and
exporting of patterns in the tool support, for example replicating a set of security
mechanisms to mitigate a specific vulnerability and generating the pattern through
our concepts in an existing model. Therefore the automated transformation of cloud
security controls into security patterns through tool support will provide practition-
ers with an extendable library of security patterns, consisting of industry standard
solutions.

Scalability and Usability of SectroCloud The focus of the SectroCloud module
was to provide semi-automated tool support for practitioners, allowing the visual
modelling of cloud computing systems using our cloud security concepts. Further
investigation of the scalability of the visual component can improve the usability
of the tool, as the effect of the complexity of visual models on the decision mak-
ing process has not yet been studied within the scope of this work. Two features
have been proposed to address the visual clutter of complex models; (i) enabling the
manual resizing and scaling of nodes, (ii) allowing the addition of anchor points on
edges. Supporting the resizing of nodes would allow developers to manually adjust
the scale of each node in the model, in order to reduce the amount of overlap over
edges and labels in complex models. The support for manual manipulation of edges
in the model would allow developers to reshape edges which overlap, further redu-
cing visual clutter. These two proposed features is aimed at improving the usability
of the tool-support, while addressing the visual component of the scalability issue.

195

Bibliography

Adam, I. O. & Musah, A. (2014). Small and medium enterprises (smes) in the
cloud in developing countries: A synthesis of the literature and future research
directions.

Ahmad, A. & Babar, M. A. (2014). A framework for architecture-driven migration
of legacy systems to cloud-enabled software. In Proceedings of the wicsa 2014
companion volume (p. 7). ACM.

Aljawarneh, S. A., Alawneh, A. & Jaradat, R. (2017). Cloud security engineering:
Early stages of sdlc. Future Generation Computer Systems, 74, 385–392.

Alliance, C. (2011). Security guidance for critical areas of focus in cloud computing
v3. 0. Cloud Security Alliance, 15.

Almorsy, M., Grundy, J. & Müller, I. (2016). An analysis of the cloud computing
security problem. arXiv preprint arXiv:1609.01107.

Alpeyev, P., Galante, J. & Yasu, M. (2011). Amazon.com server said to have been
used in sony attack. Bloomberg, May, 14.

Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L. & Yu, E. (2010).
Evaluating goal models within the goal-oriented requirement language. Inter-
national Journal of Intelligent Systems, 25 (8), 841–877.

Argyropoulos, N., Shei, S., Kalloniatis, C., Mouratidis, H., Delaney, A., Fish, A.
& Gritzalis, S. (2017). A semi-automatic approach for eliciting cloud secur-
ity and privacy requirements. In Proceedings of the 50th hawaii international
conference on system sciences.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . .
Stoica, I. et al. (2010). A view of cloud computing. Communications of the
ACM, 53 (4), 50–58.

196

Barnum, S. (2012). Standardizing cyber threat intelligence information with the
structured threat information expression (stix). MITRE Corporation, 11, 1–
22.

Barry, D. K. (2003). Web services, service-oriented architectures, and cloud comput-
ing. Morgan Kaufmann.

Beckers, K., Côté, I., Faßbender, S., Heisel, M. & Hofbauer, S. (2013). A pattern-
based method for establishing a cloud-specific information security manage-
ment system. Requirements Engineering, 18 (4), 343–395.

Behl, A. (2011). Emerging security challenges in cloud computing: An insight to
cloud security challenges and their mitigation. In Information and communic-
ation technologies (wict), 2011 world congress on (pp. 217–222). IEEE.

Belaunde, M., Casanave, C., DSouza, D., Duddy, K., El Kaim, W., Kennedy, A., . . .
Hendryx, S. et al. (2003). Model driven architecture guide version 1.0.1.

Bergmayr, A., Bruneliere, H., Izquierdo, J. L. C., Gorronogoitia, J., Kousiouris, G.,
Kyriazis, D., . . . Pezuela, C. et al. (2013). Migrating legacy software to the
cloud with artist. In Software maintenance and reengineering (csmr), 2013
17th european conference on (pp. 465–468). IEEE.

Bergmayr, A., Wimmer, M., Kappel, G. & Grossniklaus, M. (2014). Cloud modeling
languages by example. In Service-oriented computing and applications (soca),
2014 ieee 7th international conference on (pp. 137–146). IEEE.

Bhensook, N. & Senivongse, T. (2012). An assessment of security requirements com-
pliance of cloud providers. In Cloud computing technology and science (cloud-
com), 2012 ieee 4th international conference on (pp. 520–525). IEEE.

Bohn, R. B., Messina, J., Liu, F., Tong, J. & Mao, J. (2011). Nist cloud comput-
ing reference architecture. In Services (services), 2011 ieee world congress on
(pp. 594–596). IEEE.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004).
Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8 (3), 203–236.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. (2009). Cloud com-
puting and emerging it platforms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation computer systems, 25 (6), 599–616.

197

Center for Computational Science Research, I., Chicago. (n.d.). Open commons
consortium. http://occ-data.org/. Accessed: 2017-06-07.

Cheng, B. H. & Atlee, J. M. (2007). Research directions in requirements engineering.
In 2007 future of software engineering (pp. 285–303). IEEE Computer Society.

Chou, T.-S. (2013). Security threats on cloud computing vulnerabilities. Interna-
tional Journal of Computer Science & Information Technology, 5 (3), 79.

Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R. & Molina, J.
(2009). Controlling data in the cloud: Outsourcing computation without out-
sourcing control. In Proceedings of the 2009 acm workshop on cloud computing
security (pp. 85–90). ACM.

Chung, L., Nixon, B. A., Yu, E. & Mylopoulos, J. (2012). Non-functional require-
ments in software engineering. Springer Science & Business Media.

Dalpiaz, F., Paja, E. & Giorgini, P. (2011). Security requirements engineering via
commitments. In Socio-technical aspects in security and trust (stast), 2011 1st
workshop on (pp. 1–8). IEEE.

Dardenne, A., Van Lamsweerde, A. & Fickas, S. (1993). Goal-directed requirements
acquisition. Science of computer programming, 20 (1-2), 3–50.

Darimont, R., Delor, E., Massonet, P. & van Lamsweerde, A. (1997). Grail/kaos:
An environment for goal-driven requirements engineering. In Proceedings of the
19th international conference on software engineering (pp. 612–613). ACM.

Depot, T. (2014). The home depot reports findings in payment data breach invest-
igation.

Dillon, T., Wu, C. & Chang, E. (2010). Cloud computing: Issues and challenges.
In Advanced information networking and applications (aina), 2010 24th ieee
international conference on (pp. 27–33). Ieee.

Elahi, G. & Yu, E. (2007). A goal oriented approach for modeling and analyzing
security trade-offs. Conceptual Modeling-ER 2007, 375–390.

Ellis-Braithwaite, R., Lock, R., Dawson, R. & Haque, B. (2012). Modelling the
strategic alignment of software requirements using goal graphs. arXiv preprint
arXiv:1211.6258.

Eric, S. Y. (2009). Social modeling and i. In Conceptual modeling: Foundations and
applications (pp. 99–121). Springer.

198

http://occ-data.org/

Fabian, B., Gürses, S., Heisel, M., Santen, T. & Schmidt, H. (2010). A comparison of
security requirements engineering methods. Requirements engineering, 15 (1),
7–40.

Faily, S. (2011). Bridging user- centered design and requirements engineering with
grl and persona cases. In Proceedings of the 5th international i* workshop.

Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M. M. & Inácio, P. R. (2014).
Security issues in cloud environments: A survey. International Journal of In-
formation Security, 13 (2), 113–170.

Ferry, N., Rossini, A., Chauvel, F., Morin, B. & Solberg, A. (2013). Towards model-
driven provisioning, deployment, monitoring, and adaptation of multi-cloud
systems. In Cloud computing (cloud), 2013 ieee sixth international conference
on (pp. 887–894). IEEE.

Foster, I., Zhao, Y., Raicu, I. & Lu, S. (2008). Cloud computing and grid computing
360-degree compared. In Grid computing environments workshop, 2008. gce’08
(pp. 1–10). Ieee.

Fox-Brewster, T. (2015). Antivirus firm bitdefender admits breach hacker claims
stolen passwords are unencrypted. Forbes.

Frey, S. & Hasselbring, W. (2011). The cloudmig approach: Model-based migration
of software systems to cloud-optimized applications. International Journal on
Advances in Software, 4 (3 and 4), 342–353.

Grobauer, B., Walloschek, T. & Stocker, E. (2011). Understanding cloud computing
vulnerabilities. IEEE Security & Privacy, 9 (2), 50–57.

Group, O. M. (n.d.). Object management group, cloud standards customer council.
http://www.cloud-council.org/. Accessed: 2017-09-26.

Gürses, S. F. & Santen, T. (2006). Contextualizing security goals: A method for
multilateral security requirements elicitation. In Sicherheit (Vol. 6, pp. 42–
53).

Hahn, A., Thomas, R. K., Lozano, I. & Cardenas, A. (2015). A multi-layered and
kill-chain based security analysis framework for cyber-physical systems. Inter-
national Journal of Critical Infrastructure Protection, 11, 39–50.

Hale, M. L. & Gamble, R. (2013). Building a compliance vocabulary to embed
security controls in cloud slas. In Services (services), 203 ieee ninth world
congress on (pp. 118–125). IEEE.

199

http://www.cloud-council.org/

Hashizume, K., Rosado, D. G., Fernández-Medina, E. & Fernandez, E. B. (2013).
An analysis of security issues for cloud computing. Journal of Internet Services
and Applications, 4 (1), 5.

Hoberg, P., Wollersheim, J. & Krcmar, H. (2012). The business perspective on cloud
computing-a literature review of research on cloud computing.

Howard, M. & Lipner, S. (2006). The security development lifecycle. Microsoft Press
Redmond.

Hughes, J. & Cybenko, G. (2014). Three tenets for secure cyber-physical system
design and assessment. In Proc. of spie vol (Vol. 9097, 90970A–1).

Iankoulova, I. & Daneva, M. (2012). Cloud computing security requirements: A
systematic review. In Research challenges in information science (rcis), 2012
sixth international conference on (pp. 1–7). IEEE.

ISO, I. & Std, I. (2011). Iso 27005: 2011. Information technology–Security techniques–
Information security risk management. ISO.

Jadeja, Y. & Modi, K. (2012). Cloud computing-concepts, architecture and chal-
lenges. In Computing, electronics and electrical technologies (icceet), 2012 in-
ternational conference on (pp. 877–880). IEEE.

Jamshidi, P., Ahmad, A. & Pahl, C. (2013). Cloud migration research: A systematic
review. IEEE Transactions on Cloud Computing, 1 (2), 142–157.

Jordan, D. & Evdemon, J. (2011). Business process model and notation (bpmn)
version 2.0. object management group. Object ManagementGroup.

Jürjens, J. (2002). Umlsec: Extending uml for secure systems development. �UML�

2002—The Unified Modeling Language, 1–9.
Kalloniatis, C., Kavakli, E. & Gritzalis, S. (2008). Addressing privacy requirements

in system design: The pris method. Requirements Engineering, 13 (3), 241–255.
Kalloniatis, C., Mouratidis, H. & Islam, S. (2013). Evaluating cloud deployment

scenarios based on security and privacy requirements. Requirements Engineer-
ing, 18 (4), 299–319.

Kanday, R. (2012). A survey on cloud computing security. In Computing sciences
(iccs), 2012 international conference on (pp. 302–311). IEEE.

Kandukuri, B. R., Rakshit, A. et al. (2009). Cloud security issues. In Services com-
puting, 2009. scc’09. ieee international conference on (pp. 517–520). IEEE.

200

Kao, T.-C., Mao, C.-H., Chang, C.-Y. & Chang, K.-C. (2012). Cloud ssdlc: Cloud
security governance deployment framework in secure system development life
cycle. In Trust, security and privacy in computing and communications (trust-
com), 2012 ieee 11th international conference on (pp. 1143–1148). IEEE.

Karagiannis, D. & Kühn, H. (2002). Metamodelling platforms. In Ec-web (Vol. 2455,
p. 182).

Kissel, R. L., Stine, K. M., Scholl, M. A., Rossman, H., Fahlsing, J. & Gulick, J.
(2008). Security considerations in the system development life cycle. Special
Publication (NIST SP)-800-64 Rev 2.

Kumar, S. N. & Vajpayee, A. (2016). A survey on secure cloud: Security and privacy
in cloud computing. American Journal of Systems and Software, 4 (1), 14–26.

Lapouchnian, A. (2005). Goal-oriented requirements engineering: An overview of the
current research. University of Toronto, 32.

Li, Y., Cuppens-Boulahia, N., Crom, J.-M., Cuppens, F. & Frey, V. (2016). Ex-
pression and enforcement of security policy for virtual resource allocation in
iaas cloud. In Ifip international information security and privacy conference
(pp. 105–118). Springer.

Liu, L., Yu, E. & Mylopoulos, J. (2003). Security and privacy requirements ana-
lysis within a social setting. In Requirements engineering conference, 2003.
proceedings. 11th ieee international (pp. 151–161). IEEE.

Lodderstedt, T., Basin, D. & Doser, J. (2002). Secureuml: A uml-based modeling
language for model-driven security. �UML� 2002—The Unified Modeling Lan-
guage, 426–441.

Lombardi, F. & Di Pietro, R. (2011). Secure virtualization for cloud computing.
Journal of Network and Computer Applications, 34 (4), 1113–1122.

Los, R., Shackleford, D. & Sullivan, B. (2013). The notorious nine cloud computing
top threats in 2013. Cloud Security Alliance.

Low, G., Mouratidis, H. & Henderson-Sellers, B. (2010). Using a situational method
engineering approach to identify reusable method fragments from the secure
tropos methodology. Journal of Object Technology.

Luo, S., Lin, Z., Chen, X., Yang, Z. & Chen, J. (2011). Virtualization security for
cloud computing service. In Cloud and service computing (csc), 2011 interna-
tional conference on (pp. 174–179). IEEE.

201

Márquez, L., Rosado, D. G., Mouratidis, H., Mellado, D. & Fernández-Medina, E.
(2015). A framework for secure migration processes of legacy systems to the
cloud. In International conference on advanced information systems engineer-
ing (pp. 507–517). Springer.

Martin, L. (2014). Cyber kill chain R©. URL: http://cyber.lockheedmartin.com/hubfs/
Gaining the Advantage Cyber Kill Chain.pdf.

Massacci, F., Mylopoulos, J., Zannone, N. et al. (2007). An ontology for secure socio-
technical systems. Handbook of ontologies for business interaction, 1, 469.

Massacci, F., Mylopoulos, J. & Zannone, N. (2010). Security requirements engineer-
ing: The si* modeling language and the secure tropos methodology. Advances
in Intelligent Information Systems, 147–174.

Mavropoulos, O., Mouratidis, H., Fish, A. & Panaousis, E. (2017). Asto: A tool
for security analysis of iot systems. In Software engineering research, man-
agement and applications (sera), 2017 ieee 15th international conference on
software engineering research, management and applications (sera) (pp. 395–
400). IEEE.

Mead, N. R. & Stehney, T. (2005). Security quality requirements engineering (square)
methodology. ACM.

Mell, P., Grance, T. et al. (2011). The nist definition of cloud computing.
Mellado, D., Blanco, C., Sánchez, L. E. & Fernández-Medina, E. (2010). A sys-

tematic review of security requirements engineering. Computer Standards &
Interfaces, 32 (4), 153–165.

Menzel, M., Warschofsky, R., Thomas, I., Willems, C. & Meinel, C. (2010). The
service security lab: A model-driven platform to compose and explore service
security in the cloud. In Services (services-1), 2010 6th world congress on
(pp. 115–122). IEEE.

Metsch, T., Edmonds, A. et al. (2010). Open cloud computing interface-infrastructure.
In Standards track, no. gfd-r in the open grid forum document series, open
cloud computing interface (occi) working group, muncie (in).

Modi, C., Patel, D., Borisaniya, B., Patel, A. & Rajarajan, M. (2013). A survey
on security issues and solutions at different layers of cloud computing. The
Journal of Supercomputing, 63 (2), 561–592.

202

Moreno-Vozmediano, R., Montero, R. S. & Llorente, I. M. (2013). Key challenges
in cloud computing: Enabling the future internet of services. IEEE Internet
Computing, 17 (4), 18–25.

Mouratidis, H. (2009). Secure tropos: An agent oriented software engineering meth-
odology for the development of health and social care information systems.
International Journal of Computer Science and Security, 3 (3), 241–271.

Mouratidis, H. (2011). Secure software systems engineering: The secure tropos ap-
proach. JSW, 6 (3), 331–339.

Mouratidis, H., Argyropoulos, N. & Shei, S. (2016). Security requirements engin-
eering for cloud computing: The secure tropos approach. In Domain-specific
conceptual modeling (pp. 357–380). Springer.

Mouratidis, H. & Giorgini, P. (2007). Secure tropos: A security-oriented extension
of the tropos methodology. International Journal of Software Engineering and
Knowledge Engineering, 17 (02), 285–309.

Mouratidis, H., Islam, S., Kalloniatis, C. & Gritzalis, S. (2013). A framework to sup-
port selection of cloud providers based on security and privacy requirements.
Journal of Systems and Software, 86 (9), 2276–2293.

Nhlabatsi, A., Bandara, A., Hayashi, S., Haley, C. B., Jurjens, J., Kaiya, H., . . .
Nuseibeh, B. et al. (2010). Security patterns: Comparing modeling approaches.
Software engineering for secure systems: Industrial and research perspectives,
75–111.

OASIS, S. (n.d.). Topology and orchestration specification for cloud applications
version 1.0. Accessed: 2017-09-28. Retrieved from http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Paja, E. (2014). Sts: A security requirements engineering methodology for socio-
technical systems (Doctoral dissertation, University of Trento).

Pavlidis, M., Islam, S. & Mouratidis, H. (2011). A case tool to support automated
modelling and analysis of security requirements, based on secure tropos. In
Forum at the conference on advanced information systems engineering (caise)
(pp. 95–109). Springer.

Pearson, S. & Benameur, A. (2010). Privacy, security and trust issues arising from
cloud computing. In Cloud computing technology and science (cloudcom), 2010
ieee second international conference on (pp. 693–702). IEEE.

203

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Pohl, K. (2010). Requirements engineering: Fundamentals, principles, and tech-
niques. Springer Publishing Company, Incorporated.

Pumvarapruek, N. & Senivongse, T. (2014). Classifying cloud provider security con-
formance to cloud controls matrix. In Computer science and software engineer-
ing (jcsse), 2014 11th international joint conference on (pp. 268–273). IEEE.

Qian, L., Luo, Z., Du, Y. & Guo, L. (2009). Cloud computing: An overview. Cloud
computing, 626–631.

Ramgovind, S., Eloff, M. M. & Smith, E. (2010). The management of security in
cloud computing. In Information security for south africa (issa), 2010 (pp. 1–
7). IEEE.

Rebollo, O., Mellado, D. & Fernández-Medina, E. (2012). A systematic review of
information security governance frameworks in the cloud computing environ-
ment. J. UCS, 18 (6), 798–815.

Rebollo, O., Mellado, D., Fernández-Medina, E. & Mouratidis, H. (2015). Empirical
evaluation of a cloud computing information security governance framework.
Information and Software Technology, 58, 44–57.

Rimal, B. P. & Choi, E. (2012). A service-oriented taxonomical spectrum, cloudy
challenges and opportunities of cloud computing. International Journal of
Communication Systems, 25 (6), 796–819.

Ristenpart, T., Tromer, E., Shacham, H. & Savage, S. (2009). Hey, you, get off
of my cloud: Exploring information leakage in third-party compute clouds.
In Proceedings of the 16th acm conference on computer and communications
security (pp. 199–212). ACM.

Rong, C., Nguyen, S. T. & Jaatun, M. G. (2013). Beyond lightning: A survey on
security challenges in cloud computing. Computers & Electrical Engineering,
39 (1), 47–54.

Ruo-xin, Z., Cui, X.-j., Gong, S.-j., Ren, H.-k. & Chen, K. (2014). Model for cloud
computing security assessment based on ahp and fce. In Computer science &
education (iccse), 2014 9th international conference on (pp. 197–204). IEEE.

Saxena, S. (2013). Ensuring cloud security using cloud control matrix. International
Journal of Information and Computation Technology, 933–938.

204

Sengupta, S., Kaulgud, V. & Sharma, V. S. (2011). Cloud computing security–
trends and research directions. In Services (services), 2011 ieee world congress
on (pp. 524–531). IEEE.

Shei, S., Alcaniz, L. M., Mouratidis, H., Delaney, A., Rosado, D. G. & Fernandez-
Medina, E. (2015). Modelling secure cloud systems based on system require-
ments. In Evolving security and privacy requirements engineering (espre), 2015
ieee 2nd workshop on (pp. 19–24). IEEE.

Shei, S., Delaney, A., Kapetanakis, S. & Mouratidis, H. (2015). Visually mapping
requirements models to cloud services. In Dms (pp. 108–114).

Shei, S., Kalloniatis, C., Mouratidis, H. & Delaney, A. (2016). Modelling secure cloud
computing systems from a security requirements perspective. In International
conference on trust and privacy in digital business (pp. 48–62). Springer.

Shei, S., Mouratidis, H. & Delaney, A. (2017). A security requirements modelling
language to secure cloud computing environments. In Enterprise, business-
process and information systems modeling (pp. 337–345). Springer.

Subashini, S. & Kavitha, V. (2011). A survey on security issues in service delivery
models of cloud computing. Journal of network and computer applications,
34 (1), 1–11.

Susi, A., Perini, A., Mylopoulos, J. & Gi, P. (2005). The tropos metamodel and its
use. Informatica, 29 (4).

Takabi, H., Joshi, J. B. & Ahn, G.-J. (2010). Security and privacy challenges in
cloud computing environments. IEEE Security & Privacy, 8 (6), 24–31.

Thaweejinda, J. & Senivongse, T. (2014). Semantic search for cloud providers with
security conformance to cloud controls matrix. In Computer science and soft-
ware engineering (jcsse), 2014 11th international joint conference on (pp. 286–
291). IEEE.

Ullah, K. W., Ahmed, A. S. & Ylitalo, J. (2013). Towards building an automated se-
curity compliance tool for the cloud. In Trust, security and privacy in comput-
ing and communications (trustcom), 2013 12th ieee international conference
on (pp. 1587–1593). IEEE.

Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided tour.
In Requirements engineering, 2001. proceedings. fifth ieee international sym-
posium on (pp. 249–262). IEEE.

205

Van Lamsweerde, A. (2004). Elaborating security requirements by construction of
intentional anti-models. In Proceedings of the 26th international conference on
software engineering (pp. 148–157). IEEE Computer Society.

Van Lamsweerde, A. et al. (2007). Engineering requirements for system reliabil-
ity and security. NATO Security Through Science Series D-Information and
Communication Security, 9, 196.

Van Lamsweerde, A., Darimont, R. & Letier, E. (1998). Managing conflicts in goal-
driven requirements engineering. IEEE transactions on Software engineering,
24 (11), 908–926.

Vaquero, L. M., Rodero-Merino, L., Caceres, J. & Lindner, M. (2008). A break in
the clouds: Towards a cloud definition. ACM SIGCOMM Computer Commu-
nication Review, 39 (1), 50–55.

Wichers, D. (2013). Top 10-2013: The ten most critical web application security
risks. The Open Web Application Security.

Wooldridge, M. (1997). Agent-based software engineering. IEE Proceedings-software,
144 (1), 26–37.

Yahya, F., Walters, R. J. & Wills, G. B. (2015). Modelling threats with security
requirements in cloud storage. Int. J. Inf. Secur. Res.(IJISR), 5 (2), 551–558.

Yang, H. & Tate, M. (2012). A descriptive literature review and classification of
cloud computing research. CAIS, 31, 2.

Youseff, L., Butrico, M. & Da Silva, D. (2008). Toward a unified ontology of cloud
computing. In Grid computing environments workshop, 2008. gce’08 (pp. 1–
10). IEEE.

Yu, E. (2011). Modelling strategic relationships for process reengineering. Social
Modeling for Requirements Engineering, 11, 2011.

Yu, E. S. (1997). Towards modelling and reasoning support for early-phase require-
ments engineering. In Requirements engineering, 1997., proceedings of the third
ieee international symposium on (pp. 226–235). IEEE.

Yu, E. & Mylopoulos, J. (1998). Why goal-oriented requirements engineering. In
Proceedings of the 4th international workshop on requirements engineering:
Foundations of software quality (Vol. 15, pp. 15–22).

206

Zardari, S. & Bahsoon, R. (2011). Cloud adoption: A goal-oriented requirements
engineering approach. In Proceedings of the 2nd international workshop on
software engineering for cloud computing (pp. 29–35). ACM.

Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: State-of-the-art and
research challenges. Journal of internet services and applications, 1 (1), 7–18.

207

	Introduction
	Cloud Computing and Security Challenges
	Security Requirements Engineering Approaches
	Motivating Cloud Adoption Scenario
	Research Questions and Outcomes
	Research Questions
	Research Aims and Objectives
	Research Contributions

	Thesis Structure
	Publications

	Literature Review
	Cloud Computing Properties
	Definitions, Taxonomies and Modelling the Cloud
	Security Issues and Challenges in Cloud Computing

	Security Requirements Engineering
	Requirements Engineering Approaches
	Security Requirements Engineering Approaches

	Secure Tropos
	Secure Tropos Modelling Language
	Secure Tropos Syntax

	The Secure Cloud Environment Framework
	Overview of the Secure Cloud Environment Framework

	Chapter summary

	Cloud Security Modelling Language
	Requirements of the Modelling Language
	Cloud Computing Concepts
	Relationships
	Properties
	Syntax
	Cloud Computing Models
	Organisational Cloud View
	Application Cloud View
	Infrastructure Cloud View
	Cloud Environment Model

	Chapter summary

	Secure Cloud Process
	Overview of the Secure Cloud Process
	Activity 1: Organisational Goal Model
	Activity 2: Organisational Cloud System
	Activity 3: Holistic Cloud Model
	Activity 4: Cloud Analysis
	Chapter summary

	Semi-Automated Reasoning Support
	Formal Analysis Concepts
	Security Knowledge
	Common Weakness Enumeration
	Common Vulnerabilities and Exposures
	National Vulnerability Database
	Cloud Control Matrix

	Cloud Analysis Techniques
	Cloud Security Analysis
	Security Mitigation Analysis
	Transparency Analysis

	Tool Support for the Secure Cloud Environment Framework
	SectroCloud Interface
	Visualisation of Concepts and Relationships
	Properties of Concepts and Relationships
	Views and Filters

	Chapter summary

	Evaluation of the Secure Cloud Environment Framework
	Use-case Scenarios
	Software as a Service
	Platform as a Service
	Infrastructure as a Service

	VisiOn Case Study: Municipality of Athens
	Application and Outcome of the Secure Cloud Environment Framework

	Chapter summary

	Conclusion and Future Work
	Conclusions
	Secure Cloud Environment Framework
	Cloud Security Modelling Language
	Secure Cloud Process
	Semi-Automated Reasoning Support

	Future Work

	Bibliography

