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MetaCluster 4.0: A Novel Binning Algorithm

for NGS Reads and Huge Number of Species

YI WANG, HENRY C.M. LEUNG, S.M. YIU, and FRANCIS Y.L. CHIN

ABSTRACT

Next-generation sequencing (NGS) technologies allow the sequencing of microbial com-
munities directly from the environment without prior culturing. The output of environ-
mental DNA sequencing consists of many reads from genomes of different unknown species,
making the clustering together reads from the same (or similar) species (also known as
binning) a crucial step. The difficulties of the binning problem are due to the following four
factors: (1) the lack of reference genomes; (2) uneven abundance ratio of species; (3) short
NGS reads; and (4) a large number of species (can be more than a hundred). None of the
existing binning tools can handle all four factors. No tools, including both AbundanceBin
and MetaCluster 3.0, have demonstrated reasonable performance on a sample with more
than 20 species. In this article, we introduce MetaCluster 4.0, an unsupervised binning
algorithm that can accurately (with about 80% precision and sensitivity in all cases and at
least 90% in some cases) and efficiently bin short reads with varying abundance ratios and is
able to handle datasets with 100 species. The novelty of MetaCluster 4.0 stems from solving a
few important problems: how to divide reads into groups by a probabilistic approach, how
to estimate the 4-mer distribution of each group, how to estimate the number of species, and
how to modify MetaCluster 3.0 to handle a large number of species. We show that Meta
Cluster 4.0 is effective for both simulated and real datasets. Supplementary Material is
available at www.liebertonline.com/cmb.

Key words: binning, environmental genomics, metagenomics.

1. INTRODUCTION

Analysis of the collective genomes of all microorganisms from an environmental sample (also

known as metagenomics, environmental genomics, or community genomics) is an important research

area. For example, the diversity of microbes in humans is found to be associated with some common diseases

such as gastrointestinal disturbance (Khachatryan et al., 2008) and inflammatory bowel disease (IBD) (Qin

et al., 2010). High-throughput next-generation sequencing (NGS) techniques enable researchers to directly

sequence the genomes of multiple species obtained from such an environmental sample for analysis. There

are numerous successful metagenomic projects based on NGS technologies (Costello et al., 2009; Grice et al.,

2009; Hamady and Knight, 2009; Qin et al., 2010; Rusch et al., 2007; Tyson et al., 2004). An important step in
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metagenomic analysis is to group DNA fragments (or reads) from similar species together (known as binning

or clustering). However, there are several factors that make this binning problem difficult.

Lack of reference genomes

Most bacteria (up to 99%) found in environmental samples are unknown (Eisen, 2007) and cannot be

cultured and separated in the laboratory (Amann et al., 1990). Traditional binning methods align reads

against reference genomes and assign reads aligned to similar genomes in a group. The process is time

consuming and many reads cannot be aligned to known genomes, as < 1% sequences of microorganisms

are known (Koski and Golding, 2001).

Some algorithms (Brady and Salzberg, 2009; McHardy et al., 2006) group DNA fragments using taxo

nomic markers (e.g., 16S rRNA [Cole et al., 2005], recA, and rpoB) to classify fragments into different

classes (Navlakha et al., 2009; Wu and Eisen, 2008) or as constraints for semi-supervised clustering or

classification. However, these generic features pertain to only a small percentage ( < 1%) of the reads

(Garcia Martin et al., 2008). It has also been reported (Case et al., 2007) that multiple markers may be

shared by some species and multiple markers may exist in the same species. Thus, the reliability of these

features is in doubt.

Recent binning tools (Chatterji et al., 2008; Kelley and Salzberg, 2010; Prabhakara and Acharya, 2011;

Teeling et al., 2004a,b; Wu and Ye, 2011; Yang et al., 2010a,b) are based on the observation that the q-mer

(length-q substrings of a fragment) distributions of the DNA fragments from the same genome are more

similar than those from different genomes. Thus, without using any reference genomes (i.e., unsupervised),

one can determine if two fragments are from genomes of similar species based on their q-mer distributions.

Unfortunately, none of these binning tools can solve all the following issues.

Uneven abundance ratio

The proportion in which a species exists in a sample is called abundance ratio. Most of the tools can only

handle species with even abundance ratios, and their binning performances degrade significantly in real

situations when the abundance ratios of the species are different. AbundanceBin (Wu and Ye, 2011) bins

reads based on the coverage of their q-mers and works for very different abundance ratios. But problems

arise when some species have similar abundance ratios. MetaCluster 3.0 (Leung et al., 2011) tries to group

the reads into many small clusters so that reads from minority species (with low abundance ratios) could

exist as isolated clusters. Then it merges clusters that are likely to be from the same species. However, it

requires the fragment length to be long and cannot work directly on short NGS reads.

Short read length

NGS technologies usually produce short reads of length 50–150 bp. Algorithms (Kelley and Salzberg, 2010;

McHardy et al., 2006; Yang et al., 2010b) that make use of q-mer distribution require fragments to be a lot

longer (at least 400 bp) to have a statistically stable distribution; thus, they cannot work directly on short reads.

A large number of species

No existing binning algorithm has demonstrated reasonable performance for a dataset with more than 20

species. The accuracy of these tools drops significantly when the number of species in the sample is large.

AbundanceBin does not work well when the number of species in the sample is larger than 4, especially

when there exist species with similar abundance ratios (Wu and Ye, 2011). MetaCluster 3.0 (Leung et al.,

2011) starts to deteriorate when the number of species in the sample is larger than 10.

Our contribution

We introduce the first binning algorithm, MetaCluster 4.0, which can handle all the above issues and can

accurately (up to 80% precision and 85% sensitivity) bin short reads (75 bp) from a sample of up to 100

species of varying abundance ratios unsupervised. MetaCluster 4.0 (1) first, forms groups of short reads

likely from the same genome; (2) next, estimates the q-mer distribution of each group; and (3) finally,

employs a modified version of MetaCluster 3.0 to bin the groups based on their q-mer distributions. The

novelty of our approach stems from a few non-trivial ideas behind the algorithm’s technical components.
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In the first phase, the grouping is based on long common w-mers (substring of length w) that exist in two

different groups and guided by a probabilistic measure. Species with different abundance ratios will end up

with similar numbers of groups. Intuitively, majority species (those with higher abundance ratios) will have

more reads in each group but will only have slightly more groups than minority species. Hence, there is an

effect of balancing the uneven abundance ratios of species.

Secondly, we cannot simply count and sum the q-mers in each read to obtain the q-mer distribution of a

group since reads may overlap resulting in double-counting. We introduce a method of estimating the

q-mer distribution of a group without double-counting.

Thirdly, MetaCluster 3.0 can perform well when the number of species is known and the abundance

ratios of species are balanced. Thus, we use MetaCluster 3.0 iteratively as a tool to accurately estimate the

number of species. Then, making use of the estimated number of species, and the balanced number of

groups per species we have formed, we can use the MetaCluster 3.0 to bin the groups (of reads) based on

their q-mer distributions.

2. METHODS

MetaCluster 4.0 consists of three phases: (1) probabilistic grouping of short reads; (2) q-mer distribution

estimation for each group; and (3) binning. Figure 1 shows the overall framework. The details of each phase

are described below.

FIG. 1. The pipeline of Meta-

Cluster 4.0.
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2.1. Phase 1: probabilistic grouping

In Phase 1, each read is considered as a group and are progressively merged as long as a common w-mer

(substring of length w) occurs in both groups and the likelihood of false-positive merging (merging reads

from different genomes) is below a threshold p. The idea of grouping reads before binning is important so

as to compensate for the short length of the reads. The probability that two reads from different genomes

share a common w-mer is very small when w ‡ 35 ( < 0.03% and < 0.22% if the genomes are from the same

family or genus levels, respectively). The smaller w is and the taxonomically closer the genomes are, the

higher is this probability. As w increases, the probability that two reads with a common w-mer are from

the same genome increases. However, due to sequencing errors, setting w too large may prevent groups,

with reads from the same genome, from being merged together. Based on the error rate and coverage, the

largest w that would ensure the majority of w-mers would be correctly covered by at least two reads can be

computed. The details are given in the Supplementary Material (which is available at www.liebertonline

.com/cmb).

Diminishing the effect of uneven abundance ratios. After the probabilistic grouping, each group is

regarded as a set of ‘‘virtual’’ contigs (although it may not be easy or possible to construct them for each

group). Since the probability of having false-positive merging increases with the size of the group, a group

will not be merged further if it grows to a certain size. Intuitively, if a species has a higher abundance ratio,

there would only be more reads in its group, but there would not be more groups for that species. Thus, each

species should have similar number of groups, regardless of its abundance ratio. This observation is verified

through analysis (in the Supplementary Material, which is available at www.liebertonline.com/cmb) as well

as by the experimental results in Section 3. This observation is critical for handling a large number of

species with varying abundance ratios. Since the effect of varying abundance ratios diminished, once the

number of species is estimated, no merging step is needed in MetaCluster 3.0.

2.2. Phase 2: 4-mer distribution estimation

After Phase 1, each group represents some DNA regions (a set of virtual contigs) in the genome. The

q-mer distribution for each group is estimated in this phase. Following the other studies (Yang et al.,

2010b), q = 4 is picked in this study. Since the reads in a group may overlap and contain errors, the q-mer

distribution cannot be computed trivially by counting the occurrence frequency of each q-mer in the reads

directly. A set of ‘‘correct’’ r-mers (with large enough r) that are likely to be on the genome is extracted

from the reads. Based on the error rate and coverage, a correct r-mer should occur at least a certain number

of times, say t, in G. Then, the q-mer distribution of G is estimated by adding up the q-mer distributions of

these correct r-mers.

Similar to the value of w in Section 2.1, the accuracy of this estimation depends on the value of r. When r

is small, many r-mers introduced by sequencing error may occur t times and are treated as correct (false

positive). When r is large, correct r-mers may occur fewer than t times and are treated as incorrect

(false negative). A suitable value of r is selected such that the total number of errors (false positive and

false negative) is minimized. Details are given in the Supplementary Material (which is available at

www.liebertonline.com/cmb).

2.3. Binning: modified MetaCluster 3.0

MetaCluster 3.0 (Leung et al., 2011) is a binning tool that can determine the number of genomes

automatically. It is based on an observation that under the Spearman distance definition, 4-mer distributions

of fragments from the same genome are more similar than those from different genomes (Yang et al.,

2010a). MetaCluster 3.0 consists of two stages: (a) Top-down separation stage groups the reads based on

the k-mean clustering algorithm. After the top-down separation, the number of clusters constructed is much

larger than the number of species in the dataset in order to handle the uneven abundance ratio problem. (b)

Bottom-up merging stage uses two normal distributions to model the Spearman distance between two

contigs from the same genome and that from different genomes. Based on the expected distances of these

two distributions, MetaCluster 3.0 can determine whether two groups of reads should be merged.

MetaCluster 3.0 guarantees the expected number of errors introduced in each merging step is small.

However, when the number of species increases, a large amount of errors will still be accumulated after a
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series of merges and MetaCluster 3.0 might fail. The improvement of MetaCluster 4.0 is based on two

major observations. Firstly, after Phase 1, MetaCluster 4.0 has diminished the effect of uneven abundance

ratios by constructing similar number of groups per species. Thus, the number of merging steps is reduced

by constructing smaller number of groups. Secondly, MetaCluster 3.0 performs bottom-up merging when

the estimated number of clusters k in the top-down separation stage of MetaCluster 3.0 is larger than the

actual number of species. Thus, it can be used to predict the number of species based on a binary search

approach. Combining these two observations, MetaCluster 4.0 is able to handle a large number of species

with varying abundance ratios effectively.

3. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of MetaCluster 4.0 on both simulated and real datasets (Qin

et al., 2010). Since AbundanceBin is the only available tool that can work on short reads, we compare

MetaCluster 4.0 with AbundanceBin. All simulated data are generated based on the genomes in the NCBI

database (ftp.ncbi.nih.gov/genomes/). All the experiments are run on a machine with 140-G memory and 16

CPU of Intel Xeon E5620 at 2.40 GHz. Our software is available online (http://i.cs.hku.hk/*alse/

MetaCluster/).

3.1. Experiments on simulated data

Given an abundance ratio for a species with known genome in NCBI, we randomly picked a set of

length-75 pair-end reads from the genome with 1% sequencing error and 250 – 50 bp insert distance with

coverage 15· abundance ratio. Minimum coverage of 15 is assumed in practice, as genome with coverage

of < 15 might be difficult to detect. The performance of MetaCluster 4.0 and AbundanceBin are evaluated

based on precision and sensitivity. Assume there are N genomes in the dataset and a binning algorithm

outputs M clusters Ci (1 £ i £ M). The overall precision and sensitivity is given as:

precision =

PM
i = 1 max

j
Rij

PM
i = 1

PN
j = 1 Rij

sensitivity =

PN
j = 1 max

i
Rij

PM
i = 1

PN
j = 1 Rij + number of unclassified reads

Note that if M > N, the majority of reads in each cluster probably belongs to a single genome and thus

precision would be high. However, sensitivity would be low as some genomes are represented by more than

one cluster. On the other hand, if M < N, some clusters would contain reads from more than one genome

and precision would be poor. Thus, precision increases with the number of predicted clusters while

sensitivity decreases with the number of predicted clusters.

We generated six datasets each with 20 species, with three for the family-genus level (FG) and three for

the genus-species level (GS). A number of random families (or genera for GS level) are selected, and then a

random number of species in each will be selected. The detailed information of the datasets is given in

Table 1. We compare the performance of MetaCluster 4.0 with AbundanceBin.

Table 1. Datasets of Simulated Data

Dataset No. of groups

Total

no. of species

No. of species

in each group Abundance ratio

1a 6 families 20 1,3,3,3,4,6 1:1:1:1:1:1:1:1:1:1:1:2:2:2:3:3:3:4:4:4

1b 5 families 20 1,2,3,4,10 1:1:1:1:1:1:1:1:1:1:1:2:2:2:3:3:3:4:4:4

1c 5 families 20 1,5,4,4,6 1 · 4:4 · 4:6 · 4:8 · 4:10 · 4

2a 4 genera 20 5,5,7,3 1:1:1:1:1:1:1:1:1:1:1:2:2:2:3:3:3:4:4:4

2b 4 genera 20 4,6,4,6 1:1:1:1:1:1:1:1:1:1:1:2:2:2:3:3:3:4:4:4

2c 4 genera 20 2,6,3,9 1 · 4:4 · 4:6 · 4:8 · 4:10 · 4
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We first consider the family-genus level (FG) (i.e., Dataset 1a–1c). Recall that there are three phases in

MetaCluster 4.0 and groups are merged in both Phase 1 and 3. The performances of MetaCluster 4.0 after

Phases 1 and 3 are shown in Tables 2 and 3. The accuracy of Phase 1 is quite high, and the total error is less

than 3% as predicted (in the Supplementary Material, which is available at www.liebertonline.com). The

number of groups is larger than the number of genomes in the dataset, as we aimed at reducing the number

of false positives with the trade-off of having more groups to be handled in Phase 3. Hence, it is not so

meaningful to show the sensitivity here. Recall that groups of size 1 will be removed after Phase 1. From our

experiments, the number of removed reads usually is very small ( < 0.7%). In Phase 3, the number of species

is determined by running MetaCluster 3.0 with binary search on k. MetaCluster 4.0 can predict the number

of species quite accurately, with the precision and sensitivity higher than 85% and 78%, respectively.

Although AbundanceBin can estimate the number of species in the dataset, its estimation is far from

satisfactory, and it takes a very long time to run (over 1 day). Thus, we provide the numbers of species to

AbundanceBin in advance and check the performance of AbundanceBin. From Table 3, the accuracy of the

binning results by AbundanceBin is quite low, even when the exact number of species in the datasets is

given. It mixed reads of species with similar abundance ratios (Dataset 1a and 1b). And it cannot finish

binning Dataset 1c in 2 days (Table 4).

We also show the performance of MetaCluster 4.0 on genus-species level (Tables 5 and 6) where the

species are more similar with each other when compared with the three datasets above. Since the proba-

bility of two reads from different genomes having common k-mer increases when two genomes are in lower

taxonomic level, both the precision and sensitivity of MetaCluster 4.0 decrease after Phase 1 and Phase 3.

However, the performance is still reasonably good.

Table 2. Performance of MetaCluster 4.0 after Phase 1 for Family-Genus Level

Dataset No. of groups Precision No. of removed reads

Dataset 1a 3,452 98.95% 0.1406%

Dataset 1b 3,758 99.03% 0.1581%

Dataset 1c 8,303 99.29% 0.6547%

Table 3. Comparison of MetaCluster 4.0 and AbundanceBin for Family-Genus Level

Dataset No. of groups Precision Sensitivity Precision of AbundanceBin Sensitivity of AbundanceBin

Dataset 1a 31 92.24% 80.91% 53.29% 17.77%

Dataset 1b 21 90.84% 90.76% 64.42% 15.20%

Dataset 1c 25 87.22% 77.73% Cannot finish within 48 h

Table 4. Running Time and Memory Requirement

Memory requirement Running time

Dataset MetaCluster 4.0 AbundanceBin MetaCluster 4.0 AbundanceBin

Dataset 1a 28.9 GB 25 GB 1 h 2 min 18 h 20 min

Dataset 1b 25.6 GB 16.6 GB 1 h 17 min 9 h 40 min

Dataset 1c 55 GB 50 GB 3 h 17 min > 48 h

Table 5. Performance of MetaCluster 4.0 after Phase 1 for Genus-Species Level

Dataset No. of groups Precision No. of removed reads

Dataset 2a 3,175 97.45% 0.1576%

Dataset 2b 3,494 97.32% 0.1728%

Dataset 2c 10,993 98.96% 0.9712%

246 WANG ET AL.



Furthermore, we show the performance on 100 genomes on genus-species level (Table 7). Dataset 3a

consists of 100 different species from 18 different genera. The precision of the merged groups after Phase 1

(Table 8) is slightly lower when compared with Table 5. It is because the probability of false positive

merging increases with the number of species in the sample. However, we show that MetaCluster 4.0 can

still maintain a precision of 94% after Phase 1 even when the number of species is 100. The number of

groups formed is in proportion to the six datasets above, as the probability of false negative merging does

not depend much on the number of species in the sample. With 100 species in the sample, MetaCluster 4.0

can still obtain an overall precision of 80.02% and sensitivity of 85.66% for the final output (Table 9).

Additional experimental results such as for extreme abundance ratios and different number of species with

different abundance ratios can be found in the Supplementary Material (which is available at www

.liebertonline.com/cmb).

Table 6. Performance of MetaCluster 4.0 after Phase 3 for Genus-Species Level

Dataset No. of groups Precision Sensitivity Space cost Time cost

Dataset 2a 26 86.67% 79.83% 19.9 GB 1 h 8 min

Dataset 2b 23 90.87% 88.26% 23.0 GB 1 h 10 min

Dataset 2c 19 80.71% 86.48% 53.0 GB 2 h 51 min

Table 7. Datasets of 100 Species

Dataset Groups Species No. of species in each group Abundance ratio

3a 18 genera 100 3,4 · 7,5 · 3,6 · 2,7 · 2,9 · 2,10 Equal abundance ratio

Table 8. Performance of MetaCluster 4.0 after Phase 1 for 100 Species

Dataset No. of groups Precision No. of removed reads

Dataset 3a 11,883 94.23% 0.2919%

Table 9. Performance of MetaCluster 4.0 after Phase 3 for 100 Species

Dataset No. of groups Precision Sensitivity Space cost Time cost

Dataset 3a 113 80.02% 85.41% 66 GB 4 h 16 min

Table 10. Precision on Real Data

Groups Precision (%) No. of reads(M) Major species

No. of reads from

the same genus

group1 97 2.98 Bacteroides sp. 2_1_7 99.1

group2 77 2.84 Bacteroides uniformis 97.6

group3 45 0.54 Bacteroides uniformis 57.8

group4 76 0.76 Ruminococcus bromii L2-63 88.3

group5 78 0.58 Clostridium sp. SS2-1 77.6

group6 68 1.06 Bacteroides thetaiotaomicron VPI-5482 99.4

group7 68 1.56 Parabacteroides merdae 68.5

group8 98 0.74 Alistipes putredinis 98.1

group9 90 0.92 Alistipes putredinis 90.5

group10 68 0.76 Parabacteroides merdae 68.1

group11 66 10.2 Bacteroides vulgatus ATCC 8482 97.6
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3.2. Experiments on real biological data

Qin et al. (2010) performed a deep sequencing on samples obtained from the feces of 124 European

adults using Illumina Genome Analyzer technology. We picked three samples from Denmark with pair-end

reads with length around 75 bp and combine them together to construct a dataset with 23M pair-end reads.

Qin’s article provides the references of 57 frequent microbial genomes in the 124 datasets. As species with

low coverage are difficult to detect, we filter out reads not from the most abundant 10 species. We use the

software BLAT to map the reads to the 10 reference genomes and allow 5% mismatch (i.e., reads with

more than 5% mismatch are filtered out). Then we performed MetaCluster4.0 on the data after filtering. The

performance is shown in Table 10.

Without using any reference genome information, MetaCluster 4.0 reported that there are 11 groups in

the samples. Among the 10 reference species, MetaCluster4.0 cannot detect two species (which do not

appear in the Major Species column in Table 10) because the coverage of these two species is low (average

coverages are 9.6 and 10.5, respectively). Nevertheless, we still can get an average precision higher than

70% and very high precision for groups 1 and 8. It seems the precision of some groups are not high (e.g.,

the largest group, 11). However, we found that 97.6% of reads in group 11 are from the same genus. So the

precision in genus level is still high for group 11. We did the same analysis for other groups, which are

shown in the fifth column in Table 10. Reads from highly related genomes are easier to be mixed together,

which is why we can obtain much higher precision in genus level. For those who want to study species from

a certain genus, our method provides promising binning results.

4. CONCLUSION

Binning metagenomics reads remains a crucial step in metagenomics analysis. In this article, we in-

troduce MetaCluster 4.0, an unsupervised binning algorithm for short reads. Our approach can (1) deal with

short reads without any prior knowledge; (2) handle genomes of similar abundance ratios as well as

extreme ratios; (3) determine the number of genomes automatically; and (4) perform well even when there

are much more than 20 genomes in the dataset. We also do not assume any knowledge about the phylo-

genetic levels of the genomes in the sample. We show that MetaCluster 4.0 works well in both the genus-

species and the family-genus levels.
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