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Abstract

Background

A key aim of medical science is modelling patterns of disease progression; these pat-

terns increase understanding of the disease, and help construct staging systems that

assist diagnosis and treatment. Within Amyotrophic Lateral Sclerosis (ALS) disease

progression modelling, there is a need to integrate clinical observation-based staging

systems such as Roche et al. (2012), which suffer from low temporal resolution, with

‘unbiased’ staging of biomarkers. To this end, I have adapted and extended an Event-

Based Model (EBM) for ALS from previous work in Alzheimer’s disease (Fonteijn et

al., 2012; Young et al., 2014). Unlike traditional models of disease progression, event-

based models do not rely on a priori staging of patients but extract the event ordering

directly from the data, thus minimising subjective bias. In MR imaging, Fractional

Anisotropy (FA) derived from diffusion tensor imaging is an obvious candidate to test

the hypothesis that imaging events can be staged in the ALS-adapted EBM.

Objectives

Using contemporary and historical ALS datasets comprised of diffusion MRI, clinical

and neuropsychological data, I have adapted and extended a novel event-based model

to analyse the likely ordering of these biomarkers in the progression of ALS.

Materials and Methods

The contemporary dataset was derived from a cross-sectional sample of 23 ALS pa-

tients and 23 matched controls (Broad et al., 2015). The two historical datasets were

similarly derived from samples of i) 36 ALS patients and 22 matched controls, and

ii) 28 ALS patients and 25 matched controls (Tsermentseli et al., 2015). The ALS-

specific adaptations to the EBM were i) the fitting of Gaussian mixture models by

constrained Expectation Maximisation, ii) the calculation of event probabilities from

the cumulative distribution function to preserve the monotonicity of biomarker reading

progression, and iii) accounting for the clearly delineated patient and control cohorts by

performing Markov Chain Monte Carlo (MCMC) sampling on only the patient cohort.

Finally, a fully Bayesian approach to Event-Based Modelling is demonstrated.
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Results

The most likely order of progression of imaging events showed that FA changes in

the lower aspect of the corticospinal tracts (CSTs) occur at an early stage of disease

evolution, with changes in the upper aspect occurring at a later stage. This result was

found individually in all three datasets, as well as when combining them.

Discussion

This proof-of-principle study shows that data-driven models of ALS progression are

feasible, as well as demonstrating a fully Bayesian approach to Event-Based Modelling.

The diffusion MRI event ordering results suggest very robustly that damage to the

CSTs starts in the lower aspect. Nevertheless, a general important limitation must

be discussed: The small sample size may have biased our results. I have tried to

address this issue by assessing how the results varied across three separate datasets,

both individually and combined. While the CST results were consistent across the

entire process, results for other regions such as the corpus callosum were less constant,

suggesting that the biomarker ordering in the wider population may diverge from this

sequence.

In order to generalise these results to the wider spectrum of ALS, future studies on

larger datasets are warranted.

Conclusion

These findings provide the first solely data-driven evidence supporting a directional

hypothesis of motor neurone degeneration.
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Chapter 1

Introduction

1.1 ALS definition and overview

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset neurodegenerative disease, cha-

racterised by progressive degeneration of both the upper (UMN) and lower (LMN)

motor neurones in the primary motor cortex, corticospinal tracts, brain stem and spi-

nal cord. Incidence rates range from 1.2-4.0 per 100 000/year in Caucasians, and

there is a slight male preponderance (1.5:1). The condition is more common in the

middle-aged and elderly, and the mean age of onset for sporadic ALS is about 60 years

(Wijesekera & Leigh, 2009). Prevalence is relatively uniform in Western countries, and

because of a comparatively short survival, prevalence is low (average 5.2 per 100 000).

Foci of higher prevalence have appeared in the Western Pacific, with a clustering of

ALS cases occurring in Guam and the Kii Peninsular in Japan in the 1950-70s.

ALS is the most common motor neurone disease (MND), and the term MND is

synonymous with ALS in the UK. ALS is invariably fatal, with death usually due to

respiratory complications from bulbar or respiratory muscle weakness. Median survival

is 19 months from diagnosis and 30 months from symptom onset, but a small percentage

of sufferers survive for 10 or more years (Gordon, 2013).

Originally thought to be a degenerative muscle disorder, Jean-Martin Charcot pu-

blished clinicopathological studies in 1869 and 1874 describing ALS, emphasising the

involvement of both upper and lower motor neurones. Lower motor neurones (LMNs)

reside in the anterior horn of the spinal cord or motor nuclei of the brain stem, and

project in peripheral nerves to make direct contact with muscle fibres. When LMNs

degenerate, the muscles they activate become weak, wasted and fasciculate (noticed

as involuntary muscle twitching). Upper motor neurones (UMNs) reside in the pre-
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central gyrus of the cerebral cortex and project to the LMNs. The degeneration of

UMNs results in the muscles becoming spastic, tendon reflexes becoming exaggerated

and plantar responses becoming extensor.

ALS is heterogeneous in both its presentation and rate of clinical progression (Bau-

mer et al., 2014). Approximately two-thirds of patients have a spinal form of the disease

(classical Charcot’s ALS, termed limb onset ALS), and they present with symptoms

related to focal muscle weakness and wasting. These symptoms may start either dis-

tally or proximally in the upper and lower limbs. Bulbar onset ALS patients usually

present with progressive dysarthria and dysphagia, affecting speech and swallowing

for solids or liquids; the majority will go on to develop limb involvement within 1-2

years (Wijesekera & Leigh, 2009). Bulbar onset ALS and limb onset ALS have largely

replaced the terms progressive bulbar palsy (PBP) and Charcot’s ALS, in recognition

of MND being a spectrum of diseases.

Patients who are elderly, female or have bulbar onset ALS symptoms have a worse

prognosis (Fowler et al., 2003).

Other clinical phenotypes of ALS are a pure UMN variant (primary lateral sclerosis,

PLS), and a pure LMN variant (progressive muscular atrophy, PMA). PLS patients

have a better prognosis than full ALS sufferers, as PLS tends to follow a very slowly

progressive course. PMA is uncommon amongst ALS variants, and consists of slowly

progressive wasting, with possible fasciculations but no UMN signs. The wasting is

usually symmetrical in both hands, and progresses to more proximal muscles and the

legs over several years.

Frontotemporal dementia (FTD) shares aspects with ALS; cognitive impairment in

ALS was described by Pierre Marie in 1892, but was not considered a common aspect

of the disease until recently. Currently, ALS and FTD are not seen as distinct diseases,

but instead are considered as extremes of a spectrum (Lattante et al., 2015).

The diagnosis of ALS is based on clinical history, examination, electromyography

and exclusion of other diseases. There is a current lack of useful biomarkers, MRI or

otherwise, that definitively allow for direct diagnosis of ALS (Chiò & Traynor, 2015).

The Revised El Escorial diagnostic criteria (Table 1.1) are the current gold stan-

dard criteria for diagnostic purposes, both clinically and for clinical research studies.

The criteria link diagnostic certainty with the number of regions affected clinically or

neurophysiologically.

2



Table 1.1: The El Escorial criteria and its revisions. Reproduced from Al-Chalabi et al. (2016).
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Current genetic research

Approximately 10% of ALS is classed as familial, with the remaining cases considered

sporadic. The discovery of genes linked to ALS has greatly increased pace in recent

years; as a result, the genetic etiology of two-thirds of familial cases and approximately

10% of sporadic cases is now known (Laferriere & Polymenidou, 2015). A summary of

gene frequencies in ALS is given in Figure 1.1.

In 1993, mutations in the Copper-Zinc superoxide dismutase 1 (SOD1) gene were

identified as a cause of familial ALS. The first such gene to be identified, this led to the

development of the transgenic SOD1 mouse. SOD1 mutations are present in 12-20%

of familial ALS cases, as well as 2% of apparently sporadic patients (Chiò & Traynor,

2015).

The TARDBP gene, encoding the TAR-DNA binding protein TDP-43, was the next

ALS gene to be discovered, in 2008. Mutations in TARDBP account for approximately

4% of familial ALS cases and approximately 1% of apparently sporadic cases. The

discovery of TARDBP highlighted the importance of RNA processing in ALS pathology

(Chiò & Traynor, 2015). This hypothesis was given further support in 2009 by the

discovery that mutations of the fused in sarcoma (FUS) gene were another cause of

familial ALS.

A hexanucleotide repeat expansion in C9orf72 is a major cause of ALS, accounting

for 10% of all Western hemisphere ALS. The pathogenic expansion accounts appears

in approximately 38% of familial ALS, and approximately 6% of apparently sporadic

ALS in people of European ancestry (Alsultan et al., 2016). C9orf72 is the first large

intronic repeat expansion to be implicated in ALS, and as repeat expansions are known

to disrupt RNA metabolism in other neurodegenerative diseases, this further implicates

altered RNA processing and protein degradation pathways as core aspects of ALS

pathogenesis.

The transgenic rodent model, which overexpresses mutant SOD1, has been the

primary animal model of ALS pathogenesis. More recent models include zebrafish,

nematode, fruit fly and yeast.

As genetic data were not available for analysis in this study, they will play no part

in the remainder of this study; this summary has been included for completeness.
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Figure 1.1: Gene frequencies in ALS, plotted against year of discovery. Circle size is

proportional to the frequency of mutations, as cited in the literature. Reproduced from

Alsultan et al. (2016).

1.2 Disease modelling and staging in ALS

A key aim of medical science is modelling patterns of disease progression; these patterns

increase understanding of the disease, and help construct staging systems that assist

diagnosis and treatment. Staging systems have multiple benefits: they enable better

targeting of patient care, resource allocation, simple research classification and clinical

trial design (with the aim to develop drugs that are beneficial at earlier stages, rather

than later ones).

A search of the literature reveals that there is not a disease staging framework

that is consistent across diseases. Instead, staging models are restricted to individual

diseases, thus dependent on the clinicians and researchers specifically working on that

disease, and tend to be clinically based.

These models typically use symptomatic staging to divide patients into small groups

(e.g. presymptomatic, mild, moderate or severe), and assess the differences in biomar-

kers between the groups. Such models are relatively crude by nature; symptomatic

staging relies on clinical assessment, which can be subjective and imprecise. This fun-

damental aspect of symptomatic staging limits the temporal resolution of any disease

progression model that is constructed in this manner; lower temporal resolution redu-

ces the effectiveness of a model to correctly stage patients, and critically, limits the

ability of the model to discriminate between diseases. This last point is particularly

relevant to ALS, given the heterogeneity of the disease.
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1.2.1 Existing ALS clinical staging systems

The ALS Functional Rating Scale-Revised (ALSFRS-R)

The ALSFRS-R (Cedarbaum et al., 1999) is an established measure of functional de-

cline in ALS. It is validated, correlates with survival and has been used as a primary

outcome measure in clinical trials (Gordon et al., 2004). ALSFRS-R takes the form

of a questionnaire-based scale, with the components of this scale grouped into four

domains encompassing gross motor tasks, fine motor tasks, bulbar functions and res-

piratory function. Subscores over the domains are combined together to give a total

score.

Although the ALSFRS-R has been extremely influential in ALS research, it now ap-

pears accepted that it is a flawed measure (Franchignoni et al., 2015). Recent evidence

suggests that the scale provides greater differentiation if considering the individual

subscores rather than the aggregate total score (Rooney et al., 2016); this is intuitively

plausible, as using subscores avoids throwing away information.

The ALSFRS-R is a widespread measure and is routinely collected. It is currently

the gold-standard measure of ALS disease progression (Menke et al., 2016).

The King’s staging system

A simple clinical staging system for ALS (Table 1.2) has been developed by Roche

et al. (2012). Known as the King’s staging system, it is based on disease burden as

measured by “clinical involvement and significant feeding or respiratory failure” (Fang

et al., 2017).

Stage 1 Symptom onset (involvement of first CNS region)

Stage 2A Diagnosis

Stage 2B Involvement of a second CNS region

Stage 3 Involvement of a third CNS region

Stage 4A Need for gastrostomy

Stage 4B Need for respiratory support (non-invasive ventilation)

Stage 5 Death

Table 1.2: The King’s staging system for ALS. The highest stage is taken if needed,

so that a patient requiring non-invasive ventilation at diagnosis would have Stage 4B

ALS, not Stage 2A. CNS = central nervous system.
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Balendra et al. (2014a) devised an algorithm to estimate the King’s clinical stage of

ALS, based solely on a patient’s ALSFRS-R score. The algorithm converts an ALSFRS-

R score into one of the King’s clinical stages, and can be applied retrospectively with

92% concordance (Balendra et al., 2014b).

An important aspect of this staging system is that although the clinical stage can

be estimated from ALSFRS-R scores, the stages are not based on ALSFRS-R. This

distinction emphasises that staging is not the same as function, thus avoiding the

creation of a self-referential argument (i.e. derived ALSFRS-R scores used to create

stages against which ALSFRS-R scores are correlated).

The King’s staging system has limited temporal resolution, and the associated

algorithm requires clinical assessment to determine the ALSFRS-R score.

The Milano-Torino (MiToS) staging system

The MiToS staging system, developed by Chiò et al. (2013), directly derives clinical

stages from ALSFRS-R subscores. Commenting that the King’s system stages are fo-

cused on clinical relevance rather than assessing functions directly relevant to patients,

Chiò et al. define the MiToS milestones (Table 1.3) “by loss of independent function in

four key domains that are included in... ALSFRS-R and that involve loss of autonomy:

walking/self-care, swallowing, communicating and breathing”.

Like the King’s system, MiToS suffers from limited temporal resolution. Further-

more, MiToS is wholly dependent on clinical assessment to determine the ALSFRS-R

subscores.

Stages 0 Functional involvement but no loss of independence on any domain

Stages 1 to 4 Number of domains in which independence is lost

Stages 5 Death

Table 1.3: The MiToS staging system for ALS. Domains are defined on the ALSFRS-R

and comprise swallowing, walking/self-care, communicating and breathing.

Comparison of the King’s and MiToS systems

Fang et al. (2017) compared these two staging systems by applying them to data from

the LiCALS clinical trial (Morrison et al., 2013), and concluded that there was good

correspondence between the systems. The distribution of the disease stages was asses-

sed as differing between the systems (Figure 1.2), with King’s showing higher resolution
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(a) King’s staging system (b) MiToS staging system

Figure 1.2: Bar plots showing the standardised median proportion of time (SMT) from

onset to each disease stage for the King’s and MiToS staging systems, as applied to 217

ALS patients from the LiCALS clinical trial (Morrison et al., 2013). This illustrates

differences in how the two systems distribute their stages throughout the progression

of ALS. Reproduced from Fang et al. (2017).

through early to mid-disease and MiToS in the later stages. Because of this, the two

systems were deemed to be complementary: “King’s staging system summarises the

clinical or anatomical spread of disease, while MiToS staging summarises the functi-

onal burden of disease”. Fang et al. recommended that both systems should be used

concurrently.

A second comparison of the two systems was undertaken by Ferraro et al. (2016).

Both staging systems were applied to data from the Emilia Romagna Registry for ALS

(ERRALS) in Italy. The authors concluded that the King’s staging system showed

“higher prognostic competency... especially for individual prognosis and as an outcome

measure for clinical trials”, but suggested that the MiToS system may be “more useful

for estimating health costs and resource allocations”.
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Figure 1.3: The four proposed stages of progression of abnormal pTDP-43 protein

pathology in ALS. Adapted from Braak et al. (2013).

Neuropathological staging system

Employing a different approach from the aforementioned systems, Braak et al. (2013)

proposed a neuropathological staging system for ALS, reporting that preliminary evi-

dence indicated that neuronal involvement in ALS patients progressed at different rates

but in a similar sequence. The Braak staging system consists of four stages, as shown

in Figure 1.3, and is based on the progression of abnormal pTDP-43 protein pathology.

Braak et al. (2013) defined the four pathological stages of ALS as follows:

Our findings indicate that the initial lesions develop in portions of the

agranular frontal neocortex and in somato motor neurons of the spinal cord

and lower brainstem (stage 1).

In the second stage, mild pathology also develops in pre-frontal areas (such

as the middle frontal gyrus) as well as in the reticular formation, precere-

bellar nuclei of the lower brainstem, and parvocellular portion of the red

nucleus.

In stage 3, the lesions progress into additional prefrontal areas (gyrus rec-

tus, orbital frontal gyri) and then into postcentrally located sensory areas,

which is accompanied by the appearance of pTDP-43 pathology in striatal

medium-sized projection neurons [of the caudate nucleus and putamen].

In stage 4, cortical pathology also develops in anteromedial portions of the

temporal lobe, including the hippocampal formation.

It is worth noting that the data used to develop this system were obtained from

staging of 22 central nervous system regions in an autopsy cohort of 76 patients. This

raises the question of whether the observed variations in the disease pathology are
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truly indicative of ALS progression as a whole, or are instead artefacts found when

extrapolating backwards from the disease end-point.

Philosophical differences between the existing staging systems and a data-

driven approach to staging

The current staging systems suffer from not only low temporal resolution, but also

the problem of human bias. The King’s system depends on direct clinical assessment

of patients to assign stages, while both the associated Balendra algorithm and the

MiToS system use ALSFRS-R scores to stage patients (which again requires clinical

assessment). The Braak system has human bias deeply ingrained into its design, as

the data have been obtained by autopsy and the entirely subjective process of histo-

pathological examination.

In contrast, data-driven staging attempts to reduce human bias to levels far be-

low those of the clinical staging systems. This is achieved by designing and training

a mathematical model of disease progression, and the model is then run only after

declaring all relevant parameters and thresholds. Of course, bias can only be reduced

in this manner, not completely eliminated. Likewise, it is critical to remember that

any model will find patterns in data, and that even if these patterns exist and are not

artefacts of the data, they may not have any biological meaning.

1.3 Diffusion Tensor Imaging (DTI)

1.3.1 Mechanisms of DTI

The most common technique for in vivo study of white matter (WM) changes in ALS

is diffusion tensor imaging (DTI) (Turner & Verstraete, 2015), a type of Magnetic

Resonance Imaging (MRI). DTI employs scanning sequences that are sensitive to the

Brownian motion of water molecules in biological tissues. DTI analysis is based on the

observation that this molecular displacement is affected by the characteristics of the

medium in which the water molecules are located:

� Water in a free environment, such as cerebrospinal fluid (CSF), diffuses easily

and equally in all directions.

� In biological tissue, cell walls and nerve fibres act as barriers, and the diffusion of

the water molecules is hindered. In directional structures such as white matter
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fibre bundles, the diffusion of water molecules is greater in the direction of the

fibre bodies than across them.

Assuming that the probability of water molecule displacement follows a multivari-

ate Gaussian distribution over the observation diffusion time (Wheeler-Kingshott et al.,

2003), the movement trajectories of the molecules can be described using the mathe-

matical formalism of a second-order tensor, D:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.1)

The on-diagonal elements of D describe diffusivity along each of the cardinal axes,

while the off-diagonal elements describe the covariance of the diffusion displacements

for each pair of axes (Alexander et al., 2007). As the process of diffusion is symmetric

for uncharged molecules such as water (Wheeler-Kingshott et al., 2003), Dij = Dji for

all i, j ∈ {x, y, z}, and so D is fully characterised by only six components. Combined

with the physical properties of Brownian motion, this means that the diffusion tensor

D is symmetric and positive definite.

From the Spectral Theorem for symmetric matrices (Axler, 1997), it follows that

there exists a diagonal matrix Λ and an orthogonal matrix E such that D = EΛET .

The diagonal entries of Λ are the eigenvalues of D (λ1, λ2, λ3), and the columns of E

are the corresponding eigenvectors (ε1, ε2, ε3):

D = EΛET =
[
ε1 ε2 ε3

]
λ1 0 0

0 λ2 0

0 0 λ3



ε1

ε2

ε3

 (1.2)

The matrix Λ is called the diagonalised tensor, and is commonly designated D.

Diffusion MRI scans divide the target sample into voxels, and quantify the mean

diffusion within each voxel as a tensor. A second-order tensor is analogous to an el-

lipsoid, and the eigenvectors (ε1, ε2, ε3) of the diffusion tensor give the three primary

axes of the ellipsoid. The eigenvalues (λ1, λ2, λ3) give the magnitude of water diffusion

along each of the axes of the ellipsoid (Figure 1.4). The diffusion tensor can be ren-

dered as a 3D ellipsoid glyph for every voxel of a dMRI scan, allowing for easy visual

interpretation of the tensor (Figure 1.5).
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Figure 1.4: The diffusion tensor represented as an ellipsoid. The tensor eigenvectors

(ε1, ε2, ε3) define the ellipsoid’s axes, and the tensor eigenvalues (λ1, λ2, λ3) define the

shape and size of the ellipsoid.

Figure 1.5: An axial slice of a DTI scan of a healthy brain. The diffusion tensor of each

voxel has been rendered as a 3D ellipsoid glyph at 1.8 scale, and colour corresponds

with the principle direction of diffusion. White matter structures are clearly visible.
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(a) Coronal view (b) Axial view (c) Sagittal view

Figure 1.6: Single slices of a whole-brain Fractional Anisotropy (FA) image in the

coronal, axial and sagittal planes. The high white-grey matter contrast of diffusion

anisotropy is clearly visible, with brightness corresponding to higher FA. Compare the

axial slice (b) to Figure 1.5.

The magnitude of diffusivity and the amount of anisotropy are the two scalar me-

asurements that are most commonly used to represent the characteristic properties of

the diffusion tensor.

Mean diffusivity, 〈D〉, is equivalent to the mean of the eigenvalues:

〈D〉 =
λ1 + λ2 + λ3

3
(1.3)

Several anisotropy indices have been proposed, with particular attention to their

sensitivity to noise. The most commonly used is Fractional Anisotropy (FA), which is

a scalar quantity, ranging from 0 to 1; i.e. isotropic to completely anisotropic diffusion

(see Figure 1.6). FA is proportional to the square root of the variance of the eigenvalues

divided by the square root of the sum of squares of the eigenvalues (Basser & Pierpaoli,

1996):

FA =
√

3
2


√

(λ1 − 〈D〉)
2 + (λ2 − 〈D〉)

2 + (λ3 − 〈D〉)
2√

λ1
2 + λ2

2 + λ3
2

 (1.4)

1.3.2 Fractional Anisotropy as an index of Neurodegeneration

If the integrity of biological tissue is compromised (e.g. by neurodegeneration or trauma),

then the diffusion anisotropy within the tissue will be altered. There are various dif-

ferent biological mechanisms by which this can occur, three of which are described

here:

� Demyelination: the loss of the myelin sheath of a nerve cell. Myelin is an electri-

cally insulating sleeve that is wrapped around the axon, and it acts as a diffusion
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barrier. The cylindrical myelin sheath is responsible for the high FA of white

matter, and its loss will increase mean diffusivity (MD) and reduce FA. However,

myelin alone does not fully account for anisotropy (Beaulieu & Allen, 1994).

� Axonal loss : nerve cell death, resulting in a reduced density of axons. It leads to

a reduction in FA and an increase in MD.

� Cell swelling : an increase in the volumes of individual cells will reduce extracel-

lular spaces, decreasing MD and FA.

Altered anisotropy is particularly apparent in white matter, due to its highly organi-

sed structure: “FA has the great advantage of being characterised by a high white–grey

matter contrast, where FA = 1 for a cylindrically symmetric anisotropic medium with

λ1 � λ2 = λ3 and FA = 0 for complete isotropy, i.e. λ1 = λ2 = λ3. Moreover, FA

is very easy to interpret, having a great visual impact as white matter is white, while

grey matter is grey.” (Wheeler-Kingshott et al., 2003).

Although FA has high sensitivity to tissue microstructure, it “lacks specificity for

individual tissue microstructure features” (Pierpaoli et al., 1996), due to the many

possible biological mechanisms that can effect a change in anisotropy; FA is therefore

considered a general, rather than specific, index of neurodegeneration.

1.3.3 Fractional Anisotropy in ALS

DTI studies of ALS patients have consistently reported group level involvement of the

corticospinal tracts (Grolez et al., 2016), typically manifesting as a bilateral decrease in

FA throughout the tracts. As FA lacks specificity for individual tissue microstructure

features, there are many biological mechanisms that may contribute to the observed

changes in diffusion. These include loss of pyramidal motor neurons in the primary mo-

tor cortex, axonal degeneration of the CST, the proliferation of glial cells, extracellular

matrix expansion and intraneuron abnormalities (Turner et al., 2012). Despite the

consistent demonstration of CST involvement in ALS, the FA measurements for indi-

vidual ALS patients are currently considered to have “insufficient diagnostic accuracy”

(Turner & Verstraete, 2015).

The corpus callosum is the second most implicated tract in ALS DTI studies, alt-

hough its involvement (a reduction in FA, greatest in the middle-posterior parts of the

tract) is reported less consistently than that of the CSTs (Menke et al., 2016; Turner

et al., 2012).
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1.4 Structural MR Imaging

1.4.1 Volumetry

In ALS research, DTI is used for investigating white matter in vivo, while high-

resolution T1-weighted structural MRI is the method of choice for the investigation

of grey matter (Menke et al., 2016), as T1-weighted structural MRI produces images

with good tissue contrast between grey matter, white matter and CSF. There is a subtle

but important difference between these two types of MRI in terms of the information

that they yield: T1 imaging allows macroscopic volumetric quantification while DTI

provides information about the tissue microstructure.

There are a number of analysis tools that will perform automated segmentation

of various cortical and subcortical brain structures when applied to high-resolution

T1-weighted images. These tools produce quantitative volumetric measures, as well as

cortical thickness and surface area measures.

One such tool is Surface-Based Morphometry (SBM), an image analysis technique

also known as cortical thickness measures. It allows the study of regional differences

in grey matter through both volumetric and cortical thickness assessment. Working

from the high tissue contrast of T1-weighted images, SBM classifies each voxel as grey

matter, white matter or CSF, and then reconstructs the boundaries between the three

tissue types; this allows reconstruction of the cortical surface, and the cortex can then

be segmented into regions based on gyral and sulcal structure.

Another tool is Voxel-Based Morphometry (VBM), similarly derived from recon-

structing the boundaries between the three tissue types of T1-weighted images. Unlike

SBM, VBM can be applied to the whole brain, including subcortical structures (alt-

hough only volumetric data can be generated for these regions).

1.4.2 Morphometry in ALS

SBM studies of ALS patients have consistently demonstrated cortical thinning in the

precentral gyrus or primary motor regions (Turner et al., 2012). The subcortical struc-

tures of the caudate nucleus, hippocampus, nucleus accumbens and thalamus (see Fi-

gure 3.4) are also reported as showing progressive volumetric atrophy over time (Turner

& Verstraete, 2015), although these findings are less consistent than those concerning

cortical thinning.
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Chapter 2

The Event-Based Model

The event-based model (EBM) characterises disease progression as a series of discrete

events. An event comprises a significant change in patient state; formally, an event is

defined as the change of a biomarker from a healthy state to a disease state. Cut-off

points between healthy and disease states are not defined a priori, and are instead

generated through data-driven mixture fitting.

By comparing the distributions of biomarker readings in patients to those of healthy

controls, the model learns the ordering of events from heterogeneous measurements

over a whole patient cohort. Crucially, the EBM is capable of extracting this temporal

information from purely cross-sectional data; it does not require longitudinal data,

which are less readily available in ALS research. This generative model of disease

progression also provides insight into the variation of progression over a cohort.

2.1 Theory

The EBM consists of a set of events E1, ..., EN and an ordering S = (s(1), ..., s(N)). S is

a permutation of the integers 1, ..., N and determines the event ordering Es(1), ..., Es(N).

The set of events are specified a priori and we estimate S from a data set X.

X contains a set of measurements Xj, j = 1, ..., J , from each of the J patients and

Xl, l = 1, ..., L, from each of the L controls. Thus, measurement xij is informative

about the occurrence of event Ei in patient j.

Fitting the model to the data requires evaluating the likelihood P (X|S) of a parti-

cular event ordering given the data. We start by fitting simple models for the likelihood

function P (xij|Ei) on the measurement xij given that Ei has occurred, and similarly

P (xij|¬Ei) on the measurement xij given that Ei has not occurred. This process is
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discussed in more detail in section 2.3.

If patient j is at position k in the progression model, then events Es(1), ..., Es(k)

have occurred, while events Es(k+1), ..., Es(N) have not, and we can write the likelihood

of that patient’s data given S as

P (Xj|S, k) =
k∏
i=1

P (xs(i)j|Es(i))
N∏

i=k+1

P (xs(i)j|¬Es(i)) (2.1)

where we assume that individual measurements are independent. We integrate out the

hidden variable k to obtain

P (Xj|S) =
N∑
k=0

P (k)P (Xj|S, k) (2.2)

where P (k) is the prior probability of being at position k in the ordering. We assume

a uniform prior on k here, in order to impose the least information possible onto the

ordering.

We sum from k = 0 to allow for the possibility of patients’ data being recorded

when they have not experienced any of the significant events. The data xij of a patient

in this position closely resembles that of a control subject; however, by including k = 0

in the potential orderings, we account for the possibility that we have not included

significant biomarkers that occur early in the disease progression.

Assuming independence of measurements between patients gives

P (X|S) =
J∏
j=1

P (Xj|S) (2.3)

and the total likelihood for a datasetX given an ordering S is obtained by combining

Equations 2.1 - 2.3:

P (X|S) =
J∏
j=1

[
N∑
k=0

P (k)

( k∏
i=1

P (xs(i)j|Es(i))
N∏

i=k+1

P (xs(i)j|¬Es(i))
)]

(2.4)

2.2 Model estimation

We wish to calculate the likelihood for an ordering S given a particular dataset X. We

use Bayes’ Theorem to obtain the posterior distribution

P (S|X) =
P (S)P (X|S)

P (X)
(2.5)

The normalisation constant P (X) is analytically intractable, so we use a Markov

Chain Monte Carlo (MCMC) algorithm to sample from P (S|X). For ease of modelling,
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we make the assumption that a priori all orderings are equally likely, and so we use a

uniform prior on the ordering S. More details about the MCMC algorithm, and the

greedy ascent algorithm used to initialise it, are given in section 2.4.

2.3 Mixture models for the likelihood of data given

events

By the law of total probability, for each event E, the probability distribution on the

associated measurement x is given by

P (x) = P (x|E)P (E) + P (x|¬E)P (¬E) (2.6)

and so the evaluation of Equation 2.1 requires separate models for both P (x|E)

and P (x|¬E).

To obtain these models for a particular event Ei, we need to fit a mixture of dis-

tributions to all the measurements associated with that event (i.e. for all patients and

controls). The components of the mixture can then be extracted and used as models

for P (x|E) and P (x|¬E).

There are many different options for the choice of mixture distributions:

� a mixture of Gaussians with more than two components, as in Fonteijn et al.

(2011). When applying the EBM to Alzheimer’s disease (AD), there is reasona-

ble justification for fitting three-component Gaussian mixtures, given the natural

division of an AD cohort into i) cognitively normal, ii) mild cognitive impairment

and iii) AD. However, in ALS populations, there is less uncertainty in the diag-

nosis than with AD, and the progression of the disease is fast enough to assume

a sharp separation between patients and controls. Thus, this family of mixture

distributions was discarded due to the risk of over-fitting.

� a Gaussian distribution mixed with a uniform distribution, as in Fonteijn et al.

(2012). In general this is a reasonable alternative; it was not employed in this

work simply because it was not appropriate for any of the selected biomarkers.

� a Gaussian distribution combined with a single fixed value for controls. ALSFRS-

R scores could be modelled in this manner, as all controls retain the maximum

score of 48 while patients’ scores decrease throughout the course of the disease.

However, for the ALSFRS-R biomarker, we have invoked Ockham’s Razor and
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chosen a simpler approach: to discount the control data and fit a single Gaussian

distribution to the patients’ ALSFRS-R scores. This is possible only because

the main EBM process is run on just patients, as opposed to the mixture model

fitting which is performed on patients and controls.

Biomarkers that are binary events, such as a patient’s Riluzole status (0 = not

taking Riluzole, 1 = taking Riluzole), require different modelling from events charac-

terised by continuous variables. Previous implementations of the EBM (Fonteijn et

al., 2011) assigned fixed high and low likelihood values to P (xij|Ei) and P (xij|¬Ei)

respectively. In this study, I have not used binary variables as biomarkers, as I feel

that they do not contain enough temporal information to have their progression order

modelled meaningfully.

For this implementation of the EBM, we fit a mixture of two Gaussian distributions

to each biomarker. Each mixture has five parameters: mean and standard deviation

for healthy controls (µc, σc), mean and standard deviation for patients (µa, σa), and

mixing proportion. Following the methods of Fonteijn et al. (2012) and Young et al.

(2014), the mixing proportion is discarded; we then designate our models for P (x|E)

and P (x|¬E) as X|E ∼ N (µa, σ
2
a) and X|¬E ∼ N (µc, σ

2
c ), respectively.

2.4 The MCMC process

The MCMC process is a classic Metropolis algorithm (Metropolis et al., 1953). For

each iteration t, it proceeds as follows:

� P (X|St) is calculated for the current model order St

� a perturbation S ′ of the current model order St swaps the positions of two rand-

omly chosen events

� P (X|S ′) is calculated for the order S ′

� We set St+1 = S ′ with probability min(a, 1), where a = P (X|S ′)/P (X|St)

� otherwise St+1 = St

MCMC algorithms depend on appropriate initialisation in order to achieve good

mixing properties within a practical time span, particularly if the chain is slow-mixing.
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We therefore initialise the MCMC algorithm with an initial sequence close to the maxi-

mum likelihood solution SML for P (X|S). This initial sequence is found using a greedy

ascent algorithm, and is thus designated as Sg.

The greedy ascent algorithm uses the same perturbation rule as the MCMC algo-

rithm, but sets a = 1 if P (X|S ′) > P (X|St) or a = 0 otherwise.

We run the greedy ascent algorithm for 5000 iterations, which is generally enough

to reach a local maximum. We repeat this from 100 different initialisation points, to

increase the likelihood of the algorithm reaching the global maximum.

The MCMC algorithm is then run for 1 100 000 iterations, of which the first 100 000

are discarded as burn-in iterations.

While Young et al. (2014) use the MCMC algorithm to extract the maximum likeli-

hood ordering SML, Fonteijn et al. (2012) suggest taking the characteristic ordering S̄,

which is the event order with the modal likelihood in the MCMC samples. Taking the

characteristic ordering potentially aids in generalising the event order to the disease

population as a whole, rather than restricting it to the specific dataset from which it

has been obtained.

The ultimate output of the EBM is either the maximum likelihood ordering SML or a

characteristic ordering S̄, and a positional variance diagram illustrating the uncertainty

in the ordering over the set of MCMC samples.

2.5 Modifying the EBM for ALS

2.5.1 Assumptions

Mathematical modelling, by definition, involves simplifications and making assumpti-

ons about real-world processes. The model assumptions made by Fonteijn et al. (2012)

are appropriate for the EBM’s original purpose:

Two key assumptions of the event-based model are: first, measurements de-

crease monotonically as the disease progresses; second, the event sequence

is consistent over all patients. The first assumption is in line with exis-

ting models of disease progression... thus, patients for whom event Ei has

occurred cannot revert to an earlier state where Ei has not occurred. This

assumption is essential because it ensures that snapshots are informative

about the full event ordering. The second assumption is essential to enable
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pooling of snapshots from individual patients to inform the complete event

sequence for the whole cohort.

The first assumption may hold for ALS progression, although ALSFRS-R is likely

to be an exception as its score - although ultimately decreasing over time - has been ob-

served to undergo local increases (Mandrioli et al., 2015). Nonetheless, this assumption

seems reasonable for biomarkers directly assessing neurodegeneration, such as changes

in regional FA or cortical thickness.

Given the heterogeneity of ALS, the second assumption is extremely unlikely to

hold true. Consequences of this include greater positional variance (i.e. an increase

in the uncertainty of results). The converse of this is that any clear and consistent

results found, in spite of the heterogeneity of progression, are likely to be common to

all phenotypes of ALS.

2.5.2 Mixture model fitting

There is an extensive literature on the subject of mixture model fitting (see McLachlan

& Peel (2000)); consequently there are a great many methods for performing this

task. To fit mixture models to data, Young et al. (2014) employ constrained non-

linear minimisation in the form of Matlab’s fmincon function; this method is extremely

flexible and powerful, as well as allowing for the imposition of constraints on the values

for the mixture model components. Recalling that ALS differs from AD in having a

clearly defined control population, we potentially may require fewer constraints when

fitting mixtures to ALS data.

An alternative and widely used method of fitting mixture models is the Expectation

Maximisation (EM) algorithm, which is a class of optimising functions designed for

maximum likelihood problems. The EM algorithm also functions well when presented

with missing data values, a common problem in ALS research.

...the fitting of finite mixture distributions by maximum likelihood is a

classic example of a problem that is simplified considerably by the EM’s

conceptual unification of maximum likelihood (ML) estimation from data

that can be viewed as being incomplete. (McLachlan & Peel, 2000)

Matlab’s fitgmdist function is specifically designed to fit mixtures of Gaussian dis-

tributions by EM. As the control population group is clearly defined in ALS, we can

perform EM initialised by status (i.e. telling the algorithm how the data points are
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classified, rather than needing to infer the classifications). Lastly, the ‘Regulariza-

tionValue’ option of fitgmdist is used to place weak constraints upon the Gaussian

mixture proportions. This is achieved by adding min(σ2
c , σ

2
a)/100 to the diagonal of

the mixture parameter covariance matrix and refitting; this process is repeated until

the mixing proportions meet the required constraints.

A final modification was made to allow for the removal of outliers during the mix-

ture fitting process. In practice, the EM algorithm appears to be sensitive to extreme

values (see Figure 2.1); thus, the option to exclude outliers during the fitting (and

only during the fitting) has been included. This is achieved by separately fitting single

Gaussian distributions to a biomarker’s control data and patient data; outliers can

then be defined by distance in standard deviations from the fitted mean. These out-

lier biomarker readings are still included when running the EBM, as they potentially

represent patients at a late stage of progression.

Unsurprisingly, the effects of outlier removal are felt most strongly in smaller co-

horts. A word of caution: this is a blunt tool, and its use depends on the biomarker

data being normally distributed.

2.5.3 Variable precision

Step-by-step testing of the EBM revealed that for when modelling (in the region of)

45 biomarkers for 100 ALS subjects, Equation 2.4 was returning a probability of zero,

regardless of proposed event order. Further investigation showed that this was a direct

result of multiplying such a large number of probabilities together (or the summing of

the logarithms of probabilities, which is equivalent). The large number of biomarkers

meant that although P (X|S) was not actually zero, it was extremely small; in this case,

smaller than the precision with which Matlab is capable of working. By default, Matlab

works in double-precision floating-point arithmetic, which has 16 digits of precision.

As a result of this, the main functions of this implementation of the EBM have been

adapted to work in variable precision; quadruple precision has proved sufficient so far,

although arbitrary levels of precision are possible. Two different methods for running

in variable precision are supported: i) natively through Matlab’s Symbolic Toolbox,

and ii) through Advanpix’s Multiprecision Computing Toolbox (Holoborodko, 2017),

an external plugin for Matlab.

This enables the EBM to be used with larger datasets and more biomarkers than

was previously possible.
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(a) Fitted mixtures for cortical thicknesses, Set K. Outliers not excluded during fitting.

(b) Fitted mixtures for cortical thicknesses, Set K. Outliers > 3σ excluded during fitting.

Figure 2.1: Illustration of the EM algorithm’s sensitivity to extreme values, derived

from fitting Gaussian mixtures to cortical thickness data.
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2.5.4 “Patients only” vs “Patients and Controls”

As it was originally developed for use in Alzheimer’s disease, previous implementations

of the EBM have classified subjects into three categories: cognitively normal (CN),

mild cognitive impairment (MCI) and AD. The mixture models were fitted to CN and

AD data, but as “a significant proportion of the cognitively normal control group may

have had presymptomatic AD” (Young et al., 2014), the EBM itself was run on all

subjects from all three categories.

Unlike in Alzheimer’s disease, the control population available in ALS research is

clearly defined. We can make the assumption that ALS patients and controls will have

very different progressions; if, indeed, controls can be said to progress in the same

manner at all. This suggests that including control biomarker data in the progression

modelling would greatly increase noise and the uncertainty of the results. Thus, once

the mixture models have been fitted, we elect to run the EBM on only ALS patients’

data. This has the added benefit of reducing the required processing time, as the EBM

has substantially fewer data to manipulate.

2.5.5 CDF vs PDF

Probability Density Functions (PDFs) are often used when working with probability

distributions. In this section, I argue that Cumulative Distribution Functions (CDFs)

are better suited to the event-based modelling process in ALS. This argument is based

on Fonteijn’s first assumption that the progression of biomarker readings is monotonic,

and relies on taking this assumption to its logical conclusion; this results in a stronger

assumption than monotonicity of event order, but one that is still reasonable for a

variety of biomarkers.

Having assigned models for P (x|E) and P (x|¬E), we then use these model distribu-

tions to calculate specific probability values for individual patients’ biomarker readings

(see section 2.3). Recalling our first modelling assumption (“biomarker measurements

decrease monotonically as the disease progresses”), subjects with a lower biomarker re-

ading are therefore more likely to be in a disease state for that biomarker. This appears

reasonable for the biomarker of FA, which is used as an index of neurodegeneration

in white matter tracts (i.e. lower FA implies greater neurodegeneration of the tract),

as dMRI studies have consistently shown reduced FA in the CSTs of ALS patients

compared with healthy controls (Turner & Verstraete, 2015).

Using parameters approximately derived from the historical datasets, we can model
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mean FA tract values as N (0.9, 0.032). For two subjects with biomarker readings of

0.86 and 0.89, we can calculate PDF or CDF values to determine which subject has a

higher probability of being in a disease state (see also Figure 2.2):

FA = 0.86 > FA = 0.89

PDF 5.47 < 12.58

1− CDF 0.91 > 0.63

Putting aside the fact that a PDF is a density rather than a probability – hence

able to be greater than 1 – we find that the PDF value is greater for the subject with

the higher biomarker reading of 0.89; this is because the biomarker reading is close to

the mean of the fitted Gaussian distribution. The lower biomarker reading of 0.86 is

further away from the mean and so has a lower PDF value, even though it is likely to

have come from a subject with greater neurodegeneration. Note that the reason that

we use (1 − CDF) is precisely because FA decreases with neurodegeneration (if the

opposite were true and FA increased with neurodegeneration, we would instead use the

CDF value to calculate the probability of being in a disease state).

To summarise: PDFs place emphasis on readings near the centre of the distribution,

meaning that far-progressed patients will be considered less likely to be in a disease

state than patients mid-way through progression. We can employ CDFs to reframe the

problem; by using them, we are effectively asking “What is the maximum probability

of a patient being in a healthy state, for a biomarker reading this extreme or worse?”.

See subsection 4.3.1 for testing and exploration of the effect that this has on the model

output.

2.6 A Bayesian approach to event-based modelling

2.6.1 Bayesian inference

Probabilities are a numerical representation of a set of rational beliefs. For example,

a fair coin toss will have P (Heads) = 0.5, which is equivalent to a belief that the

coin is equally likely to land either side up when tossed. If, however, we toss the

coin ten times and get all Tails, then we might reconsider our belief in the coin’s

fairness - but how should we change our belief? Although it seems possible that

P (Heads) = 0.5 is too high, ten Tails in a row does not rule out ever getting a Heads.

Bayes’ Theorem (Equation 2.5) provides a rational method for updating beliefs in light
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(a) Plot of P (xi|Ei). FA = 0.86 is marked.

(b) Plot of P (xi|Ei). FA = 0.89 is marked.

Figure 2.2: Illustration of PDF and (1 − CDF) values for two different readings of

the same biomarker, Fractional Anisotropy. Decreasing FA values are associated

with increasing neurodegeneration, so we can assume the subject in (a) is more li-

kely to be in a disease stage than the subject in (b). As shown by the shaded areas,

(1− CDF(0.86)) > (1−CDF(0.89)). This would mean that subject (a) is more likely

than subject (b) to be in a disease state, as expected. However, as indicated by the

dotted red lines, PDF(0.86) < PDF(0.89). Thus the PDF values imply that subject

(b) is more likely to be in a disease state than subject (a), which is the converse of

what the actual biomarker reading tells us.
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of new information, and Bayesian inference is the process of inductive learning through

the use of Bayes’ Theorem (Gelman et al., 2013; Hoff, 2010).

The process of Bayesian inference involves passing from a prior distribution, p(S),

to a posterior distribution, p(S|X), updating our beliefs via a sampling distribution,

p(X|S).

2.6.2 The Problem with Permutations and Priors

As mentioned in section 2.2, the current approach to event-based modelling uses a

uniform prior on the ordering S. In Bayesian terms, we are stating that we have

no prior knowledge about the order of the events. This imposes the least possible

information on the model output, which is an accepted method in Bayesian inference

(Hoff, 2010). However, the motivation here is primarily ease of modelling, as fitting

a distribution to a sample space Ω consisting of all possible orderings turns out to

be non-trivial. This means that currently we cannot fit a distribution to our prior or

posterior probabilities; thus the output of the EBM is limited to only reporting the

most likely event order, and we are unable to describe or characterise Ω in any detail.

Not being able to fit distributions to the prior or posterior means that we cannot

update our prior knowledge (i.e. use our posterior probability as a prior probability),

and so we are not taking advantage of one of the main strengths of Bayesian inference.

Below, I give a method for fitting a distribution to a sample space Ω consisting of

permutations. This method is taken from Plis et al. (2010), and its incorporation into

the EBM represents a substantial improvement to the model.

2.6.3 Permutations as directional data

The ultimate output of the EBM is the most likely event order, SML. During the

application of the EBM, an arbitrary order is assigned to biomarkers (the order in

which they are entered into the model), and so SML can be considered a permutation

of this order. The core idea from Plis et al. (2010) is that permutations, a form of

ranked data, can be transformed into directional data.

Background definitions

As a geometrical object, a sphere is defined as the set of points equidistant from a

given point in three-dimensional space. More intuitively, a sphere is the surface of a

ball, and is thus a two-dimensional object embedded in three-dimensional Euclidean
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(a) (b)

Figure 2.3: (a) For permutations of order n = 3, the permutohedron is a hexagon inside

a circle (a circle is a 1-sphere embedded in R2). (b) For n = 4, the permutohedron is

a truncated octahedron inside an ordinary sphere (i.e. a 2-sphere embedded in R3).

Adapted from Thompson (1993).

space. This concept can be generalised to higher-dimensional spaces: a hypersphere is

an n-sphere embedded in an (n+ 1)-dimensional Euclidean space.

A permutohedron of order n is a convex polyhedron whose vertices are in one-to-one

correspondence with the permutations of order n (Thompson, 1993). Permutohedrons

of order 3 and 4 are illustrated in Figure 2.3.

Finally, QR decomposition (also called a QR factorisation) of a matrix is a decom-

position of a matrix A into a product A = QR of an orthogonal matrix Q and an upper

triangular matrix R.

Transforming permutations into directional data

Plis et al. (2010) show how to embed a permutation set consisting of n! elements onto

the surface of a hypersphere embedded in Rn−1 space. This is done by proving that

the extreme points of a permutohedron of order n are located on the surface of a

hypersphere of radius rs =
√

1
12

(n3 − n) with origin at the centre of mass of all n!

permutation vectors. The embedding process is as follows:

� Form a permutohedron from Ω. This permutohedron is located on a hyperplane

in Rn, and each vertex of the permutohedron is a point in Rn space whose coor-

dinates are the permutations of n distinct numbers (Thompson, 1993).
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� The extreme points (vertices) of this permutohedron are located on the surface

of a d-hypersphere in Rn−1 space, where d = n− 2.

� Transform elements of the discrete n! permutation space into the continuous space

of the d-hypersphere by:

– a translation (move the centre of mass of the permutation vectors to the

origin).

– a change of basis (by projecting into Rn−1). The basis is obtained by a QR

factorisation of the centre of mass vector.

– rescaling the hypersphere radius to give a unit length vector.

We can then use techniques from the field of directional statistics to fit a probability

distribution on the hypersphere.

Fitting a von Mises-Fisher distribution to MCMC samples

The vMF distribution Mp(µ, κ) is a basic probability distribution from the field of

directional statistics (Mardia & Jupp, 2000). The (p − 1)-dimensional vMF density

is parametrised by the mean direction µ and the concentration parameter κ, named

because it characterises how strongly the unit vectors are concentrated around the

mean direction (as shown in Figure 2.4). Note that p = n in our permutohedron

terminology.

An efficient method for maximum likelihood estimation for the vMF distribution

is given by Sra (2012). This method requires a set of points sampled from the vMF

distribution, in order to estimate µ and κ; we use the MCMC samples produced by the

EBM for this purpose.

Updating the prior distribution

Returning to Equation 2.5, we are no longer restricted to a uniform prior on the ordering

S, as we can now designate our model for P (S) as S ∼Mp(µ, κ).
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Figure 2.4: The vMF density function on a 2-sphere in R3 for different µ (mean di-

rection) and κ (concentration parameter). Lighter colour indicate more probable areas.

Green circles indicate points corresponding to vertices of the relevant permutohedron,

the truncated octahedron shown in Figure 2.3 (b). Adapted from Plis et al. (2010).
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Chapter 3

Materials and Methods

There are two legacy data sets available for use in this study, Sets F and K. The data

sets were collected between 1999 and 2011 at the Centre for Neuroimaging Sciences,

King’s College London. Both sets are pre-existing, and comprise both clinical and MRI

data for patients and healthy controls. The MRI data were collected on two different

scanners, one per data set.

A contemporary data set, Set N, has also been made available. This data set was

collected between 2014 and 2016 at the Clinical Imaging Sciences Centre, Brighton and

Sussex Medical School. Table 3.1 lists the number of participants available with each

data set, and more details about data acquisition are provided in section 3.1.

Data set ALS (M/F) Age ± SD Controls (M/F) Age ± SD ALSFRS-R Duration

Set F 36 (20/16) 53.9± 11.9 22 (14/8) 49.8± 15.6 37.5± 6.5* 35.5± 33.4

Set K 28 (25/3)6 52.6± 11.8 25 (19/6) 48.1± 8.9 40.6± 4.1 25.6± 15.2

Set N 23 (16/7)6 64.4± 8.0 23 (14/9) 61.5± 9.3 40.0± 5.2 19.3± 8.9

Table 3.1: Numbers and demographics of subjects of Sets FKN. Age in years, Duration

in months. ± indicates standard deviation. * data available for 28 patients.

3.1 MRI acquisition

3.1.1 Set F

Dataset F was obtained on a 1.5T MRI system between 1999 and 2008. The proto-

col included dual echo fast spin echo to yield proton density and T2-weighted data,

and diffusion-weighted EPIs, with diffusion gradients applied along 32 directions and

maximum b-value of 1300 s mm-2. T1-weighted data were not acquired.
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Data were acquired using a GE Signa HDx system (General Electric, Waukesha,

WI, USA), with actively shielded magnetic field gradients (maximum amplitude 40

mT m-1). The protocol was based on that described by Jones et al. (2002). The body

coil was used for RF transmission, and an 8 channel head coil for signal reception. Each

volume was acquired using a multi-slice peripherally-gated doubly refocused spin echo

EPI sequence, optimised for precise measurement of the diffusion tensor in parenchyma,

from 60 contiguous near-axial slice locations with anisotropic (1.875×1.875×2.5 mm)

voxels. The echo time was 101.3 ms while the effective repetition time varied between

subjects in the range 12 and 20 RR intervals, depending on individual participants’

heart rates. The maximum diffusion weighting was 1300 s mm-2, and at each slice

location, 7 images were acquired with no diffusion gradients applied, together with 64

diffusion-weighted images in which gradient directions were uniformly distributed in

space.

3.1.2 Set K

All imaging for dataset K was obtained on a 3T MRI system between 2008 and 2011.

The protocol included T2-weighted fast spin echo, T1-weighted volumes using inversion-

recovery fast spoiled gradient recalled echo (FSPGR), diffusion-weighted echo-planar

imaging (EPI), with diffusion gradients applied along 32 non-collinear directions and

maximum b-value of 1300 s mm-2, and arterial spin labelling data for cerebral blood

flow quantification.

Data were acquired using a GE Signa HDx system (General Electric, Waukesha,

WI, USA), with actively shielded magnetic field gradients (maximum amplitude 40 mT

m-1). The body coil was used for RF transmission, and an 8 channel head/neck/spine

coil for signal reception, allowing a parallel imaging (ASSET) speed up factor of two.

Each volume was acquired using a multi-slice peripherally-gated doubly refocused spin

echo EPI sequence, optimised for precise measurement of the diffusion tensor in paren-

chyma, from 60 contiguous near-axial slice locations with isotropic (2.4×2.4×2.4 mm)

voxels. The echo time was 104.5 ms while the effective repetition time varied between

subjects in the range 12 and 20 RR intervals, depending on individual participants’

heart rates. The maximum diffusion weighting was 1300 s mm-2, and at each slice

location, 4 images were acquired with no diffusion gradients applied, together with 32

diffusion-weighted images in which gradient directions were uniformly distributed in

space.
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3.1.3 Set N

Dataset N was obtained on a 1.5T MRI system between 2014 and 2016. The protocol

included T2-weighted dual echo turbo spin echo, fast fluid-attenuated inversion recovery

(FLAIR), and volumetric MPRAGE with isotropic (1 × 1 × 1 mm) voxels . Multi-

shell diffusion-weighted images were acquired with single-shot, twice-refocused pulse-

gradient spin-echo EPI, using 3 b-values (9 directions for b=300 s mm-2, 30 directions

with b=800 s mm-2, and 60 diffusion directions with b=2400 s mm-2), optimised for

neurite orientation dispersion and density imaging (NODDI) as detailed in Zhang et al.

(2012). Ten non-diffusion weighted (b=0) volumes were acquired. A parallel imaging

(GRAPPA) speed up factor of two was used.

Data were acquired using a Siemens Avanto system (Siemens AG Medical Soluti-

ons, Erlangen, Germany), with actively shielded magnetic field gradients (maximum

amplitude 40 mT m-1).

3.2 Neuroimaging biomarker selection

3.2.1 dMRI

Data set ALS (M/F) Age ± SD Controls (M/F) Age ± SD ALSFRS-R ± SD

Set F 36 (20/16) 53.9± 11.9 22 (14/8) 49.8± 15.6 37.5± 6.5

Set K 28 (25/3)6 52.6± 11.8 24 (19/5) 47.3± 8.2 40.6± 4.1

Set N 23 (16/7)6 64.4± 8.0 23 (14/9) 61.5± 9.3 40.0± 5.2

Table 3.2: Numbers and demographics for dMRI data of Sets FKN, after the exclusion

of one control subject from Set K.

In consultation with colleagues and collaborators, neuroimaging biomarkers were

selected as the mean FA values of WM tracts previously studied and implicated in

ALS. The tracts employed in this study and their locations are given in Figure 3.1.

Mean FA values were calculated for the left and right sides of each tract (with the

exception of the corpus callosum which was divided into the genu, body and splenium).

The left and right sides of the tracts were considered as separate regions in order to

explore the possibility of bilateral asymmetry in ALS progression.

To allow the investigation of a directional progression of ALS WM neurodegene-

ration, the CSTs were split in the inferior to superior direction. The boundary was
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Figure 3.1: White matter tracts examined in this study. 1/2/3 = Corpus callosum

Genu/Body/Splenium, 4 = Cingulum (cingulate gyrus), 5 = Anterior corona radiata, 6

= Superior longitudinal fasciculus, 7 = Sagittal stratum, 8 = Superior fronto-occipital

fasciculus, 9 = Uncinate fasciculus, 10/11 = Inferior/Superior corticospinal tracts.

Tracts and nomenclature are derived from the JHU DTI-based white-matter atlases

(Mori et al., 2005).
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chosen to be in the posterior limb of the internal capsule (PLIC), at the junction of

the lateral ventricles and third ventricle (MNI coordinates -24 -23 15). The CSTs were

selected for this subdivision due to their central and indeed pathognomonic role in the

pathophysiology of ALS, as delineated in the original descriptions of the disease , and

because these tracts have been consistently identified as abnormal in ALS DTI studies

(Menke et al., 2016). In addition, their large size and coherent organisation renders

these tracts especially suitable for studies using DTI and related MRI modalities.

After calculation of mean FA values, it was necessary to exclude one control subject

from Set K, as their biomarker readings were classed as outliers for 6 of the 19 biomar-

kers. Here, outliers were defined in terms of sample quartiles, as described in Frigge

et al. (1989): taking Q1 and Q3 to be the lower quartile and upper quartile respectively,

a data point x is classed as an outlier if x < Q1− k(Q3−Q1) or x > Q3 + k(Q3−Q1),

where k = 1.5. Boxplots for the mean FA values of Sets FKN are given in Figure 3.2.

3.2.2 Structural imaging

Data set ALS (M/F) Age ± SD Controls (M/F) Age ± SD

Set K 28 (25/3)6 52.6± 11.8 25 (19/6) 48.1± 8.9

Set N 23 (16/7)6 64.4± 8.0 23 (14/9) 61.5± 9.3

Table 3.3: Numbers and demographics for structural T1 MRI data of Sets KN.

There were no T1 structural data available for Set F. All regions were selected from

imaging atlases currently in widespread use, and were chosen in consultation with

colleagues and collaborators.

Cortical regions

Due to the complexity inherent in volumetric analyses, biomarker selection was re-

stricted to regions predefined in the Desikan-Killiany cortical atlas (Desikan et al.,

2006) rather than defining them manually. The regions selected are given in Figure 3.3.

Subcortical regions

The automatic subcortical segmentation of a brain volume in FreeSurfer 5.3.0 is based

on the Fischl et al. (2002) probabilistic atlas. Regions were selected from those defined

in this atlas, which contains probabilistic information on the location of subcortical

structures. The regions selected are given in Figure 3.4.
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Figure 3.2: Boxplots of mean FA biomarker values for all 157 subjects of Sets FKN. Outliers are labelled with subject number.
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3.3 MRI processing and analysis

3.3.1 Diffusion-Weighted Images

All diffusion-weighted images were corrected for involuntary motion and eddy cur-

rent distortions using affine registration and the FMRIB’s Linear Registration Tool

(FLIRT). The images were skull-stripped using FMRIB’s Brain Extraction Tool (BET).

Manual quality control was performed on all datasets, comprising of inspection for

low signal to noise ratio and movement artefacts. The latter are a common feature of

ALS imaging data, due to the nature of the disease. Due to its age, Set F required

more extensive manual checking than Sets KN, and a greater proportion of data was

deemed unusable.

For all diffusion imaging analysis, the single tensor (ST) model was used to derive

FA. The ST model was fitted with weighted least squares, using FMRIB’s dtifit.

Normalisation into MNI space was performed using ANTs 2.1.0. For each of the

three datasets, a study-specific template was created using antsMultiTemplateCon-

struction.sh. Each subject’s FA map was warped to the template, and all templates

were warped to MNI space. These warps were combined to produce a single warp for

each subject, which was then applied to their FA map.

For each tract, region of interest (ROI) masks were created from the two JHU

DTI-based white-matter tractography atlases (Mori et al., 2005) included in FSL 5.0.7

(Jenkinson et al., 2012). The ROI masks for the corticospinal tracts were created from

the “JHU white-matter tractography” atlas, thresholded at 25%; all other ROI masks

were created from the “ICBM-DTI-81” atlas. FMRIB’s fslstats was used to calculate

mean FA values for each ROI.

3.3.2 Structural Images

The structural data of Set N were automatically processed and analysed using the

FreeSurfer 5.3.0 recon-all pipeline. Manual pial surface editing was then performed

by a colleague on Set N, and the pipeline re-run. The structural data of Set K were

likewise processed and analysed, but did not receive the manual pial surface editing.

These processes generated i) volumetric and cortical thickness data for the cortical

regions given in Figure 3.3, and ii) volumetric data for the subcortical anatomical

structures given in Figure 3.4.
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Figure 3.3: Cortical regions of the Desikan-Killiany atlas examined in this study. The

right side of the figure shows the inflated cortical surface. 1 = superior frontal gyrus,

2 = rostral middle frontal gyrus, 3 = caudal middle frontal gyrus, 4 = pars opercularis,

5 = pars orbitalis, 6 = lateral orbitofrontal cortex, 7 = medial orbitofrontal cortex,

8 = precentral gyrus, 9 = paracentral lobule, 10 = rostral anterior cingulate cortex,

11 = caudal anterior cingulate cortex, 12 = posterior cingulate cortex, 13 = parahip-

pocampal gyrus, 14 = insular cortex. Figure created using Freeview 1.0, included in

FreeSurfer 5.3.0.
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Figure 3.4: Subcortical regions examined in this study. 1/2 = Left/Right lateral

ventricles, 3 = Third ventricle, 4 = Fourth ventricle, 5 = Corpus callosum, 6 = Brain

stem, 7 = Cerebellum cortex (right side shown), 8 = Cerebellum white matter (left

side shown), 9 = Putamen, 10 = Accumbens area, 11 = Amygdala, 12 = Caudate

nucleus, 13 = Pallidum, 14 = Hippocampus, 15 = Thalamus proper.
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3.3.3 Inter-cohort dMRI heterogeneity

In order to impose the minimum of information on the data, we chose to assess inter-

cohort heterogeneity in as simple a manner as possible. This was accomplished by

testing for significant centre differences in whole brain mean FA values, rather than

comparing regional mean FA values. SPSS 23.0 was used to perform one-way ANOVA

tests with the following manual contrasts:

� Between sets: F/K, F/N, K/N

� Between CTLs only: F/K, F/N, K/N

� Between ALS only: F/K, F/N, K/N

There were no significant differences at group level for any contrast, and post hoc tests

(Bonferroni and Tukey) also showed no evidence of differing means.

3.4 Clinical and Neuropsychological data acquisi-

tion

There were a wide variety of clinical and neuropsychological data available in Set K,

the vast majority of which were not available in Sets FN. We elected to model from

only Set K to ensure a sufficiently large number of clinical and neuropsychological

biomarkers.

Details of the assessments are reproduced here from Tsermentseli et al. (2015):

Patients’ functional abilities were assessed using the ALSFRS-R. Symptoms

of anxiety and depression were measured using the Hospital Anxiety and

Depression Scale (HADS).

Formal standardised language testing included measurements of confron-

tation naming, semantic access, and single word and syntactic comprehen-

sion. Confrontation naming was measured with the Graded Naming Test

(GNT). Semantic access of nouns/objects and verbs/action was measured

by the Pyramids and Palm Trees (PPT) Test and the Kissing and Dancing

Test (KDT), respectively. Syntactic and single word comprehension was

assessed with the Test of Reception of Grammar (TROG) and the modified

Token Test.
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The connected speech sample was taken from the Cookie Theft picture des-

cription component of the Boston Diagnostic Aphasia Examination. Quan-

titative production analysis (QPA) was used to analyse the transcribed

language samples following the approach used by Wilson et al. Transcripts

were coded by two graduates trained in analysis of recorded discourse, blind

to participants’ status.

Distortions were defined as articulatory speech errors that did not involve

frank phonemic substitutions. For patients with dysarthria, every word

could potentially be classified as a distortion, so for these patients only

words that were distorted above a patient’s most accurate speech were co-

ded as distortions. Semantic errors were recorded when participants produ-

ced sentences that were syntactically well-formed, but were either nonsen-

sical or were semantically inappropriate for the context. The most common

type of semantic errors involved substitutions of semantically related items.

Discrepancies in coding were resolved following advice from a speech and

language therapist.

The linguistic profile of connected speech production assessed measures

under four main categories: 1) speech production (numbers of words, dura-

tion of narratives, speech rate, distortions and phonological paraphasias);

2) disruptions to fluency (false starts, filled pauses, repaired sequences and

incomplete sentences); 3) lexical content (proportional frequencies of closed

class words, pronouns and verbs); and 4) syntactic structure and complexity

(mean length of utterances, proportional frequencies of words in sentences,

number of embeddings, and semantic errors).

3.5 Clinical and Neuropsychological biomarker se-

lection

Biomarkers were chosen in consultation with collaborators, and details of the biomar-

kers are given in Table 3.4. The main selection criterion was if a biomarker had been

shown to be significantly different between patients and controls in previous analysis

(Tsermentseli et al., 2015); biomarkers without significant differences were excluded,

as were those with data distributions that led to poor Gaussian mixture fitting.
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Biomarker name Details of Assessment

log delta ALSFRS (Log of) rate of change of ALSFRS-R score

= log ((48 - ALSFRS score)/(duration in months))

HADSANX rev Hospital Anxiety and Depression Scale – anxiety (revised)

CVLTSDR California Verbal Learning Test short-delay Free Recall

Correct; a list learning task

log CVB (Log of) 4-letter C Word Fluency Index

Hayling Latency Latency of response in the Hayling Sentence Completion

Test. The difference in times between two conditions: one

where the subject has to suppress an automatic response

and complete a sentence with a word that renders the sen-

tence meaningless, and one where they have to complete

sentences in a meaningful way

Telephone SC Telephone Search While Counting Scaled-Score. This is

a measure of divided attention, and can be thought of as

executive dysfunction

WCST err Wisconsin Card Sorting Test; total errors

Distortions Distortions per hundred words; linguistic errors during

spoken speech describing a picture

Incomplete Sentences Incomplete sentences per hundred words

Utterance Mean length of utterance during spoken speech describing

a picture

GNT Graded Naming Test total score; expressive language, na-

ming of line drawings of objects

Token Modified Token test score; language comprehension test

TROG err Test for the Reception of Grammar; number of errors on

a sentence comprehension test

Table 3.4: Neuropsychological and functional assessments included in Set K. The bio-

markers have been grouped into function and clinical , memory , executive function

and speech and language .
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Chapter 4

Challenging the Model in silico

The purpose of the EBM is to extract temporal information (TI) from cross-sectional

data. In this chapter, I use simulations to examine some of the sources of TI, as well

as exploring the effects of the main modifications that have been made to the model.

4.1 Tools for comparing Permutations

Altering parameters of the EBM results in different event orders, and to assess the

impact of these parameter alterations, we require methods of quantifying differences

between permutations. This section gives details of two metrics that will be used

for this purpose: the normalised Kendall tau distance, and Kendall’s rank correlation

coefficient.

4.1.1 Terminology

We shall define and explain by example. Let S1 and S2 be two different event orders

(also called permutations or rankings), such as

A B C D E

S1 1 2 3 4 5

S2 2 1 5 4 3

For each event order S, we then calculate the sign of each possible pair of events.

The sign or “score” (Kendall, 1970) of each event pair (i, j) is equal to +1 if i < j and

−1 if i > j. We declare an event pair to be concordant if the pair’s sign is the same in

both orders (and discordant if the sign differs):
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Pair S1 S2 Concordant

(A,B) 1 < 2 2 > 1 No

(A,C) 1 < 3 2 < 5 Yes

(A,D) 1 < 4 2 < 4 Yes

(A,E) 1 < 5 2 < 3 Yes

(B,C) 2 < 3 1 < 5 Yes

(B,D) 2 < 4 1 < 4 Yes

(B,E) 2 < 5 1 < 3 Yes

(C,D) 3 < 4 5 > 4 No

(C,E) 3 < 5 5 > 3 No

(D,E) 4 < 5 4 > 3 No

Thus, when comparing these two permutations, there are six concordant pairs and

four discordant pairs.

For two rankings, S1 and S2, we formally define a concordant pair as a pair of

two-variable observations i and j such that

sgn(S1j − S1i) = sgn(S2j − S2i) (4.1)

and a discordant pair as

sgn(S1j − S1i) = −sgn(S2j − S2i) (4.2)

4.1.2 Definitions

Kendall’s tau distance is simply defined as the number of discordant pairs, with the

normalised Kendall tau distance, K, given by

K =
number of discordant pairs

number of possible pairs
(4.3)

We recall that the binomial theorem tells us that for n events, there are
(
n
2

)
=

n(n− 1)/2 possible pairs. Returning to the example given in the previous section, the

normalised Kendall tau distance is therefore

K(S1, S2) =
4

5(5− 1)/2
= 0.4 (4.4)

Note that K lies in the interval [0, 1], where 0 indicates no distance (i.e. identical

permutations) and 1 indicates maximum distance (i.e. the permutations are “diame-

trically opposite” when embedded on a hypersphere).
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The Kendall rank correlation coefficient, τ , explicitly quantifies the degree of

similarity between two permutations:

τ(S1, S2) =
no. of concordant pairs− no. of discordant pairs

no. of possible pairs
(4.5)

τ lies in the interval [−1, 1] where 1 indicates maximum correlation, 0 indicates no

correlation and −1 indicates maximum inverse correlation (i.e. the same permutation

reversed).

The correlation coefficient allows us to perform tests of significance to establish

whether two permutations are significantly similar. Kendall (1970) proves that for

n > 10, the sampling distribution of τ approximates to the normal distribution, while

for n ≤ 10, the distribution can be calculated exactly. The significance tests for τ are

available in Matlab, through the corr function. If the EBM is functioning better than

blind chance, then S1 and S2 should be positively correlated, and thus we can perform

a one-tailed test.

Both of the above metrics (K and τ) provide useful information for comparing

two permutations; even though they are closely related to each other (τ = 1 − 2K),

they can be viewed in conceptually different ways. For the Bayesian adaption of the

EBM, we have transformed permutations into directional data by embedding them on

to the surface of a hypersphere; the nature of this embedding is such that for any

permutation, its nearest neighbours on the hypersphere surface will have one discor-

dant pair. This is a direct consequence of the nature of the permutohedron, which

is constructed so that vertices are adjacent and connected if their orderings differ by

a pairwise adjacent transposition (Thompson, 1993). Thus, the non-normalised tau

distance represents an actual physical quantity: the smallest possible number of edges

linking two permutations.

However, the correlation coefficient is a measure of similarity, and as such does not

have an equivalent physical representation.

Finally, we acknowledge that notation for these metrics is not consistent throug-

hout the literature, with τ being used to represent both Kendall’s tau distance and

the Kendall rank correlation coefficient. For the sake of clarity and consistency, the

following notation will be used in this work:

K(S1, S2) = normalised Kendall tau distance between event orders S1, S2 (4.6)

τ(S1, S2) = Kendall rank correlation coefficient between event orders S1, S2 (4.7)
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4.2 Simulations

As one of the building blocks of the modelling process, it is clear that the fitted mixture

models will be responsible for a large amount of TI. In this study, each Gaussian mixture

model has five parameters (µc, µa, σc, σa and mixing proportion); we note that the

current implementation of the EBM makes use of the first four parameters, discarding

mixing proportion.

For the purposes of challenging the model, I have chosen to simulate data for a

theoretical disease consisting of ten biomarkers. We begin by selecting a “true” event

order (for simplicity, we let this be Events 1 to 10 in order), and impose the appropriate

mixture component parameters on the model. Then, we vary one or both of the TI-rich

mixture parameters for ALS patients (µa, σa) , while keeping the control parameters

(µc, σc) fixed. Data are randomly generated from the component distributions, and

the EBM is run on these data. The output of the model, the most likely event order

SML, can then be compared to our theoretical “true” order T . (Essentially, this is

a reversal of the mixture fitting process; instead of fitting distributions to the data,

we are choosing the mixture distribution parameters in order to create a “true” event

order, and then generating data from those distributions.)

For simplicity, we choose X|¬E ∼ N (0.9, 0.032) for all ten biomarkers, giving the

same distribution for all healthy controls. Matlab’s normrnd was used to generate a 50

by 10 matrix of values from this distribution, to act as our healthy control data. This

matrix was kept the same for every simulation; this means that there was a certain

amount of noise within the simulated control data, but that noise remained constant

during all iterations of the model.

The process of testing the model (varying one TI parameter while keeping controls

the same, simulating patient data, running the EBM) was repeated 1000 times for

each TI parameter. This required upwards of 150 hours of cluster processing time,

dependent on the number of patients that were being simulated; for each TI parameter

that was investigated, we performed four separate runs of the 1000 repetition process

(one each for 25, 50, 100 and 200 simulated ALS patients). In total, each results table

in this section required 4.4 billion MCMC iterations.
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4.2.1 Mean separation

An immediate source of TI is the difference between the mixture component means,

|µa − µc|. Intuitively, if an event occurs early on in the disease, then we would expect

a large separation between the component means. Conversely, an event from late on

in the disease progression should have only a small separation between the component

means. This is dependent on the modelling assumption that biomarker progression is

monotonic, and thus the differences between ALS patients and healthy controls cannot

decrease over time. The TI parameters for this set of simulations are given in Table 4.1.

Controls B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

µ 0.9 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

σ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 4.1: Mixture model parameters used for simulating the effects of mean separation

|µa − µc| on the EBM’s output. B1 = Biomarker 1, B2 = Biomarker 2, and so on.

For each run of the EBM process, we calculate the tau distanceK between the model

output, SML, and the theoretical order obtained from sorting the biomarker means, Tµ.

We then take the mean K over all 1000 runs, K̄(SML, Tµ). If mean separation does

affect the output of the EBM in the manner we hypothesise, then we expect K̄ to be

low. This implies that the mean tau correlation coefficient τ̄ should be positive and

high.

As a sanity check, we repeat this process for the tau distance K between the mo-

del output, SML, and the theoretical order obtained from reverse-sorting (see sub-

section 4.2.2) the biomarker standard deviations, Tσ. We again take the mean K across

all 1000 runs, giving us K̄(SML, Tσ). As we have chosen σa = σc, we expect the variance

separation to have no effect on the model output, suggesting K̄(SML, Tσ) ' 0.5.

Finally, four series of 1000 EBM runs are performed, for different numbers of si-

mulated ALS patients. The results of these four series are given in Table 4.2, and

appear to confirm that mean separation is a strong source of TI. We use the mean tau

correlation coefficient to perform a test of significance (Table 4.3), which shows that

regardless of number of simulated patients, there is strong evidence to reject the null

hypothesis of independence of SML and Tµ. As expected, there is no evidence to reject

the hypothesis of independence of SML and Tσ.
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Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.1801 0.5006

50 0.1352 0.5041

100 0.1005 0.5074

200 0.0750 0.4995

Table 4.2: Mean tau distance between SML and T , for varied |µa−µc| with σa−σc = 0

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.6398** -0.0012

50 0.7296** -0.0082

100 0.7990** -0.0148

200 0.8500** -0.0011

Table 4.3: Mean tau correlation between SML and T when varying |µa − µc|.

*p < 0.005, **p < 0.001

4.2.2 Variance

The effect that the component variances (σ2
c , σ

2
a) may have on TI is less conceptually

clear than for mean separation. Biologically, it seems reasonable to expect σ2
a to be

greater than σ2
c , due to the varying rates of ALS progression. As with mean separation,

we intuitively would expect σ2
a − σ2

c to increase over time (i.e. earlier event = greater

variance separation).

The TI parameters for this set of simulations are given in Table 4.4. Note that

Biomarkers 7 - 10 have been assigned standard deviations such that σa < σc. While

this may be biologically unlikely, these parameter values were dictated by wanting

|σBi
−σBi+1

| ≥ 0.005 in order to ensure that σBi
6= σBi+1

after simulating small numbers

of patients.

Controls B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

µ 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

σ 0.03 0.055 0.05 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01

Table 4.4: Mixture model parameters used for simulating the effects of patient biomar-

ker variance, σ2
a − σ2

c , on the EBM’s output. B1 = Biomarker 1, and so on.
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Again, we calculate mean K after 1000 EBM runs. If variance separation does affect

the output of the EBM in the manner we hypothesise, then we expect K̄(SML, Tσ) to

be low, and τ(SML, Tσ) to be positive and high. Our sanity check is that we expect

K̄(SML, Tµ) ' 0.5 and τ̄(SML, Tµ) ' 0.

The results of the four series of 1000 EBM runs are given in Table 4.5, and appear

to confirm that variance is a source of TI. We use the mean tau correlation coefficient

to perform a test of significance (Table 4.6): for fifty or more simulated patients, there

is evidence at the 5% level to reject the null hypothesis of independence of SML and Tσ.

These significance levels are lower than those of Table 4.3, suggesting that for these

parameters, variance is a weaker source of TI than mean separation. As expected,

there is no evidence to reject the hypothesis of independence of SML and Tµ.

Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.5325 0.3174

50 0.5298 0.2626

100 0.5318 0.2092

200 0.5283 0.1709

Table 4.5: Mean distance between SML and T , varying σa − σc, with |µa − µc| = 0

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 -0.0650 0.3652†**

50 -0.0596 0.4747***

100 -0.0637 0.5816***

200 -0.0567 0.6581***

Table 4.6: Mean tau correlation between SML and T when varying σa − σc.
†p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.005

4.2.3 Mean separation and Variance

We have seen that i) mean separation is proportional to progression through disease

(i.e. greater difference between biomarker means implies an early event), and ii) vari-

ance is also proportional to progression through disease (i.e. greater variance of patient

readings implies an early event). The next question to ask is how these sources of TI

are related: what happens when varying both |µa − µc| and σa − σc?
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Firstly, we vary these two parameters in the same direction (high mean separation

with high variance), as given in Table 4.7.

Controls B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

µ 0.9 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

σ 0.03 0.055 0.05 0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01

Table 4.7: Mixture model parameters, for same-direction varying of |µa − µc| and

σa − σc. B1 = Biomarker 1, B2 = Biomarker 2, and so on.

After performing four series of 1000 EBM runs, we calculate mean K and find

that both K̄(SML, Tµ) and K̄(SML, Tσ) are low (Table 4.8), while both τ̄(SML, Tµ)

and τ̄(SML, Tσ) are significantly high and positive (Table 4.9). In other words, both

TI parameters are acting in the same manner, and so we cannot distinguish which

parameter is having the greater effect on the model.

Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.2053 0.2260

50 0.1631 0.1803

100 0.1357 0.1465

200 0.1037 0.1090

Table 4.8: Mean tau distance between SML and T , for same-direction varying of |µa−µc|

and σa − σc

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.5893**** 0.5481****

50 0.6738**** 0.6394****

100 0.7287**** 0.7071****

200 0.7926**** 0.7821****

Table 4.9: Mean tau correlation between SML and T , for same-direction varying of

|µa − µc| and σa − σc. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001
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Secondly, we vary our TI parameters in opposite directions (i.e. high mean se-

paration with low variance), as given in Table 4.10.

Controls B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

µ 0.9 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

σ 0.03 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Table 4.10: Mixture model parameters, for opposite-direction varying of |µa − µc| and

σa − σc. B1 = Biomarker 1, B2 = Biomarker 2, and so on.

Following another four series of 1000 EBM runs, we again calculate mean K and

τ . This time, we find that K̄(SML, Tµ) is low, while K̄(SML, Tσ) is high (Table 4.11).

Equivalently, τ̄(SML, Tµ) is significantly strong and positive, while τ̄(SML, Tσ) is signi-

ficantly strong but negative (Table 4.12). This means that the model output is likely

to be similar to the mean separation order Tµ and the reverse of the variance order Tσ.

Here, we have shown that for these particular parameter values, |µa−µc| outweighs

σa − σc as a TI parameter. In order to quantify the relative importance of these TI

parameters, further simulations with more widely varying values of σa are needed.

Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.1727 0.8165

50 0.1244 0.8675

100 0.0879 0.9066

200 0.0592 0.9388

Table 4.11: Mean distance between SML and T , varying µa and σa in the opposite

direction

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.6545*** -0.6330***

50 0.7512*** -0.7350***

100 0.8242*** -0.8132***

200 0.8816*** -0.8776***

Table 4.12: Mean tau correlation between SML and T , varying µa and σa in the opposite

direction. *p < 0.005, **p < 0.0005, ***p < 0.00005
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4.2.4 Sample size

Small cohorts are a long-standing problem in ALS research, due in part to the diffi-

culties in diagnosing the disease and its rapid progression. Also, the cost of collecting

large data sets is high, and so there is a great deal of ongoing research into overcoming

the difficulties of combining smaller datasets; consequently, there are many ideas on

how best to harmonise data sets from different sources.

Large sample sizes enable us to study small effect sizes. For the EBM, it is not

clear how the concept of effect size relates to TI, but it is possible to use the simulated

data to quantify the relationship between sample size N and mean tau distance K̄. We

focus on varied |µa−µc|, and as we currently have only four sizes of cohort (Table 4.2),

we run four more series of simulations for 75, 150, 350 and 500 patients (Table 4.13),

and then plot K̄ against number of simulated patients (Figure 4.1).

Patients K̄(SML, Tµ)

25 0.1801

50 0.1352

75 0.1159

100 0.1005

150 0.0840

200 0.0750

350 0.0567

500 0.0458

Table 4.13: Mean distance between SML and T , varying µa

We can clearly see that there is a strong relationship here. We use Matlab’s Curve

Fitting Toolbox to fit a power distribution of the form y = axb + c to the data,

giving distribution coefficients (95% confidence bounds) as a = 0.6250 (0.5780, 0.6721),

b = −0.3414 (−0.3880,−0.2949) and c = −0.02838 (−0.04617,−0.01059). Thus, the

relationship between mean tau distance and simulated patients is

K̄ = (0.625×N−0.341)− 0.0284 (4.8)

Recalling that τ = 1 − 2K, this means that the relationship between simulated

patients and mean tau correlation is given by

τ̄ = 1.057− (1.250×N−0.341) (4.9)
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Figure 4.1: Plot of K̄ against number of simulated patients, with fitted curve.

Clearly, increased patient numbers will result in greater accuracy (defining accuracy

as reduction in distance between SML and our theoretical “true” order T ), and indeed,

all the simulations of the previous sections support this idea.

It is impossible to say how accurate the EBM will be for non-simulated data, as we

cannot know what the “true” order will be. However, we suggest that increasing the

number of actual patients from 200 to 500 would not result in a worthwhile increase

in accuracy. A sample size in the region of 100 patients appears be sufficient to obtain

K̄ ≤ 0.1 (although we note that for these TI parameters, even a sample size of 25

simulated patients results in a significant correlation between SML and T , p < 0.005).

4.2.5 Number of biomarkers

In this section, I investigate how the EBM output, SML, is affected when biomarkers

are added to or removed from the data set being modelled.

Adding biomarkers

For each iteration of the comparison process, the EBM is run on a theoretical disease

consisting of ten biomarkers, generated as described in section 4.2. This gives us the
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most likely event order for ten biomarkers, SML10
. Mixture parameters for an eleventh

biomarker are chosen such that µc = 0.9, σc = 0.03, µa ∈ (0.8, 0.9) and σa = 0.03. Data

are then generated from these parameters, in the same manner as the other biomarkers.

A random µa is selected in order to simulate the effects of adding biomarkers that occur

at different points in the disease progression. The EBM is then re-run on the original

ten plus one new biomarkers, which gives us the most likely event order for eleven

biomarkers, SML11
. We then remove the eleventh biomarker from SML11

. This gives us

the most likely position of biomarkers 1 to 10, calculated from a model run on eleven

biomarkers, which we designate as S∗ML11
. We can now directly compare SML10

and

S∗ML11
, by examining mean tau distance and the tau correlation coefficient:

Patients K̄(SML10
, S∗ML11

) τ̄(SML10
, S∗ML11

)

25 0.0782 0.8436*

Table 4.14: Simulating the effects of adding a biomarker. *p < 0.0001

Multiplying K̄ by the number of possible pairs tells us that the mean tau distance

is approximately 3.5. This means that on average, the effect of adding an eleventh

biomarker is to increase the number of discordant pairs by 3-4, a remarkably small

amount given that we have simulated only 25 patients. As an aside, 474 of the 1000

iterations had K̄ = 0 (i.e. adding a biomarker had no effect on the order of the original

ten biomarkers).

Removing biomarkers

As before, we run the EBM on a theoretical disease consisting of ten biomarkers,

generating SML10
. This time, however, we remove a biomarker at random, and then

re-run the EBM on the remaining nine biomarkers, generating SML9
. The removed

biomarker is then deleted from SML10
, giving us the most likely position of the nine

persisting biomarkers, as calculated from a model run on ten biomarkers; we designate

this as S∗ML10
. We can now directly compare SML9

and S∗ML10
, by examining mean tau

distance and the tau correlation coefficient:

Patients K̄(SML9
, S∗ML10

) τ̄(SML9
, S∗ML10

)

25 0.0842 0.8316*

Table 4.15: Simulating the effects of removing a biomarker. *p < 0.0005
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Table 4.15 shows that, on average, there is low distance and high correlation between

SML9
and S∗ML10

, even though we have simulated only 25 patients. We find that 497 of

the 1000 iterations had K̄ = 0 (i.e. removing a biomarker had no effect on the order of

the nine persisting biomarkers).

One more question arises: does the position of the removed biomarker have an

effect on the output of the EBM? To answer this, we take all 1000 samples of SML9
and

S∗ML10
, group them by position of the removed biomarker, and then plot histograms of

K(SML9
, S∗ML10

) for each of the ten positions (Figure 4.2). We find that there appears

to be a relationship between the position of the removed biomarker and the tau distance

(e.g. removing biomarkers 1, 2 or 3 gives higher probabilities of K = 0 than removing

biomarkers 6, 7 or 8). The implications of this are not immediately apparent, but

as some form of this relationship may well occur when applying the EBM to actual

patient data, this is an area that requires further investigation.

Figure 4.2: The effects of removing a random biomarker on EBM output, as shown by

histograms of K(SML9
, S∗ML10

), grouped by the position of the removed biomarker.
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4.3 Effects of model modifications

4.3.1 CDF vs. PDF for probability calculations

Repetition of Simulations

In order to compare the effects of using Cumulative Distribution Functions (CDFs) and

Probability Density Functions (PDFs) upon the EBM’s output, each series of simula-

tions in sections 4.2.1 - 4.2.3 was re-run using PDFs for the probability calculations.

Each re-run used the same random number generator seed as its corresponding CDF

series. Thus, the results in this section were produced from simulated patient data

identical to those used in sections 4.2.1 - 4.2.3, meaning that any differences in the

model output are purely due to differences between using CDFs and PDFs.

The detailed results are given in Tables 4.16 - 4.23. To summarise, PDFs appear to

give more accurate results than CDFs when i) varying |µa−µc| and ii) varying |µa−µc|

and σa − σc in the opposite direction. However, PDF results are less accurate when

i) varying σa − σc and ii) varying |µa − µc| and σa − σc in the same direction.

These simulations do not necessarily show that PDFs are less appropriate than

CDFs for calculating probabilities in the EBM, only that CDFs are more accurate

with respect to sample variance - something which is known to be high in ALS. Recall

that we defined accuracy as a reduction in distance between SML and our theoretical

“true” order T ; this relies on the assumption that we have accounted for all other

sources of TI and that the theoretical “true” order is therefore actually correct. The

safest conclusion from these simulations is that CDFs allow us to impose TI on the

model output to a much higher degree than PDFs.

Biomarker directionality

Unlike PDFs, the use of CDFs requires that we take account of the directionality

of biomarker change. If biomarker readings decrease as the disease progresses, as

in the case of FA, then we take p(X|E) = 1 − CDFa and p(X|¬E) = CDFc. If,

however, biomarker readings increase as the disease progresses, then instead we take

p(X|E) = CDFa and p(X|¬E) = 1− CDFc.

Although I consider taking account of biomarker directionality to be a strength, as

it reduces the amount of information that is being discarded, it does require a decision

to be made: how to decide which direction the biomarker progresses in? Three options

are: i) comparing the parameters from the fitted mixtures (µ̂c, µ̂a), ii) comparing the
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means of the patients and controls (µ̄c, µ̄a), and iii) separately fitting single Gaussians to

the patients and the controls, and comparing the single Gaussian parameters (µ̄1, µ̄2).

It is possible that some or all of these options risk imposing too much information

on the model. Using the fitted mixture parameters (µ̂c, µ̂a) would seem to impose a

minimum of extra information, but could increase the effects of poor modelling if the

parameters are not representative of the data; it is possible for the mixture means to

“cross over” during the mixture fitting.

In the current implementation of the EBM, I have chosen to use the cohort means

(µ̄c, µ̄a) to assess biomarker directionality, as I feel it provides a good balance between

imposing minimal extra information and ensuring that the direction matches the actual

data. However, this is an area that requires further development; if possible, it should

be an integral component when developing EM methods for fitting mixtures other than

Gaussians.

4.4 Summary

In this chapter, different sources of temporal information (TI) have been examined

through simulations. Mean separation (the difference between a mixture’s component

means, |µa−µc|) was found to correspond with event position, such that earlier events

have greater mean separation than later events. Variance separation (the difference

between a mixture’s component variances, σ2
a−σ2

c ) also influenced event position, such

that earlier-progressing biomarkers were found to have greater variance separation than

later ones.

The effect of sample size on the EM mixture fitting algorithm was examined in the

context of simulated data (i.e. data for which the target distributions are known). This

was assessed by calculating the τ correlation between the predicted event order and

the actual order generated by the model, for varying numbers of simulated patients.

Sample size was found to be strongly related to τ correlation by an inverse power law.

Finally, the effects of using two different methods for calculating individual proba-

bilities (per subject, per biomarker) were examined. The accuracy when using CDFs

was compared with using PDFs, defining accuracy as a reduction in tau distance be-

tween the predicted and actual event orders. The accuracy of both methods varied

across different conditions, with neither method shown to conclusively outperform the

other. However, these results do show that the use of CDFs permits a greater degree

of TI imposition on the model output.
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Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.11764 0.5034

50 0.0900 0.5009

100 0.0648 0.5086

200 0.0489 0.4968

Table 4.16: Mean distance between SML and T , varying |µa − µc|, using PDFs

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.7671*** -0.0068

50 0.8200*** -0.0018

100 0.8704*** -0.0172

200 0.9023*** -0.0064

Table 4.17: Mean tau correlation between SML and T , varying |µa − µc|, using PDFs.

The correlations are stronger than when using CDFs (see Table 4.3). *p < 0.0005,

**p < 0.0001, ***p < 0.00005

Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.5579 0.5818

50 0.5640 0.5742

100 0.5824 0.5586

200 0.5786 0.5494

Table 4.18: Mean distance between SML and T , varying σa − σc, using PDFs

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 -0.1158 -0.1636

50 -0.1280 -0.1485

100 -0.1648 -0.1171

200 -0.1572 -0.0988

Table 4.19: Mean tau correlation between SML and T , varying σa − σc, using PDFs.

No correlations are significant.
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Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.3529 0.3599

50 0.3192 0.3261

100 0.2877 0.2932

200 0.2608 0.2626

Table 4.20: Mean distance between SML and T , varying µa and σa in the same direction,

using PDFs

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.2943* 0.2801*

50 0.3617* 0.3478*

100 0.4246* 0.4135*

200 0.4784* 0.4748*

Table 4.21: Mean tau correlation between SML and T , varying µa and σa in the same

direction, using PDFs. *p < 0.05

Patients K̄(SML, Tµ) K̄(SML, Tσ)

25 0.1322 0.8534

50 0.1078 0.8860

100 0.0819 0.9128

200 0.0681 0.9299

Table 4.22: Mean distance between SML and T , varying µa and σa in the opposite

direction, using PDFs

Patients τ̄(SML, Tµ) τ̄(SML, Tσ)

25 0.7356*** -0.7069***

50 0.7843*** -0.7719***

100 0.8362*** -0.8257***

200 0.8637*** -0.8599***

Table 4.23: Mean tau correlation between SML and T , varying µa and σa in the opposite

direction, using PDFs. *p < 0.005, **p < 0.0005, ***p < 0.0001
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Chapter 5

Challenging the Model in vivo

In this chapter, I apply the EBM to actual patient data in order to explore the effects of

the main modifications that have been made to the model. As simulations are designed

to be simplified and possess reduced sources of noise, it is necessary to explore the effects

of applying the model to real-world data.

5.1 Effects of model modifications

5.1.1 Adding and removing biomarkers

This section examines what happens if the number of biomarkers is altered when using

actual patient data. Here, we apply the EBM to our complete DTI data set, obtained by

combining Sets F, K and N. To examine the effects of adding and removing biomarkers

based on FA, we split each side of the CST into halves, run the EBM, and compare the

results when split into thirds. Thus the change being compared is the removal of four

biomarkers (CST inferior/superior, L/R) and replacement with six related biomarkers

(CST inferior/middle/superior, L/R), giving an overall increase of two biomarkers.

Figure 5.1 shows the model output for this comparison, and it can be seen that

the CST progression retains the inferior to superior directionality. However, the other

biomarkers substantially change positions; taking only the non-CST tracts into consi-

deration, the Kendall tau distance between the two most likely orders of progression

is 0.5810, meaning that almost 60% of possible event pairs are different. We note that

events 8 to 20 of the six-region-CST progression order are approximately a reversal of

events 6 to 18 of the four-region-CST progression order.

If the comparison is re-run after removing outliers > 2σ during mixture fitting

(Figure 5.2), we then find that the results remain almost completely stable: the only
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(a) 19 events: CSTs divided into four regions. (b) 21 events: CSTs divided into six regions.

Figure 5.1: Positional variance diagrams showing the effects of increasing the number of

biomarkers for actual patient data, Sets FKN. Constraints: mixing proportions > 0.25

difference between the progression orders for four-region-CSTs and six-region-CSTs is

that ACR L/R swap positions.

This reinforces how crucial the mixture fitting process is to the EBM. Further

discussion of the impact of the mixture models is given in subsection 5.1.3.

5.1.2 Too many or too few biomarkers

Too many biomarkers results in Matlab encountering floating-point precision problems,

hence the adaptations for variable precision (see subsection 2.5.3). The number of sub-

jects will also affect Matlab’s precision. Quantifying “too many” biomarkers is not

straightforward, as the magnitude of probabilities will depend on the data being mo-

delled, the fitted mixture model parameters and the distribution of patients’ biomarker

readings; anecdotal evidence suggests that this problem can arise when working with

upwards of 45 biomarkers for 100 ALS patients.

Too few biomarkers defeats the point of the EBM, as we can then exhaustively

calculate P (S|X) for all Ω (see subsection 7.4.4) and definitively find the most likely

event order. Quantifying “too few” is also difficult, as the processing time required

will depend not only on the number of biomarkers, but also on the number of subjects.

However, experience during the development of the model suggests that at least 14

biomarkers are needed to make it worthwhile using the EBM.
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(a) 19 events: CSTs divided into four regions. (b) 21 events: CSTs divided into six regions.

Figure 5.2: Positional variance diagrams showing the effects of increasing the number of

biomarkers for actual patient data, Sets FKN. Constraints: mixing proportions > 0.25,

outliers > 2σ removed during mixture fitting.

5.1.3 Sample size and mixture fitting

The importance of sample size to the EBM should not be underestimated, as the EM

algorithm appears to be sensitive to outliers. Recalling that one control subject was

excluded during data preparation (as 6 of 19 biomarker readings were outliers; see

subsection 3.2.1), this section will examine the effects of reintroducing this subject into

our data sample.

As the outlier healthy control (HC) was a member of Set K, we begin by running

the EBM on Set K. We shall refer to Set K with the outlier HC excluded as K24,

since the sample contains 24 controls. Set K with the outlier HC included is similarly

designated K25.

As can be seen in Figure 5.3, the impact of the outlier HC is substantial. The

majority of the events for K24 have extremely high positional variance, suggesting that

the subject sample size may be too small; we should certainly be hesitant to draw any

conclusions from this model output. Conversely, the MCMC samples for K25 appear to

have an acceptable level of positional variance. Extrapolating from this result would not

seem unreasonable; without having run the EBM on K24, we would have a potentially

false level of confidence in the validity of the model output for K25.

The size of Set K is limited (28 ALS patients, 24 or 25 HCs), which could provide

an explanation for the disproportionate impact of a single outlier HC. To test this, we
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repeat the above comparison process, applying the model to all available data (87 ALS

patients, 69 or 70 HCs). As expected, the larger sample size reduces the effect of the

outlier HC (Figure 5.4), although it is not completely eliminated. This suggests that

the outlier HC is affecting all biomarkers, including those for which their readings are

not outliers.

However, the desired similarity of EBM output can be recovered by removal of

outliers > 2.5 σ during mixture fitting. Indeed, this seems to nullify the effects of the

outlier HC, as the results now appear identical (Figure 5.5 (a) - (b)). It is only by

applying a custom colourmap to the PVDs that differences in the MCMC iterations

become visible (Figure 5.5 (c) - (d)).

The EM algorithm’s apparent sensitivity to outliers suggests that further explo-

ration of the resilience of EM Gaussian mixture fitting is needed. These effects can

be reduced by the removal of outliers during the mixture fitting (as described in sub-

section 2.5.2), although this method lacks finesse. An alternative method of reducing

sensitivity to outliers is to fit the EM mixture models by bootstrapping (“resampling

with replacement”). This process is discussed in greater detail in subsection 7.4.1.

(a) Outlier HC excluded (b) Outlier HC included

Figure 5.3: Comparison of model output for (a) Set K with outlier HC excluded, and

(b) Set K with outlier HC included. Constraints: mixing proportions > 0.25
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(a) Sets FKN, outlier control subject excluded (b) Sets FKN, outlier control subject included

Figure 5.4: Comparison of model output for Sets FKN (outlier HC excluded) with Sets

FKN (outlier HC included). Constraints: mixing proportions > 0.25

5.1.4 Gaussian vs Non-Gaussian

Inappropriate Gaussians

Applying the EBM to cortical thickness data derived from structural MRI scans allows

us to compare what happens when data are mostly Gaussian or not Gaussian.

For 28 cortical thickness biomarkers, we consider controls and patients separately,

giving 56 groups that could be Gaussian. The Lilliefors test (the lillietest function

in Matlab) was used to test for normality, for a significance level of p < 0.05. This

revealed that 10 of the possible 56 groups were unlikely to be normally distributed.

All 28 biomarkers were then transformed by dividing by the mean thickness of the

corresponding hemisphere on a subject-by-subject basis, and the Lilliefors test was

performed as before. This time, only 5 of the possible 56 groups were unlikely to be

normally distributed. The EBM was then run on the original data and the transformed

data.

A visual comparison of the EBM output (Figure 5.6) confirms that the EBM appears

to perform better if the data are modelled with more appropriate mixture distributions.

Because of this, support for other mixture types is a desirable addition to the model.

Refitting a single biomarker

For a test of model stability, we change the mixture modelling of the neuropsychological

biomarker TROGerr from two Gaussians to two Poissons. This biomarker was selected
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(a) Sets FKN, outlier HC excluded (b) Sets FKN, outlier HC included

(c) Sets FKN, outlier HC excluded* (d) Sets FKN, outlier HC included*

Figure 5.5: Comparison of model output for Sets FKN (outlier HC excluded) with Sets

FKN (outlier HC included). Constraints: mixing proportions > 0.25, outliers > 2.5 σ

excluded during mixture fitting. * = Custom colourmap applied to increase contrast.
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(a) Cortical thickness data from Sets KN, with no transformations applied.

10 of the 56 groups are not Gaussian.

(b) Cortical thickness data from Sets KN, transformed by dividing by mean

hemisphere cortical thickness. 5 of the 56 groups are not Gaussian.

Figure 5.6: Positional variance diagrams showing the effects of transforming control and

patient biomarker data to be Gaussian. Controls and patients were separately assessed

for normality, giving 56 groups that could be Gaussian. The positional variance of (a)

is considerably higher than (b). Constraint: mixing proportion > 0.15.
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for mixture refitting as its data can plausibly be modelled as a Poisson distribution;

“TROGerr” is a test of verbal comprehension of syntax, and is measured as the number

of errors made during a fixed number of tests. This can be interpreted as a rate of

discrete events (i.e. errors per fixed period), which in turn is appropriate for modelling

as a Poisson distribution.

The results of this change of mixture distribution are shown in Figure 5.7, and the

model output remains remarkably stable. Aside from “TROGerr” moving to an earlier

position, there is only one other change: a pair of neighbouring events swap places. As

the majority of the event order appears to be preserved, we can only speculate whether

a Poisson mixture is actually more appropriate for the biomarker in question, although

we note that the positional variance of the new event order, Figure 5.7 (b), appears to

be more symmetrical around the diagonal.

(a) All fitted as mixtures of two Gaussians (b) “TROGerr” as a mixture of two Poissons

Figure 5.7: Positional variance diagrams showing the effects of refitting a single bio-

marker, “TROGerr”, from a mixture of two Gaussians to a mixture of two Poissons.

The neuropsychological biomarkers are modelled on data from Set K.

5.1.5 Assessing Mixture types

It is important to note that the appropriateness of mixture fitting should not be jud-

ged by eye from the mixture plots. The selection of the bin method for plotting the

histograms can have a tremendous effect on the appearance of the histograms, as can

be seen in Figure 5.8.
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(a) Histograms using ten equal width bins.

(b) Histograms using the “square root” method to size the bins.

Figure 5.8: Histograms of neuropsychological biomarker readings, with mixture mo-

del component distributions superimposed. The fitted mixture model parameters are

identical in (a) and (b); the only difference is the method used for choosing the limits

of the histogram bins. “Utterance” appears particularly affected.
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5.2 Coverage of sample space

Here, for each of the seven possible dataset combinations, we compare the output of the

greedy ascent algorithm, Sg, to the EBM output, SML. This acts as a simple method

of checking the coverage of the sample space of all possible event orders, Ω.

In justification, we recall that the greedy ascent algorithm is a crude method of

finding an event order Sg with (possibly local) maximum likelihood, and that we use

this greedy output to initialise the more sophisticated MCMC process. If Sg is the

global maximum, then the MCMC process should remain broadly within the nearby

area of Ω. If Sg is only a local maximum, then the MCMC process should move to the

area of Ω containing the global maximum. This leads us to the following conclusions:

� If Sg is the global maximum, then SML = Sg, and so p(Sg|X) = p(SML|X)

� If Sg is a local maximum, then SML 6= Sg, and so p(Sg|X) < p(SML|X)

� If p(Sg|X) > p(SML|X), then some part of the modelling is not appropriate

The third situation will arise if the MCMC process has moved out of the area of Ω

containing the global maximum and not returned. This means that the MCMC output

will not, in fact, be the event order with maximum likelihood. There are many reasons

why this could occur, such as inaccurate mixture fitting, too few MCMC iterations

or an inappropriate choice of MCMC algorithm; irrespective of the causes, it is an

indication of problems within the modelling process.

Tables 5.1 - 5.4 give the log-likelihoods for Sg and SML, calculated from patient da-

tasets F, K, N and all possible combinations thereof. We find that when using CDFs to

calculate event probabilities, then p(Sg|X) > p(SML|X) for two out of the seven groups

(Table 5.1). The two groups affected, Sets K and N, have the smallest sample sizes

of the subgroups, which would be expected to increase the chances of poor modelling.

Conversely, when using PDFs to calculate event probabilities, p(Sg|X) > p(SML|X) for

all seven groups (Table 5.2), indicating much more widespread inappropriate coverage

of the sample space.

As the EM algorithm appears to be sensitive to outliers, we re-run the EBM exclu-

ding outliers > 2.5 σ during the mixture fitting process, as described in subsection 2.5.2.

As shown in Tables 5.3 - 5.4, this does not appear to affect the coverage of the sample

space for either CDFs or PDFs, as the cohorts with Sg > SML remain unchanged.
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The results of this section serve as a reminder that it is always worthwhile per-

forming MCMC diagnostic tests. In general, Brooks et al. (2011) recommend simple

diagnostics such as examining a time series plot or an autocorrelation plot of the MCMC

iterations. For the EBM, I suggest that when using CDFs, a comparison of p(Sg|X)

and p(SML|X) should also be included.

F K N FK FN KN FKN

Sg -582.66 -429.37 -324.63 -876.77 -828.52 -678.87 -1212.98

SML -582.66 -429.71 -324.74 -876.77 -828.52 -678.87 -1212.69

Table 5.1: Log-likelihood for greedy output and SML, using CDFs to calculate event

probabilities. Sg > SML for groups K and N.

F K N FK FN KN FKN

Sg 1523.31 1198.43 932.97 2661.02 2440.91 2046.32 3546.73

SML 1522.72 1197.63 932.79 2660.55 2440.35 2045.80 3546.40

Table 5.2: Log-likelihood for greedy output and SML, using PDFs to calculate event

probabilities. Sg > SML for all groups.

F K N FK FN KN FKN

Sg -628.19 -442.98 -355.53 -924.33 -853.34 -782.82 -1283.16

SML -627.63 -443.08 -355.87 -924.33 -853.34 -782.82 -1280.56

Table 5.3: Log-likelihood for greedy output and SML, using CDFs to calculate event

probabilities. Outliers > 2.5 σ were excluded during mixture fitting. Sg > SML for

groups K and N.

F K N FK FN KN FKN

Sg 1496.52 1195.55 934.93 2660.10 2434.57 2066.65 3553.47

SML 1496.27 1194.76 934.52 2659.85 2433.99 2066.62 3553.14

Table 5.4: Log-likelihood for greedy output Sg and SML, using PDFs to calculate event

probabilities. Outliers > 2.5 σ were excluded during mixture fitting. Sg > SML for all

groups.
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5.3 Summary

In this chapter, the effects of the main modifications to the EBM were explored by

applying the model to actual patient data. It was concluded that the model output

generally remains stable, although changing the biomarkers being modelled (whether by

adding biomarkers, removing biomarkers or changing mixture parameters) has knock-

on effects that were not always predictable. It was established that the event position

of an individual biomarker is dependent on the other events being modelled.

The model was applied to non-Gaussian data, and then to the same data after

applying a transformation to make the data Gaussian in nature. As expected, the

EBM output for the non-Gaussian data had consistently greater positional variance

than for the transformed data.

The effects of sample size and outliers on the EBM output were examined in the

context of actual patient data. Sample size was found to have the expected impact

on the accuracy of the EM mixture fitting algorithm (i.e. larger sample sizes permit

greater accuracy when fitting mixtures). The EM algorithm was shown to be highly

sensitive to the effects of outlier data points, and it was concluded that further research

is required into methods to account for this sensitivity.

Finally, the effects of CDFs and PDFs on coverage of the sample space Ω were in-

vestigated. By comparing the likelihood for the output of the greedy ascent algorithm

Sg to that of the EBM output SML, it was found that PDFs appear to consistently

generate output such that p(Sg|X) > p(SML|X). The implications of the greedy as-

cent algorithm seeming more effective than the MCMC process are not entirely clear,

particularly as CDFs do not appear to suffer from the same problem. It is possible

that this may indicate inappropriate coverage of the sample space while using PDFs,

and further investigation is warranted.
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Chapter 6

Model Output

As with any modelling process, the parameters of the mixture fitting and EBM algo-

rithms have been adjusted over the course of this study. These alterations have effects

of varying sizes on the model output; this means that the model has generated many

possible most likely orders of progression, all of which are related but not identical. As

the actual course of ALS progression is unknown, we cannot know which are the ideal

model parameters that will lead to the ALS-generalised most likely order of progres-

sion. As it is poor practice to run many different parameter variants and then select

the results that appear interesting, we must instead declare the model parameters

beforehand:

� Mixture proportions (“mix”) constrained such that mix > 0.25

� Outliers to be removed during mixture fitting if:

– sample size is “small” (provisionally defined as fewer than 30 patients or

controls)

– positional variance is unacceptably high (as in Figure 5.3 (a))

– the MCMC trace plot shows evidence of poor mixing

� Outlier removal should be as lenient as possible:

– Removal of outliers > 3σ, then assess the changes to the mixture fitting

– If changes are not significant, then remove outliers > 2.5σ, or > 2σ

– Each outlier threshold is equivalent to removing 0.0027, 0.0124 and 0.0455

respectively of the data from the Gaussian distribution
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In this chapter I present the results obtained by applying the EBM to three different

modalities of data: DTI metrics, structural T1-weighted MRI data and neuropsycho-

logical readings. The results are given in the form of positional variance diagrams,

which show the most likely event order for the modelled cohort, as well as each event’s

variation across the MCMC samples. This variation may be considered to represent

the uncertainty of an event’s ordering. To aid in interpreting and understanding the

model output, the fitted mixture models are also given and examined.

6.1 Neuroimaging biomarkers

6.1.1 FA data

Changes in FA are used as an index of neurodegeneration, particularly in white matter.

Thus, I have applied the EBM to this metric in order to examine the progression of

white matter tract degeneration in ALS.

Figure 6.1 gives the results obtained by applying the model to the entirety of the

data available, a single data set comprised of all three cohorts: Sets F, K and N. Under

this model, the CSTs are the first tracts to be affected, with neurodegeneration taking

place in the inferior CST (positions 1 to 2) immediately followed by the superior CST

(positions 3 to 4). The CSTs have low positional variance, which is almost entirely

restricted to switching between the left and right halves of each biomarker. The rest

of the white matter tracts have higher positional variance, and appear to be grouped

in three “clusters”. Each cluster roughly outlines a square, indicating a group of tracts

that progress at similar times. UFL is not included in these clusters, and instead

appears rigidly in last position.

Figure 6.2 gives the results of applying the model to i) individual cohorts and ii) all

pairs of cohorts. It can be seen that the most likely event order is not consistent across

the cohort subgroups, and frequently differs from the event order seen in Figure 6.1; this

is not unexpected, given the heterogeneity of ALS and the datasets being examined.

As diffusion MRI studies of ALS patients have consistently shown involvement of the

CSTs and the corpus callosum (Grolez et al., 2016), we instead examine the relative

positions of these biomarkers.
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Figure 6.1: Positional variance diagram of the most likely event order of white matter

tract neurodegeneration in ALS patients, generated from SML and the MCMC samples.

The EBM was run on the FA data of all ALS patients of the combined data set (Sets

FKN). Constraints: mixing proportion > 0.25, no outliers removed.
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(a) Set F* (b) Set K* (c) Set N*

(d) Sets FK (e) Sets FN (f) Sets KN

Figure 6.2: Positional variance diagrams for FA data of all possible subgroups of Sets F, K and N. Constraints: mixing proportion > 0.25.

* = outliers > 2σ removed during mixture fitting.
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Corticospinal Tracts

From the positional variance diagrams of the combined data and all six possible sub-

groups (Figures 6.1 - 6.2), it is apparent that the CSTs consistently occur early in

disease progression. The degeneration of the CSTs is shown to be strongly directional,

as the inferior aspect occurs before the superior aspect for all possible groupings. We

also find that the positional variance for the CSTs is low, regardless of cohort. These

features suggest that the directional degeneration of the CSTs is an important and

early feature of white matter damage progression in ALS.

As external validation of the directionality observation is not possible, we have

performed a sanity check by splitting the CST into thirds and re-running the EBM.

As shown and discussed in Figure 5.1, we find the directionality of CST progression is

preserved, moving from inferior through middle to superior.

Further discussion of the importance of the CSTs to overall event progression in

ALS can be found in subsection 7.4.4.

Corpus Callosum

Examining all positional variance diagrams, we find that both the relative and absolute

positions for CC genu, CC body and CC splenium show no consistency. This is in

contrast with the regularity of the CSTs’ positional appearance in the subgroups.

However, the EBM output for the combined data, as shown in Figure 6.1, suggests

that CC degeneration is nonetheless an early feature of ALS white matter disease

progression (beginning centrally and then spreading outwards to the genu and then

the splenium). We note that the CC biomarkers occur after the CSTs in 5 out of the

7 groupings, with the exceptions being Sets N and the related KN.

This pattern of CC degeneration could be characterised as secondary to and less

certain than that of the CSTs, and this relationship appears to be mirrored in the

wider literature; the CST is almost invariably reported as being strongly involved in

DTI studies of ALS, while there is less consensus as to the extent of CC involvement

(Grolez et al., 2016).

We conclude that the relationship between CST and CC degeneration in ALS re-

quires further examination in future studies.
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Fitted Mixture Models

Visual inspection of the plots of the fitted mixture models for Sets FKN (mix > 0.25,

no outliers removed), given in Figure 6.3, reveals further details about the modelling

process:

� All the CST and CC biomarkers have clear mean separation, suggesting that they

are responsible for a good proportion of the temporal information extracted by

the model.

� We see from Figure 6.1 that the left and right sides of each tract progress in close

proximity to each other. However, Figure 6.3 shows that a majority of the tracts

have been fitted with dissimilar mixtures for both sides. This is particularly

noticeable for the ACR, which is assigned to neighbouring events despite its

differing mixtures.

� The UF has been modelled such that its left and right sides do not progress in

close proximity, and we observe that UFL is the only biomarker that has been

fitted with µ̂a > µ̂c.

Conclusions from FA data

I conclude from the modelling of these WM tracts that:

� the corticospinal tracts are the earliest to be affected

� the neurodegeneration of the corticospinal tracts is directional, proceeding from

inferior to superior aspect

� We can propose a 5-stage hypothesis of WM degeneration in ALS:

1. Inferior corticospinal tract

2. Superior corticospinal tract

3. CC Body and Genu, ACR

4. CC Splenium, Cingulum and SS

5. SLF and SFOF
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Figure 6.3: The fitted mixture models for Sets FKN. Constraints: mixing proportion > 0.25, no outliers removed.
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6.1.2 Structural data

Some general comments on the difficulties of modelling the progression of structural

biomarkers, as opposed to FA-based metrics:

� Patients’ structural biomarker data were less often normally distributed; this had

an impact on the mixture fitting process, although we note that the EM algorithm

did reach convergence for all biomarkers.

� Matters were improved by normalising region volumes by total intracranial vo-

lume, and region cortical thicknesses by mean thickness of the corresponding

hemisphere.

� When compared to the results for FA, overall positional variance of structural

biomarkers was increased. As would be expected, positional variance was higher

when modelling each dataset (Set K and Set N) individually than when combined

into Sets KN.

These difficulties are probably related to the smaller sample size, as well as the extra

parametric assumptions made during the FreeSurfer segmentation and parcellation

processes.

Subcortical Segmentation

These data are comprised of volumes in mm3 for subcortical structures, as generated

by FreeSurfer’s automatic subcortical segmentation process. The regions were taken

from the atlas by Fischl et al. (2002), included in FreeSurfer 5.3.0. In order to account

for inter-subject variability, region volumes were normalised by the subject’s total

intracranial volume. The EBM parameters were set as mix > 0.25 and outliers > 2.5σ

excluded during the mixture fitting process. The model was run separately on ALS

patients and controls; we expect volume changes due to healthy aging, and this allows

a comparison.

Under this model, we compare the most likely order of progression for patients

with that of controls (Figure 6.4). We find that ventricles progress earlier in patients;

this is most apparent for the lateral ventricles, but the third and fourth ventricles also

appear to be affected (and have increased positional variance). The corpus callosum

also progresses slightly earlier in patients; although the change is not as dramatic as

might be expected, the corpus callosum’s positional variance is more heavily weighted

towards the latter half for controls, suggesting that the change is noteworthy.
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(a) Normalised volumes of subcortical structures, EBM run on ALS patients

(b) Normalised volumes of subcortical structures, EBM run on healthy controls

Figure 6.4: Positional variance diagrams for Sets KN subcortical volumetric data.

Constraints: mixing proportion> 0.25, outliers> 2.5 σ removed during mixture fitting.
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The positions of the thalamus and brain stem “cleanly” swap (i.e. the location of

their most frequent positions are not equal), with the thalamus progressing first for

patients. We also observe that the amygdala is affected much later in patients than in

controls; it seems unlikely that ALS confers a neuroprotective effect on the structure,

so this may instead suggest that the absolute progression of the intervening biomarkers

has been accelerated.

Cortical Parcellation

These data are comprised of mean thicknesses in mm for cortical structures, as gene-

rated by FreeSurfer’s automatic cortical parcellation process. The regions were taken

from the Desikan-Killiany atlas (Desikan et al., 2006), included in FreeSurfer 5.3.0. In

order to account for inter-subject variability, and to transform the data to be Gaus-

sian, region thicknesses were normalised by mean cortical thickness of the corresponding

brain hemisphere. The EBM parameters were set as mix > 0.25 and outliers > 3σ

excluded during the mixture fitting process. The model was run separately on ALS

patients and controls; we expect cortical thinning due to healthy aging, and this allows

a comparison.

The outlier removal threshold is different from that used in the previous section;

we have previously stated that we wish to use the least strict constraints possible, and

there did not appear to be substantial differences to the mixture fitting when using a

threshold of 2.5σ or 3σ.

Again, under this model, we compare the most likely order of progression for pa-

tients with that of controls (Figure 6.5). It is immediately apparent that Events 1 to 8

and 10 to 14 are strongly clustered for ALS patients, unlike for controls, which display

a more consistent positional variance across the entire progression.

The precentral and paracentral gyri events form a cluster in ALS patients; these

regions are the primary motor cortex and supplementary motor area, respectively, so

it appears noteworthy that they progress in such close proximity. Examining these

same regions in controls reveals although the precentral gyrus also progresses early on,

the paracentral gyrus is affected considerably later in overall progression. However, we

note that the right paracentral gyrus event has greater positional variance in controls

than in ALS patients.

In ALS patients, the anterior cingulate cortex regions are clustered together approx-

imately three-quarters through the progression order; the same regions occur slightly
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(a) Normalised thicknesses of cortical structures, EBM run on ALS patients

(b) Normalised thicknesses of cortical structures, EBM run on healthy controls

Figure 6.5: Positional variance diagrams for Sets KN cortical thickness data. Con-

straints: mixing proportion > 0.25, outliers > 3 σ removed during mixture fitting.
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less than halfway through progression for controls. Again, we recall that the positional

variance diagrams show only relative event progression, and that the overall time scales

may not be directly comparable between patients and controls.

Finally, some regions appear to progress at a similar point for both patients and

controls: the rostral middle frontal gyrus occurs early on in progression, the orbitof-

rontal cortex regions occur in the middle of progression, and the pars orbitalis occur

towards the end of progression.

6.2 Neuropsychological biomarkers

The results in this section are included as proof of concept that the EBM can be applied

to non-MRI data.

Set K

Here, the EBM was applied to patients and controls combined (as in the AD imple-

mentations of the model), as the neuropsychological tests measure variables that have

age-related changes. The small size of cohort was also a factor in this decision, as the

full range of neuropsychological data were only available in Set K.

Within this cohort and under this model, the most likely order of progression (Fi-

gure 6.6) suggests that changes in executive function occurred at an early stage of

disease evolution, while language impairment occurred after executive dysfunction.

Changes in functional ability as assessed by rate of change of ALSFRS-R occurred

during the executive function changes and before impairments of speech and language.

Small subject numbers strongly affect mixture fitting, and modelling different types

of biomarkers (some integer, some scale-based and some continuous) will also have had

an impact. While I continue to caution against judging the appropriateness of the

mixture fitting solely by eye, Figure 6.7 reveals that biomarkers such as Distortions,

TROGerr and IncompleteSentences contain limited variation within their readings; as

such, fitting a mixture of two Gaussians may not be entirely appropriate. Indeed, it

proved necessary to remove all constraints from the EM algorithm in order for the

mixture fitting to reach convergence for all biomarkers.

Because of these concerns, I suggest that this outcome is treated as proposing a

hypothesis of neuropsychological changes in ALS.
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Figure 6.6: Positional variance diagram for Set K Clinical and Neuropsychological data.

No constraints placed upon mixture fitting. The biomarkers have been colour-coded to

indicate their classification into function and clinical , memory , executive function

or speech and language .

84



Figure 6.7: The fitted mixture models for Set K neuropsychological measures.
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Chapter 7

Discussion

The aim of this study was to define disease progression in ALS, by applying the EBM to

historical and contemporary data sets. However, given that the heterogeneity of ALS is

reflected by the variation within the population subgroups, caution is warranted when

considering extrapolating the cohort-specific EBM results to ALS in general.

In this chapter, I examine and discuss the model output for the three data modalities

examined (FA, structural and neuropsychological). I also comment on some more

general aspects of the modelling process.

7.1 FA results

7.1.1 Model output

Examining the τ correlations between the most likely order of progression (SML) for

all groupings (as given in Figures 6.1 and 6.2) shows that only 4 of the 21 possible

correlations are positive and significant at p < 0.05 (Table 7.1). This could be a

reflection of the heterogeneity of ALS or a consequence of the small sample sizes. In

either case, this subgroup variability means that we cannot necessarily assume that the

EBM progression order is representative of ALS as a whole.

Subgroup variability may be a cause of the indistinct positional clusters seen in

Figure 6.1. We note that if we perform post hoc analysis by removing outliers > 2.5 σ

during mixture fitting and re-running the EBM (Figure 7.1), the progression order

remains unchanged and the positional clusters become more distinct. The fact that

outlier removal corresponds with reduced positional variance serves as a reminder of

the importance of obtaining a sufficiently large sample size.

In contrast to the overall EBM progression order, the CST biomarkers are consis-
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K N FK- FN- KN FKN

F -0.0526 -0.2047† -0.2398*† 0.0526* -0.0292* -0.0058*

K -0.2982† -0.3099*† 0.0526* -0.0409* -0.3450*

N -0.3099†∗ 0.0409* -0.2982* -0.2047*

FK 0.4152* -0.1813* -0.1930*

FN -0.1111* -0.1462*

KN -0.1345*

Table 7.1: τ correlation between SML of the population cohort groupings. EBM applied

to FA data of Sets FKN. Constraints: mix > 0.25, outliers > 2σ removed during

mixture fitting for Sets F, K and N. * = positively correlated, p < 0.05. † = negatively

correlated, p < 0.05.

tently staged with low positional variance across all population subgroups. We are

therefore confident that the EBM demonstrates that the directionality of the FA chan-

ges within the CSTs (inferior preceding superior) is a core feature of ALS.

Due to the sample size and subgroup variability, we can only use the model output

to provide us with a hypothesis of the temporal order of white matter tract dege-

neration in ALS (Figure 7.2). This characterisation of white matter degeneration is

potentially compatible with the model proposed by Braak et al. (2013), although there

are disagreements between the two systems.

Braak et al. characterise the progression of ALS as “induction and dissemination

of pTDP-43 pathology chiefly from cortical neuronal projections, via axonal transport,

through synaptic contacts to the spinal cord and other regions of the brain”.

In contrast, the EBM model proposes that CST degeneration is an early feature

of WM damage in ALS. Furthermore, the directional nature of FA changes suggests

that ALS WM pathology is likely to be induced in the spinal cord or lower brain stem;

this pathology ascends the CSTs and then spreads outwards (passing through the CC)

in a “out-and-down-and-round” pattern. It is this secondary pattern that may be

compatible with that proposed by Braak et al. The inclusion of spinal cord dMRI data

into the EBM would provide a method by which to test this new hypothesis of WM

pathology induction.

These differences in proposed progression may be due to the different data modali-

ties employed: Braak et al. (2013) have derived their results from pTDP-43 pathology,

and the EBM has modelled WM neurodegeneration as measured by changes in FA. It
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Figure 7.1: Positional variance diagram for FA biomarkers of Sets FKN. Mix > 0.25,

outliers > 2.5σ removed during mixture fitting.

Figure 7.2: The proposed temporal order of white matter tract degeneration in ALS,

as generated by the EBM. Stage 1a = Inferior CSTs; Stage 1b = Superior CSTs;

Stage 2 = Corpus callosum Genu/Body, Anterior corona radiata; Stage 3 = Corpus

callosum splenium, Cingulum (cingulate gyrus), Sagittal stratum; Stage 4 = Superior

longitudinal fasciculus, Superior fronto-occipital fasciculus.
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is possible that these two models of progression could be complementary, but further

research with larger sample sizes and carefully selected regions of interest (ROIs) is

needed. To this end, it would be desirable to replicate the 22 CNS regions used by

Braak et al. in the form of a DTI atlas; however, we note that some regions may be

too small to allow for accurate automatic segmentation, and as FA is not particularly

sensitive to cortical abnormalities, it may not be possible to detect cortical changes

preceding WM changes using only DTI measures.

7.1.2 The Uncinate Fasciculus

As noted previously, the mean FA value in ALS patients is lower than in controls (i.e.

µ̂a < µ̂c) for all biomarkers except UFL. It seems likely that this exception is due to

erroneous convergence of the EM mixture fitting algorithm, caused by noise within the

data. The shape of the UF may also be responsible, as it is a highly curved and small

fibre bundle, and both these factors can contribute to inaccurate tensor fitting.

A complete lack of positional variance within a set of MCMC samples can be an

indicator of poor mixture fitting, in contrast to what Young et al. (2014) claim. This

can be seen by contrasting the extremely low positional variance of the UFL biomarker

with its propensity to move between extremes of positions as biomarkers are added and

removed or model parameters are altered. This appears to be linked to the problem of

assessing biomarker directionality, as UFL is the only FA biomarker for which µ̂a > µ̂c.

The UF is also different from the other modelled tracts in that its left and right

sides do not progress in close proximity. For the purposes of experimental curiosity, let

us suppose that the data are noisy, and that UFL degeneration is actually more rapid

in ALS patients than in healthy controls. We assume that the mixture components

have “crossed over” during the fitting but are otherwise appropriate for the data. We

then impose our desired directionality by swapping the mixture parameters so that

µ̂a < µ̂c for UFL, and recalculate P (X|E) and P (X|¬E).

The effects of this exceptionally blunt manipulation of the model data are shown in

Figure 7.3, and we find that the approximate shape of Figure 7.1 is retained. Interes-

tingly, all biomarkers remain within their mini-clusters except for UFR, which moves

to the very end to join UFL. We also note that the positional variance of UFL is now

above zero.

This is a surprising outcome; by crudely altering the mixture fitting for UFL, we

have primarily effected a change in the positional variance of UFR. Of course, as we
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Figure 7.3: Positional variance diagram for FA biomarkers of Sets FKN. Mix > 0.25,

outliers > 2.5σ removed during mixture fitting. µa, σa swapped with µc, σc for UFL.

have enforced our own biased preconceptions on to the data, we cannot consider this

model output as a significant result. We are therefore no wiser as to whether the UF’s

position should be in the middle or at the end of progression, although it seems likely

that the left and right sides of the tract should progress together.

Overall, the unexpected nature of the effect serves as a reminder of why we employ

statistical procedures to seek impartiality, and why model constraints and thresholds

must be declared before modelling.

7.1.3 General observations on FA output

In this study, we have used FA as an index of neurodegeneration. We must therefore

be mindful that although the EBM directly informs us about the temporal ordering of

changes in FA, the model can only indirectly provide information about the progression

of neurodegeneration in ALS. Thus, all results should be considered in the context of

the likely biological causes of these changes in FA.

Bilateral symmetry is present in a majority of the results: the left and right halves

of WM tracts seem to occur in close proximity to each other. It is possible that this

indicates effective or accurate modelling; however, there is no consensus (and indeed

90



little discussion) in the literature as to whether asymmetry of FA changes in WM tracts

is considered to be a defining feature of ALS. In order to test this aspect of the model-

ling, it would be desirable to run the EBM on a disease with consistently asymmetric

neurodegeneration of WM. Unfortunately, diseases of this sort are not plentiful; po-

tential candidates include corticobasal degeneration (CBD) and frontotemporal lobar

degeneration (FTLD), particularly the semantic dementia variant. A more feasible

alternative may be to obtain a large dMRI data set of stroke patients and apply the

EBM to subjects with WM damage primarily on one side.

Lastly, the effects of an outlier HC (as explored in subsection 5.1.3) show that

even with a control cohort size of 70, the EM algorithm is sensitive to a single outlier.

Alternative methods of fitting mixture models should be explored for future work, and

we demonstrate one such possible method in subsection 7.4.1.

7.2 Structural results

Confidence in the model output for the structural data is lower than for the FA data,

for multiple reasons:

� The presence of high positional variance across the EBM output.

� Gaussian mixture modelling may not be entirely appropriate for structural data,

although normalisation of the data appears to partially mitigate this problem.

Further investigation is required, once more data are available.

� The FreeSurfer parcellation and segmentation methods will have had a large effect

on the results, particularly as manual surface pial editing was performed on only

the structural data of Set N. Comparisons with other methods of parcellation

and segmentation, such as those offered by ANTs, would be worthwhile.

� There is noticeably less bilateral symmetry of ROIs than in the FA results.

The model output for structural data possess slightly lower bilateral symmetry

than when using FA data. However, FA is an index of microstructural abnormalities,

while volume and thickness are “gross” indices of macroscopic tissue loss. Thus, it is

possible that the structural markers are simply less appropriate for ALS, resulting in

reduced bilateral symmetry across the most likely event order; further investigation is

warranted.
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Finally, it is worth noting that the comparison between the ALS and HC most likely

orders of progression (MLOOPs), as employed in subsection 6.1.2, may be a useful tool.

This is an unconventional use for the EBM output, but it appears to be a simple and

effective method of visually extracting more information from the available results. Of

course, this does have the drawback of reintroducing human bias into the system; it is

possible that there are tools in the field of ranked data to assist with this.

7.3 Neuropsychological results

We reiterate that the neuropsychological results are included as proof of concept, and

thus they are employed only to generate a hypothesis. Firstly, these results have

been generated from a small data set, so the mixture distribution fitting is extremely

vulnerable to outliers. Secondly, the assumption that the data are normally distributed

seems much less likely to hold. While the EM algorithm has fitted mixtures that appear

to approximate the underlying data (Figure 6.7), some biomarkers are clearly better

suited to this type of modelling than others (e.g. compare the fitting for Utterance with

that of Token).

Other mixture types, such as Poisson or Beta, may be appropriate for some neu-

ropsychological biomarkers. A proof of concept inclusion of a Poisson mixture is given

in subsection 5.1.4, although the simultaneous use of multiple mixture types requires

further investigation.

7.4 Aspects of the Modelling Process

7.4.1 Bootstrapping for mixture fitting

For each biomarker, we bootstrap the data by randomly sampling the control data with

replacement; the size of the resample must be equal to the size of the original control

sample. The ALS patient data are bootstrapped in the same manner. The mixture

models are then fitted by EM, and the parameters of the mixtures are recorded.

This process is repeated a large number of times. The median of the mixture

parameters is then taken, giving a bootstrapped estimate of the parameters of the

mixture models.

If repeated enough times, this bootstrapping process should reduce the impact of a

single outlying biomarker reading (Figure 7.4).
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(a) K24 – Outlier HC excluded (b) K25 – Outlier HC included

(c) K24 – Outlier HC excluded* (d) K25 – Outlier HC included*

Figure 7.4: PVDs comparing the MCMC samples from Set K24 with those of Set K25.

Constraints: mixing proportions > 0.25. * = EM fitted by 100 bootstrap iterations.
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However, there is no simple method for deciding how many iterations are sufficient,

due to the large number of distinct sets of resamples. To illustrate the magnitude

of this problem, we will digress briefly: the multiset coefficient
((
n
k

))
is defined as

the number of distinct sets, when choosing k from n with replacement. The multiset

coefficient is related to the binomial coefficient (proof omitted):((n
k

))
=

(
n+ k − 1

k

)
(7.1)

For 87 ALS patients and 70 HCs (the outlier HC must be included, as the point of

the bootstrapping is to proof against outliers) there are
((

87
87

))
×
((

70
70

))
possible combi-

nations; equivalently, there are
(
173
87

)
×
(
139
70

)
≈ 3.392× 1091 distinct possible bootstrap

samples. Exhaustive bootstrapping is clearly not possible for this data set, nor is it

possible to cover a significant fraction of the possibilities.

Given the vast numbers of possible bootstrap combinations, it seems necessary to

assess the consistency of the bootstrapped EBM. We find that repeated application of

the bootstrapped EBM to Sets FKN shows that model output is not entirely consistent.

To investigate this further, we plot a “meta-positional variance diagram” of the multiple

runs of the bootstrapped EBM (for both 100 and 1000 bootstrap iterations). This

visualises how the model output varies across these runs (Figure 7.5), and we can see

that i) the consistency of the model output increases with the number of EBM runs,

and ii) the number of bootstrap iterations has a similar but much greater effect on

model consistency.

In other words, the more bootstrap iterations, the more likely it is that the mo-

del output will be “typical”. However, performing large numbers of EBM runs at

1000 bootstrap iterations is extremely time consuming. If we assume these meta-PVD

proportions to be accurate (a very large assumption), how many runs of how many

iterations do we need to be sure of finding the “typical” order Smode?

Let us declare the model output Sb across b bootstrapped iterations to be “correct”

if τ(Sb, Smode) is significant at the p < 0.1 level. The distribution of the number of

correct orders X can then be represented by a Binomial distribution: X ∼ B (n, p),

where n is the number of EBM runs, and p is the probability that an individual Sb is

correct.

Say that we want a probability > 0.999 that at least half of all EBM runs are correct

(i.e. that for at least dn
2
e EBM runs, τ(Sb, Smode) is significant). This is equivalent to

P (X ≤ bX
2
c) < 0.001, which can be found using the Binomial cumulative distribution

function, which is implemented in Matlab as binocdf.

94



(a) 10 runs, 100 bootstrapped EM iterations (b) 10 runs, 1000 bootstrapped EM iterations

(c) 100 runs, 100 bootstrapped EM iterations (d) 100 runs, 1000 bootstrapped EM iterations

Figure 7.5: Meta-PVDs, summarising the exploration of bootstrapped EM mixture

fitting as a tool to reduce the impact of a single outlier HC. The EBM was applied to

Sets FKN, including the outlier HC. The diagrams show how the model output, SML,

varied across EBM runs for different numbers of bootstrapped EM iterations (they are

not representations of MCMC samples).

95



From the data used to create Figure 7.5, we establish that 100 EBM runs at 100

bootstrap iterations produces 70% correct runs and 100 EBM runs at 1000 bootstrap

iterations produces 96% correct runs. Matlab’s binocdf function can then be used

to find that we require 54 EBM runs at 100 bootstrap iterations or 5 EBM runs at

1000 bootstrap iterations to ensure that Smode will have < 0.001 probability of being

atypical. Note that although these numbers are only estimates, they are bound to be

overly harsh, as the incorrect orders are likely to have varying levels of disagreement

with Smode.

In this section, we have demonstrated that the mixture fitting process can be

successfully bootstrapped, and briefly investigated the minimum number of EBM runs

and bootstrap iterations required to obtain a given level of consistency of EBM output.

7.4.2 Bimodality of Progression

We have shown that bootstrapping the EM mixture fitting is a possible solution to

the problem of excessive outlier impact, but that the results do not appear completely

consistent. The bimodality visible in Figure 6.1 starts to reappear in the bootstrap

trials (Figures 7.5 - 7.6), and we propose that this could suggest the outline of two

different patterns of ALS progression.

This bimodality – a second potential MLOOP – appears with diminishing frequency

as the number of bootstrap iterations increases. Could this be a consequence of a sub-

population or phenotype? Investigation is needed to see if there are any commonalities

in the ALS subjects that are causing the different MLOOPs. For example, take the list

of subjects sampled for 100 EBM runs of 100 bootstrap iterations, divide them into

“early ACR” and “late ACR” groups, and then perform analyses (such as latent cluster

analysis, principal component analysis or latent Dirichlet allocation) to see if there any

traits distinguishing the two groups. Any common traits could then be compared with

established clinical phenotypes.

7.4.3 Assessing the EBM’s potential as a diagnostic tool

If the EBM were able to completely define the progression of ALS, then clinical uses

would include: i) diagnosing phenotypes of ALS, ii) being able to distinguish ALS

from other neurodegenerative diseases, thus no longer having to diagnose the disease by

exclusion, and iii) earlier diagnosis of ALS. These challenges are beyond the capabilities

of the results produced in this study, so we instead consider a far simpler task: assuming
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Figure 7.6: Meta-PVD for Sets FKN, excluding the outlier HC. The diagram shows how

the model output, SML, varied across 100 EBM runs of 100 bootstrapped EM iterations,

and is not a representation of MCMC samples. Constraints: mixing proportions > 0.25
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the CST progression to be a primary feature of ALS, can we use only the EBM to

distinguish between patients and controls?

The classifying stages are defined as the four biomarkers of the CST as they occur

in the most likely progression order (inferior left, inferior right, superior left, superior

right). We assign each patient j to the stage k which is given the highest probability

by the EBM, by solving the likelihood of that patient’s data given SML (Equation 2.1)

for argmaxk. Note that this is only possible after the MCMC process, as we have then

defined SML, P (xij|Ei) and P (xij|¬Ei) for our cohort:

max kj = argmaxk P (Xj|SML, k)

= argmaxk

k∏
i=1

P (xij|Ei)
N∏

i=k+1

P (xij|¬Ei)
(7.2)

The distribution of stages assigned to patients and controls is shown in Figure 7.7.

Defining a subject’s classification as “healthy” if they are assigned stage 0, and in a

“disease state” if they are assigned stage 1 or above, gives sensitivity of 0.782 and

specificity of 0.594. Plotting the ROC curve (Figure 7.8) for all possible thresholds

gives the area under the curve as 0.713.

The FA values of the CSTs have previously been investigated as a candidate for

an ALS diagnostic test. Foerster et al. (2012) performed a meta-analysis of 30 DTI

studies in order to estimate the diagnostic test accuracy measures of CST FA. With

a combined cohort of 561 ALS subjects and 530 HCs, Foerster et al. found pooled

sensitivity of 0.65 (95% CI 0.61-0.69), pooled specificity of 0.67 (95% CI 0.63-0.72)

and the pooled area under the ROC curve was 0.76 (95% CI 0.71-0.81). The accuracy

measures produced by the EBM are comparable to those of the meta-analysis, although

they certainly cannot be said to be substantially better.

As currently modelled, measuring the FA of the CSTs is not sensitive or specific

enough for diagnosis of ALS. However, if biomarkers of varying types and distinct

temporal positions are added to the progression order, it should be possible to improve

the discriminatory capabilities of the EBM.
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Figure 7.7: The distribution of the most likely stages assigned to all 156 subjects, as

generated from the four CST biomarkers. Stage 0 is equivalent to being in a healthy

state for all four CST regions. Here, the proposed diagnostic event order is CST

inferiorL, inferiorR, superiorL and superiorR.

Figure 7.8: ROC curve for the EBM as a diagnostic tool for ALS, using only the four

CST biomarkers. The discrimination threshold was varied to cover all possible stages

shown in Figure 7.7. The AUC is 0.713.
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7.4.4 CST pathology

Evidence for CST changes acting as primary driver of model likelihood

In simplistic terms, finding the most likely event order for a data set is straightforward:

calculate the probability of every possible order, and select the order with the greatest

log-likelihood (LLH). For n biomarkers, there are n! possible permutations, and thus the

exhaustive approach becomes excessively computationally expensive as n increases. To

overcome this problem, the EBM employs MCMC methods to sample from the posterior

distribution. This gives the EBM one of its main strengths: the ability to handle large

numbers of biomarkers (even more so after the variable precision adaptation described

in section 2.5).

However, if we select only a few biomarkers, brute force methods can be employed

in place of MCMC techniques: for 8 biomarkers, there are only 40 320 possible per-

mutations. We are then able to exhaustively compute the LLH for every permutation,

thus covering the entire sample space, Ω.

To carry out an exhaustive exploration of Ω for an eight-biomarker model, we

combined the left and right sides of eight white matter tracts into new ROIs. As before,

the mean FA values were taken for each ROI, and then Gaussian mixture models were

fitted to each biomarker (Figure 7.9). We elected to examine the inferior and superior

thirds of the CSTs, as they should have greater distinction than if divided into halves.

These new ROIs are respectively designated CST inf 3 and CST sup 3. Due to the

larger volumes of the ROIs, we chose to impose less strict constraints upon mixing

proportions (only greater than 0.15). Interestingly, all mixing proportions assigned

by the EM algorithm were greater than our standard threshold of 0.25. This suggests

that averaging across entire tracts, giving larger regions and greater volumes, guides the

mixture fitting away from unrealistically unbalanced models; we recall that increasing

the sample size has a similar effect.

As can be seen in Figure 7.10, the posterior distribution of the LLHs is bimodal,

with a clear and distinct separation into two groups. If we define A = {permutations

in lower LLH group} and B = {permutations in higher LLH group}, then A and B

form a partition of Ω. Plotting the positional variance diagrams (PVDs) (Figure 7.11)

for A and B reveals that the only differences between these two groups are the order

in which the inferior and superior portions of the CST are affected: we note that B,

the group with the higher LLH, possess the inferior before superior CST directionality.

We also find that the ordering of the other six biomarkers are evenly distributed
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Figure 7.9: The fitted mixture models for FA data of Sets FKN. Each biomarker

reading is the mean FA value across the whole tract (left and right sides combined).

Constraints: mixing proportion > 0.15, no outliers removed.

across A and B (as indicated by the uniform grey shading), suggesting that these six

biomarkers have no effect on whether a permutation falls into the low or high LLH

group. For these eight biomarkers, it appears as though the CST changes are acting

as the primary driver of model likelihood.

However, this posterior bimodality is not present if modelling the inferior and su-

perior halves of the CST; we can conclude that the huge and distinct component

separation of the CST outer thirds is responsible for the strong temporal distinction

found. This is supportive of the hypothesis of CST directional degeneration: if ALS

neurodegeneration progresses along the CSTs from inferior to superior, then (by the

simple mathematics of arithmetic means) we would expect the differences between the

outer thirds to be greater than when divided into halves.

Closer examination of the mixture models fitted to the CST inferior and superior

thirds reveals (as shown in Table 7.2) that both mean separation and variance separa-

tion differ in a manner consistent with the results of section 4.2. In other words, these

two sources of TI appear to be acting as predicted. The distribution of the mixing pro-

portions is noteworthy, as the proportions are almost exactly inverted between inferior

and superior. This could suggest that there is some useful information in the mixing

proportion, which is currently being discarded.
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Figure 7.10: Log-likelihood calculated for all 40 320 possible event orders of an eight-

biomarker model, revealing that the posterior distribution is bimodal.

(a) Set A, lower LLH group (b) Set B, higher LLH group

Figure 7.11: Positional variance diagrams for groups A and B, which form a partition

of the sample space Ω of an eight-biomarker model (as seen in Figure 7.10). A =

{permutations in lower LLH group}, B = {permutations in higher LLH group}.

|µa − µc| σa − σc Mix HC:ALS

CST inf 3 0.1945 0.00830 0.2899 : 0.7101

CST sup 3 0.1774 0.00036 0.7071 : 0.2929

Table 7.2: Temporal information (TI) parameters and mixing proportions for the outer

thirds of the CSTs. The TI parameters vary in a manner consistent with the EBM

progression order: the earlier event has greater mean and variance separation.
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7.4.5 The mixing proportion

In this section, I examine further the role of the mixing proportion in the EBM, and

its relationship to the encoding of temporal information.

Simple implementation

For each biomarker, let us assume that the mixing proportion represents the relative

“weights” of the healthy and diseased populations. This assumption appears reasona-

ble, as we have fitted two-component mixtures, assigning one component to P (x|E)

and the other to P (x|¬E).

Here, subjects for whom an event has not occurred are effectively assigned to the

healthy population, irrespective of whether they are an HC or a patient (and the

converse is also true). Thus, the mixing proportion should indicate what fraction of

the patient population have a biomarker reading in the diseased state. We can then

rank the biomarkers by mixing proportion: a high ratio of diseased to healthy subjects

suggests an early event, while a low ratio suggests a late event. This ranking gives us

a theoretical event order, which we designate Tmix.

This implementation can be tested by applying the ranking process to the FA data

of Sets FKN; if the mixing proportion does encode TI in the manner proposed above,

then SML and Tmix should be similar. Visual assessment of the accuracy of Tmix is

performed by replotting the MCMC samples of Figure 6.1, using Tmix as the most

likely event order (Figure 7.12).

From the positional variance diagrams, it is clear that SML and Tmix differ sub-

stantially; the Kendall tau distance is 0.4211, meaning that over 42% of event pairs

are discordant. Unsurprisingly, we find that the Kendall rank correlation coefficient

for the two orders is not significant: τ(SML, Tmix) = 0.1579, p = 0.1840. However, the

directional degeneration of the CSTs is preserved

As we have previously shown that CDFs and PDFs affect the model output in

different ways (subsection 4.3.1), we re-run the EBM, calculating the probabilities

using PDFs (Figure 7.13). Here, we see slightly greater agreement between SML and

Tmix (Kendall tau distance is 0.4035), and their correlation is also positive and not

significant: τ(SML, Tmix) = 0.1930, p = 0.1334.

Although we have not found significant positive correlation between SML and Tmix

when using PDFs, this implementation is simplistic, and thus a different approach may

prove more effective.
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(a) SML (b) Tmix

Figure 7.12: Positional variance diagrams comparing SML and Tmix, the theoretical

event order obtained by sorting the fitted biomarker mixing proportions (“simple im-

plementation”). CDFs were used to calculate probabilities. SML and Tmix are not

significantly correlated: p = 0.1840.

(a) SML (b) Tmix

Figure 7.13: Positional variance diagrams comparing SML and Tmix, simple implemen-

tation. PDFs were used to calculate probabilities. SML and Tmix are not significantly

correlated: p = 0.1334.
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Exploitation of bimodality in ALS patients

Here, we shall use the control data in a more aggressive manner, making use of the

clearly defined control population. This approach relies upon the assumption of bimo-

dality within the patient data, and so we shall refer to it as the bimodal implementation:

� Fit a single Gaussian distribution to control data, using Matlab’s maximum like-

lihood function, mle

� Fix the resulting control distribution parameters, µc and σc

� Fit constrained two-component Gaussian mixture to ALS patient data only,

using Matlab’s fmincon

– model has five parameters: µc, σc, µa, σa and mix (the mixing proportion)

– µc, σc are fixed

– µa, σa and mix are free parameters

In practice, it proved necessary to set µc, σc ∈ (95% confidence interval of control

distribution parameters), otherwise fitting consistently failed. Weak constraints were

applied to the remaining three parameters in order to increase the speed of fitting:

µa ∈ (min/max of all data), σa ∈ (0, 2σa) and mix ∈ (0.01, 0.99).

This implementation directly links the mixing proportion to the ratio of the healthy

and diseased populations that exist within the patient data for each biomarker. Thus,

the Tmix obtained here should be more closely related to SML than in the previous

simplistic implementation.

This assertion is tested by re-running the EBM and generating new MCMC samples.

We begin by using CDFs to calculate probabilities; Figure 7.14 shows that this results

in a strong similarity between SML and Tmix (Kendall tau distance = 0.3216), as well

as a significant positive correlation between the two orders: τ(SML, Tmix) = 0.3567,

p = 0.0172.

As before, we repeat this process using PDFs to calculate probabilities (Figure 7.15).

This time, we find a lesser agreement between SML and Tmix (Kendal tau distance =

0.4152), and their correlation is positive but non-significant: τ(SML, Tmix) = 0.1696,

p = 0.1660. However, we note that the positional variance diagram for Tmix appears

far more coherent than that of the simple implementation.
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(a) SML (b) Tmix

Figure 7.14: Positional variance diagrams comparing SML and Tmix, where the theoreti-

cal order has been obtained by the “bimodal implementation”, using CDFs to calculate

probabilities. SML and Tmix are significantly correlated: p = 0.0172.

(a) SML (b) Tmix

Figure 7.15: Positional variance diagrams comparing SML and Tmix, bimodal implemen-

tation. PDFs were used to calculate probabilities. SML and Tmix are not significantly

correlated: p = 0.1660.
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Figure 7.16: Estimates of the duration of each biomarker stage, given as a proportion

of the entire length of the disease process. The duration of each stage is derived from

the mixing proportion for the corresponding biomarker, assuming this to be equivalent

to the fraction of patients in a “disease” state. The mixing proportions plotted here

are those of the bimodal implementation, applied to the FA data of Sets FKN.

Length of stages

The mixing proportion can be used to give an estimate of the relative length of each

biomarker stage, assuming that mix is proportional to the number of patients in a

“disease” state for that stage. Plotting the mixing proportions from the Bimodal

implementation as a bar graph (Figure 7.16) reveals that there is very little difference

in the length of the CST biomarker stages. This suggests that they are involved

throughout almost the entire course of the disease, and occur within a relatively short

space of time. In contrast, under this model, the body of the corpus callosum does not

become involved until approximately 20% through the disease course, and the genu

and splenium are delayed further still.

Conclusion

This brief investigation of the relationship between the mixing proportion and the

model output shows that the mixing proportion does indeed encode TI, but that the

strength of the relationship appears to vary inconsistently when CDFs or PDFs are

used to calculate probabilities. I conclude that the role of the mixing proportion in the

EBM should be reassessed in depth in future work.
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7.4.6 Data harmonisation

We have deliberately employed minimal data harmonisation in this study, although

basic statistical tests were performed to ensure that there were no significant group

differences between the three data sets. This was partly to assess whether the EBM

could function when applied to combined data sets without extensive harmonisation,

but also to account for the possibility that over-stringent harmonisation could remove

interesting facets of the data by classifying them as noise. However, one of the largest

multi-centre DTI ALS studies to date (Müller et al., 2016) found that their results

increased in significance and had larger regions of significance after data harmonisation;

we suggest that if the EBM can find results within minimally-harmonised data, then

its functionality should be improved after extensive harmonisation.
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Chapter 8

Future Work

8.1 Validation and extension of findings

8.1.1 Validation

Having shown that the model can function when applied to ALS data, the next step

is to extend and confirm the findings using other, larger, data sets.

Fractional Anisotropy data

Validation of the hypothesis of white matter degeneration is the most urgent task. Cla-

rification regarding the tracts that display some bimodality of staging (such as ACR,

SS and UF) would also be desirable; to that end, it would probably be beneficial to

update the selection of white matter ROIs with reference to the current literature. Fi-

nally, the inclusion of spinal cord dMRI would be an excellent opportunity to establish

parity or otherwise with the directional degeneration of the CSTs. This last point is

essential, as firmly establishing the directional degeneration would provide new insight

into the biological mechanisms of ALS.

Structural data

The sample size for the structural data needs to be increased, in order to be able

to generate robust hypotheses of cortical thinning and volumetric atrophy in ALS

patients. A change of atlas may be beneficial, as the use of the Desikan-Killiany atlas

is somewhat limited outside of studies that use the FreeSurfer pipelines. If an atlas

can be found that uses brain divisions closer to those typically found in the literature

for healthy aging, then it could be possible to validate the EBM progression order for
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HCs against this literature. Ideally, such an atlas would be based on obvious physical

landmarks, thus allowing for automatic segmentation.

Neuropsychological data

There is much work to be done regarding the neuropsychological data. The first step

should be a revision of the current hypothesis, after acquiring considerably more data.

Again, these data have been included only as proof of concept.

8.1.2 Directions for Extension

Clinical staging systems

The main priority must be to integrate my findings with the clinical ALS staging

systems (King’s, MiToS and Braak), as this would in principle allow a far richer level

of detail in analysing the phenotypic composition of the various stages (in terms of

motor, cognitive and neuroimaging measures). The combination of the subjective

staging systems with the data-driven model should inform the former and assess the

validity of the latter, as well as stimulating new hypotheses and developments that

could be used to further refine the EBM and test its wider usefulness.

Integration with the King’s and MiToS systems would require subjects’ clinical

stage, as well as death date. After assessing the clinical and EBM staging systems for

concordance, the EBM stages could – in principle – be assigned to the clinical stages.

Integration with the Braak system appears more difficult, as the two systems are

measuring very different metrics of disease progression (pTDP-43 pathology and neu-

rodegeneration as characterised by changes in FA). However, an obvious starting point

would be to replicate the 22 ROIs of Braak et al. as a DTI atlas. Difficulties with this

approach include the small size of some regions, which can introduce errors into the

automatic registration process, as well as the lowered sensitivity of FA to changes in

the grey matter (particularly cortical) of ALS patients.

Different MRI modalities

There are other important modalities of MRI data that could be included in the EBM

process. We have not yet made use of resting-state functional MRI (rsfMRI) data,

which has been used to show increased functional connectivity in ALS patients (Douaud

et al., 2011; Heimrath et al., 2014). These increases in functional connectivity corre-

late with cognitive deficits, and there is evidence that the connectivity changes in ALS
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patients resemble patterns of pTDP-43 pathology (Schulthess et al., 2016). The inclu-

sion of rsfMRI data would therefore not only allow modelling of another aspect of the

physical processes of ALS, but also provide a method of linking to the Braak staging

system.

Longitudinal data would also be a valuable addition to any data set. The most

obvious use is for validation of model consistency (i.e. ensuring that a patient’s longi-

tudinal scans are staged in the correct temporal order), but it may also be possible to

adapt the EBM for repeated measures. This could be as simple as using the longitu-

dinal data to inform us about the prior distribution, or as complex as constraining a

subject’s position during the modelling process.

Finally, it is well-established that although DTI is sensitive to tissue microstructure,

it is an overly simplistic model of diffusion: DTI suffers from partial volume effects due

to its relatively large voxel sizes, and its metrics (FA, MD) are lacking in specificity for

individual tissue microstructure features (Pierpaoli et al., 1996). For example, a local

reduction of mean FA in a single voxel can be caused by lower neurite density or by

the crossing of fibre bundles. To combat the inherent non-specificity of DTI metrics,

various higher-order models of diffusion (e.g. diffusional kurtosis imaging (Jensen et

al., 2005), CHARMED (Assaf & Basser, 2005), NODDI (Zhang et al., 2012) and its

successor Bingham-NODDI (Tariq et al., 2016)) continue to be proposed, each with

different methods of attempting to directly measure tissue microstructure features.

However, these models typically require either multiple b-shells or larger number of

diffusion directions, which are more time-consuming and complex than standard DTI

sequences; also, protocols vary between imaging centres, increasing the difficulties of

data harmonisation. In spite of these drawbacks, the inclusion of advanced dMRI data

in the EBM could provide greater insight into the low-level biological processes of ALS.

ALS phenotypes and subgroups

There are two immediately apparent methods by which the EBM could be used to

investigate differences between ALS phenotypes or subgroups:

� Hypothesis-driven approach: Run the EBM on different cohorts selected by

phenotype, and examine differences of progression between phenotypes. This

requires large quantities of data.

� Exploratory approach: The reverse of the previous approach. Run the EBM

on all available data, and look for hidden subgroups of subjects within the pro-
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gression output; then assess clinical differences between the subgroups. This

would allow data-driven classification of subjects, potentially revealing subgroups

different from those assigned by the current (biased) clinical systems.

Possible subgroups and phenotypes include ALS/ALS-FTD, genetic classification (in-

cluding familial and sporadic ALS), site of onset, rate of progression (assessed by

ALSFRS-R scores or otherwise), and geographical origin (although this last compari-

son would require truly enormous quantities of data).

8.2 Model development

8.2.1 Mixture fitting

Given that the mixture fitting has such a large impact on the modelling results (see

subsection 5.1.3), it is extremely important that the mixture fitting process is developed

further. We have shown that the EM appears to be sensitive to outliers, and so

other methods of mixture fitting should be explored. Bootstrapping the EM algorithm

appears to be a promising option for reducing the effects of outliers; it would also be

worthwhile to revisit Matlab’s fmincon, due to its inherent versatility.

Support for mixture types other than Gaussians is greatly desirable, due to the high

strength of the assumption of data normality. Matlab does not currently have native

support for non-Gaussian EM mixture fitting, so this would require a from-scratch

implementation. Further investigation into the impact of multiple mixture types on

the EBM output is also required.

The issue of imposing constraints on the mixture fitting will doubtless reoccur. We

must consider how many constraints we impose, and how strict those constraints should

be. For example, it appears obvious that mixing proportion should be constrained to

avoid wildly unrealistic fitting, but it is perhaps less clear how the directionality of

a biomarker’s progression should be assessed. How much weight should we place on

the individual distributions fitted to ALS patients and HCs? Should we assume that

the directionality given by these single distributions is accurate, or instead rely on the

output of the mixture fitting? A balance must be found between avoiding unrealistic

outcomes and imposing too much information.

Finally, for the reasons discussed in subsection 2.5.5, the use of CDFs or PDFs

should be reassessed once larger data sets are available.
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8.2.2 Disparate data modalities and collinearity

During this study, the accuracy of mixture distribution fitting has repeatedly been

shown to be highly impactful on the output of the EBM. Thus, there is a need to

study the effects of employing data that are parameterised by different underlying dis-

tributions. For example, if all data being considered are from two-component Gaussian

mixtures, then it is plausible that inaccuracies in mixture fitting will be comparable

between biomarkers; this may not hold true for data from disparate types of mixture

distributions.

Given the impact of mixture fitting accuracy, it is not clear if we can meaningfully

apply the EBM to data from different modalities. Further study is required, either

through large numbers of simulations, or validation in a patient population.

The impact of data collinearity must also be considered. Collinearity between

controls and patients has been partially addressed in this study by the use of the

regularisation term in Matlab’s fitgmdist when fitting the mixture distributions. Linear

dependency can cause ill-conditioned covariance, leading to failure of mixture fitting;

the use of the regularisation term can help ensure that the algorithm converges to a

solution.

However, accounting for collinearity between biomarkers (both within and across

modalities) is an area that requires further investigation. It is possible that the use of

multivariate distributions could provide a solution; they could be employed by fitting

distributions to both the left and right sides of individual WM tracts, or by fitting

mixtures to multiple biomarkers at once. These higher-dimensional mixture models

are more difficult to fit, requiring longer processing time, but could help account for

biomarker covariance.

8.2.3 The Bayesian EBM

The current implementation of a Bayesian approach to event-based modelling described

in section 2.6 has been included as proof of concept, and multiple aspects of this method

require further development.

The Metropolis algorithm may not be the optimal choice when working with di-

rectional data, and so changes to the sampling methods may be necessary (see sub-

section 8.2.5). Even if the sampling methods are appropriate, the Bayesian EBM

currently assumes that the posterior distribution is unimodal and can therefore be

described by a single vMF distribution. We have previously shown the existence of
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Figure 8.1: Mapping Ω with the greedy ascent algorithm: 1000 greedy runs were

performed on the FA data of Sets FK. Plotting log-likelihood against greedy ascent

iterations reveals that the posterior distribution appears to have three local maxima.

a bimodal posterior distribution within ALS FA data (Figure 7.10), and so a single

vMF distribution may well be too simplistic. Alternatives include more complicated

distributions and mixtures of distributions such as vMF (Banerjee et al., 2005), Watson

(Bijral et al., 2007) or Bingham (Mardia & Jupp, 2000).

The greedy ascent algorithm (section 2.4) could potentially be used to map out Ω,

revealing the number of modal peaks (Figure 8.1). This gives a possible mechanism for

assessing the required number of components for a vMF mixture model, which could

be adapted for mixtures of other distributions.

To take full advantage of the Bayesian EBM, we require a prior distribution. As

there are currently no other comparable studies from which to generate a prior distribu-

tion, Bayesian best practice requires dividing the data being studied into a training set

and a validation set. The posterior distribution (generated with flat priors) from the

training set can then be used as the prior distribution for the validation set. This ap-

proach requires a larger sample size than is presently available, but should be employed

whenever possible in future EBM studies.
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8.2.4 Fourier Transforms

The current proof of concept implementation of the Bayesian EBM is made possible

by a core idea: that permutations, a form of ranked data, can be transformed into

directional data. However, this is not the only method by which a predictive model

can be learnt from a data set of permutations: the generating probability distribution

of a given sample of permutations can also be compactly represented by the “low-

frequency” terms of a Fourier transform over the permutations (Huang et al., 2009;

Irurozki et al., 2011).

A comparison between the directional data approach and the use of Fourier trans-

forms is required to determine which one is best suited to the EBM. In general, further

investigation is required into the subject of probability distributions over permutations.

8.2.5 MCMC methods

Autocorrelation is a general concern when working with MCMC methods, as a set of

nearby MCMC samples must, by definition, be correlated with each other. Given this,

it is possible that the Metropolis samples generated by the EBM are not appropriate for

the maximum likelihood parameter estimation of a vMF distribution, as this requires

independent and identically distributed samples (Sra, 2012). Investigation into more

sophisticated alternatives to Metropolis sampling is therefore worthwhile; these could

include Adaptive Rejection Metropolis Sampling (Gilks et al., 1995) and Hamiltonian

Monte Carlo (Duane et al., 1987).

If we are more interested in the most likely event order than the actual posterior

distribution, then “simulated annealing for global optimisation” is a sampling technique

that could be appropriate (Andrieu et al., 2003):

Let us assume that instead of wanting to approximate p(x), we want to

find its global maximum. For example, if p(x) is the likelihood or posterior

distribution, we often want to compute the ML and maximum a posteriori

(MAP) estimates. As mentioned earlier, we could run a Markov chain of

invariant distribution p(x) and estimate the global mode... This method is

inefficient because the random samples only rarely come from the vicinity

of the mode. Unless the distribution has large probability mass around the

mode, computing resources will be wasted exploring areas of no interest. A

more principled strategy is to adopt simulated annealing.
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8.3 General improvements

A priority must be the implementation of EBM support for covariates such as age,

gender and handedness. These are currently not taken account of by the model, but

are straightforward measures known to affect imaging parameters. These covariates

can already be used to allocate subjects to cohorts, but this is only practical in large

data sets, and is a work-around rather than a solution to the problem.

Another direction for model development is to improve the efficiency of the Variable

Precision implementation, in order to reduce the time needed for processing. Although

the processing time is not currently overly onerous, even when working in quadruple

precision, this may change as the model is applied to larger data sets.

The NiSALS data harmonisation protocol (Müller et al., 2016) is due to be im-

plemented in the EBM pipeline in the near future. Data harmonisation is generally

necessary in ALS research, due to the small sizes of the data sets that are available.

However, the effects of extensive data harmonisation require investigation: overly strict

harmonisation can result in interesting facets of data being treated as noise, thereby

producing results that are unnecessarily simplistic.

If possible, the creation of an EBM data harmonisation protocol would be beneficial.

The purpose of this protocol would be to allow external research centres to harmonise

their data and extract biomarker readings to be shared. This would greatly simplify

collaboration and reduce time costs, as it would allow data preprocessing to be divided

between multiple centres. However, this could potentially require the creation of “gold-

standard reference datasets” for various biomarkers, particularly in the case of dMRI

data; this would be a significant task to undertake.

Finally, I would like to publish a standalone version of the EBM. Ideally, this

would be open source, to allow for collaborative development of the model. This might

require converting the current code to a different language, due to dependencies on

specific Matlab toolboxes which are not included as standard. Alternatively, Matlab

will publish a standalone executable, albeit with obfuscated code.
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Appendix A

Matlab code

A.1 Fitting mixtures by EM

function [ EM con,phat ] = fit EM con( labels,CTL,ALS,varargin )

% Parse inputs

p = inputParser;

addOptional(p,'mix thresh',0.15);

% Fitting will satisfy mix thresh < ComponentProportion < 1 - mix thresh

addOptional(p,'outlier thresh',7);

% Number of SDs to use to determine outliers. Set to 2 for the usual 95.45%

% CI, or 3 for 99.73% CI. Default is 7 SDs; this should give no outliers.

addOptional(p,'plot figure',1);

addOptional(p,'verbose',1);

p.parse( varargin{:} )

oCTL = CTL;

oALS = ALS;

threshold = p.Results.mix thresh;

outlier thresh = p.Results.outlier thresh;

plot figure = p.Results.plot figure;

verbose = p.Results.verbose;

for j = 1:size(labels,2)

biomarker = matlab.lang.makeValidName(char(labels(j)));

nCTL = CTL(~isnan(CTL(:,j)),j); % Remove NaNs

nALS = ALS(~isnan(ALS(:,j)),j);

reg value = min(var(nCTL),var(nALS)); % Set regularisation value

reg thresh = 0.01;
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[mu c, sig c] = normfit(nCTL); % For assigning biomarker directionality

% Remove outliers

oCTL( (CTL(:,j) < (mu c - outlier thresh*sig c)),j ) = NaN;

oCTL( (CTL(:,j) > (mu c + outlier thresh*sig c)),j ) = NaN;

% Print the biomarkers for which CTL data are not Gaussian

if lillietest(oCTL(:,j)) == 1 && verbose == 1

fprintf('%s CTL not Gaussian\n',char(labels(j)))

end

[mu a, sig a] = normfit(nALS);

oALS( (ALS(:,j) < (mu a - outlier thresh*sig a)),j ) = NaN;

oALS( (ALS(:,j) > (mu a + outlier thresh*sig a)),j ) = NaN;

if lillietest(oALS(:,j)) == 1 && verbose == 1

fprintf('%s ALS not Gaussian\n',char(labels(j)))

end

% Create status vector for EM algorithm

status = [ones(sum(~isnan(oCTL(:,j))),1); ...

2*ones(sum(~isnan(oALS(:,j))),1)]';

% Fit Gaussian mixtures

EM con.(biomarker) = fitgmdist([oCTL(~isnan(oCTL(:,j)),j); ...

oALS(~isnan(oALS(:,j)),j)],2,...

'Regularize',reg value*reg thresh,'Start',status,...

'Options',statset('MaxIter',5000));

% While mixing proportion is below threshold, increase regularisation

% value by 1% and refit

while EM con.(biomarker).ComponentProportion(1) < threshold ...

| | EM con.(biomarker).ComponentProportion(1) > (1 - threshold)

% reg value = min(var(CTL(:,j)),var(ALS(:,j)));

reg thresh = reg thresh + 0.01;

EM con.(biomarker) = fitgmdist([oCTL(~isnan(oCTL(:,j)),j); ...

oALS(~isnan(oALS(:,j)),j)],2,...

'Regularize',reg value*reg thresh,'Start',status,...

'Options',statset('MaxIter',5000));

end

126



end

% Extract mu c, sig c, mu a, sig a and mixing proportion

phat = NaN(size(labels,2),5); % Initialise phat

for j = 1:size(labels,2)

biomarker = matlab.lang.makeValidName(char(labels(j)));

phat(j,1) = EM con.(biomarker).mu(1);

phat(j,3) = EM con.(biomarker).mu(2);

phat(j,2) = sqrt(EM con.(biomarker).Sigma(1));

if EM con.(biomarker).SharedCovariance == 0

phat(j,4) = sqrt(EM con.(biomarker).Sigma(2));

else

phat(j,4) = phat(j,2); % as shared covariance

end

phat(j,5) = EM con.(biomarker).ComponentProportion(1);

end

% Plot histograms and fitted mixtures if requested

if plot figure == 1

plot fitted mixtures([CTL;ALS],EM con,labels)

end

end

A.2 Plotting fitted mixtures

function [] = plot fitted mixtures(data,fitted mixtures,labels)

% Plot histograms of data with the fitted mixture model parameters overlaid

figure;

for i = 1:size(data,2)

% Initialise subplot

subplot(ceil(sqrt(size(data,2))),round(sqrt(size(data,2))),i)

hold on;

% Select histogram bin method

if (sum(rem(data(~isnan(data(:,i)),i),1)) == 0) ...

&& (range(data(:,i)) < 11) % If integer data and range is small
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histogram(data(:,i),'BinMethod','integer','Normalization','pdf')

else

histogram(data(:,i),'BinMethod','sqrt','Normalization','pdf')

end

% Make valid names from list of biomarkers

biomarker = matlab.lang.makeValidName(char(labels(i)));

% Create data points for x-axes

ix = min(data(:,i)):1e-2*range(data(:,i)):max(data(:,i));

% If Guassian mixtures exist as Matlab objects...

if isstruct(fitted mixtures)

% ...then extract the mixture parameters directly

mu1 = fitted mixtures.(biomarker).mu(1);

sd1 = sqrt(fitted mixtures.(biomarker).Sigma(1,1));

% as gmdistributions store variance rather than SD

mix1 = fitted mixtures.(biomarker).ComponentProportion(1);

iy1 = normpdf(ix,mu1,sd1);

mu2 = fitted mixtures.(biomarker).mu(2);

if fitted mixtures.(biomarker).SharedCovariance == 1

sd2 = sd1;

else sd2 = sqrt(fitted mixtures.(biomarker).Sigma(1,2));

end

mix2 = fitted mixtures.(biomarker).ComponentProportion(2);

iy2 = normpdf(ix,mu2,sd2);

else % Otherwise, read the parameters from the given matrix

mu1 = fitted mixtures(i,1);

sd1 = fitted mixtures(i,2);

% already converted to SD

mix1 = fitted mixtures(i,5);

iy1 = normpdf(ix,mu1,sd1);

mu2 = fitted mixtures(i,3);

sd2 = fitted mixtures(i,4);

mix2 = 1 - fitted mixtures(i,5);

iy2 = normpdf(ix,mu2,sd2);
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end

% Plot CTL Gaussian component

plot(ix,iy1*mix1,'g');

% Plot ALS Gaussian component

plot(ix,iy2*mix2,'r');

try % if mixtures are Matlab objects, plot using exact pdf

plot(ix,pdf(fitted mixtures.(biomarker),ix'),'b');

catch % otherwise, plot approximation

approx cov(:,:,1) = sd1ˆ2;

approx cov(:,:,2) = sd2ˆ2;

approx dist = gmdistribution([mu1; mu2],approx cov,[mix1; mix2]);

plot(ix,pdf(approx dist,ix'),'k');

end

% Label each histogram with biomarker name

xlabel(char(labels(i)))

xlim([min(data(:,i)) max(data(:,i))])

end

end

A.3 Calculating probabilities

A.3.1 Cumulative Distribution Functions

function [ log xE,log xnotE ] = calc cdf probs( phat,data,CTL,ALS )

% calc cdf probs returns log of p(x |E) and p(x | ~E) for all patients on all

% events, with probabilities calculated by CDF

% If mu als < mu ctl, then:

% p(x |E) = 1 - normcdf(x,mu als,sig als)

% p(x | ~E) = normcdf(x,mu ctl,sig ctl)

% If mu als > mu ctl, then:

% p(x |E) = normcdf(x,mu als,sig als)

% p(x | ~E) = 1 - normcdf(x,mu ctl,sig ctl)

% % Calculate p(x |E) and p(x | ~E) for speed

% % p(x |E)
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x given E = NaN(size(data,1),size(data,2)); % Initialise x given E

for j = 1:size(data,1) % number of patients

for n = 1:size(data,2) % number of events

if nanmean(ALS(:,n)) < nanmean(CTL(:,n)) % mu als < mu ctl

x given E(j,n) = 1 - normcdf(data(j,n),phat(n,3),phat(n,4));

elseif nanmean(ALS(:,n)) > nanmean(CTL(:,n)) % mu als > mu ctl

x given E(j,n) = normcdf(data(j,n),phat(n,3),phat(n,4));

end

end

end

% % p(x | ~E)

x given notE = NaN(size(data,1),size(data,2)); % Initialise x given notE

for j = 1:size(data,1) % number of patients

for n = 1:size(data,2) % number of events

if nanmean(ALS(:,n)) < nanmean(CTL(:,n)) % mu als < mu ctl

x given notE(j,n) = normcdf(data(j,n),phat(n,1),phat(n,2));

elseif nanmean(ALS(:,n)) > nanmean(CTL(:,n)) % mu als > mu ctl

x given notE(j,n) = 1 - normcdf(data(j,n),phat(n,1),phat(n,2));

end

end

end

% % log(p(x |E)) and log(p(x | ~E))

log xE = log(x given E);

log xnotE = log(x given notE);

% % % % Replace -Inf log probs

log xE(log xE == -Inf) = log(1e-251);

log xnotE(log xnotE == -Inf) = log(1e-251);

% % Replace missing data with 0.5 prob

log xE(isnan(log xE)) = log(0.5);

log xnotE(isnan(log xnotE)) = log(0.5);

end
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A.3.2 Probability Density Functions

function [ log xE,log xnotE ] = calc pdf probs( phat,data )

% calc pdf probs returns log of p(x |E) and p(x | ~E) for all patients on all

% events, with probabilities calculated by PDF

% p(x |E) = normpdf(x,mu als,sig als)

% p(x | ~E) = normpdf(x,mu ctl,sig ctl)

% % p(x |E)

x given E = NaN(size(data,1),size(data,2)); % Initialise x given E

for j = 1:size(data,1) % number of patients

for n = 1:size(data,2) % number of events

x given E(j,n) = normpdf(data(j,n),phat(n,3),phat(n,4));

end

end

% % p(x | ~E)

x given notE = NaN(size(data,1),size(data,2)); % Initialise x given notE

for j = 1:size(data,1) % number of patients

for n = 1:size(data,2) % number of events

x given notE(j,n) = normpdf(data(j,n),phat(n,1),phat(n,2));

end

end

% % log(p(x |E)) and log(p(x | ~E))

log xE = log(x given E);

log xnotE = log(x given notE);

% % % % Replace -Inf log probs

log xE(log xE == -Inf) = log(1e-251);

log xnotE(log xnotE == -Inf) = log(1e-251);

% % Replace missing data with 0.5 prob

log xE(isnan(log xE)) = log(0.5);

log xnotE(isnan(log xnotE)) = log(0.5);

end
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A.4 Calculating ln(p(X|S))

A.4.1 Double-precision implementation

function [ LSE ] = LSE( current S,log x given E,log x given notE )

% calculate p X given S returns ln(p(X |S)) for a given order S.

N = size(log x given E,2);

J = size(log x given E,1);

% % p(Xj |S,k) (Equation 2.1) % % % % % % % % % % % % % % % % % % % % % % %

log Xj given S k = NaN(J,N+1); % Initialise Xj given S k

% (p(x | ~E) for all events i.e. no events have occurred

log Xj given S k(:,1) = sum(log x given notE,2);

% Want ((p(x |E) for S(1:k) events) * (p(x | ~E) for S(k+1:N) events))

for k = 1:N-1

log Xj given S k(:,k+1) = sum(log x given E(:,current S(1:k)),2) + ...

sum(log x given notE(:,current S(k+1:N)),2);

end

% and (p(x |E) for all events) i.e. all events have occurred

log Xj given S k(:,N+1) = sum(log x given E,2);

% % p(Xj |S) (Equation 2.2) % % % % % % % % % % % % % % % % % % % % % % % %

Xj given S = sum(exp(log Xj given S k),2);

% % p(X |S) (Equation 2.3)% % % % % % % % % % % % % % % % % % % % % % % % %

LSE = sum(log((1/N)*Xj given S));

end

A.4.2 Variable-precision implementation, Advanpix Toolbox

function [ mp LSE ] = mp LSE( current S,log x given E,log x given notE )

% calculate p X given S returns ln(p(X |S)) for a given order S.

N = size(log x given E,2);

J = size(log x given E,1);

% % p(Xj |S,k) (Equation 2.1) % % % % % % % % % % % % % % % % % % % % % % %

log Xj given S k = NaN(J,N+1); % Initialise Xj given S k
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% (p(x | ~E) for all events i.e. no events have occurred

log Xj given S k(:,1) = sum(log x given notE,2);

% Want ((p(x |E) for S(1:k) events) * (p(x | ~E) for S(k+1:N) events))

for k = 1:N-1

log Xj given S k(:,k+1) = sum(log x given E(:,current S(1:k)),2) + ...

sum(log x given notE(:,current S(k+1:N)),2);

end

% and (p(x |E) for all events) i.e. all events have occurred

log Xj given S k(:,N+1) = sum(log x given E,2);

% % p(Xj |S) (Equation 2.2) % % % % % % % % % % % % % % % % % % % % % % % %

Xj given S = sum(exp(mp(log Xj given S k)),2);

% % p(X |S) (Equation 2.3)% % % % % % % % % % % % % % % % % % % % % % % % %

mp LSE = sum(log((1/N)*Xj given S));

end

A.4.3 Variable-precision implementation, native Matlab

function [ vpa LSE ] = vpa LSE( current S,log x given E, ...

log x given notE,varargin )

% calculate p X given S returns ln(p(X |S)) for a given order S.

% Parse inputs

p = inputParser;

addOptional(p,'precision',NaN);

p.parse( varargin{:} )

precision = p.Results.precision;

% Set precision of vpa if requested

if isnan(precision) == 0

digits(precision);

end

N = size(log x given E,2);

J = size(log x given E,1);

% % p(Xj |S,k) (Equation 2.1) % % % % % % % % % % % % % % % % % % % % % % %

log Xj given S k = NaN(J,N+1); % Initialise Xj given S k
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% (p(x | ~E) for all events i.e. no events have occurred

log Xj given S k(:,1) = sum(log x given notE,2);

% Want ((p(x |E) for S(1:k) events) * (p(x | ~E) for S(k+1:N) events))

for k = 1:N-1

log Xj given S k(:,k+1) = sum(log x given E(:,current S(1:k)),2) + ...

sum(log x given notE(:,current S(k+1:N)),2);

end

% and (p(x |E) for all events) i.e. all events have occurred

log Xj given S k(:,N+1) = sum(log x given E,2);

% % p(Xj |S) (Equation 2.2) % % % % % % % % % % % % % % % % % % % % % % % %

Xj given S = sum(exp(vpa(log Xj given S k)),2);

% % p(X |S) (Equation 2.3)% % % % % % % % % % % % % % % % % % % % % % % % %

vpa LSE = sum(log((1/N)*Xj given S));

end

A.5 Comparing multiple greedy ascent runs

function [ greedy S ML ] = compare greedy( log xE,log xnotE,varargin )

% Parse inputs

p = inputParser;

addOptional(p,'iterations',5000);

addOptional(p,'startpoints',100);

addOptional(p,'plot figure',1);

p.parse( varargin{:} )

iterations = p.Results.iterations;

startpoints = p.Results.startpoints;

plot figure = p.Results.plot figure;

greedy S ML temp = NaN(startpoints,size(log xE,2)+1);

greedy plot temp = NaN(startpoints,iterations)';

greedy legend = sprintf('%d greedy ascent runs',startpoints);

% Call greedy ascent function to perform the requested number of runs

parfor i = 1:startpoints

S initial = randperm(size(log xE,2));

[ ~, S ] = greedy ascent( S initial,iterations,log xE,log xnotE );
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greedy S ML temp(i,:) = S(end,:);

greedy plot temp(:,i) = S(2:end,end);

end

% Plot log-likelihoods of greedy iterations for each run

if plot figure == 1

figure;

hold on

for i = 1:startpoints

plot(1:iterations,greedy plot temp(:,i))

title(char(greedy legend));

end

end

% Find the most likely greedy ascent output

[~, idx] = max(greedy S ML temp(:,end));

greedy S ML = greedy S ML temp(idx,1:end);

end

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

function [ greedy S ML, S ] = greedy ascent( S initial,iterations, ...

log x given E,log x given notE )

N = size(log x given E,2);

S = NaN(iterations+1,N+1);

S(1,1:N) = S initial;

S(1,N+1) = LSE(S initial,log x given E,log x given notE);

for k = 1:iterations

swap = randi(N,2,1);

% To ensure that we are not swapping an event with itself:

while swap(1) == swap(2)

swap = randi(N,2,1);

end
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% Generate S'

S(k+1,1:N) = S(k,1:N); % Copy S t

S(k+1,swap(1)) = S(k,swap(2)); % Swap random event 1

S(k+1,swap(2)) = S(k,swap(1)); % Swap random event 2

% Calculate p(X |S')

S(k+1,N+1) = LSE(S(k+1,1:N),log x given E,log x given notE);

% If p(X |S') < p(X | S t), then set S t+1 = S t

if S(k+1,N+1) < S(k,N+1)

S(k+1,1:N+1) = S(k,1:N+1);

end

% otherwise, leave S t+1 = S'

end

% Find the order with the maximum likelihood:

[row, ~] = find(S == max(S(:,end)));

greedy S ML = S(max(row),1:N+1);

end

A.6 Performing MCMC iterations

function [ S ML, S mcmc ] = mcmc phase( greedy S ML, ...

log xE,log xnotE,varargin )

% Parse inputs

p = inputParser;

addOptional(p,'iterations',1e6);

addOptional(p,'burnin',1e5);

p.parse( varargin{:} )

burnin = p.Results.burnin;

iterations = p.Results.iterations + burnin;

N = size(log xE,2);

S mcmc = NaN(iterations+1,N+1);

S mcmc(1,:) = greedy S ML;

for k = 1:iterations

swap = randi(N,2,1);

% To ensure that we are not swapping an event with itself:
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while swap(1) == swap(2)

swap = randi(N,2,1);

end

% Generate S'

S mcmc(k+1,1:N) = S mcmc(k,1:N); % Copy S t

S mcmc(k+1,swap(1)) = S mcmc(k,swap(2)); % Swap random event 1

S mcmc(k+1,swap(2)) = S mcmc(k,swap(1)); % Swap random event 2

% Calculate p(X |S')

S mcmc(k+1,N+1) = LSE(S mcmc(k+1,1:N),log xE,log xnotE);

% Calculate a = p(X |S')/p(X | S t)

% i.e. a = eˆ( log(p(X |S') - log(p(X | S t) ),

% This is because calculate p X given S returns log(p(X |S)).

a = exp(S mcmc(k+1,N+1) - S mcmc(k,N+1));

% Leave S t+1 = S' with probability min(a,1)

if min(a,1) < rand(1)

% ((1-a)*100)% of the time, set S t+1 = S t

S mcmc(k+1,1:N+1) = S mcmc(k,1:N+1);

% otherwise, leave S t+1 = S'

end

end

S mcmc(1,:) = []; % Remove S ML

if burnin > 0

S mcmc(1:burnin,:) = []; % Remove burn-in iteratons

end

% Find order with maximum likelihood [i.e. the maximum of the posterior

% distribution, S hat = max p(S |X) ]:

[row, ~] = find(S mcmc == max(S mcmc(:,end)));

S ML = S mcmc(max(row),1:N+1);

end
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A.7 Plotting a positional variance diagram

function [] = positional variance diagram(S ML,S mcmc,labels,varargin)

% Parse inputs

p = inputParser;

addOptional(p,'font size',12);

addOptional(p,'new figure',true);

p.parse( varargin{:} )

% Positional variance diagram:

if p.Results.new figure == true

figure;

end

N = size(labels,2);

confus matrix = zeros(N,N);

% For each biomarker, find the proportion of MCMC iterations spent in each

% position

for i = 1:N

confus matrix(i,:) = sum(S mcmc(:,1:N)==S ML(i));

end

confus matrix = confus matrix/max(size(S mcmc));

yaxislabels = cell(1,N);

for i = 1:N

yaxislabels{i} = char(labels(S ML(i))); % Order labels by S ML

end

image((1-confus matrix)*255); % Invert confusion matrix

colormap(gray(256)); % Apply grey colourmap

set(gca,'XTick',1:N);

set(gca,'XTickLabel',(1:N));

set(gca,'YTick',1:N);

set(gca,'YTickLabel',yaxislabels); % Label each

set(gca,'FontSize',p.Results.font size);

set(gca,'DataAspectRatio',[1 1 1]); % Fix Aspect Ratio

xlabel('Event Position'); % Number each event

end
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A.8 The Bayesian EBM

A.8.1 Embedding a permutation onto a hypersphere

function [ embedded perms ] = embed on hypersphere(permutations)

% Permutations need to be entered as row vectors.

j = size(permutations,1);

n = size(permutations,2);

permutations = permutations'; % Transpose to column vectors

cM = 0.5*(n + 1) * ones(n,1); % Find the centre of mass of the hypersphere

[Q tilde,~] = qr(cM); % QR factorisation of mass vector cM

[~,row] = max(abs(sum(Q tilde))); % Find the row Q ort

Q basis = Q tilde;

Q basis(row,:) = []; % Remove the row Q ort, which is collinear with cM

p tilde = permutations - repmat(cM,1,j); % Recenter the origin at 0

phat S = zeros(n-1,j);

for i = 1:j

phat S(1:n-1,i) = Q basis * p tilde(:,i);

end

% Transpose back to row vectors

embedded perms = (phat S / sqrt((nˆ3 - n)/12))';

end

A.8.2 Maximum likelihood estimation of parameters of von

Mises-Fisher distribution

function [mu, kappa] = mle vonMisesFisher(samples)

% mle vonMisesFisher returns the MLE of mu and kappa.

% Let X = {x 1,...,x n} be a set of points drawn from p(x;mu,kappa).

% We wish to estimate mu and kappa via maximising the log-likelihood:

% L(X;mu,kappa) = log c p(kappa) + sum i (kappa * mu' * x i)

% subject to the condition that mu' mu = 1 and kappa >= 0.

% See Sra, S. A short note on parameter approximation for von Mises-Fisher

% distributions: and a fast implementation of I s (x). Comput Stat 2011
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% mu = sum i(x i) / | | sum i(x i) | |

% let x i = "samples"

N = size(samples,1); % Number of sampled points

n = size(samples,2); % Number of elements in each permutation

p = n - 1; % Plis et al. and Sra et al. use different notation.

mu = sum(samples,1)/norm(sum(samples,1));

R bar = norm(sum(samples,1)) / N;

% Simplest kappa hat (Banerjee et al. 2005):

kappa hat = (R bar * (p - R barˆ2)) / (1 - R barˆ2);

% Truncated Newton Approximation for kappa hat (Sra et al. 2011):

kappa 0 = kappa hat; % initialise with kappa from Banerjee et al.

Ap kappa 0 = (besseli(p/2,kappa 0) / besseli((p/2)-1,kappa 0));

kappa 1 = kappa 0 - ( Ap kappa 0 - R bar) / ...

(1 - Ap kappa 0ˆ2 - (((p - 1)/kappa 0) * Ap kappa 0) );

Ap kappa 1 = (besseli(p/2,kappa 1) / besseli((p/2)-1,kappa 1));

kappa 2 = kappa 1 - ( Ap kappa 1 - R bar) / ...

(1 - Ap kappa 1ˆ2 - (((p - 1)/kappa 1) * Ap kappa 1) );

kappa = kappa 2;

end

A.8.3 Projecting from a hypersphere

function [ projected perms ] = project from hypersphere(embedded perms)

% Embedded permutations need to be entered as row vectors.

j = size(embedded perms,1);

n = size(embedded perms,2) + 1;

embedded perms = embedded perms'; % Transpose to column vectors

cM = 0.5*(n + 1) * ones(n,1); % Find the centre of mass of the hypersphere

[Q tilde,~] = qr(cM); % QR factorisation of mass vector cM
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[~,row] = max(abs(sum(Q tilde))); % Find the row Q ort

Q tilde = [Q tilde; Q tilde(row,:)]; % Append Q ort

Q tilde(row,:) = []; % Remove the original row Q ort

rho = ( sqrt((nˆ3 - n)/12) * Q tilde' * ...

[embedded perms; zeros(1,j)] ) + repmat(cM,1,j);

if (isequal(ceil(rho),floor(rho)) == 1 )

% If rho consists of integers, then done

projected perms = rho';

else

% Otherwise, need to find the permutation vector closest to the

% transformed point. This needs to be done one permutation vector

% (column of rho) at a time

projected perms = NaN(n,j);

for i = 1:j

% Construct the cost matrix W ij = (rho i - j)ˆ2

W = ( repmat(rho(:,i),1,n) - repmat([1:n],n,1) ).ˆ2;

[~,I] = min(W,[],2); % Location of the min of each row

if size(unique(I),1) == n

% If the row mins are in different columns, then we have a

% simple solution

projected perms(:,i) = I;

else

% The permutation p closest to the point rho is found by the

% Hungarian algorithm. This implementation,

% ("assignmentoptimal"), is by Markus Buehren:

% http://www.mathworks.com/matlabcentral/...

% fileexchange/loadFile.do?objectId=6543

projected perms(:,i) = assignmentoptimal(W);

end

end

projected perms = projected perms'; % Transpose back to row vectors

end

end
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A.8.4 The Bayesian EBM – incorporating a prior distribution

function [ S mcmc ML, S mcmc ] ...

= bayesian mcmc( S mcmc ML,S mcmc perms,log xE,log xnotE,varargin )

% Parse inputs

p = inputParser;

addOptional(p,'iterations',1e6);

addOptional(p,'mu',NaN);

addOptional(p,'kappa',NaN);

p.parse( varargin{:} )

% Initialise variables:

iterations = p.Results.iterations + 1e5;

N = size(log xE,2);

S mcmc = NaN(iterations+1,N+1);

S mcmc(1,:) = S mcmc ML;

% mcmc perms = S mcmc perms(:,1:N);

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Update the uniform prior distribution to a von Mises-Fisher distribution:

% Embed the permutations of S mcmc onto a (N-2)-hypersphere:

embedded perms = embed on hypersphere(S mcmc perms(:,1:N));

% Find the MLE for the parameters of the von Mises-Fisher distribution:

[mu, kappa] = mle vonMisesFisher(embedded perms);

clear embedded perms

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% If mu and kappa are supplied, overwrite the von Mises-Fisher fitting:

if ~isnan(sum(p.Results.mu)) && ~isnan(p.Results.kappa) == 1

mu = p.Results.mu;

kappa = p.Results.kappa;

end

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Calculate the log likelihood of p(S 1):

S hypersphere = embed on hypersphere(S mcmc(1,1:N));

llh S = log(vMFpdf(S hypersphere,mu,kappa));

% Update log(p(X | S 1)) to log(p(X | S 1)*p(S 1)):

S mcmc(1,N+1) = S mcmc(1,N+1) + llh S;
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% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

for k = 1:iterations

swap = randi(N,2,1);

% To ensure that we are not swapping an event with itself:

while swap(1) == swap(2)

swap = randi(N,2,1);

end

% Generate S'

S mcmc(k+1,1:N) = S mcmc(k,1:N); % Copy S t

S mcmc(k+1,swap(1)) = S mcmc(k,swap(2)); % Swap random event 1

S mcmc(k+1,swap(2)) = S mcmc(k,swap(1)); % Swap random event 2

% Calculate p(X |S')

S mcmc(k+1,N+1) = LSE(S mcmc(k+1,1:N),log xE,log xnotE);

% Calculate p(S')

S hypersphere = embed on hypersphere(S mcmc(k+1,1:N));

llh S = log(vMFpdf(S hypersphere,mu,kappa));

% Update log(p(X |S')) to log(p(X |S')*p(S')):

S mcmc(k+1,N+1) = S mcmc(k+1,N+1) + llh S;

% Calculate a = (p(X |S')*p(S'))) / (p(X | S t)*p(S t))

% i.e. a = eˆ( log(p(X |S')*p(S') - log(p(X | S t)*p(S t) ),

% This is because calculate p X given S returns log(p(X |S)).

a = exp(S mcmc(k+1,N+1) - S mcmc(k,N+1));

% Leave S t+1 = S' with probability min(a,1)

if min(a,1) < rand(1)

% ((1-a)*100)% of the time, set S t+1 = S t

S mcmc(k+1,1:N+1) = S mcmc(k,1:N+1);

% otherwise, leave S t+1 = S'

end

end

S mcmc(1,:) = []; % Remove S ML

S mcmc(1:100000,:) = []; % Remove burn-in iteratons
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% Find order with maximum likelihood [i.e. the maximum of the posterior

% distribution, S hat = max p(S |x) ]:

[row, ~] = find(S mcmc == max(S mcmc(:,end)));

S mcmc ML = S mcmc(max(row),1:N+1);

end

A.8.5 PDF for von Mises-Fisher distribution

function y = vMFpdf(x,mu,kappa)

% Y = VMFPDF(X,MU,KAPPA) returns the pdf of the von Mises-Fisher

% probability distribution with mean direction MU and concentration

% parameter KAPPA, evaluated at the values in the p-dimensional vector X.

% MU and X must be row vectors.

% y = Cp(kappa) * exp(kappa * mu' * x)

% where kappa >= 0, | | mu | | = 1 and the normalisation constant is given by

% Cp(kappa) = [kappaˆ((p/2)-1)] / [((2*pi)ˆ(p/2))*I ((p/2)-1) (kappa)]

% I v denotes the modified Bessel function of the first kind at order v.

p = size(x,2);

norm const = (kappaˆ((p/2)-1)) / (((2*pi)ˆ(p/2)) * besseli((p/2)-1,kappa));

y = norm const * exp(kappa * mu * x');

end

A.9 Tools for permutations

A.9.1 Calculating Kendall’s tau distance

function [ Ktau ] = Ktau(ref perm,samples)

% Kendall tau distance between two permutations

% Remove log-likelihood column from ref perm:

if ( ceil(ref perm(end)) ~= floor(ref perm(end)) ) ...

| | ref perm(end) < 0

ref perm = ref perm(1,1:end-1);

end

144



N = length(ref perm); % Number of biomarkers

n = size(samples,1); % Number of samples

all poss pairs = nchoosek(1:N,2);

% Number of possible of pairs, N choose 2 = N!/((N-k)!*k!) = N*(N-1)/2

num pairs = N*(N-1)/2;

% Find number of discordant pairs:

Ktau = zeros(n,1);

for i = 1:n

for j = 1:num pairs

if ( ref perm(1,all poss pairs(j,1)) < ...

ref perm(1,all poss pairs(j,2)) ) ...

~= ( samples(i,all poss pairs(j,1)) < ...

samples(i,all poss pairs(j,2)) )

Ktau(i,1) = Ktau(i,1) + 1;

end

end

end

% Normalise Kendall tau distance by num pairs:

Ktau(:,1) = Ktau(:,1) / num pairs;

end

A.9.2 Calculating Kendall’s tau correlation coefficient

function [ KtauCoef ] = KtauCoef(perm1,perm2)

% Kendall tau rank coefficient between two permutations

% Remove log-likelihood column from perm1 and/or perm2:

if ( ceil(perm1(end)) ~= floor(perm1(end)) ) ...

| | perm1(end) < 0

perm1 = perm1(1,1:end-1);

end

if ( ceil(perm2(end)) ~= floor(perm2(end)) ) ...

| | perm2(end) < 0

perm2 = perm2(1,1:end-1);

end

N = length(perm1); % Number of biomarkers
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all poss pairs = nchoosek(1:N,2);

% Number of possible of pairs, N choose 2 = N!/((N-k)!*k!) = N*(N-1)/2

num pairs = N*(N-1)/2;

% Find number of concordant pairs:

concordant = 0;

for j = 1:num pairs

if ( perm1(all poss pairs(j,1)) < ...

perm1(all poss pairs(j,2)) ) ...

== ( perm2(all poss pairs(j,1)) < ...

perm2(all poss pairs(j,2)) )

concordant = concordant + 1;

end

end

% Find number of discordant pairs:

discordant = 0;

for j = 1:num pairs

if ( perm1(all poss pairs(j,1)) < ...

perm1(all poss pairs(j,2)) ) ...

~= ( perm2(all poss pairs(j,1)) < ...

perm2(all poss pairs(j,2)) )

discordant = discordant + 1;

end

end

% Kendall tau rank coefficient = ...

% (concordant pairs - discordant pairs) / N*(N-1)/2

KtauCoef(:,1) = (concordant - discordant) / num pairs;

end
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