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Abstract.  

Oxygen is a requirement for almost all living organisms and adaptations to oxygen 

shortage are essential for surviving periods of oxygen deprivation, known as 

hypoxia. Cells have evolved a range of mechanisms which increase the supply of 

oxygen and facilitate metabolic alterations that enable the cell and the organism to 

maintain functionality under hypoxic conditions. Hypoxia is a hallmark of solid 

tumours and is associated with increased malignancy and mortality in hepatocellular 

carcinoma (HCC). Transarterial chemoembolisation therapy (TACE) using 

doxorubicin is the current standard of care for intermediate HCC, although response 

rates are poor. Drug eluting bead transarterial chemoembolisation (DEB-TACE) 

shows improved response rates over TACE. More recently, rapamycin has come 

under scrutiny as an effective therapy against HCC. Embolisation therapies have 

been shown to induce hypoxia in HCC, leading to the escape of hypoxia-adapted 

cancer cells from therapy. The principal transcription factor which orchestrates 

responses to hypoxia is hypoxia inducible factor 1 (HIF-1). Laboratory and clinical 

evidence support the hypothesis that HIF-1 activity contributes to cancer progression 

and increased mortality. Targeting HIF-1 therefore presents an opportunity for 

improving outcomes of cancer therapy.  

A hypoxic model of HCC was established, and used to characterise the responses of 

the cell line HepG2 to chemotherapeutic agents in both normoxic and hypoxic 

conditions. Firstly, the time and concentration dependent effects of doxorubicin, 

rapamycin and both drugs in combination on the viability of HepG2 cells cultured 

under both normoxic and hypoxic conditions were investigated. SDS-PAGE and 

Western Blotting was then used to evaluate the responses of HIF-1α, NFkB, S6K and 

Akt expression to doxorubicin, rapamycin and both drugs in combination in cells 

cultured under both normoxic and hypoxic conditions. Finally, the anti-tumour 

effects of doxorubicin, rapamycin and both drugs in combination were investigated 

in vivo using an ectopic xenograft murine model of HCC.  

The in vitro evidence presented in this thesis demonstrates that a concentration of 

doxorubicin relevant to clinical concentrations following DEB-TACE effectively 

inhibits the viability of both normoxic and hypoxic liver cancer cells. Also presented 

is in vitro evidence that low dose rapamycin inhibits the viability of both normoxic, 

and to a lesser extent, hypoxic liver cancer cells. The addition of low dose rapamycin 

to doxorubicin was consistently observed to have an additive effect on the inhibition 

of cell viability. Protein analysis demonstrated that low dose rapamycin inhibits the 

hypoxia stimulated accumulation of HIF-1α, as does high dose doxorubicin. 

However, inhibition of HIF-1α was attenuated when the two drugs were used in 

combination. Cytotoxic effects are not, therefore, wholly dependent on inhibition of 

HIF-1α. Inhibition of HIF-1α by each drug alone appears to be due to different 

mechanisms. This study also showed in vivo that combinations of doxorubicin DEB-

TACE with either rapamycin DEB-TACE or oral rapamycin are more effective than 

either treatment alone at reducing tumour burden in a mouse model of HCC. Two 

clinical trials are now underway to investigate the combination of doxorubicin DEB-

TACE and low dose oral rapamycin to treat HCC.  
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Chapter 1  

 

Introduction. 

 

1.1 Liver Cancer. 

1.1.1 Epidemiology, Etiology, Diagnosis and Treatment. 

Hepatocellular carcinoma (HCC), or primary liver cancer, is the sixth most common 

cancer worldwide, and the third most common cause of cancer death. More than half 

a million new cases are diagnosed each year. The prognosis is generally poor, with 

survival rates of between 3 and 5%, and the number of deaths per year is almost 

equal to the number of new cases. The major risk factors for HCC are infection with 

the hepatitis B or hepatitis C virus (HBV, HCV). Indeed, 75% of all cases are a result 

of hepatitis infection. The incidence of HCC is highest in Asian and African 

countries, where chronic HBV infection is the predominant risk factor, and the 

incidence of HCC mirrors the prevalence of HBV infection (Parkin et al., 2005, Zhu 

et al., 2011). In Europe, North America and Japan chronic HCV infection and 

alcoholic cirrhosis are the predominant risk factors, and HCC is the leading cause of 

death for cirrhotic patients (Parkin et al., 2005, Bruix et al., 2006, Di Bisceglie, 

1995). 

Exposure to the aflatoxin is a risk factor in sub-Saharan Africa, Southeast Asia, and 

China (Liu and Wu, 2010). Aflatoxin is a deoxyribonucleic acid (DNA) damaging 

agent produced by the fungus Aspergillus, which grows on food stored in warm and 

damp conditions (Sanyal et al., 2010). 

The diverse etiologies of HCC mean that determining the prognosis and treatment 

plan for patients is not straightforward. The extent of underlying liver disease, as 

well as the tumour stage, needs to be taken into account when deciding on treatment 

modalities, and clinical staging systems are used for patient assessment. The staging 
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systems most commonly used for HCC are the Okuda, the tumour node metastasis 

(TNM), the Cancer of the Liver Italian Program (CLIP) score and the Barcelona 

Clinic Liver Cancer staging systems (BCLC). The Child-Pugh score, as summarised 

in Table 1.1, is used to measure liver function. 

Score 1 2 3 

Ascites Absent Slight Moderate 

Hepatic encephalopathy Absent Mild/transient Hepatic coma 

Bilirubin (µM/L) < 34 34 - 51 >51 

Albumin (g/L) >35 35 - 28 < 28 

Prothrombin (sec)* < 4 4 – 6 >6 

Child A: score 5-6 (well compensated). 1 yr survival = 100%, 2 yr survival = 85%. 

Child B: score 7-9 (functional compromise). 1 yr survival = 81%, 2 yr survival = 57%. 

Child C: score 10-15 (decompensated). 1 yr survival = 45%, 2 yr survival = 35%. 

*Difference between patient and control. 

 

Table 1.1 Child Pugh Classification of Liver Function.  

The Child Pugh classification assesses five clinical measures of liver disease. Each 

measure is scored from 1 to 3, with 3 indicating the most pathological. Liver disease 

is then classified into Child-Pugh class A to C, according to the added score from the 

assessment of liver damage. 

The BCLC links the patient’s general state of health, Child Pugh classification, and 

extent of tumour spread with a treatment algorithm, and this staging system has now 

become the international standard (Bruix et al., 2006, Pons et al., 2005). Figure 1.1 

illustrates the staging system algorithm. Surveillance of patients with cirrhosis or 

hepatitis is crucial if patients are to be diagnosed early enough for curative treatments 

(Wong et al., 2008, Wong et al., 2000, Mok et al., 2005). The European Association 

for the Study of the Liver (EASL) recommends surveillance using ultrasound and 

serum alpha-fetoprotein (AFP) every 6 months. 

If HCC is detected early enough, the treatment options are surgical resection, liver 

transplantation, and percutaneous ablation. Percutaneous ablation is the destruction 

of neoplastic cells by ethanol or acetic acid or by temperature (radiofrequency, laser, 
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microwave, and cryoablation). The 5-year survival rates for early stage treatments 

are 70 - 90% (Rampone et al., 2009, Granito and Bolondi, 2009).  

 

 

Figure 1.1 The Barcelona Clinic Liver Cancer (BCLC) Staging Classification 

and Treatment Schedule.  

The BCLC links the stage of the disease to a specific treatment strategy.PS, 

performance status; OLT, orthotopic liver transplantation; PEI, perctaneous ethanol 

injection; PVI, portal vein invasion; PVT, portal vein thrombosis; RFA, 

radiofrequency ablation. 

The treatment option that has shown best patient outcome and survival benefit for 

intermediate stage HCC is transarterial chemoembolisation (TACE) (Biselli et al., 

2005, Takayasu et al., 2006, Lee et al., 2006, Kaibori et al., 2006, Molinari et al., 

2006, Bruix et al., 2006, Llovet and Bruix, 2003). TACE is the current standard-of-

care for intermediate stage HCC, and shows 1, 2 and 3 year survival rates of 80%, 

65% and 50% respectively (Bruix et al., 2006, Bruix et al., 2004, Raoul et al., 2011). 

For advanced stage patients, sorafenib is the new standard of care (Keating and 

Santoro, 2009). Sorafenib is a small molecule multi-kinase inhibitor and has been 
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shown to improve survival times, but by months rather than years. Survival rates at 

one, two and three years are 29%, 16% and 8% respectively (Llovet et al., 2008, 

Cheng et al., 2009). End stage patients are treated symptomatically and have a life 

expectancy of less than 6 months (Granito and Bolondi, 2009). 

The introduction of screening programmes for those at risk of developing HCC has 

resulted in more cases being diagnosed at an early stage, when curative treatments 

are possible (Sangiovanni et al., 2004). However, the majority of cases are not 

diagnosed until intermediate or advanced stage, by which time the treatment options 

are limited and the prognosis is poor (Colombo and Sangiovanni, 2003). 

1.1.2 Transarterial Chemoembolisation (TACE). 

Transarterial embolisation (TAE) is a technique used to treat HCC, and exploits both 

the fact that the liver tumour is fed by the hepatic artery whilst the normal liver tissue 

is fed by the portal vein (Breedis and Young, 1954), and that HCCs are typically 

highly vascularised (Ackerman, 1972).  

TACE was first pioneered by Yamada in the 1980s (Yamada et al., 1980, Yamada et 

al., 1983) in an attempt to improve the dismal treatment outcomes associated with 

systemic chemotherapies. TACE combines tumour embolisation with delivery of 

chemotherapeutic agent(s) directly to the blood vessels feeding the tumour, thus 

increasing the intratumoural concentration and of the drug(s) whilst decreasing 

systemic concentration (Biolato et al., 2010). The embolic blocks the flow of blood 

to the tumour, starving tumour cells of oxygen and nutrients. There is minimal 

damage to paranchymal liver tissue since this tissue receives 75% of its blood supply 

via the portal vein, whereas the tumour derives 95% of its blood supply from the 

hepatic artery (Bruix et al., 2004). Typically, the protocol for conventional TACE 

(cTACE) consists of the catheter-based intra-arterial injection of a chemotherapeutic 
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iodised oil emulsion followed by injection of an embolic material (Liapi and 

Geschwind, 2010). TACE therapy allows a complete local tumour control of 25-35% 

and improved survival in patients with intermediate HCC, according to BCLC 

classification, when compared to systemic therapies. As an adjunctive therapy prior 

to liver resection TACE allows 70% tumour control (Vogl et al., 2009). TACE using 

the anthracycline antibiotic doxorubicin is the standard of care for the treatment of 

unresectable HCC (Biolato et al., 2010; Bruix et al., 2004).  

1.1.3 Drug-eluting Bead Chemoembolisation (DEB-TACE). 

Drug-eluting bead transarterial chemoembolisation (DEB-TACE) is a refinement of 

TACE, and provides a one-step procedure for both embolisation and drug delivery. 

The most successful embolic microsphere developed to date in terms of doxorubicin 

loading and release is the DC Bead (Biocompatibles UK). For HCC, the bead is 

available pre-loaded with doxorubicin (DEBDOX™). DEB-TACE allows a 

controlled, localised and sustained release of the drug to the tumour bed, with 

reduced systemic doxorubicin and an improved safety profile compared to cTACE 

(Varela et al., 2007, Lewis and Holden, 2011, Lewis et al., 2007). DEB-TACE also 

addresses some of the issues with regard to a lack of standardisation in the treatment 

of intermediate stage HCC. The only other commercially available DEB is the 

HepaSphere™, from Merit Medical Systems Inc.  

The DC Bead actively sequesters doxorubicin from a non-ionic solution, due to an 

active ion-exchange process between the negatively charged sulfonate moieties on 

the microspheres with the positively charged amine region of the doxorubicin 

molecule. Drug elution is dependent on ion exchange with blood plasma ions after 

delivery of the microspheres (Lewis and Holden, 2011). 
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Figure 1.2 Schematic Outlining the Procedure for DEB-TACE. 

A catheter is inserted into the femoral artery and directed to the liver using contrast 

media and X- ray equipment.  Drug eluting beads are then injected into the 

capillaries feeding the tumour via the catheter. The procedure is normally carried out 

under local anaesthetic. Image adapted with permission from Biocompatibles UK 

Ltd. 

 

 

 
 

Figure 1.3 In Vivo Images of DEB-TACE. 

A) An X-ray image of a chemoembolisation procedure. B) and C) histological 

analysis of DC Beads 14 days after DEB-TACE, in a rabbit Vx-2 model of hepatic 

arterial embolisation (Hong et al., 2006). 
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To deliver the beads to the tumour bed, a catheter is inserted into the femoral artery 

and directed to the liver. The beads are then injected via the catheter into the 

capillaries feeding the tumour. The procedure, outlined in Figures 1.2 and 1.3(A), is  

normally carried out under local anaesthetic, without the need for overnight 

hospitalisation. Figure 1.3 (B) and (C) show in vivo imaging of beads after DEB-

TACE in a rabbit model. 

Results so far from clinical trials, including the results of a randomised phase II trial 

(PRECISION V), show that DEB-TACE using DEBDOX shows a significant 

survival advantage, higher rates of complete response, and significant differences in 

objective response and disease control in patients with advanced HCC when 

compared with cTACE (Dhanasekaran et al., 2010, Liapi and Geschwind, 2011, 

Lammer et al., 2010, Reyes et al., 2009). The incidence of doxorubicin-related 

adverse events was significantly lower with DEBDOX compared to cTACE 

(Lammer et al., 2010). TACE using DEBDOX also demonstrated improved local 

response, fewer recurrences, and a longer time to progression when compared with 

bland embolisation using unloaded DC Beads (Malagari et al., 2010). DEB-TACE is 

a minimally invasive treatment that is becoming more widely used as a treatment for 

unresectable HCC, as an adjunctive therapy prior to resection and as a bridge therapy 

to maintain patients on transplant waiting lists (Carter and Martin Ii, 2009, Liapi and 

Geschwind, 2011, Lewis and Holden, 2011). The results of ongoing clinical trials 

will, in the future, contribute to the optimisation of treatment strategies. 

1.2 Cellular Oxygen Supply and Hypoxia. 

 

Adequate supplies of oxygen are essential for the normal functioning of all 

multicellular organisms/metazoan species. The principle energy source for the 
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majority of cellular processes is adenosine triphosphate (ATP). Oxidative 

phosphorylation is the process by which cells generate ATP from the catabolism of 

glucose and fatty acids, and the oxygen molecule is the metabolic substrate for this 

cellular respiration, acting as the terminal electron acceptor. 

Low cellular oxygen concentrations, known as hypoxia, can compromise cell 

function and lead to cell death and tissue damage. However, oxygen molecules are 

potentially toxic, since they can cause oxidative damage to macromolecules within 

the cell. The control of oxygen homeostasis is thus essential for maintaining cellular 

and therefore whole organism viability. 

The physiological oxygen tension within healthy human tissue varies according to 

the organ, but generally lies within the range 20 – 120 mmHg (Vaupel et al., 1989). 

Cells in different tissues experience different oxygen tensions, and cells within one 

tissue experience a range of oxygen tensions, depending on both distance from the 

nearest blood supply - the diffusion distance of oxygen through tissue is estimated to 

be around 150 µm (Coleman et al., 2002) - and the oxygenation status of that blood 

supply. For instance, the pressure of O2  of the blood supply to the liver ranges from 

95–105 mmHg in the hepatic artery, 50-65 mmHg in the portal vein, 35-45 mmHg in 

the sinusoids and 30– 40 mmHg in the central vein (Lee et al., 2007). The different 

oxygen tensions that each cell experiences in a healthy liver are all perceived as 

normal – indeed, the oxygen gradient along the sinusoid is the regulatory factor 

which creates the zonation of metabolic functioning within the sinusoid (Vollmar and 

Menger, 2009). Sensitive and adaptive mechanisms for sensing intracellular oxygen 

concentrations and responding to change are vital in order to maintain oxygen 

homeostasis. Adaptations to fluctuating oxygen levels need to be flexible and 

capable of responding to subtle changes. 
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Hypoxia occurs when oxygen tensions are ≤ 7 mmHg, usually as a result of 

decreased partial pressure of oxygen in the blood (hypoxeamia) or a decrease in the 

oxygen carrying capacity of the blood (anaemia) (Vaupel and Harrison, 2004). 

Molecular responses to hypoxia result in the increased expression of genes involved 

in adaptations to hypoxia, and the promotion of a range of physiological responses 

and adaptations that allow cells to survive in a hypoxic environment. These target 

genes play critical roles in angiogenesis, metabolism, cell proliferation and cell 

survival. The master regulator of adaptations to hypoxia is the transcription factor 

hypoxia-inducible factor (HIF) (Wang and Semenza, 1993). 

1.2.1 Hypoxia-inducible Factor 1 (HIF-1). 

HIF-1 was first identified by Gregg Semenza in 1992 whilst he was studying 

erythropoietin gene expression (Semenza and Wang, 1992). HIF is a highly 

conserved DNA binding protein (Iyer et al., 1998) that activates the expression of 

genes containing a hypoxia response element (HRE) (Wang and Semenza, 1993). 

HIF is a heterodimer comprising of two sub-units, α and β. Both sub-units belong to 

the Per-Arnt-Sim (PAS) family of helix-loop-helix (HLH) proteins (Wang and 

Semenza, 1995). HIF activity is regulated by the abundance of the HIF-α sub-unit. 

To date, three HIF-α isoforms have been described, with HIF-1α being the best 

characterised. In this study, we have concerned ourselves with the activity of HIF-1α. 

HIF-1α is constitutively expressed, but under normoxic conditions is subject to 

oxygen-dependent hydroxylation and ubiquitination that determines proteasomal 

degradation (Huang et al., 1998). Under hypoxic conditions the HIF-1α sub-unit 

stabilises, accumulates within the cell and translocates to the nucleus. Here it 

heterodimerises with HIF-1β, recruits the co-activators p300/cAMP binding protein 

(CBP) and becomes transcriptionally active (Wang and Semenza, 1993). This 
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response is rapid and its intensity correlates to the severity of hypoxia (Jiang et al., 

1996). HIF-1β (also known as aryl hydrocarbon receptor nuclear translocator ARNT) 

is also constitutively expressed, and its stability is independent of oxygen tension. 

HIF-1β is involved in a wider range of cellular processes than HIF-1α via interaction 

with other proteins (Maxwell et al., 2001, Semenza et al., 1997, Swanson et al., 

1995). 

In addition to mediating cellular responses to oxygen shortage, there is increasing 

evidence that HIF-1 may be involved in preventing premature cell senescence, and in 

innate host defence mechanisms (Welford et al., 2006, Zarember and Malech, 2005, 

Lukashev et al., 2006). HIF-1 also plays an essential role in embryonic development 

(Huang et al., 2010). 

1.2.2 HIF-α Isoforms. 

In mammals, three isoforms of HIF-α have been identified – HIF-1α, HIF-2α (also 

known as Endothelial PAS domain
 
protein or EPAS) and HIF-3α (also known as 

inhibitory Per Arnt Sim or IPAS). These are encoded by the genes HIF1A, EPAS1, 

HIF3A respectively. The HIF-1α, HIF-2α isoforms are structurally similar in their 

DNA binding and dimerisation domains, and regulation of gene expression by HIF-

2α is similar to that of HIF-1α (Wiesener et al., 1998, O'Rourke et al., 1999). They 

differ in their transactivation domains, implying that they may have unique target 

genes (Heidbreder et al., 2003, Wiesener et al., 2003, Tian et al., 1997). HIF-3α 

lacks the transactivation domain found in factors containing either the 1α or 2α 

subunits and appears to inhibit transcriptional activation induced by hypoxia (Hirota 

and Semenza, 2006). HIF-1α is ubiquitously expressed, whereas expression of HIF-

2α is cell specific (Loboda et al., 2010). In this study we have focussed on the 

abundance of HIF-1α in response to hypoxia. 
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1.2.3 The Structure of HIF-1α. 

HIF-1α and HIF-1β belong to the Per Arnt Sim (PAS) sub-family of the HLH family 

of transcription factors. Both contain basic HLH motifs and a PAS domain, which 

are involved in DNA binding and dimerisation. The α sub-unit contains an oxygen 

degradation domain (ODD) and two transactivation domains – the N-terminal 

transactivation domain (NAD) and the C-terminal transactivation domain (CAD) 

(Figure 1.4) (Wang and Semenza, 1995, Chapman-Smith et al., 2004). 

 

 
 

Figure 1.4 Schematic Showing Simplified Structure of HIF-1α and 

Hydroxylation Sites.  
bHLH, basic helix-loop helix domain; CAD, C-terminal transactivation domain; 

NAD, N-terminal transactivation domain; ODD, oxygen degradation domain; PAS, 

Per Arnt Sim domain. Pro402, Pro 564 are the prolyl hydroxylation sites. Asn803 is 

the asparaginyl hydroxylation site. 

1.2.4 Prolyl Hydroxylation Promotes the Degradation of HIF-1α. 

In normoxic conditions HIF-1α is identified for ubiquitination and degradation via 

enzymatic hydroxylation of proline residues. The region of HIF-1α in which this 

takes place is known as the ODD. The ODD extends from amino acids 401 – 603 and 

contains proline residues at positions 402 and 564 (Bruick and McKnight, 2001, 

Huang et al., 1998) (Figure 1.5). Three HIF prolyl-hydroxylases (PHDs) have been 

identified (Jaakkola et al., 2001, Ivan et al., 2001). The hydroxylation promotes 

interaction with the von Hippel-Lindau (VHL) ubiquitylation complex (Ivan et al., 

2001). The pVHL binds to the ODD and HIF-1α is ubiquinated by the VCB E3 

ubiquitin-ligase complex. This labels the protein complex for proteasomal 

bHLH PAS CADNAD

Asn803Pro402 Pro564

ODD
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degradation (Masson et al., 2001, Kamura et al., 2000, Iwai et al., 1999). Either or 

both of the residues can be hydroxylated, but hydroxylation of both residues is 

required for efficient degradation (Masson et al., 2001). The hydroxylation reaction 

requires oxygen, 2-oxogluterate and Fe (II). In hypoxic conditions (oxygen 

concentration < 6%), prolyl hydroxylation decreases and HIF-1α stabilises and 

accumulates (Ivan et al., 2001, Maxwell et al., 1999). 

 
 

 

Figure 1.5 Schematic Outlining the Regulation of HIF-1α in Hypoxia.  

Under normoxic conditions PHDs 1-3 and FIH hydroxylate HIF-1α on proline and 

asparagine residues respectively. The hydroxylation of the proline residue promotes 

interaction with the VHL/E3 ubiquitin ligase complex and consequent proteosomal 

degradation. Hydroxylation of the asparagine residue prevents recruitment of 

p300/CBP. Under hypoxic conditions the enzymes are inactive, and the α sub-unit 

stabilises and dimerises with the β sub-unit. p300/CBP is recruited and HIF-1 binds 

to HREs in the promoter region of target genes. 
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1.2.5 Asparagine Hydroxylation Inhibits Transcriptional Activation of HIF-1. 

The C-terminus of HIF-1α contains a CAD and an NAD. The CAD contains a 

conserved asparagine residue at position 803 (Kaelin and Ratcliffe, 2008) (Figure 

1.5). This is the region where recruitment of the transcriptional co-activator 

p300/CBP takes place, facilitating the binding of HIF-1 to the HRE in the promoter 

of hypoxia-response genes. In normoxic conditions factor-inhibiting HIF-1α (FIH-1) 

catalyses the hydroxylation of the asparagine (Asp) residue (McNeill et al., 2002, 

Lando et al., 2002). This hydroxylation prevents the recruitment of the co-activator 

and inhibits C-TAD activation (Mahon et al., 2001).  The reaction requires 2-OG and 

Fe (II) (Lando et al., 2002), so that in hypoxia the hydroxylation does not occur and 

the CAD is activated. FIH-1 is abundant and ubiquitous in all cell types (Stolze et al., 

2004). 

1.2.6 HIF Prolyl-hydroxylases (PHDs). 

 

The PHDs are highly conserved iron and 2-oxoglutarate dependant dioxygenases. 

Three PHD enzymes have been identified – PHD1, PHD2 and PHD3 (Jaakkola et al., 

2001, Ivan et al., 2001). They have similar sequence and structure, with a catalytic 

core that brings the binding sites for Fe (II) and 2-OG together. PHD1 and PHD2 

both have a C-terminal catalytic domain and an N terminal extension. PHD2 has a 

zinc finger in the N terminal. PHD3 lacks the N terminal extension (Choi et al., 

2005). All three PHDs can hydroxylate Pro564, but only PHD1 and PHD2 

hydroxylate Pro402 (Epstein et al., 2001). Several facts suggest that PHD2 is the 

most important of the three isoforms. Firstly, the activity of each PHD is dependent 

on its concentration within the cell, and PHD2 is the most abundant form. Secondly, 

PHD2 is ubiquitously expressed, whereas PHD1 and PHD3 are more tissue specific. 

For instance, PHD1 is highly expressed in the testes and PHD3 is highly expressed in 
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the heart (Lieb et al., 2002). Suppression of PHD2 using small interfering ribonucleic 

acid (siRNA) increases levels of HIF-1α in normoxic cells (Berra et al., 2003). 

Thirdly, PHD2 knockout mice are embryonically lethal, whilst PHD1 and PHD3 

knockout mice are viable (Takeda et al., 2006). Finally, PHD2 seems to regulate 

HIF-1α more than HIF-2α, and PHD3 seems to regulate HIF-2α more than HIF-1α 

(Aprelikova et al., 2004). Since HIF-1α is ubiquitous and HIF-2α is tissue-specific, 

we can conclude that PHD2 has broader activity. 

There are a number of negative feedback mechanisms regulating PHD activity. 

Hypoxia induces the expression of PHD2 and PHD3 in a HIF-1 dependant manner 

(Berra et al., 2003), perhaps to cap the levels of stabilised HIF-1 within the cell, or to 

protect against damage caused by reoxygenation (D'Angelo et al., 2003). Hypoxic 

preconditioning is known to protect cells against reoxygenation damage (D'Angelo et 

al., 2003). On the other hand, PHDs are degraded by Sian 1 and 2, and this 

degradation is enhanced by hypoxia because transcription of Sian 1 and 2 is 

increased in hypoxia in a HIF-1 independent manner (Nakayama and Ronai, 2004). 

1.2.7 HIF-1 Activates the Transcription of Hypoxia Response Genes. 

HIF-1 binds to hypoxia-responsive elements containing the recognition sequence 5’–

RCGTC – 3’ on target genes (Semenza et al., 1991, Semenza et al., 1994), initiating 

or upregulating (and in some cases downregulating) their expression (Semenza et al., 

1997, Greijer et al., 2005). The target genes are physiologically relevant to 

overcoming hypoxia, operate at systemic, local and intracellular levels and include 

genes whose products are involved in cell proliferation, cell survival, cell motility, 

cell adhesion, apoptosis, angiogenesis, erythropoeisis, potential of hydrogen (pH) 

regulation and glucose metabolism (Greijer et al., 2005, Hirota and Semenza, 2006). 
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Microarray analyses have shown that there are hundreds of genes that respond to 

hypoxia, more than 50% of which are HIF-1 dependant (Elvidge et al., 2006). 

1.3 Hypoxia and Cancer. 

 

Tumour hypoxia is a positive factor for the growth of solid tumours, and is 

associated with malignant progression and a poor prognosis (Semenza, 2007a, Bos et 

al., 2003). Cells undergoing hypoxia escape necrosis and undergo a range of 

phenotypic adaptations. These adaptations not only allow the cells to survive the 

hypoxic environment, but may also increase the potential malignancy of the residual 

tumour cells. Intratumoural hypoxia and the hypoxic phenotype are implicated in 

drug resistance and tumour progression, and chemoresistance to doxorubicin can be 

attributed in part to the upregulation of hypoxia response genes (Semenza, 2007a, 

Semenza, 2000b, Vaupel and Harrison, 2004, Tomida and Tsuruo, 1999). Increased 

understanding of the pathophysiological responses to hypoxia will contribute to 

improved treatment regimes and treatment outcomes. 

1.3.1 Hypoxia and Adaptations to Hypoxia in Solid Tumours. 

When a solid tumour grows to 1 – 2 mm in diameter, the core becomes hypoxic, 

HIF-1 is activated and neo-vascularisation occurs. This tumour-driven angiogenesis 

is a requirement for continued cell proliferation and tumour growth (Kerbel, 2000). 

However, the vascularisation is poor, comprising of leaky and malformed blood 

vessels which are unable to supply the rapidly proliferating tumour mass with 

sufficient oxygen and nutrients. Whilst the central core of a tumour becomes anoxic 

and consequently necrotic, micro-regions of hypoxia persist within the tumour and 

HIF-1 continues to stabilise. The activity of HIF-1 increases as the oxygen 

concentration decreases. Hypoxia-inducible genes controlling cell proliferation and 
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survival, cell metabolism, cell invasiveness, metastatic potential and angiogenesis are 

all activated. Consequently, hypoxic tumours may have a more malignant phenotype 

(Harris, 2002). The metabolic alterations to cancer cells in hypoxia result in an 

increasingly acidic extracellular milieu (Vaupel et al., 1989). The relationship 

between oxygen pressure and local pH is represented in Figure 1.6. 

 

 

Figure 1.6 Graph showing intratumoural oxygen concentration and pH in 

relation to the nearest tumour blood vessel.  
Oxygen concentration decreases and acidity increases as distance from the nearest 

blood vessel increases. Adapted from Vaupel (Vaupel et al., 1989). 

Hypoxia is associated with resistance to both chemotherapies and radiotherapy, and 

hypoxia is positively correlated with a poor prognosis in many cancers (Hockel and 

Vaupel, 2001, Lee et al., 2006). HIF-1α knock-out studies have demonstrated that 

HIF-1 is a positive factor in tumour growth and proliferation (Zhang et al 2004; 

Helton et al 2005; Dang et al 2006; Li et al 2006; Luo et al 2006). HIF-1α 

overexpression is associated with angiogenesis, metastases, resistance to radio- and 

chemotherapies, malignant progression and a poor prognosis (Hockel and Vaupel, 

2001, Semenza, 2000b).  

6

6.2

6.4

6.6

6.8

7

7.2

7.4

0

20

40

60

80

100

120

140

0 20 40 60 80 100

p
H

p
02

 (
m

m
 H

g)

Distance from nearest blood vessel (µm)

pO2

pH



 17 

Intrinsic and acquired drug resistance present major challenges for the treatment of 

cancers. Both tumour microenvironment and the cellular phenotype contribute to 

chemoresistance. HIF-1α expression is upregulated in many cancer cell lines even 

under normoxic conditions, either as a result of clonal selection, gain-of-function 

mutations, loss-of-function tumour suppressors or the influence of growth factors and 

cytokines and hypoxia and HIF-1α have been shown to contribute to 

chemoresistance in a range of cancers and cancer cell lines (Sullivan et al., 2008, 

Unruh et al., 2003, Rohwer et al., 2010, Daskalow et al., 2010, Jung et al., 2010, 

Nardinocchi et al., 2009a). 

1.3.2 Hypoxia as a Consequence of Embolisation Therapy. 

A negative, but inevitable, consequence of embolisation therapy is the creation of 

hypoxic regions within the tumour. Tumour hypoxia is associated with tumour 

growth, malignant progression, and resistance to therapies, and the escape of tumour 

cells from TACE therapy can potentially increase the aggressiveness of the tumour 

(Guo et al., 2004, Guo et al., 2002, Gupta et al., 2006, Kim et al., 2001, Liao et al., 

2003, Liao et al., 2004, Shao et al., 2002). Both animal and human studies have 

reported increased HIF-1α levels in plasma and in liver tumour tissue samples post-

TACE, and this increase is thought to be a result of hypoxia induced by the 

procedure (Liang et al., 2009, Liang et al., 2010b, Virmani et al., 2008, Rhee et al., 

2007). Anti-sense HIF-1α has been shown to increase chemosensitivity and reduce 

hypoxia-stimulated cell migration (Song et al., 2006, Sun et al., 2009). 

One of the effectors of HIF-1 is the endothelial cell mitogen vascular endothelial 

growth factor (VEGF) (Semenza et al., 2006). VEGF initiates a sequence of 

molecular events resulting in angiogenesis, which is a requirement for tumour 

growth. Increased proliferation of vascular endothelial cells post-TACE has been 
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reported (Kim et al., 2001), and increased VEGF has been reported within liver 

tumours and in plasma samples post-TACE (Li et al., 2003, Li et al., 2004, Wang et 

al., 2008a, Liang et al., 2010b, Liang et al., 2010a). High plasma VEGF levels post-

TACE are associated with the development of metastases (Xiong et al., 2004), a poor 

treatment response and shorter survival times (Sergio et al., 2008, Poon et al., 2004, 

Shim et al., 2008). 

In short, hypoxia is a major cause of tumour resistance to chemotherapy and is a 

positive factor for tumour progression. There is a growing body of evidence to 

support the hypothesis that embolisation therapies cause hypoxia and the activation 

of HIF-1; and that inhibition of HIF-1 and/or its effectors may improve treatment 

outcome. There is, therefore, a need to develop therapies which address both 

normoxic and hypoxic regions within a tumour. Targeting hypoxic tumour cells is a 

logical next step to improving treatment outcome. 

1.4 Doxorubicin. 

 

Doxorubicin is an anthracycline antibiotic that is widely used as a chemotherapeutic 

agent for the treatment of a range of cancers, including breast cancer, soft tissue 

sarcomas, childhood solid tumours and lymphomas. TACE using doxorubicin is the 

standard of care for HCC. The use of doxorubicin-eluting embolic beads is a new 

development of the TACE procedure (Lewis and Holden, 2011). 

Anthracyclines are antibiotics derived from the bacterial species Streptomyces and 

are highly toxic to mammalian cells, displaying both anti-proliferative and cytotoxic 

effects. Doxorubicin (also known as Adriamycin™) is a metabolite of a mutated 

strain of the wild-type bacterium S. peucetius.  During the 1950’s S. peucetius was 
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cultured from a soil sample taken from the grounds of a 13
th

 century castle in Italy 

(Figure 1.7). The bacterium produces a red pigmented antibiotic, daunorubicin,  

 

 

 

Figure 1.7 Castel del Monte, Puglia, Italy. 

The bacterium Streptomyces  peucetius was cultured from a soil sample taken from 

the grounds of Castel del Monte in the 1950s. Stock photograph from TPGIMAGES. 

which was found to have strong antitumoural activity in mice. By 1967, the 

cardiotoxic effects of daunomycin had been recognised (Tan et al., 1967). Mutating  

the bacterial species to S. peucetius var. caesius resulted in the accumulation of a 

slightly different antibiotic which proved to have a higher therapeutic index than 

daunorubicin (Bonadonna et al., 1969), although the cardiotoxic effects were still 

apparent. This toxicity limits both the single and cumulative doses of the drug 

(Young et al., 1981). 

The chemical structure of doxorubicin comprises a four ring aglycone region linked 

to an amino sugar daunosamine by a glycosidic bridge (Figure 1.8). 
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Figure 1.8 The Chemical Structure of Doxorubicin. 

The chemical formula for doxorubicin is C27H29NO11HCl, and the molecular weight 

is 579.98. Doxorubicin consists of a water insoluble tetracycline aglycone and a 

water soluble daunosamine sugar. Ring C is a quinone group, which activates to a 

semiquinone radical after reduction. Ring B is a hydroquinone and can be activated 

to a semiquinone radical after oxidation. During anaerobic reduction, the sugar group 

is split off and C7-deoxyaglycone is formed. 

1.4.1 Mode of Action of Doxorubicin. 

There are a number of different mechanisms by which doxorubicin is cytotoxic to 

eukaryotic cells. Different mechanisms of action are apparently activated at different 

drug concentrations, and the presence or absence of oxygen may also influence the 

mechanisms and degree of cytotoxicity. The interaction of doxorubicin with cells is 

complex, and is outlined below. 

1.4.1.1 Doxorubicin Intercalation with Deoxyribonucleic Acid. 

 

DNA contains the genetic information for the development and functioning of, with 

the exception of viruses, all living organisms. The genetic information in DNA is 

stored as a code made up of four chemical bases: the purines adenine (A) and 

guanine (G), and the pyrimidines cytosine (C) and thymine (T). The DNA bases pair 

up with each other, A with T and C with G, to form units called base pairs. Each base 
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is also attached to a 5 carbon sugar. The sugars are linked by phosphate groups that 

form a phosphodiester bond between carbons 3 and 5 of adjacent sugars. Together, a 

base, sugar, and phosphate are called a nucleotide. The sugar and phosphate residues 

form the backbone of a DNA strand. DNA strands exist in a double helix formation, 

with two anti parallel DNA strands being stabilised by hydrogen bonding between 

the complimentary base pairs.  

Doxorubicin complexes with double stranded DNA by intercalation (Pigram et al., 

1972). Rings B and C of the doxorubicin core (Figure 1.8) intercalate between G-C 

and C-G DNA base pairs, causing the base pairs above and below the drug molecule 

to buckle. Doxorubicin is stabilised within the DNA by the interactions between the 

electron-deficient quinone rings and the electron-rich purine-pyrimidine bases 

(Quigley et al., 1980, Patel et al., 1981). The daunosamine sugar and the carbonyl 

side chain linked to Ring D remain in the minor groove. The positively charged 

daunosamine interacts with the phosphate backbone of the DNA and Ring A 

protrudes into the major groove of the double helix. This distorts the tertiary 

structure of the DNA helix (Cullinane and Phillips, 1990). Intercalation inhibits the 

action of DNA and RNA polymerases and nucleotide replication, and protein 

synthesis and cell proliferation are inhibited (Neidle, 1979). The inhibition of RNA 

synthesis is a potential mechanism of anthracycline toxicity to non-dividing cells. It 

has been well established that doxorubicin inhibits DNA and RNA synthesis in cells, 

although the extent of the effects are cell specific (Gewirtz, 1999). Whether or not 

this inhibition translates to a cytotoxic or cytostatic outcome is less straightforward. 

1.4.1.2 Doxorubicin Cross-linking of DNA. 

 

Doxorubicin forms covalent adducts with cellular DNA, and this has been reported at 

drug concentrations of 50 µM (Sinha and Chignell, 1979). DNA cross-linking can 
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occur as a consequence of adduct formation, and this inhibits DNA replication. The 

ability of doxorubicin to form adducts with DNA correlates strongly to its 

cytotoxicity in certain cell lines, and fewer cross-links are found in drug-resistant 

cells compared to drug sensitive cells even when the intracellular drug concentrations 

are the same (Swift et al., 2006). 

1.4.1.3 Doxorubicin is a Topoisomerase II Poison. 

 

The primary mechanism for the cytotoxicity of doxorubicin at clinical concentrations 

is likely to be due to interference with the ubiquitous enzyme topoisomerase II 

(TOP2). This enzyme belongs to the topoisomerase family of enzymes, which are 

required for DNA replication, DNA transcription and chromosome segregation and 

therefore essential for cell survival (Wang, 2002, Nitiss, 2009). 

1.4.1.3.1 The Role of Topoisomerase II in the Cell. 

In order to be packaged into cells, DNA has to be supercoiled. DNA molecules are 

negatively supercoiled, since complimentary strands of negatively coiled DNA are 

more easily separated than those of positively coiled DNA (Boles et al., 1990). 

During replication, as the replication fork moves along the DNA, positive 

supercoiling of the DNA occurs ahead of the replication machinery. Similar 

problems arise during transcription, when RNA polymerases move along the 

separated DNA strand. The accumulation of positive supercoils makes strand 

separation more difficult and interferes with the processes of replication and 

translation (Wang, 2002). 

Topoisomerases are responsible for maintaining the correct topological arrangement 

of DNA molecules, and regulate positive and negative supercoiling as well as 

knotting and tangling of DNA. Topoisomerase I (TOP1) enzymes generate a 
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transient break in one strand of a DNA duplex, and then either pass the other strand 

through the break (a single stranded passage reaction), or rotate it around the break, 

thus relieving twists in duplex DNA (McClendon and Osheroff, 2007). TOP2 

enzymes generate a break in both strands of the DNA duplex, and then pass another 

intact DNA duplex through the gap. This is known as a double stranded passage 

reaction (Berger and Wang, 1996). TOP2 enzymes relieve over- or under-winding of 

the DNA helix ahead of or behind the replication fork, and resolve tangles and knots 

(known as catananes) between DNA duplex molecules (Osheroff, 1989, Osheroff et 

al., 1991). 

1.4.1.3.2 The Catalytic Cycle of Topoisomerase II. 

TOP2 enzymes are homodimeric, and an active tyrosyl residue in each subunit 

cleaves the phosphate backbone of opposite DNA strands of a DNA molecule, 

leaving a 4-base 5’ overhang on each strand. TOP2 forms a covalent bond between 

the tyrosyl residue and the newly cut 5’ end of the DNA phosphodiester backbone 

(Sander and Hsieh, 1983). This cleaved DNA is known as the G (gate) segment. The 

energy of the phosphate bond is retained within the phosphotyrosine bond, and is 

available for religation (Nitiss, 2009). TOP2 binds ATP and undergoes a 

conformational change such that the intact DNA helix, known as the T (transporter) 

segment, is passed through the cleaved DNA helix. ATP hydrolysis enables the 

release of the nucleic acids, and the cut ends religate (Lindsley and Wang, 1993, 

Lindsley and Wang, 1991). 

1.4.1.3.3 Doxorubicin Interaction with Topoisomerase II. 

TOP2 mediated strand breaks are transient intermediates in the catalytic cycle, and 

low levels are well tolerated. Doxorubicin is a TOP2 poison – that is, it increases the 
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concentration of TOP2 cleavage complexes within the cell to levels that are toxic. 

Intercalating TOP2 poisons have a high binding affinity for DNA. It is the ability of 

doxorubicin to intercalate DNA that enables the drug to stabilise the TOP2-DNA 

complex. Doxorubicin interacts with TOP2 at the protein-DNA interface by non-

covalent bonding and inhibits the ability of TOP2 to religate the cleaved DNA 

strands (Wilstermann and Osheroff, 2003).  In the presence of doxorubicin, TOP2 

remains locked to the 5’ cut ends of the DNA molecule (Tewey et al., 1984). This 

then increases the concentration of DNA cleavage complexes within the cell. 

Cleavage complexes are recognised by DNA surveillance and tracking machinery 

such as replication and transcription complexes. When a nucleic acid tracking system 

encounters a cleavage complex, it converts the transient break to a permanent one, 

and this then activates a range of repair pathways. The repair process involves the 

removal of the cleavage complex, and this results in a permanent double strand 

break. If the number of permanent double strand breaks is such that the cell is 

overwhelmed, apoptotic cell death pathways are triggered (Fortune and Osheroff, 

2000). The repair of double strand breaks is by homologous recombination and non-

homologous end joining. These repair processes are imperfect and can generate 

chromosomal translocations and other DNA aberrations (Aratani et al., 1996). Such 

aberrations can lead to the development of therapy related secondary leukaemias, 

most notably acute myeloid leukaemia (Kantidze and Razin, 2007, Felix, 1998). 

The concentration of TOP2 is higher in rapidly proliferating cells than in quiescent 

cells, with levels peaking in G2/M phase, hence the efficacy of doxorubicin against 

neoplastic cells (Sullivan et al., 1987, Sinha, 1995). Drug sensitivity correlates with 

cellular TOP2 levels and drug resistant cancer cells have been shown to have reduced 

activity and/or decreased levels of TOP2 and a reduction in the number of strand 
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breaks (Beck et al., 1993, Pommier et al., 2010). Suppressing the expression of 

TOP2α using RNA interference has confirmed that reduction in TOP2 levels 

increases the resistance of cells to doxorubicin (Burgess et al., 2008). 

1.4.1.4 Doxorubicin and Free Radical Formation. 

 

Doxorubicin has a quinone ring (Figure 1.8), and this acts as an electron acceptor. As 

a result the quinones are converted to semiquinone free radicals which can induce 

DNA damage themselves as well as interacting with molecular oxygen to yield 

superoxides, hydroxyl radicals and peroxides. The formation of these reactive 

oxygen species (ROS) causes oxidative damage to cell components, cell membranes 

and DNA. The redox-cycling of doxorubicin has been observed in the cytoplasm, 

mitochondria, endoplasmic reticulum and nucleus of cells, and clearly influences the 

cytotoxicity of the drug (Doroshow, 1983, Goodman and Hochstein, 1977, Berlin 

and Haseltine, 1981, Rowley and Halliwell, 1983). 

The ROS-dependent cytotoxicity of doxorubicin is reliant on the tumour cell being 

able to carry out the reductive reactions which activate ROS production, and this 

requires the presence of molecular oxygen (Teicher et al., 1981). However, under 

hypoxic conditions, doxorubicin does have the ability to generate aglycone free 

radicals. The redox-cycling of doxorubicin is slower under hypoxic conditions, but 

the aglycone free radicals that are generated can potently alkylate cellular DNA, and 

create DNA strand breaks. Under hypoxic conditions, the semiquinone free radical 

loses its sugar moiety and converts to the inactive metabolite C7-deoxyaglycone. 

This tautomerises to C7-quinone methide which is a DNA-alkylating species 

(Averbuch et al., 1985). 

In the presence of oxygen, the reduced form of doxorubicin is known to cause lipid 

peroxidation of cell and mitochondrial membranes (Mimnaugh et al., 1985a, 
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Mimnaugh et al., 1985b). However, the evidence for doxorubicin-induced lipid 

peroxidation as a contributing factor to tumour cytotoxicity is inconclusive (Gewirtz, 

1999). 

1.4.1.5 Doxorubicin Damages the Cell Membrane. 

 

Doxorubicin interacts directly with cell surface proteins and disrupts membrane 

structure and signal transduction pathways. Doxorubicin binding to cell surfaces can 

have a direct or an indirect effect on cell survival (Tritton, 1991). 

1.4.1.6 Doxorubicin Interferes with HIF-1 Signalling. 

 

Topoisomerase poisons other than doxorubicin (topotecan, etoposide, NSC 644221) 

have been reported to attenuate responses to hypoxia by decreasing levels of HIF-1α 

or by inhibiting its transcriptional activity (Creighton-Gutteridge et al., 2007, Choi et 

al., 2009). Since the investigations reported in this thesis began, doxorubicin has 

been shown to prevent the binding of HIF-1 to the promoter regions of hypoxia 

response genes (Lee et al., 2009a). 

1.5 Rapamycin. 

 

Rapamycin (also known as sirolimus) is a macrolide compound belonging to the 

class of secondary metabolites known as polyketides. Rapamycin is produced by the 

bacterium Streptomyces hygroscopicus. This organism was first isolated from a soil 

sample collected from the Polynesian island Rapa Nui (also known as Easter Island) 

in 1970, hence the name rapamycin (Figure 1.9) (Neuhaus et al., 2001). 

Colleagues have previously shown that rapamycin can successfully be loaded onto 

poly vinyl alcohol (PVA) microspheres, either alone or in combination with 

doxorubicin (Forster 2009), and this provides the rationale for our choice of drugs in 

this investigation. Rapamycin (Figure 1.10) is a mammalian target of rapamycin  
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Figure 1.9 Huge statues, known locally as Moai, on Rapa Nui.  

The bacterium Streptomyces hygroscopius was first isolated from a soil sample from 

the Polynesian island of Rapa Nui in 1970. Photograph Copyright free. 

(mTOR) inhibitor which has antifungal, immunosuppressant and antineoplastic 

properties. It has been used as an immunosuppressant for more than ten years, and, in 

the majority of cases, is well tolerated. The immunosuppressant activity of 

rapamycin results from the inhibition of T cell activation. It is widely used to prevent 

the rejection of kidney and liver transplants. Rapamycin inhibits the proliferation of 

vascular smooth muscle cells, and for this reason it is used as an antirestenosis drug 

in coronary artery stents (Namur et al., 2010). mTOR has been implicated in the 

pathology of a range of diseases, including cancers, cardiovascular disease, 

neurological disorders and diabetes, and is thought to play an important role in the 

regulation of aging and lifespan (Tsang et al., 2007). 

A number of clinically active rapamycin analogues – known as rapalogues – are now 

available. Rapalogues have improved pharmacological properties, and include 
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everolimus, temsirolimus, deferolimus, biolimus, picrolimus and zotarolimus. The 

structure of rapamycin is shown below (Figure 1.10). 
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Figure 1.10 The Chemical Structure of Rapamycin.  
The chemical formula for rapamycin is C51H79NO13, and the molecular weight is 

914.18. Rapamycin is a macrocyclic lactone antibiotic. 

1.5.1 The PI3K/Akt/mTOR Pathway. 

In order to understand the mechanism of action of rapamycin, it is necessary to have 

an understanding of the PI3K/Akt/mTOR pathway, which is outlined in Figure 1.11. 

The PI3K/Akt/mTOR pathway is a cell survival pathway that orchestrates cellular 

responses to nutrients, growth factors, cytokines, mitogens, hormones and stress. 

Activation of the pathway results in increased cell growth and proliferation and an 

inhibition of apoptosis. 

At the top of the signalling cascade are members of the phosphoinositide 3-kinase 

family (PI3K), which are activated by the binding of the relevant ligands to their 

membrane-bound receptors. PI3K localises to the membrane and catalyses the 
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Figure 1.11 The PI3K/Akt/mTOR Pathway. 
PI3K is activated by the binding of the relevant ligands to membrane-bound 

receptors. PI3K localises to the membrane and catalyses the conversion of PIP2 to 

PIP3. PIP3 binds to Akt, and Akt subsequently translocates to the cell membrane, 

whereupon it is phosphorylated and activated by PDK-1. Akt activates mTOR via 

phosphorylation of the protein at ser2448. mTOR binds to Raptor to form mTORC1 

The downstream effectors of mTORC1 are S6 kinase (S6K), the ribosomal protein 

S6 and the eukaryotic initiation factor 4E binding protein 1 (4EBP-1). Both regulate 

the translation of mRNAs encoding proteins involved in cell growth. PTEN 

negatively regulates the PI3K pathway via dephosphorylation of PIP2 and PIP3. 

TSC1/TSC2 negatively regulates mTOR via Rheb. Akt can also activate mTOR via 

the inactivation of TSC. 

conversion of phosphotidylinositol (4, 5)-biphosphate PIP2 to phosphotidylinositol 

(3, 4, 5)-biphosphate PIP3. PIP3 binds to Akt, and Akt subsequently translocates to 

the cell membrane, whereupon it is phosphorylated at Thr
308

 by 3’-phosphoinositide-

dependant kinase 1 (PDK-1). Akt takes centre stage in the PI3K/Akt/mTOR 

pathway, with a vast array of effectors under its control. The outcomes of Akt 
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activation all result in anti-apoptotic and pro-proliferative cell survival strategies 

(Jiang and Liu, 2008b, Dancey, 2006, Foster and Fingar, 2010). 

1.5.1.1 Phosphotase and Tensin Homolog Deleted on Chromosome 10 (PTEN). 

 

PTEN is a tumour suppressor protein and antagonist of the PI3K pathway (Maehama 

and Dixon, 1999). PTEN dephosphorylates PIP2 and PIP3, thereby negatively 

regulating the activation of Akt. PTEN prevents uncontrolled cell growth by 

inducing cell cycle arrest and apoptosis, and is thought to interfere with cell 

migration, cell adhesion and angiogenesis. Mutations to PTEN result in 

constitutively active Akt (Maehama and Dixon, 1998, Maehama and Dixon, 1999, 

Chu and Tarnawski, 2004, Jiang and Liu, 2008a). PTEN mutations are frequently 

found in liver cancers, and are critically involved in the progression of HCC (Chen et 

al., 2009a, Dong-Dong et al., 2003, Hu et al., 2003, Ma et al., 2005, Mi et al., 2006, 

Peyrou et al., 2010, Sieghart et al., 2007, Tian et al., 2010a, Tian et al., 2010b, Wan 

et al., 2003, Zhou et al., 2009). Loss of PTEN facilitates the expression of HIF-1 

gene expression via activation of Akt (Zundel et al., 2000) and increases the 

transcriptional activity of HIF-1 (Emerling et al., 2008).  

1.5.1.2 Involvement of the Tuberous Sclerosis Tumour Suppressor Complex 

TSC1/TSC2. 

 

TSC1/TSC2 is a tumour suppressor protein which is a negative regulator of 

mTORC1. Hypoxia activates TSC1/TSC2 by two separate pathways, one of which is 

HIF-dependent. HIF-dependent activation of TSC1/TSC2 depends on REDD1 

mediated shuttling of the protein 14-3-3. 14-3-3 is an inhibitory protein which binds 

to phosphorylated TSC2. Activation of Akt causes phosphorylation of TSC2. This 

promotes the association of TSC2 with 14-3-3, and inhibits TSC1/TSC2 function. 

Under hypoxic conditions, HIF-1 induces the expression of REDD1. REDD1 
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preferentially binds to 14-3-3, thereby activating the TSC1/TSC2 complex, which 

then inhibits mTORC1. Hypoxia-induced negative regulation of mTORC1 results in 

a decrease in mRNA translation and protein synthesis, and suppression of cell growth 

and proliferation (Brugarolas et al., 2004, DeYoung et al., 2008, Sofer et al., 2005). 

1.5.1.3 Akt Signalling to mTOR. 

 

Akt can activate mTOR directly by phosphorylating the protein at Ser
2448

 or 

indirectly via the inactivation of the tuberous sclerosis protein complex TSC (Jiang 

and Liu, 2008a). The consequences of hyperactive mTOR signalling are 

demonstrated in the disease tuberous sclerosis complex, which is characterised by 

mutations to one of the two genes tsc1 or tsc2. As previously mentioned, 

TSC1/TSC2 are negative regulators of mTORC1. The loss of function of either 

TSC1 or TSC2 results in the formation of multiple benign tumours and possibly the 

development of early-onset renal cell carcinoma (Nass and Crino, 2008). 

1.5.2 Structure of mTOR. 

mTOR (Figure 1.12) is a 289 kDa serine/threonine kinase which belongs to the 

PI3K-related protein kinase family and regulates levels of protein translation in 

response to nutrients, growth factors, energy and stress. mTOR has a catalytic C 

terminal kinase domain, a FK506-binding protein 12 (FKBP12) rapamycin binding 

domain, a C terminal repressor domain and FAT-C-terminus domain. The kinase 

domain phosphorylates serine (Ser) or threonine (Thr) residues in protein substrates. 

The FKBP12-rapamycin binding domain is specific to TOR and not other members 

of the PIKK family, hence the specificity of rapamycin (Choi et al., 1996, Chen and 

Fang, 2002).  
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Upon activation, mTOR is known to form at least two complexes – mTOR complex 

1 (mTORC1) and mTOR complex 2 (mTORC2). In the mTORC1 complex mTOR is 

bound to regulatory associated protein of mTOR (Raptor) and the mTOR-interacting 

protein mLST8. In the mTORC2 complex mTOR is bound to Raptor independent 

companion of mTOR (Rictor), mLST8 and at least two other accessory proteins. 

 

 

 

 

Figure 1.12 Schematic showing the basic structure of mTOR. 

HEAT repeats, N terminus FAT region, FKBP12-rapamycin binding domain, C 

terminal kinase domain, C terminal repressor domain and FAT-C-terminus domain. 

mTORC1 responds to nutrients and growth factors and ultimately results in increased 

cell proliferation. mTORC2 only responds to growth factors and appears to be 

involved in actin organisation (Houghton and Huang, 2004, Huang and Houghton, 

2003). mTORC2 positively feeds back to Akt via phosphorylation of Akt at Ser
473 

(Sarbassov et al., 2005). 

1.5.3 Downstream Effectors of mTORC1. 

The downstream effectors of mTORC1 are S6 kinase (S6K), the ribosomal protein 

S6 and the eukaryotic initiation factor 4E binding protein 1 (4EBP-1). Both regulate 

the translation of mRNAs encoding proteins involved in cell growth. 

repressorHEAT repeats FRB kinase

FKBP12 

FAT FATC

Rapamycin
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Phosphorylation of S6K at Thr
389

 by mTORC1 activates the ribosomal protein S6 

and increases the translation of mRNAs that have a 5’ tract of oligopyramidine 

(5’TOP) motif and increases the synthesis of ribosomal proteins and translation 

factors. mTORC1 also phosphorylates the elongation factor 4E (elF4F) inhibitor 

4EBP-1. Upon phosphorylation, 4EBP-1 dissociates from elF4E and allows elF4E to 

associate with the 5’-CAP of RNAs and so promotes cap-dependant protein synthesis 

(Dufner et al., 1999, Dufner and Thomas, 1999).  

When nutrients and growth factors are present, mTOR is activated and protein 

translation is upregulated. The cell mass increases and the cell cycle moves from the 

G1 phase to the S phase, thus increasing the rate of cell proliferation. In the absence 

of these ligands, protein translation is downregulated and energy is conserved. Cells 

are arrested at the G1 phase and apoptosis increases (Houghton and Huang, 2004). 

1.5.4 Mode of Action of Rapamycin. 

The biological activity of rapamycin is a consequence of the fact that it contains an 

mTOR-binding region and a FKBP12-binding region. When rapamycin enters the 

cytosol, FKBP12 binds to rapamycin with high affinity. The resulting FKBP12-

rapamycin complex binds specifically and irreversibly to mTOR and prevents 

downstream signalling (Huang et al., 2003). 

mTORC1 is inhibited by FKBP12-rapamycin. Components which are specific to 

mTORC2 are thought to prevent the FKBP12-rapamycin complex from binding to 

mTOR. If exposure to rapamycin is prolonged, however, the complex binds to newly 

synthesised mTOR before it assembles into mTORC2 (Houghton and Huang, 2004, 

Huang and Houghton, 2003), and recent reports suggest that rapamycin inhibits 

mTORC2 under certain conditions and in specific cell types (Barilli et al., 2008, 

Sarbassov et al., 2006). Rapamycin thus inhibits protein synthesis by blocking 
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mTORC1 signalling via S6K and 4E-BP1. Without a sufficient increase in cell size 

and mass, the cell cycle arrests at the G1 stage and apoptosis is increased (Mita et al., 

2003). 

1.5.5 Rapamycin and HIF-1. 

Oxygen concentration is the primary determinant of HIF-1 activation. However, the 

extent of HIF-1 activation is partly modulated through the PI3/Akt/mTOR pathway, 

and hyperactive Akt is a positive factor for HIF-1 dependent signalling pathways. 

Rapamycin has been observed to interfere with HIF-mediated cell signalling 

pathways (Jiang and Liu, 2008b, Guba et al., 2002, Hudson et al., 2002, Zhong et al., 

2000). 

1.5.6 The PI3K/Akt/mTOR Pathway and Cancer Cells. 

The anticancer activity of rapamycin was first recognised by the National Cancer 

Institute in the 1970s but was not extensively investigated until the late 90s. The 

PI3K/Akt/mTOR pathway is deregulated in many cancers and hyperactivity is 

implicated in tumourigenesis. The mechanisms of deregulation are numerous, and 

include loss of PTEN, amplification or gain of function mutations to PI3K, Akt or 

growth factor receptors, and exposure to carcinogens (LoPiccolo et al., 2008). The 

net result is an increase in cell proliferation and an increased resistance to apoptosis. 

Hyperactive Akt signalling may also result in increased HIF-1 activation. For 

instance, PTEN deficient cells display an exaggerated HIF-1 response to hypoxia, 

and this may contribute to the aggressiveness of PTEN deficient tumours (Zundel et 

al., 2000). 

If cancer cells are dependent on mTOR signalling for survival, there is a potential 

role for mTOR inhibitors in the treatment of cancers with mutations to the 
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PI3K/Akt/mTOR pathway (Tsang et al., 2007). A number of preclinical and clinical 

trials of rapamycin and rapalogs against cancers including renal cell carcinoma, 

mantle cell lymphoma, and breast and endometrial cancers have had some 

encouraging results, particularly against some cancers with mutations to PTEN and 

Akt (O'Donnell et al., 2008, Okamoto et al., 2010, Hudes et al., 2009, Slomovitz et 

al., 2010, Yao et al., 2008, Hess, 2009, Motzer et al., 2010, Lu et al., 2008). Other 

trials however, have shown only modest or short lived responses with no significant 

improvements (Huang et al., 2003, LoPiccolo et al., 2008). 

1.5.7 Protein Phosphatase and Tensin Homolog (PTEN). 

Mutations or deletions to the tumour suppressor PTEN lead to hyperactivation of the 

PI3K/Akt/mTOR pathway. PTEN is a tumour suppressor protein and antagonist of 

the PI3K pathway (Maehama and Dixon, 1999). PTEN modifies other proteins by 

removing phosphate groups. It functions as a tumour suppressor by negatively 

regulating the Akt signalling pathway, and mutations to PTEN result in constitutively 

active Akt. PTEN prevents uncontrolled cell growth by inducing cell cycle arrest and 

apoptosis, and is thought to interfere with cell migration, cell adhesion and 

angiogenesis (Maehama and Dixon, 1998, Maehama and Dixon, 1999, Chu and 

Tarnawski, 2004, Jiang and Liu, 2008a). 

PTEN mutations are frequently found in liver cancers, and are critically involved in 

the progression of HCC (Chen et al., 2009a, Dong-Dong et al., 2003, Hu et al., 2003, 

Ma et al., 2005, Mi et al., 2006, Peyrou et al., 2010, Sieghart et al., 2007, Tian et al., 

2010a, Tian et al., 2010b, Wan et al., 2003, Zhou et al., 2009). The loss of PTEN 

facilitates the expression of HIF-1 gene expression via activation of Akt (Zundel et 

al., 2000) and increases the transcriptional activity of HIF-1 (Emerling et al., 2008). 
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We know that in HepG2 cells PTEN is barely detectable (Ma et al., 2005, Zhang et 

al., 2004) and that this results in increased synthesis of HIF-1α (Zundel et al., 2000, 

Zhong et al., 2000). Overexpressing PTEN in HepG2 cells decreases the activation 

of HIF-1 and suppresses angiogenesis, migration and invasiveness (Tian et al., 

2010a, Tian et al., 2010b, Sze et al., 2011). The loss of PTEN therefore contributes 

to tumour cell survival under hypoxic conditions. Decreased PTEN in tumour biopsy 

specimens correlated with tumour progression and a poor prognosis in HCC (Hu et 

al., 2003, Chen et al., 2009a, Dong-Dong et al., 2003, Sze et al., 2011, Mi et al., 

2006). Recently, an association has been found between PTEN haplotypes and 

susceptibility to HCC (Ding et al., 2011). 

1.6 Combination Therapies for the Treatment of HCC. 

 

The combination of standard chemotherapeutic agents with one (or more) of the 

recently identified molecular targeted therapies in the treatment of HCC presents 

opportunities to improve patient outcome. The rationale for combination 

chemotherapy is to use drugs that have different mechanisms of action, and reduce 

chemoresistance. For instance, the targeted drug may restore the apoptotic pathway 

in cells, thus allowing the traditional chemotherapeutic to cause apoptosis. 

Recent research indicates that rapamycin will be most effective when used in 

combination with other chemotherapeutics or other molecular inhibitors (Huynh et 

al., 2009, LoPiccolo et al., 2008, Wang et al., 2008c, Piguet et al., 2008). 

1.7 Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NF-kB). 

 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) is a family of 

transcription factors which mediate cell proliferation, apoptosis and immune 

responses. It also mediates cellular responses to hypoxia, and the involvement of 
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NFkB in responses to hypoxia is now starting to be investigated. NFkB consists of a 

family of seven transcription factors, divided into two subfamilies – the Rel proteins 

and the NFkB proteins. The Rel protein subfamily includes p65 (aka RelA), and the 

NFkB protein subfamily includes the p105/p50 (aka NFkB1) and the p100/p52 (aka 

NFkB2) isoforms. NFkB subfamily proteins have long C-terminal domains which 

inhibit their activity, and are only able to bind to DNA in their shorter forms (e.g. 

p105 to p50). Members of the NFkB subfamily only activate transcription when they 

dimerise with one of the Rel subfamily. The p50-RelA heterodimer is the major 

NFkB dimer in many cells (Gilmore, 2006). 

Two pathways have been described for NFkB activation – the canonical (or classical) 

pathway and the non-canonical (or alternative) pathway. The non-canonical pathway 

activates NFkB complexes during B- and T-cell development, and will not be 

considered in this study. In the canonical pathway, NFkB signalling is regulated by 

inhibitor kB (IkB) proteins. Inactive NFkB dimers, such as p50/RelA, are bound to 

IkB, and maintained in the cytosol. In response to a range of extracellular signals, 

IkB kinase (IKK) complexes phosphorylate IkB and induce its degradation. This then 

frees the NFkB dimer, which translocates to the nucleus and activates expression of 

its target genes. A third pathway is thought to involve translocation of homodimers 

of p50 to the nucleus (Gilmore, 2006). 

Due to the number of different NFkB isoforms and IkBs, the complexity of their 

regulatory pathways, and the influence of post-translational modifications, the 

phenotypic effects of NFkB activation are not well understood (Perkins, 2006). 

NFkB is upregulated in HCC, and is associated with both pathogenesis and 

chemoresistance (Arsura and Cavin, 2005, He and Karin, 2011, Luedde and 

Schwabe, 2011). 
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1.8 Apoptosis. 

 

Apoptosis can be defined as ‘programmed cell death’. It is an energy requiring 

process and occurs in response to severe cell damage or cellular stress, including the 

formation of radical oxygen species, which can also initiate apoptosis (Kim and Park, 

2003). Apoptosis is regulated by a caspase cascade, and is characterised by 

chromatin condensation, membrane blebbing, cytoplasmic shrinking, the formation 

of apoptotic bodies and DNA fragmentation. Caspases are cysteine proteases which 

are activated when cleaved. Both initiator and effector caspases determine the fate of 

the cell, and apoptosis is tightly regulated. The principal anti-apoptotic proteins are 

Bcl-2 and Bcl-xL and the principal pro-apoptotic proteins are Bax, Bad, Bak and Bid 

(Piret et al., 2002b). 

1.8.1 Hypoxia and Apoptosis. 

Hypoxia can induce both pro and antiapoptotic responses, depending on the severity 

and duration of oxygen depletion. Severe hypoxia < 0.5% oxygen concentration 

results in pro-apoptotic responses due to the stabilisation of p53 (Santore et al., 2002) 

whereas moderate/mild hypoxia results in anti-apoptotic cellular survival responses 

such as angiogenesis and in some cases cell proliferation (Carmeliet et al., 1998). 

Severe hypoxia causes genetic instability and a high mutation rate, and apoptosis 

prevents the accumulation of cells carrying such mutations (Reynolds et al., 1996). 

Anoxic cells lack the energy required for apoptosis and undergo necrotic cell death. 

The apoptotic cascade in hypoxia is to some extent directly regulated by HIF-1 (Erler 

et al., 2004, Sowter et al., 2001). Pro-apoptotic proteins upregulated by HIF-1 

include BNIP3 and NIX, which are both Bcl-2 binding proteins, and therefore inhibit 

the antiapoptotic activity of Bcl-2 (Goda et al., 2003). Conversely, hypoxia also 

induces expression of antiapoptotic proteins such as IAP-2 (via the transcription 
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factor NFkB) and downregulates the expression of the pro-apoptotic protein Bax 

(Dong et al., 2003). Disturbances to the inner mitochondrial membrane in hypoxia 

can also result in apoptosis. Oxygen depletion decreases the membrane potential at 

the inner membrane of the mitochondria. This activates Bax and Bak and initiates the 

caspase cascade (Saikumar et al., 1998). 

As already discussed, solid tumours contain regions of both chronic and intermittent 

hypoxia. Some of these cells may be resistant to apoptosis, and are selected for. In 

addition to being resistant to hypoxia-induced apoptosis, these cells are also less 

sensitive to apoptosis induced by chemotherapeutics causing DNA damage, and 

apoptosis-resistant cells are a hallmark of solid of tumours (Chresta et al., 1996). 

1.9 Tumour Suppressor Protein p53. 

 

The tumour suppressor p53 is a pro-apoptotic protein and transcription factor that is 

activated in response to cellular stress, such as hypoxia, DNA damage and osmotic 

shock. Nuclear accumulation of p53 occurs in response to DNA damage. p53 

activates the transcription of proteins that are involved in damage repair or apoptosis. 

When intracellular levels of p53 are low to moderate, the cell cycle is arrested at the 

G1 phase and DNA damage repair takes place. However, if levels of p53 are high, 

apoptotic cell death pathways are triggered. p53 is implicated in oncogenic 

transformation, and cancer cells which have mutated p53 are resistant to chemo- and 

radio-therapies (Bold et al., 1997). Fifty percent of tumours have been shown to have 

mutated or deleted p53 (Hammond and Giaccia, 2002), which protects from drug-

induced apoptosis. Doxorubicin induces apoptosis as a consequence of DNA damage 

via p53 dependant mechanisms (Lee et al., 2002). 
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1.9.1 Regulation of p53. 

In unstressed cells, p53 is bound to its negative regulator, the protein Mdm2. This 

binding promotes ubiquitination of p53 and the protein complex undergoes 

proteosomal degradation. In stressed cells the N-terminal end of p53 is 

phosphorylated by protein kinases and Mdm2 binding is disrupted, and p53 

accumulates. Transcriptional co-activators p300/CRB are recruited, allowing the 

DNA binding domain of p53 to interact with the promoters and/or repressors of 

downstream genes (Piret et al., 2002b). 

1.9.2 p53 and HIF-1. 

The relationship between p53 and HIF-1 is complicated. There is a direct physical 

interaction between HIF-1α and p53. p53 only accumulates in response to hypoxia 

when hypoxia is severe and prolonged and appears to play a role in the regulation of 

HIF-1α.  Two p53 binding sites have been identified within the ODD of HIF-1α. p53 

stabilises HIF-1α and this promotes Mdm2-dependant degradation of HIF-1α (Chen 

et al., 2003, Sanchez-Puig et al., 2005). HIF-1 induces apoptosis by directly 

interacting with and stabilising wild-type p53. p53 activates the proapoptotic proteins 

Bax and Bak (Greijer and van der Wall, 2004). 

Both HIF-1 and p53 require recruitment of the co-activator p300 in order to be 

transcriptionally active, and it has been suggested that competition for p300 

attenuates transcriptional activity of HIF-1 (Blagosklonny et al., 1998). p53 induced 

by hypoxia is reported to be transcriptionally inactive, although it can still induce 

apoptosis, probably by associating with co-repressors (Koumenis et al., 2001). The 

inactivity could be explained by losing the competition with HIF-1 for co-activator 

p300. However, since severe hypoxia also causes DNA damage, which causes 

further stabilisation of p53, it is possible that with increasing severity of hypoxia the 
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competitive balance shifts in favour of p53, and p53 becomes transcriptionally active 

and HIF-1 attenuated (Kaluzova et al., 2004). 

1.10 Cell Respiration. 

 

Cell respiration is the process by which cells harvest energy from organic 

compounds and store it in the chemical bonds of adenine tri-phosphate (ATP). ATP 

is then used by the cell to provide the energy required for cellular processes to take 

place. 

1.10.1 ATP. 

ATP is a nucleic acid which has a ribose sugar attached to the nitrogenous base 

adenine. This sugar has three phosphate groups attached, each of which has a 

negative charge. Because of the proximity of these negative charges to each other, 

strong bonds are needed to hold the phosphate groups in place. If these bonds are 

broken, phosphate groups are uncoupled from the molecule and the bond energy is 

released. The cell uses hydrolysis to dephosphorylate ATP, resulting in the release of 

usable energy and the conversion of ATP to either adenine di-phosphate (ADP) 

(when only one phosphate group is removed) or adenosine monophosphate (AMP) 

(when two phosphate groups are removed). 

1.10.2 Glucose Metabolism in the Presence of Molecular Oxygen. 

In the presence of oxygen, mammalian cells generate ATP by the complete oxidation 

of glucose to water and carbon dioxide. This catabolic pathway comprises of a series 

of oxidation and reduction reactions that take place within the cytosol and the 

mitochondria. There are three major steps to aerobic cell respiration – glycolysis, the 

Krebs Cycle and the electron transport chain (ETC). The theoretical net energy gain 

is 38 molecules of ATP for each molecule of glucose. 
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1.10.3 Glycolysis. 

Glycolysis takes place in the cytosol. In glycolysis one 6-carbon molecule of glucose 

is phosphorylated and converted to two 3-carbon molecules of pyruvate. The 

phosphorylation of glucose is catalysed by hexokinase enzymes. Splitting the glucose 

molecule is catalysed by a series of glycolytic enzymes. The pyruvate is then shunted 

towards the mitochondria for entry into the Krebs Cycle and the ETC. 

1.10.4 Glucose Metabolism in the Absence of Molecular Oxygen. 

In the absence of oxygen, ATP production comprises two stages – glycolysis and 

fermentation. Both of these take place in the cytosol. The end product is lactic acid. 

ATP levels are maintained and cells can continue to survive and proliferate in the 

absence of oxygen. Anaerobic respiration is much less efficient than aerobic 

respiration with a net gain of only 2 ATP molecules for every molecule of glucose. 

The pyruvate molecules generated in glycolysis are reduced to lactic acid. The 

increased conversion of pyruvate to lactic acid in hypoxic cells is known as the 

Pasteur Effect (Krebs, 1972). 

Hypoxic cells increase the uptake of glucose molecules by upregulating the 

expression of glucose transporters and glycolytic enzymes in a HIF-1 dependant 

manner (Semenza, 2003). The glycolytic enzymes rapidly convert the glucose into 

pyruvate. HIF-1 also upregulates lactate dehydrogenase A (LDH-A) which shunts the 

pyruvate towards anaerobic glycolysis and conversion to lactic acid in the cytoplasm 

(Papandreou et al., 2006). Aerobic metabolism of pyruvate requires pyruvate 

dehydrogenase (PDH) and HIF-1 upregulates the expression of PDK1 which inhibits 

PDH (Kim and Dang, 2006). 

 



 43 

1.10.5 Glucose Metabolism in Tumour Cells. 

Cancer cells metabolise glucose through a cytoplasmic glycolytic pathway, even 

when molecular oxygen is available to the cell. This phenomenon is known as the 

Warburg Effect (Kim and Dang, 2006). Anaerobic metabolism is far less efficient 

than aerobic metabolism, and requires a much higher flux of glucose molecules. This 

increase in energy consumption explains why cancer patients suffer from cachexia 

(Dills, 1993). HIF-1 facilitates anaerobic glycolysis by upregulating enzymes as 

described in 1.10.4, and ATP production in cancer cells is HIF-dependent (Brahimi-

Horn and Pouyssegur, 2006). 

1.11 Using Hypoxic Culture Conditions for In Vitro Research. 

 

It is now a well established fact that hypoxia influences tumour biology and 

intracellular pathways, including those that control proliferation, cell cycling and 

apoptosis. These changes will clearly have an impact on the effects of 

chemotherapeutic agents. The importance of pre-clinical in vitro research on cells 

cultured within a hypoxic environment is now apparent. Indeed, some of the 

disparities between in vitro and in vivo responses to cancer treatments may be due to 

the fact that much of the in vitro work has been carried out at an oxygen 

concentration of 21%. 

 

1.12 Summary. 

 

As discussed above, solid tumours contain regions of hypoxia, and this is associated 

with chemo- and radiotherapy-resistance, and a shift to a more malignant phenotype. 

HCCs have hypoxic regions, and this is associated with a poor outlook. TACE is the 

standard of care for intermediate HCC, although response rates are not good. There is 

a concern that, as well as creating regions of anoxia leading to tumour necrosis, the 
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escape from embolisation therapies of tumour cells in hypoxic regions could result in 

a residual population of aggressive cancer cells which are then clonally selected for.  

Cellular responses to hypoxia are regulated principally by the transcription factor 

HIF-1. Targeting HIF-1 thus provides a therapeutic opportunity. Recent research has 

shown that doxorubicin interferes with HIF signalling pathways. Rapamycin is also 

thought to interfere with HIF signalling, by inhibiting the rate of synthesis of HIF-1α. 

The use of systemic low dose rapamycin to treat HCC is presently under clinical 

investigation. 

The use of doxorubicin loaded DEBs for the treatment of HCC facilitates the 

sustained delivery of high concentrations of drug straight to the tumour bed, with 

minimal systemic exposure. Rapamycin can also be loaded onto DEBs, both on its 

own or in addition to doxorubicin. 

1.13 Aims of the Thesis. 

 

In this thesis we have investigated the response of the human HCC cell line HepG2 

to doxorubicin and rapamycin, both as single agents and in combination. In vitro 

assessment of cytotoxicity was carried out in cells cultured under both normoxic and 

hypoxic conditions. Western Blotting was then employed in order to elucidate the 

mechanisms of action of the two drugs, and highlight differences in the expression of 

relevant proteins in normoxic and hypoxic cells. In vivo assessment of the anti-

tumour activity of the drugs was carried out using an ectopic human HCC xenograft 

mouse model. 
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In summary, the aims of this thesis were as follows: 

•  to develop a hypoxic in vitro model of liver cancer 

 to assess the cytotoxicity of doxorubicin and rapamycin, both as single 

agents and in combination, towards the human HCC cell line HepG2 

cultivated in vitro under both 21% and 1% oxygen concentrations;   

 to analyse changes in expression of relevant proteins in these cells; 

•  to investigate the anti-tumour activity of the drugs in vivo, using an ectopic   

     human HCC xenograft mouse model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

Chapter 2  

Materials and Methods. 

 

2.1 Cell Culture. 

 

Cell culture is a well established laboratory technique and one of the major tools at 

the disposal of cell and molecular biologists. Cells isolated from tissues are 

proliferated ex vivo, and this provides a model system for the study of cell 

physiology and biochemistry; and for investigating the effects of drugs and toxic 

compounds.  

2.1.1 Cell Line. 

The cell line used in all experiments was the human hepatocellular liver carcinoma 

cell line HepG2. The cells are derived from the liver tissue of a fifteen year old 

Caucasian male with a well differentiated HCC, and are extensively used for in vitro 

investigations of liver cancer. The cells have an epithelial morphology, and are 

anchorage-dependent. The cells were purchased frozen from ATCC Cell Biology 

Collection (ATCC, HB-8065, UK). 

2.1.2 Culture Conditions.  

Specific culture conditions vary with cell type. However, all cells in culture require a 

substrate that supplies the essential nutrients that are required for growth and 

proliferation; the presence of growth factors; and regulation of temperature and 

gases. Cells in culture should be passaged during the log phase of growth, before 

they reach confluence. 

Here, cell culture in normoxic conditions was carried out under aseptic conditions 

inside a laminar flow cell culture hood (HERA Safe, Heraeus). All equipment was 

sterilised before use, and the hood was swabbed down with 70% industrial 
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methylated spirits. HepG2 cells were cultured in Minimum Essential Medium 

(MEM) + Earle’s salts + L-Glutamine (PAA Laboratories, GmBH) supplemented 

with 10% Foetal Bovine Serum Heat Inactivated (PAA Laboratories, GmBH,) and 

1% Non-essential Amino Acids (PAA Laboratories, GmBH), all of which were 

warmed to 37°C before use. The cells were seeded onto T75 tissue culture coated 

flasks (NUNC™, Denmark) and incubated at 37°C, 95% air and 5% CO2. Cells were 

passaged when confluence reached 70%, using a sub-cultivation ratio of 1:6. All 

experiments used cells between passage numbers 96 and 125.  

2.1.3 Passage Protocol. 

The media was aspirated from the flask, and 5 ml of trypsin-EDTA (0.05% / 0.02% 

in PBS) (PAA Laboratories, GmBH) was added in order to detach the cells. The 

flask was incubated for 10 minutes at 37°C. Microscopy was used to confirm that the 

cells had detached from the surface of the flask. 10 ml of complete media was then 

added to the flask in order to neutralise the trypsin and the cell suspension was 

removed to a centrifuge tube. The cell suspension was centrifuged at 300 g for 5 

minutes (Heraeus, Multifuge 3S). The supernatant was removed and discarded, and 

the pellet was resuspended in 1 ml of media. 10 µl of cell suspension was removed 

and added to 90 µl of PBS, providing a 1:10 dilution of the cell suspension to 

determine the cell count. 15 µl of the 1:10 dilution was pipetted onto a 

haemocytometer slide and the cells were counted. The appropriate fraction of cell 

suspension was then added to a new T75 flask, and fresh media was added to a total 

volume of 20 ml. Microscopy was used to confirm the presence of cells in the flask, 

and the flask was placed in the incubator.  
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2.2 Hypoxic Incubations. 

 

In vitro experiments attempt to mimic the in vivo environment as closely as possible. 

However, most cell culture is carried out at 21% oxygen, which in most cases does 

not mirror the physiological oxygen concentration within the relevant tissue.  

In this study a hypoxic glove box was used for hypoxic cell culture in order to 

investigate the responses of cells that may be refractory to embolisation therapy. The 

glove box allows the oxygen environment to be tightly regulated, and cell culture and 

manipulation of cells can be carried out under maintained oxygen concentrations. An  

 

 

 

 

Figure 2.1 The COY Hypoxic Glove Box.  
The glove box allows cell culture and manipulation of samples in an oxygen 

controlled environment, with temperature, humidity and CO2 control. Oxygen, 

nitrogen and carbon dioxide cylinders supply gas feeds to the glove box. HEPA 

atmosphere filtration ensures sterility, and an internal fan ensures uniform gas 

distribution. The oxygen concentration is maintained using an oxygen sensor and 

controller, with an automatic purge control. Samples are introduced through a 

transfer chamber airlock which is purged to equilibrate to the O2 level within the 

glove box. An internal humidified incubation box prevents media from drying out 

during long incubation periods. Manipulation of samples is carried out through 

sealed arm ports so that the internal atmosphere is not compromised. 
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oxygen concentration of 1% was selected because it represents  

a) an oxygen concentration at which HepG2 cells adapt to hypoxic conditions. At 

concentrations lower than 0.5%, the cells undergo apoptosis, and at 

concentrations less than 0.1% the cells undergo necrosis 

and 

b) an oxygen concentration that represents an in vivo niche, where cells that 

experience embolisation-induced hypoxia are exposed to doxorubicin as it elutes 

from the bead (Namur et al., 2010).  

For hypoxic incubations the cells were cultured inside a hypoxic glove box (COY 

Laboratory Products Inc. MI. USA) (Figure 2.1) set to 1% oxygen, 5% carbon 

dioxide, 94% nitrogen. Any media used in the hypoxic condition was placed inside 

the chamber for 24 hours before use in order that the liquid phase could equilibrate to 

the gas phase.  

2.3 Verification of Stabilisation of HIF-1α in Hypoxic Culture Conditions. 

 

Two methods were utilised to confirm that HIF-1α had stabilised and translocated to 

the nucleus in HepG2 cells exposed to 1% oxygen – SDS-PAGE and Western 

Blotting (see 2.5 for method and Chapter 6 for results); and immunohistochemistry.  

2.3.1 Immunohistochemistry. 

Specific proteins in cultured cells can be labelled using antibodies conjugated to 

fluorophore reporter systems. The presence or absence of these proteins can then be 

investigated using fluorescence microscopy. A nuclear counter stain allows 

visualisation of all the cells in the sample. Here, levels of HIF-1α in normoxic and 

hypoxic HepG2 cells were compared. 
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HepG2 cells were seeded onto chamber slides (Fisher Scientific, UK) at a seeding 

density of 2 x 10
5
 per well and incubated in normoxic conditions until confluence 

was 60%. The cells were then incubated at either 21% oxygen or 1% oxygen for 24 

hours. The cells were fixed with 3.7% formalin at room temperature for 20 minutes, 

and washed in PBS. Cells were blocked for 15 minutes using blocking buffer (0.7% 

glycerol, 0.2% Tween-20, 2% BSA, in PBS). Blocking buffer was removed and HIF-

1α antibody diluted 1:750 in blocking buffer was added to the chamber slides. The 

slides were incubated overnight at 4°C, and then washed with wash buffer (0.7% 

glycerol, 0.4% Tween-20, 2% BSA, in PBS). A tetramethylrhodamine-5-(and 6)-

isothiocyanate fluorescein isothiocyanate (TRITC) conjugated secondary antibody 

(Sigma, UK), diluted 1:200 in blocking buffer, was added to the chamber slides. The 

slides were protected from light, and subjected to agitation for 1 hour at room 

temperature. Secondary antibody was removed and cells washed in wash buffer at 

room temperature for 1 hour. Cells were counter-stained with 4', 6-diamidino-2-

phenylindole (DAPI) (Gibco, UK), and viewed by confocal microscopy at  x 100 

magnification. 
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Figure 2.2 Immunohistochemistry Staining for HIF-1 in Normoxic and Hypoxic HepG2 cells.  
Cells were seeded onto chamber slides HepG2 cells were seeded onto chamber slides and incubated under normoxic conditions until 

confluence was 60%. The cells were then incubated under normoxic or hypoxic conditions for 24 hours. The cells were incubated 

overnight with antibodies to HIF-1α, and then incubated with TRITC conjugated secondary antibody. DAPI staining was used to 

visualise the nucleus. Images are taken at x100 magnification. HIF-1α is absent in normoxic cells and present in hypoxic cells. 

DAPI HIF-1α Overlay

Normoxic

Hypoxic
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2.4 The 3 - (4, 5  dimethylthiazol - 2 - yl) - 5 - (3 - carboxymethoxyphenyl) - 2 - (4 

sulfophenyl) 2H - tetrazolium, inner salt (MTS) Cytotoxicity Assay. 

 

The MTS assay is a cell-based assay, the end point measure of which indicates the 

number of viable cells in culture (Cory et al., 1991). MTS assays are widely used for 

pharmacological studies to investigate the effects of cytotoxic compounds on cell 

viability and cell proliferation. The assay relies on the assumption that the number of 

viable cells is directly proportional to the coloured formazan product. 

Here the CellTiter 96
® 

Aqueous One Solution Proliferation Assay (Promega, UK) 

was used to determine the chemosensitivity of HepG2 cells to treatment with 

doxorubicin, rapamycin and both in combination under both normoxic and hypoxic 

culture conditions. The CellTiter 96
® 

Aqueous One Solution Proliferation Assay is a 

colorimetric assay which depends on the cellular reduction of the tetrazolium 

compound MTS to the coloured product formazan. The reagent contains the 

tetrazolium compound MTS together with an electron coupling reagent (phenazine 

ethosulfate; PES), which combine to form a stable solution.  The conversion of MTS 

to formazan is due to the activity of mitochondrial dehydrogenase enzymes within 

metabolically active cells.  

Metabolic activity in cells produces reducing agents nicotinamide adenine 

dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH). 

These reducing compounds donate their electrons to the electron coupling reagent 

PES, and this then reduces the MTS to formazan. The formazan product is soluble in 

tissue culture medium. The quantity of formazan product is measured by the amount 

of absorbance at 490 nm, and this measure is directly proportional to the number of 

living cells in culture (Cory et al., 1991). The sensitivity of the assay is 

approximately 1 x 10
3
 cells/well in a 96-well plate (Promega Protocols and 

Applications Guide). 
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Cell titrations were carried out under both normoxic and hypoxic conditions to 

validate the assay. The optimal seeding density and optimal MTS reagent incubation 

period, such that absorbance readings across the time course of the experiment fell 

within the linear range of the assay, was found to be 1 x 104 cells/well and the 

optimal and 2 hours respectively (data not shown). These values were used in all 

experiments.  

Control wells containing media and cytotoxic compound(s) but no cells were 

included in the experimental design. The mean control absorbance was subtracted 

from each of the absorbance readings to yield a corrected absorbance.  

2.4.1 Determining the Effect of Doxorubicin, Rapamycin or a Combination of 

Both on Cell Viability. 

2.4.1.1 Seeding the 96-well Plates. 

 

HepG2 cells were grown to 70% confluence in a T75 flask, and harvested and 

counted as previously described. The cells were resuspended in media to a 

concentration of 5 x 104 cells/ml. Cells were seeded onto six 96-well tissue culture 

coated plates in 200 µl aliquots to provide a cell seeding density of 1 x 104 cells/well. 

The plates were incubated under normoxic conditions for 24 hours to allow the cells 

to equilibrate. 

2.4.1.2 Exposure of Cells to Doxorubicin, Rapamycin or a Combination of Both. 

 

Three 96-well plates were removed to hypoxic conditions and three 96-well plates 

remained in normoxic conditions. The media was aspirated from the plates and 

replaced with 200 µl of the appropriate concentration of drug(s) in solution. Six 

replicate wells were prepared for each drug concentration. Two control wells, 

containing no cells, were prepared for each drug concentration. The plates were 
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incubated for either 24, 48 and 72 hours, under either normoxic or hypoxic 

conditions as appropriate (Figure 2.4). 

2.4.1.3 Measuring Cell Viability using the MTS Assay. 

 

After the required incubation period, 40 µl of MTS assay reagent was added to each 

of the wells. This was carried out under normoxic or hypoxic conditions, as 

appropriate. The plates were incubated for a further two hours. 

 

 

 

 

Figure 2.3 Schematic showing timeline for the cytotoxicity assay.  

HepG2 cells were seeded onto 96-well plates and incubated for 24 hours to 

equilibrate. Plates were removed to either normoxic or hypoxic conditions. Cells 

were exposed to cytotoxic compounds and incubated for 24, 48 and 72 hours. MTS 

assay reagent was added and the cells were incubated for a further 2 hours. The 

absorbance at 490 nm was recorded. 

 

The absorbance at 490 nm was read using a multiwell plate reader (BioTek, UK). 

The mean control absorbance was calculated for each experimental condition. The 

mean control absorbance for each experimental condition was then subtracted from 

each of the six absorbance readings for the same experimental condition. The mean 

absorbance for each experimental condition was then calculated. The effect of the 

drug(s) for each experimental condition was calculated as percentage change in mean 

absorbance compared to the untreated control. 

 

Removal to either normoxic 
or hypoxic condition 
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Figure 2.4 Schematic showing the layout of the 96 well plates for MTS assay.  

A) doxorubicin alone B) rapamycin alone and C) doxorubicin and rapamycin 
combinations. The last two wells in each column do not contain cells, and provide 
control absorbance readings. 

0    0.1    1     5     10    25   50   µM doxorubicin

With cells

Without cells

0      1     10    50   100  500         nM rapamycin  

With cells

Without cells

0    0.1     1     10    25    50     0     0.1     1     10     25    50          µM doxorubicin

0      0      0       0      0      0     10     10    10    10    10    10           nM rapamycin

With cells

Without cells

B) 

C) 
nM rapamycin 
µM doxorubicin 

A) 
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2.5 Preparation of Drug Solutions. 

 

2.5.1 Preparation of Doxorubicin Solutions. 

Doxorubicin hydrochloride (> 98% purity; Zhejiang Hisun Pharmaceuticals, China) 

was supplied dissolved in sterile H2O at a concentration of 50 mg/ml. The stock 

solution was stored at 4˚ C in a glass vial. Doxorubicin hydrochloride can be stored 

for 6 - 12 months at 4˚ C without loss of potency (Hoffman et al., 1979). 

For each experiment dilutions of doxorubicin hydrochloride in media were made up 

fresh from the stock solution, under sterile conditions, in either normoxic or hypoxic 

conditions as appropriate. 

2.5.2 Preparation of Rapamycin Solutions. 

Rapamycin (> 99% purity, LC Laboratories, Massachusetts, USA) was supplied at 

60 mg/ml in the solvent dimethyl sulfoxide (DMSO). Since the drug is poorly 

soluble in media, a 10 mM solution of rapamycin was prepared in DMSO. A cell 

proliferation assay had previously been carried out using the highest concentration of 

DMSO seen by the cells in order to demonstrate that there were no cytotoxic effects 

from the diluent itself (data not shown). 

Fresh dilutions of rapamycin were made up for each experiment. Rapamycin as 

supplied was stored long term at − 20˚C. Rapamycin/DMSO was stored at 4˚ C 

protected from light for up to 4 weeks. 

2.5.3 Preparation of Doxorubicin/Rapamycin Combination Solutions. 

Solutions of doxorubicin were prepared as described in 2.3.1. A 10 µM solution of 

rapamycin in media was made up from the 10 mM rapamycin/DMSO stock 

described in 2.3.2. Appropriate amounts of the 10 µM solution were used to spike the 

doxorubicin solutions to a final rapamycin concentration of 10 nM. 
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2.6 Preparation of Nuclear and Cytoplasmic Cell Extracts for SDS-PAGE and 

Western Blotting. 

2.6.1 Treating the Cells. 

HepG2 cells were seeded onto T75 flasks and incubated under normoxic conditions 

until confluence reached 60%. The flasks were then removed to either normoxic or 

hypoxic conditions. The media was aspirated off, and replaced with concentrations of 

drug as described in the figure legends. The cells were incubated for 24 hours under 

either normoxic or hypoxic conditions, as appropriate. 

2.6.2 Harvesting the Cells. 

The media was aspirated from cells under normoxic or hypoxic conditions as 

appropriate. Cells were washed twice using 2 mls of phosphate-buffered saline (PBS) 

(Sigma Aldrich, UK). PBS (1.5 ml) was added to the flask and the cells were 

dislodged from the flask using a cell scraper. The cell suspension was removed to a 

microcentrifuge tube (Eppendorf UK) using a Gilson pipette and centrifuged at 

13,000 rpm for three minutes. The supernatant was discarded. 

2.6.3 Preparation of Nuclear and Cytoplasmic extracts. 

The cell pellet was resuspended in 400 µl of Buffer A (10mM Hepes pH 7.9, 10mM 

potassium chloride, 0.1mM EDTA pH 8.0, 0.1mM EGTA pH 8.0, 1mM DTT, 1x 

protease inhibitor cocktail (Roche, UK) and incubated on ice for fifteen minutes. 25 

µl of 10% NP-40 was added. The mixture was vortexed for 30 seconds and 

centrifuged for 45 seconds. Aliquots of the cytoplasmic extract supernatant were 

removed to Eppendorf tubes and snap frozen in liquid nitrogen. The pellet was 

resuspended in 50 µl of Buffer C (20mM Hepes pH 7.9, 400mM sodium chloride, 

1mM EDTA pH 8.0, 1mM EGTA pH 8.0, 1mM DTT, 5% glycerol, 1x protease 

inhibitor cocktail) and incubated for 1 hour at 4°C with vigorous shaking. The 
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mixture was then centrifuged at 13,000 rpm for thirty seconds. Aliquots of the 

nuclear extract were removed to Eppendorf tubes and snap frozen in liquid nitrogen. 

Nuclear and cytoplasmic extracts were stored at − 20°C. When probing for 

phosphorylated proteins, phosphotase inhibitor cocktail (10 mM sodium flouride, 10 

mM sodium molybdate, 10 mM β-glycerophosphate, 10 mM sodium vanadate and 

10 mM p nitrophenyl phosphate) was added to buffer A. 

2.6.4 Determining the Protein Concentration of Cell Extracts using the 

Bradford Assay. 

A protein assay is used to measure the protein concentration of a solubilised protein. 

This measure is then used to ensure that equal amounts of protein are analysed when 

performing quantitative comparisons of protein expression between different 

experimental conditions, for instance in Western Blotting. The dye-binding assay 

used here is based on the method of Bradford (Bradford, 1976), and depends on the 

fact that a differential colour change occurs in response to varying protein 

concentrations. The intensity of the colour can be quantified by measuring the 

absorbance at 595 nm using a spectrophotometer. Comparison with a standard curve 

allows the protein concentration to be determined. 

A stock solution of protein assay dye reagent was prepared by diluting one part Bio-

Rad assay dye (BioRad, UK) with four parts distilled deionised water. A standard 

curve was prepared by measuring the absorbance at 595 nm of known concentrations 

of bovine serum albumin (BSA) (BioRad, UK). An aliquot (3 µl) of cell extract was 

added to 1 ml of stock solution and briefly vortexed. The mixture was incubated at 

room temperature for fifteen minutes and transferred to a cuvette. The absorbance of 

the cell extract was determined spectrophotometrically at 595 nm. The protein 
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concentration of the cell extract was calculated by comparison with the standard 

curve.  

2.7 Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis and Western 

Blotting. 

 

Protein expression in HepG2 cells was analysed using sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blotting. Briefly, 

protein samples were denatured and coated with negative charge. The samples were 

loaded onto wells in a polyacrylamide gel. The gel was placed into the SDS-PAGE 

apparatus, the wells were positioned at the negative electrode side. Application of a 

voltage pulls the samples towards the positively charged electrodes. Since smaller 

proteins move more easily through the gel (have a greater electrophoretic mobility), 

the proteins were size-fractionated. A molecular ladder was run alongside the 

samples to determine size (kDa). The proteins fixed as bands in the gel matrix were 

transferred to a membrane. The membrane was then probed using a primary antibody 

raised against the protein of interest. The antibody-antigen complex was detected 

using a secondary antibody-enzyme conjugate. The membrane was then incubated in 

a substrate solution, and the conjugated enzyme catalyzed the conversion of the 

substrate into a visible product that precipitated at the blot site.  The intensity of the 

signal in different samples was compared using densitometry analysis, and changes 

in protein expression between different experimental conditions were quantified.  

2.7.1 Preparation of Samples for SDS-PAGE. 

Before the cell extracts were applied to the gel they were incubated with SDS sample 

buffer. This contains SDS which breaks up hydrophobic interactions to denature the 

proteins, and coats the proteins with negative charge; and β-mercaptoethanol which 

further denatures the proteins by reducing the disulfide bonds. 
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Using the results from the protein assay, the volume of cell extract equivalent to     

20 µg of protein was calculated using Excel. This was mixed with sterile water to a 

total volume of 10 µl. An equal volume of SDS sample buffer (95% Laemmli sample 

buffer (BioRad Laboratories Inc. UK), 5% β-mercaptoethanol (BioRad Laboratories 

Inc. UK) was added. The samples were mixed by gently pipetting and incubated at 

room temperature for 10 minutes.  

2.7.2 Separation of the Proteins by Gel Electrophoresis. 

The proteins were separated by running on a 10% SDS-PAGE gel (resolving gel; 

10% acrylamide/Bis mix, 0.38 M Tris-HCl pH 8.8, 0.0001% SDS, 0.0001% APS, 

0.00005% TEMED in H2O. Stacking gel; 5% acrylamide/Bis mix, 0.125 M Tris-HCl 

pH 6.8, 0.0001% sodium dodecyl sulphate (SDS), 0.0001% ammonium persulphate 

(APS), 0.0001% TEMED in H2O) for 60 minutes at 150 V/50 mA in SDS running 

buffer (3g/l Tris Base, 14.4 g/l glycine, 1 g/l SDS) (Bio-Rad Mini Protean 3 Cell, 

Bio-Rad UK). A molecular marker was run alongside the protein samples (Bio-Rad 

Precision Plus Protein Kaleidoscope standards, Bio-Rad, UK). 

2.7.3 Transferring the Protein to a Polyvinylidene Fluoride Membrane. 

The proteins were transferred from the gel onto a polyvinylidene fluoride (PVDF) 

membrane (Immobilon-P membrane, Millipore Corp.) using a semi-dry electro-

blotting apparatus (TRANS-BLOT
®
,
 
Bio-Rad, UK). 

The apparatus was wiped down with distilled water then methanol before use. Filter 

paper was pre-soaked in transfer buffer (3.0 g/l Tris base, 14.4 g/l glycine). The 

PVDF membrane was pre-soaked in methanol for 30 seconds, water for two minutes 

and transfer buffer for five minutes. A sandwich of thick filter paper (BioRad 

Laboratories Inc. UK), gel, PVDF membrane and another layer of thick filter paper 
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were placed onto the anode plate of the electro-blotting apparatus. A roller was used 

to remove air bubbles. The top of the apparatus (the cathode plate) was put on, and 

the apparatus was run at 60 mV for 30 minutes (45 minutes for two gels). When the 

current was applied, the proteins were electrophoresed out of the gel and onto the 

membrane. 

2.7.4 Blocking the Membrane. 

In order to prevent non-specific binding of the primary antibody to membrane 

proteins, the membrane was blocked using a dilute protein solution. The proteins in 

the solution attach to the membrane proteins, where cell proteins have not attached. 

During optimisation of Western Blotting, different blocking agents at varying 

concentrations were tested, and the blocking protocol varies somewhat for the 

different proteins that were investigated. See Table 2.1 for details. Membranes were 

incubated in blocking buffer for 1 hour at room temperature with gentle agitation. 

Following blocking, the membranes were washed 3 times for 5 minutes in wash 

buffer (200 mM Tris-HCl pH 7.6, 29.2 g/l NaCl, 0.05% Tween 20). 

2.7.5 Incubation of the Membrane with Primary and Secondary Antibody. 

Primary antibodies bind to specific antigens with high affinity. Secondary antibodies 

bind to a primary antibody, according to the host species in which the primary was 

raised. Secondary antibodies can be conjugated to reporter enzymes to allow 

detection and quantification of protein in a sample. 

The membrane was placed in a Falcon tube, with the protein side facing inwards. 

Primary antibody solution in wash buffer (5 ml) was added, and the membrane was 

incubated overnight with rotation at 4°C.  The membrane was then washed twice 

quickly, once for fifteen minutes and twice for five minutes in large volumes of wash 
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buffer. The primary antibodies, the antibody dilutions and the diluent used are 

detailed in Table 2.1. 

The membrane was placed in a Falcon tube, with the protein side facing inwards. An  

aliquot of secondary antibody solution (5 ml) was added, and the membrane was 

incubated for one hour at room temperature. The membrane was then washed twice 

quickly, once for fifteen minutes and twice for five minutes in large volumes of wash 

buffer. The secondary antibodies, the antibody dilutions and the diluent used are 

detailed in Table 2.1. 

2.7.6 Visualising the protein. 

Enhanced chemiluminescence (ECL) was used to visualise the protein bands 

(Amersham ECL Plus™ Western Blotting Detection Reagents, GE Healthcare, UK). 

Combined horseradish peroxidise (HRP) and peroxide catalysed oxidation of the 

Lumigen PS-3 substrate produces a chemiluminescent signal, which can be captured 

when the membrane is exposed to autoradiography film (HyperfilmTM ECL, GE 

Healthcare, UK).  

The detection reagents were equilibrated to room temperature before use, and made 

up as specified by the manufacturers to a volume of 1 ml solution/10 cm
2 

membrane. 

Any excess wash buffer was drained off the PVDF membrane. Detection mix was 

pipetted onto the membrane to thoroughly soak. After five minutes, the detection mix 

was wicked from the membrane, and the membrane was wrapped in saran wrap. The 

membrane was placed inside a Kodak cassette. Under darkroom conditions, the 

membrane was exposed to autoradiography film. The film was developed using an 

automatic developer (XoGraph Healthcare Ltd., UK). 
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2.7.7 Stripping and Reprobing the Membrane. 

PVDF membranes can be stripped of signal, primary and secondary antibodies and 

the same blot can be reprobed for a different protein. In order to quantitatively 

evaluate protein expression between samples, the chemiluminescent signal from the 

target protein was compared to that of a structural protein on the same blot. The 

amount of structural protein is not expected to change between samples. This 

provides an internal standard and allows normalisation and standardisation of sample 

load. In addition, membranes probed for a specific phosphorylated protein were 

stripped and reprobed for total levels of the same protein, in order that the ratio of 

phosphorylated to total protein could be determined. 

The blot was washed three times for five minutes, and incubated in stripping buffer 

(Restore Western Blot Stripping Buffer, Thermo Fisher Scientific Inc.) for fifteen 

minutes with shaking at 37°C. The wash was repeated. Checks were carried out to 

ensure complete removal of primary and secondary antibodies, after which the next 

antibody detection was carried out (as from 2.6.4). 

2.7.8 Densitometry Analysis. 

The blot was analysed using densitometry. This technique measures the intensity of 

the band, and thus the amount of protein transferred, in terms of optical density. 

Densitometry analysis was carried out on both the target protein and the structural 

protein, using FlouroChem software (Alpha Innotech, USA) and the amount of target 

protein was normalised to the amount of structural protein. This corrects for any 

difference in protein loading or protein transfer between the samples. Quantitative 

comparisons can then be made between different experimental samples. 
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* Non-fat dried milk powder diluted in wash buffer. 

† Bovine serum albumin diluted in wash buffer. 

 

Table 2.1 Primary and Secondary Antibodies used for Western Blotting. 

This table details the blocking and antibody protocols for all Western Blotting.

 
Protein of 
interest 

 
Intracellular 
location 

 
Blocking  
protocol 

 
 
1° antibody and antibody dilution  

 
 
2° antibody and antibody dilution  

 
HIF-1α 

 
Nuclear 

 
10% milk*  

CS #3716 (Cell Signaling Tech., MA) 
1:250 in wash buffer 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:1000  in 1% milk*  

 
NFkB 

 
Nuclear 

 
10% milk*  

ab7971   (abcam®, UK) 
1:400  in wash buffer 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:1000  in 1% milk* 

 
Lamin B1 

 
Nuclear 

 
10% milk*  

ab16048 (abcam®, UK) 
1:5000  in wash buffer 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:5000  in 1% milk* 

 
S6k 

 
Cytoplasmic 

 
5% BSA†  

ab24490 (abcam®, UK) 
1:400  in wash buffer 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:5000  in 1% BSA† 

 
phospho S6k 

 
Cytoplasmic 

 
5% BSA† 

ab2571 (abcam®, UK) 
1:250 in 5% BSA† 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:1000 in 1% BSA 

 
Akt 

 
Cytoplasmic 

 
10% milk 

CS#9272 (Cell Signaling Tech., MA) 
1:1000 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:1000 in 1% milk 

 
phospho Akt 

 
Cytoplasmic 

 
5% BSA† 

CS#4058 (Cell Signaling Tech., MA) 
1:1000 in 5% BSA† 

CS#7074 Anti-rabbit IgG, HRP-linked (Cell Signaling Tech., MA) 
1:1000 in 1% BSA 

 
B actin 

 
Cytoplasmic 

 
5% BSA†  

ab8226 (abcam®, UK) 
1:2500  

ab6789 Anti-mouse IgG, HRP-linked 
1:5000 in 1% BSA† 
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2.8 In Vivo Animal Study. 

 

The first step in in vivo pre-clinical testing of anti-cancer compounds typically 

involves the subcutaneous injection of human cancer cells into immunocompromised 

mice, thereby creating an ectopic xenograft tumour model. Assessment of tumour 

growth can be carried out externally using a caliper, and tumours can be excised post 

mortem for immunohistochemical analysis. 

In this study the anti-cancer activity of doxorubicin-eluting beads, rapamycin eluting 

beads, rapadox eluting beads, oral rapamycin and combinations thereof was 

investigated in an ectopic xenograft human HCC mouse model. The experiments were 

carried out by EPO-GmbH under approved conditions. 

2.8.1 Animal Species. 

National Medical Research Institute (NMRI) nu/nu mice (Taconic M & B, Ry, DK), 

adult females weighing 20 g. These animals lack a thymus, and are unable to produce 

T-cells, so are immunodeficient. All experiments were approved by LAGeSo (State 

Office of Health and Social Affairs), Berlin. 

2.8.2 HCC Xenograft Model. 

The HCC cell line used was the HepG2 cell line. Cells were cultivated in vitro and 

harvested prior to implantation. 

2.8.3 Preparation of Beads for Injection. 

DC Bead microspheres (Biocompatibles UK) were loaded to a doxorubicin 

concentration of 25 mg/ml, a rapamycin concentration of 20 mg/ml, and a combination 

of both.  The beads were then lyophilised and gamma sterilised (Isotron PLC, UK) and 

stored in vials containing 1 ml of bead. 
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A 3 ml aliquot of alginate solution (0.6% w/v, CellMed) was added to the vial, and 

mixed on a whirlimixer to hydrate the beads. The alginate acts as a viscosity 

modulator and stabilises the beads in situ post injection. 

2.8.4 Preparation of Rapamycin for Gavage. 

Rapamycin powder was fully dissolved in ethanol to a concentration of 10 mg/ml. This 

was then diluted to 0.01 mg/ml in drinking water. A dose of 1 mg/kg/day was 

administered by gavage. 

2.8.5 Treatment Protocol. 

Mice were randomly assigned to one of 7 treatment groups A – G, n = 3 per group. 1 x 

10
7 

HepG2 cells from culture were transplanted subcutaneously at day 0. Treatment 

started when the tumours were of palpable size, = day 23. 100 µl of bead/alginate mix 

was applied adjacent to the tumour by direct injection. Oral rapamycin was 

administered daily by gavage. See Table 2.2. 

2.8.6 Assessment of Tumour Growth. 

Tumour growth was measured twice per week in two perpendicular diameters using 

a caliper. Tumour volume was calculated using the ellipsoid volume formula where 

tumour volume = π/6 x length x width
2
. This method has previously been shown to 

be the most accurate method for assessing the volume of subcutaneous tumours in 

nude mice (Tomayko and Reynolds, 1989). 

2.8.7 Assessment of Toxic Effects. 

The mice were inspected regarding signs of toxicity and behavioural changes 

immediately after application of the beads, and then twice daily. Body weight change 

was used as a parameter for toxicity. Mouse body weight was determined twice per  
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Table 2.2 Treatment Protocol for In Vivo Study.  

This table summarises the treatment schedules for each experimental condition.

 

 

Group 

 

 

n 

 

 

DEB 

 

Oral 

rapamycin 

 

Volume of  injected 

alginate/DEB mix (ul) 

 

Amount of drug 

(mg/ml bead) 

 

Predicted maximum 

dose (mg) 

 

A 

 

3 

 

- 

 

- 

 

- 

 

- 

 

- 

 

B 

 

3 

 

Bland bead 

 

- 

 

100 

 

- 

 

0 

 

C 

 

3 

 

Doxorubicin 

 

- 

 

100 

 

25 

 

0.8 

 

D 

 

3 

 

Rapamycin 

 

- 

 

100 

 

20 

 

0.67 

 

E 

 

3 

 

Rapadox 

 

- 

 

100 

 

 

25 (dox), 20 (rapa) 

 

 

0.8 (dox), 0.67 (rapa) 

 

F 

 

3 

 

- 

 

1 mg/kg/day 

 

- 

 

- 

 

- 

 

G 

 

3 

 

Doxorubicin 

 

1 mg/kg/day 

 

100 

 

25 

 

0.8 
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week. Mice were euthanized at a moribund stage, or if the tumour was larger than 10% 

of total body weight. 

2.8.8 Autopsies. 

The tumours were removed and weighed. The tumours were shock frozen for future 

immunohistochemistry. 

2.9 Statistical Analysis. 

 

Statistical analysis was carried out using Excel and Minitab. For comparisons where 

data was normally distributed, T tests were applied. Where data was not normally 

distributed, the non-parametric equivalent, the Wilcoxon Signed-Rank test, was used. 

Where more than one comparison was carried out on a data set, the Bonferroni 

correction was applied, whereby the α level is divided by the number of comparisons 

made.  

The α level defines the probability of making a Type I (false positive) error – i.e. 

rejecting the null hypothesis if it is true. Conventionally, α is set at 0.05, so that there 

is only a 5% chance of wrongly rejecting the null hypothesis. If more than one 

comparison is made within a data set the chance of making a Type I error increases. 

The Bonferroni correction is used when more than one statistical test is being 

performed simultaneously. The level of α is divided by the number of comparisons 

being made. If the p-value is less than or equal to α/n then the null hypothesis can be 

rejected. This maintains the family wise error rate within the data set, and the 

experiment wide critical value remains equal to α. The Bonferroni correction is fairly 

conservative, and decreases the chance of making a Type I error, but increases the 

chance of making a Type II error. 
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For analysing the data generated from the in vivo experiments (Chapter 7), where all 

the data was normally distributed, analysis of variance was used. Post hoc Bonferroni 

pairwise comparisons were used to directly compare different treatments. 

 

 

 



 70 

Chapter 3  

 

The Effects of Doxorubicin on HepG2 Cells Cultured In Vitro Under Normoxic 

and Hypoxic Conditions.  

 

3.1 Introduction. 

 

Tumour hypoxia is a positive factor for the growth of solid tumours, and is 

associated with malignant progression and a poor prognosis (Semenza, 2007a, Bos et 

al., 2003). The hypoxic phenotype is implicated in drug resistance and tumour 

progression (Semenza, 2007a, Semenza, 2000b, Vaupel and Harrison, 2004, Tomida 

and Tsuruo, 1999). TACE using the chemotherapeutic doxorubicin is the current 

standard of care for unresectable HCC. Doxorubicin-loaded DEB-TACE offers a 

survival advantage over cTACE and is becoming more widely used. There is, 

however, a concern that hypoxia which occurs as a result of embolisation therapy 

allows the escape of tumour cells from necrosis, and results in clonal selection for 

hypoxia-resistant cells and cells with a more aggressive phenotype. Recent reports 

suggest that doxorubicin can, to some extent, block hypoxia-induced survival 

pathways. 

3.1.1 Doxorubicin. 

Doxorubicin is an anthracycline antibiotic which, despite the lack of a clear survival 

benefit, has become the standard of care for inoperable HCC.  

The cytotoxicity of doxorubicin against cancer cells is attributed to a number of 

different mechanisms, including - the intercalation of the drug in the DNA of 

dividing cells and the consequent inhibition of DNA and RNA synthesis; the activity 

of doxorubicin as a topoisomerase II poison; the generation of free oxygen radicals 

which damage DNA and cell membranes; and direct interaction with cell surface 

proteins (Aubel-Sadron and Londos-Gagliardi, 1984, Keizer et al., 1990, Zunino and 
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Capranico, 1990, Tritton, 1991, Pommier et al., 2010). The cytotoxicity of 

doxorubicin towards HepG2 cells has been demonstrated numerous times and 

continues to be demonstrated (Boulin et al., 2011). 

3.1.2 Doxorubicin and HIF-1. 

There have been reports that doxorubicin inhibits angiogenesis in HCC (Piguet et al., 

2008) and in other cancers (Drevs et al., 2004, Quesada et al., 2005). The 

transcription factor HIF-1 induces angiogenesis as a response to hypoxia. Inhibition 

of HIF-1 signalling by Topoisomerase I poisons (Rapisarda et al., 2004a, Beppu et 

al., 2005, Puppo et al., 2008, Sapra et al., 2011a, Choi et al., 2009) and 

Topoisomerase II poisons (Yamazaki et al., 2006, Creighton-Gutteridge et al., 2007, 

Dai et al., 2010, Choi et al., 2009, Chang et al., 2003, Xie et al., 2007) has been 

reported in a number of different cell lines.  

Since we started this investigation, one publication has shown that doxorubicin 

inhibits the transcription of HIF-mediated genes by blocking the binding of HIF-1 to 

the promoter region of hypoxia response genes in Hep3B cells and reduces tumour-

derived angiogenesis and tumour vascularisation in xenograft murine tumour models 

(Lee et al., 2009a).  

This concurs with findings that doxorubicin results in the downregulation of VEGF 

but not HIF-1α in HepG2 tumour models (Liu et al., 2008a). Doxorubicin was also 

found to inhibit both HIF-1 activity and VEGF expression in human ovarian cancer 

cells (Duyndam et al., 2007). The anthracyclines cinerubin and aclarubicin inhibit 

hypoxic induction of VEGF in HepG2 cells (Yamazaki et al., 2006). However, the 

same study reported no effect from doxorubicin on either HIF-1 transcriptional 

activity or VEGF expression (Yamazaki et al., 2006).  
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These findings provide a rationale for the anti-angiogenic effects of anthracycline 

therapy that have previously been reported and suggest that doxorubicin can, to some 

extent, block the cell survival pathways activated by hypoxia. Since chemoresistance 

to doxorubicin can be attributed in part to the phenotypic alterations that occur in 

response to hypoxia, there is a need to investigate the cytotoxicity of doxorubicin to 

tumour cells cultured under hypoxic conditions in vitro, and the effect of doxorubicin 

treatment on cell survival pathways induced by hypoxia. 

3.1.3 Hypoxia, Doxorubicin and NFkB. 

Cellular stresses such as hypoxia and doxorubicin-induced DNA damage have been 

reported to activate the transcription factor NFkB (REFS). NFkB regulates the 

transcription of HIF-1α.  

3.1.4 Phosphorylation of S6K and Akt.  

The PI3K/Akt/mTOR pathway regulates cellular responses to nutrients, growth 

factors and stress. Activation of the pathway results in increased cell proliferation 

and inhibition of apoptosis. Phosphorylation of Akt via PI3K is at thr
308

, and Akt 

directly phosphorylates mTORC1 at ser
2448

. Akt lies upstream of mTOR, and is 

negatively regulated by PTEN. Akt is positively regulated by mTORC2 via 

phosphorylation at ser
473

. In order to conserve cellular energy, hypoxia 

downregulates mTORC1 activation via a different pathway involving the 

upregulation of REDD1 (Brugarolas et al., 2004). In cells with mutations to PTEN 

this mechanism may be dysregulated.  

Activated mTORC1 phosphorylates S6K at thr
389

. This then increases the number of 

ribosomal components involved in protein translation, and thus affects the rate of 

global protein synthesis. 
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3.2 Aims. 

 

• To study the effects of doxorubicin in a time and concentration dependent manner 

on the viability of HepG2 cells under normoxic and hypoxic conditions.  

• To evaluate the response of HIF-1α, NFkB, S6K and Akt expression in HepG2 

cells under normoxic and hypoxic conditions.  

3.3 Objectives. 

 

Here the chemosensitivity of HepG2 cells cultured under normoxic and hypoxic 

conditions to the application of clinically relevant concentrations of doxorubicin 

hydrochloride was investigated. Cell viability was estimated using the CellTiter 96
® 

Aqueous One Solution Proliferation Assay. Hypoxic culture conditions (oxygen = 

1%) were established using the Coy Hypoxic Glove box, as described in the Methods 

section. 

SDS-PAGE and Western Blotting were used to quantify the nuclear accumulation of 

HIF-1α and p50 NFkB; and the phosphorylation status of p70 S6K and Akt. 
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3.4. Results. 

3.4.1 Cell Viability at 24 Hours. 

The only doxorubicin treatment that had a significant effect at 24 hours was the  

25 µM doxorubicin treatment, which significantly decreased the viability of cells 

cultured under normoxic conditions (p = 0.009, α/n = 0.01) (Figure 3.1, Table 3.3). 

Cells cultured under hypoxic conditions were resistant to all doxorubicin 

concentrations at the 24 hour time point (Figure 3.1, Table 3.3 and 3.4). 

3.4.2 Cell Viability at 48 Hours. 

After 48 hours, 10 µM doxorubicin significantly decreased cell viability in cells 

cultured under normoxic conditions and in cells cultured under hypoxic conditions 

when compared to untreated controls (p = <0.001 and p = <0.001 respectively, α/n = 

0.01). Furthermore, the 25 µM doxorubicin treatment significantly decreased cell 

viability in normoxic cells and in hypoxic cells control (p = <0.001 and p = 0.008 

respectively, α/n = 0.01). However, whilst the 50 µM doxorubicin treatment 

significantly decreased cell viability in normoxic cells (p = <0.001, α/n = 0.01), it 

had no significant effect on cell viability of hypoxic cells (Figure 3.2 and Tables 3.5 

and 3.6). Under hypoxic conditions, 10 µM doxorubicin was more effective at 

decreasing cell viability than 25 µM (p = <0.001, α/n = 0.01) (Table 3.6).  

Both 10 µM and 25 µM doxorubicin treatments were more effective at decreasing 

cell viability in normoxic cells than in hypoxic cells (p = 0.019 and p = 0.005 

respectively, α/n = 0.025) (Table 3.7). 

3.4.3 Cell Viability at 72 Hours.  

After 72 hours, 5 µM doxorubicin significantly decreased cell viability in cells 

cultured under normoxic conditions when compared to untreated controls (p = 
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<0.001, α/n = 0.01). 10 µM doxorubicin significantly decreased cell viability in cells 

cultured under normoxic conditions and in cells cultured under hypoxic conditions 

when compared to untreated controls (p = <0.001 and p = <0.001 respectively, α/n = 

0.01). The 25 µM doxorubicin treatment significantly decreased cell viability in 

normoxic cells (p = <0.001, α/n = 0.01) but had no significant effect on cell viability 

of hypoxic cells. However, 50 µM doxorubicin significantly decreased cell viability 

in normoxic cells and in hypoxic cells when compared to control (p = <0.001 and p = 

0.002 respectively, α/n = 0.01) (Figure 3.3 and Tables 3.8 and 3.9). Under hypoxic 

conditions, 10 µM doxorubicin was more effective at decreasing cell viability than 

25 µM (p = 0.007, α/n = 0.01) (Table 3.8 and 3.9).  

A 10 µM doxorubicin treatment was significantly more effective at decreasing cell 

viability in normoxic cells than in hypoxic cells (p = 0.014, α/n = 0.025) (Table 

3.10). 
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Figure 3.1 The Effects of 24 Hours Exposure to Doxorubicin on Viability of 

HepG2 Cells Cultured Under Normoxic and Hypoxic Conditions.  
1 x 10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to doxorubicin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 24 hours. Cell viability was measured using MTS assay and 

normalised to untreated control. Data points represent mean of 6 separate 

experiments ± standard error of the mean, except for 5 µM concentrations which 

represent a mean of 3 separate experiments ± standard error of the mean and 50 µM 

concentrations which represent a mean of 4 separate experiments ± standard error of 

the mean. * denotes significant decrease in cell viability compared to control, where 

p = < 0.01, α/n = 0.01. 
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Figure 3.2 The Effects of 48 Hours Exposure to Doxorubicin on Viability of 

HepG2 Cells Cultured under Normoxic and Hypoxic Conditions. 

1 x 10
4 

cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to doxorubicin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 48 hours. Cell viability was measured using MTS assay and 

normalised to untreated control. Data points represent a mean of 6 separate 

experiments ± standard error of the mean for all doxorubicin concentrations, except 

for 5 µM concentrations which represent a mean of 3 separate experiments ± 

standard error of the mean and 50 µM concentrations which represent mean of 4 

separate experiments ± standard error of the mean. * denotes significant decrease in 

cell viability compared to control, where p = < 0.01, α/n = 0.01; ** denotes 

significant decrease in cell viability compared to control, where p = < 0.001, α/n = 

0.01; # denotes significant decrease in cell viability compared to control, where p = < 

0.025, α/n = 0.025. 
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Figure 3.3 The Effects of 72 Hours Exposure to Doxorubicin on Viability of 

HepG2 Cells Cultured Under Normoxic and Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to doxorubicin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 72 hours. Cell viability was estimated using MTS assay and 

normalised to untreated control. Data points represent a mean of 6 separate 

experiments ± standard error of the mean, except for 5 µM concentrations which 

represent a mean of 3 separate experiments ± standard error of the mean and 50 µM 

concentrations which represent mean of 4 separate experiments ± standard error of 

the mean. * denotes significant decrease in cell viability compared to control, where 

p = < 0.01, α/n = 0.01.** denotes significant decrease in cell viability compared to 

control, where p = <  0.001, α/n = 0.01. # denotes significant decrease in cell 

viability compared to control, where p = < 0.025, α/n = 0.025. 
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Figure 3.4 Cell Proliferation in Normoxic Compared to Hypoxic Cells.  
1 x 10

4 
cells in 200 µl aliquots were added to each well of a 96-well plate and 

incubated overnight at 37°C under normoxic conditions. The following day, the 

plates were removed to either normoxic or hypoxic conditions and the media was 

replenished. The plates were incubated under normoxic or hypoxic conditions for 24, 

48 and 72 hours. Cell viability was measured using MTS assay and normalised to 

cell viability at 0 hours. Data points represent a mean of 6 separate experiments ± 

standard error of the mean. * denotes significant difference, p = < 0.05, using a two 

sample one tailed T test. 
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3.4.4 Statistical Analysis. 

 

 

Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α/n 

 

Significant 

0 vs.  5 µM 0.109 Yes One sample T 0.019 0.0125 No 

0 vs. 10 µM 0.299 Yes One sample T 0.082 0.0125 No 

0 vs. 25 µM 0.606 Yes One sample T 0.009 0.0125 Yes 

0 vs. 50 µM 0.195 Yes One sample T 0.057 0.0125 No 
 

Table 3.1 Comparisons for Factor [drug] after 24 Hours of Treatment under 

Normoxic Culture Conditions.  
For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed (N.D.) data, a one sample T test was carried out, using a one 

tailed comparison, 100 vs. < 100. The significance level was adjusted for multiple 

tests using the Bonferroni correction, whereby the significance level is equal to α/n, 

where n = the number of tests carried out.  

 

 

 

 

Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α/n 

 

Significant 

0 vs.  5 µM 0.332 Yes One sample T 0.085 0.0125 No 

0 vs. 10 µM 0.948 Yes One sample T 0.124 0.0125 No 

0 vs. 25 µM 0.788 Yes One sample T 0.177 0.0125 No 

0 vs. 50 µM 0.029 No 

One sample 

Wilcoxon 0.100 0.0125 No 

 

Table 3.2 Comparisons for Factor [drug] after 24 Hours of Treatment under 

Hypoxic Culture Conditions. 

For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. < 100. For non-normally distributed data, a one sample 

Wilcoxon Rank test was carried out, using a one tailed comparison, 100 vs.<100. The 

significance level was adjusted for multiple tests using the Bonferroni correction, 

whereby the significance level is equal to α/n, where n = the number of tests carried 

out.  
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Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α/n 

 

Significant 

0 vs.  5 µM 0.065 Yes One sample T 0.012 0.010 No 

0 vs. 10 µM 0.479 Yes One sample T <0.001 0.010 Yes 

0 vs. 25 µM 0.136 Yes One sample T <0.001 0.010 Yes 

0 vs. 50 µM 0.068 Yes One sample T <0.001 0.010 Yes 

10 vs. 25 µM 0.017 No 
One sample 

Wilcoxon 

One sample T 

 0.030 0.010 No 

 

Table 3.3 Comparisons for Factor [drug] after 48 Hours of Treatment under 

Normoxic Culture Conditions.  

For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. < 100. For comparisons between different doxorubicin 

concentrations, a normality test was carried out on the differences between the mean 

% cell viability readings (differences = 25 µM - 10 µM). For non-normally 

distributed data, a one sample Wilcoxon Rank test was carried out, using a one tailed 

comparison, 0 vs.>0. The significance level was adjusted for multiple tests using the 

Bonferroni correction, whereby the  significance level is equal to α/n, where n = the 

number of tests carried out.  

 

 

Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α/n 

 

Significant 

0 vs.  5 µM 0.606 Yes One sample T 0.029 0.010 No 

0 vs. 10 µM 0.230 Yes One sample T <0.001 0.010 Yes 

0 vs. 25 µM 0.117 Yes One sample T 0.008 0.010 Yes 

0 vs. 50 µM 0.456 Yes One sample T 0.018 0.010 No 

10 vs. 25 µM 0.179 Yes One sample T <0.001 0.010 Yes 

 

Table 3.4 Comparisons for Factor [drug] after 48 Hours of Treatment under 

Hypoxic Culture Conditions.  

For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. < 100. For comparisons between different doxorubicin 

concentrations, a normality test was carried out on the differences between the mean 

% cell viability readings (differences = 25 µM - 10 µM). For normally distributed 

data, a one sample T test was carried out, using a one tailed comparison, 0 vs.>0. The 

significance level was adjusted for multiple tests using the Bonferroni correction, 

whereby the  significance level is equal to α/n, where n = the number of tests carried 

out. 
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Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α/n 

 

Significant 

0 vs.  5 µM 0.591 Yes One sample T 0.010 0.010 Yes 

0 vs. 10 µM 0.429 Yes One sample T <0.001 0.010 Yes 

0 vs. 25 µM 0.380 Yes One sample T <0.001 0.010 Yes 

0 vs. 50 µM 0.520 Yes One sample T <0.001 0.010 Yes 

10 vs. 25 µM 0.177 Yes One sample T 0.029 0.010 No 

 

Table 3.5 Comparisons for Factor [drug] after 72 Hours of Treatment under 

Normoxic Culture Conditions.  
For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. < 100. For comparisons between different doxorubicin 

concentrations (differences = 25 µM – 10 µM), a normality test was carried out on 

the differences between the mean % cell viability readings. For normally distributed 

data, a one sample T test was carried out, using a one tailed comparison, 0 vs. > 0. 

The significance level was adjusted for multiple tests using the Bonferroni 

correction, whereby the  significance level is equal to α/n, where n = the number of 

tests carried out.  

 

 

Comparison 

p value 

normality 

 

N.D. 

 

Test used 

 

p value 

 

α 

 

Significant 

0 vs.  5 µM 0.067 Yes One sample T 0.106 0.010 No 

0 vs. 10 µM 0.059 Yes One sample T <0.001 0.010 Yes 

0 vs. 25 µM 0.035 No 
One sample 

Wilcoxon 
0.030 0.010 No 

0 vs. 50 µM 0.180 Yes One sample T 0.002 0.010 Yes 

10 vs. 25 µM 0.098 Yes One sample T 0.007 0.010 Yes 

 

Table 3.6 Comparisons for Factor [drug] after 72 Hours of Treatment under 

Hypoxic Culture Conditions.  
For each doxorubicin concentration, the mean % cell viability compared to control 

readings from each of the replicate experiments were subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. <100. For non-normally distributed data, a one sample 

Wilcoxon Rank test was carried out, using a one tailed comparison, 100 vs. < 100. 

For comparisons between different doxorubicin concentrations, a normality test was 

carried out on the differences between the mean % cell viability readings (differences 

= 25 µM – 10 µM). For normally distributed data, a one sample T test was carried 

out, using a one tailed comparison, 0 vs.>0. The significance level was adjusted for 

multiple tests using the Bonferroni correction, whereby the  significance level is 

equal to α/n, where n = the number of tests carried out.  
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Comparison 

 

[Dox] 

p value 

normality 

 

N.D. 

 

Test used 

p 

value 

 

α 

 

Significant 

Normoxic 

vs. hypoxic 

 

10 µM 

 

0.619 

 

Yes 

 

One sample T 

 

0.019 

 

0.025 

 

Yes 

Normoxic 

vs. hypoxic 

 

25 µM 

 

0.679 

 

Yes 

 

One sample T 

 

0.005 

 

0.025 

 

Yes 
 

Table 3.7 Comparisons for Culture Conditions after 48 Hours Exposure to 

Doxorubicin.  

The differences between the mean % cell viability readings for normoxic and 

hypoxic culture conditions at the same doxorubicin concentration were calculated 

(hypoxic – normoxic), and these differences were then subjected to a normality test. 

For normally distributed data, a one sample T test was carried out, using a one tailed 

comparison, 0 vs. > 0. The significance level was adjusted for multiple tests using the 

Bonferroni correction, whereby the  significance level is equal to α/n, where n = the 

number of tests carried out.  

 

 

 

 

 

 

Comparison 

 

[Dox] 

p value 

normality 

 

N.D. 

 

Test used 

p 

value 

 

α 

 

Significant 

Normoxic 

vs. hypoxic 

 

10 µM 

 

0.841 

 

Yes 

 

One sample T 

 

 0.014 

 

0.025 

 

Yes 

Normoxic 

vs. hypoxic 

 

25 µM 

 

0.531 

 

Yes 

 

One sample T 

 

 0.031 

 

0.025 

 

No 
 

Table 3.8 Comparisons for Culture Conditions after 72 Hours Exposure to 

Doxorubicin.  
The differences between the mean % cell viability readings for normoxic and 

hypoxic culture conditions at the same doxorubicin concentration were calculated 

(differences = hypoxic – normoxic), and these differences were then subjected to a 

normality test. For normally distributed data, a one sample T test was carried out, 

using a one tailed comparison, 0 vs. > 0. The significance level was adjusted for 

multiple tests using the Bonferroni correction, whereby the  significance level is 

equal to α/n, where n = the number of tests carried out.  
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3.4.5 50 µM Doxorubicin Attenuates Hypoxia Stimulated HIF-1α Nuclear 

Accumulation. 

To determine the effect of doxorubicin treatment on hypoxia stimulated nuclear 

accumulation of HIF-1α, SDS-PAGE and Western Blotting was carried out on 

nuclear extracts from HepG2 cells cultured under normoxic and hypoxic conditions, 

and exposed to drug concentrations as shown, see Figure 3.8. The results confirmed 

that 24 hours incubation under hypoxic conditions resulted in a significant increase 

in the amount of HIF-1α in the nucleus of HepG2 cells (p = 0.013, α/n = 0.017), see 

Figure 3.5 (Lane 4). Doxorubicin treatment of 10 µM had no significant effect on the 

nuclear accumulation of HIF-1α in hypoxic cells; see Figure 3.5 (Lane 5).  However, 

the 50 µM treatment significantly reduced the amount of HIF-1α detected in the 

nucleus (p = 0.003), see Figure 3.5 (Lane 6). The 10 µM and 50 µM doxorubicin 

treatments had no effect on the amount of HIF-1α detected in the nucleus of 

normoxic cells.  

3.4.6 Doxorubicin Activates NFkB p50 in Normoxic Cells. Hypoxia Activates 

NFkB p50, and Doxorubicin has no Effect on Hypoxia Stimulated Activation of 

NFkB p50. 

To determine the effect of doxorubicin treatment on hypoxia stimulated nuclear 

accumulation of NFkB p50, SDS-PAGE and Western Blotting was carried out on 

nuclear extracts from HepG2 cells cultured under normoxic and hypoxic conditions, 

and exposed to drug concentrations as shown, see Figure 3.6. Doxorubicin treatment 

of normoxic HepG2 cells increased the amount of p50 NFkB in the nucleus (Lanes 1, 

2 and 3). However, the increase was not significant (10 µM doxorubicin, p = 0.087; 

50 µM doxorubicin, p = 0.034, α = 0.017). Hypoxia also increased the amount of p50 

NFkB in the nucleus of HepG2 cells (p = 0.049, α = 0.017) (Lane 4). However, 
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doxorubicin treatment of hypoxic cells did not increase the amount of NFkB 

compared to the effects of hypoxia alone (Lanes 5 and 6). 

3.4.7 Effects of Doxorubicin on p70 S6K and p70 S6K (phospho T389). 

To determine the effect of doxorubicin treatment on S6K and the phosphorylation of 

S6K, SDS-PAGE and Western Blotting was carried out on cytoplasmic extracts from 

HepG2 cells cultured under normoxic and hypoxic conditions, and exposed to drug 

concentrations as shown, see Figure 3.7. Hypoxia had no effect on the ratio of 

phosphorylated S6K to total S6K (Panel A and Lanes 1 and 4). Similarly, 

doxorubicin had no effect on the ratio of phosphorylated S6K to total S6K in cells 

cultured under normoxic or hypoxic conditions (Panel A, Lanes 1 – 3 and 4 - 6). 

Levels of total S6K remained the same in normoxia and hypoxia and for all 

treatments (Panel B, Lanes 1 – 3 and 4 - 6). 

3.4.8 Effects of Doxorubicin on Akt and Akt (phospho ser473). 

Akt was observed to be activated in normoxic and hypoxic cells, see Figure 3.8. 

Hypoxia was not observed to have any effect on Akt phosphorylation (Lanes 1 and 

3). Doxorubicin treatment was not observed to have any effect on Akt 

phosphorylation in either normoxic or hypoxic conditions (Lanes 1 – 3 and 4 – 6).  

The total amount of Akt did not change in either normoxic or hypoxic conditions or 

with application of doxorubicin.  
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Figure 3.5 Nuclear Accumulation of HIF-1α after Doxorubicin Treatment. 

HepG2 cells were seeded onto T75 tissue culture flasks and incubated under 

normoxic conditions until 60% confluent. The cells were exposed to doxorubicin in 

normoxic or hypoxic conditions and incubated for 24 hours. The cells were harvested 

and nuclear extracts were prepared. Equal quantities of protein were fractionated on a 

10% SDS-PAGE gel. The proteins were transferred to a PVDF membrane and 

probed with anti-HIF-1α antibodies. Proteins were visualised using 

chemiluminescent reagents. The membrane was stripped and reprobed using 

antibodies against the nuclear house-keeping protein Lamin B1. Protein levels were 

quantified using densitometry analysis. The amount of HIF-1α was normalised to 

Lamin. Fold change compared to untreated hypoxic cells was calculated. Data shown 

represents mean of 4 independent experiments ± standard error of the mean for 

hypoxic cells, and mean of 3 independent experiments ± standard error of the mean 

for normoxic cells.  Statistical analysis was carried out using a one sample one tailed 

T test, 1 vs. < 1. * denotes a statistically significant result, p = < 0.05; ** denotes a 

statistically significant result, p = < 0.01. 
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Figure 3.6  Nuclear Accumulation of NFkB p50 after Doxorubicin Treatment.  

HepG2 cells were seeded onto T75 tissue culture flasks and incubated under 

normoxic conditions until the cells reached 60% confluence. The cells were exposed 

to doxorubicin in normoxic or hypoxic conditions and incubated for 24 hours. The 

cells were harvested and nuclear extracts were prepared. Equal quantities of protein 

were fractionated on a 10% SDS-PAGE gel. The proteins were transferred to a 

PVDF membrane and probed with anti-NFkB p50 antibodies. Proteins were 

visualised using chemiluminescent reagents. The membrane was stripped and 

reprobed using antibodies against the nuclear house-keeping protein Lamin B1. 

Protein levels were quantified using densitometry analysis. The amount of NFkB p50 

was normalised to Lamin. Fold change compared to untreated normoxic cells was 

calculated. Data shown represents mean of 3 separate experiments ± standard error of 

the mean. 
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Figure 3.7 Cytoplasmic p70 S6K and p70 S6K (phospho T389) after 

Doxorubicin Treatment of Normoxic and Hypoxic Cells.  

Cells were treated as described in Figure 6.1. Cytoplasmic extracts were prepared 

and fractionated on a 10% SDS-PAGE gel. The proteins were transferred to a PVDF 

membrane and probed with anti- p70 S6K (phospho T389) antibodies. Proteins were 

visualised and the membrane was stripped and reprobed using antibodies against 

total S6K, and antibodies against B actin. Protein levels were quantified using 

densitometry analysis. Ratio of p70 S6K (phospho T389) to total S6K was 

calculated, as was the amount of p70 S6K normalised to B actin. Data shown 

represents mean of 3 separate experiments ± standard error of the mean. 
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Figure 3.8 Cytoplasmic Akt and Akt (phospho ser473) after Doxorubicin 

Treatment of Normoxic and Hypoxic Cells.  
Cells were treated as described in Figure 6.1. Cytoplasmic extracts were prepared 

and fractionated on a 10% SDS-PAGE gel. The proteins were transferred to a PVDF 

membrane and probed with anti- Akt (phospho ser473) antibodies. Proteins were 

visualised and the membrane was stripped and reprobed using antibodies against 

total Akt, and antibodies against B actin. Protein levels were quantified using 

densitometry analysis. Ratio of Akt (phospho ser473) to total Akt was calculated, as 

was the amount of Akt normalised to B actin. Data shown represents mean of 3 

separate experiments ± standard error of the mean. 
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3.5 Discussion. 

3.5.1 Poor Treatment Outcomes Observed in Clinic are Likely Due to Sub-

Clinical Concentrations of Doxorubicin Reaching Tumour Cells. 

It has been shown here that doxorubicin concentrations of < 5 µM do not exhibit 

cytotoxic effects against normoxic or hypoxic HepG2 cells (Chapter 3). 

One explanation for the resistance to doxorubicin in the treatment of HCC after 

systemic administration is almost certainly due to the fact that intratumoural 

concentrations of doxorubicin are sub-clinical. Bolus administration of doses 

between 15 and 90 mg/m
2 

give a maximal initial plasma concentration of 

approximately 5 µM (Brenner et al 1985; Greene et al 1983), with most initial 

plasma concentrations lying between 1 – 2 µM (Muller et al 1993; Speth et al 1987; 

Benjamin et al 1993; Creasey et al 1976). However, there is a rapid decline after 1 

hour to plasma concentrations between 25 – 250 nM, which is the same range as 

achieved when doxorubicin is administered by continuous infusion (Greene et al; 

Muller et al; Speth et al). Experiments using three different tumour types in a mouse 

model showed that even when potentially lethal intraperitoneal doses of doxorubicin 

were administered, intratumoural concentrations of doxorubicin declined 

exponentially with distance from tumour blood vessels, with little or no doxorubicin 

detectable in many of the tumour cells (Primeau et al., 2005). In vitro data suggests 

that concentrations of 0.1 – 5 µM (Fornari et al 1996); at least 2 µM (Meriwether et 

al 1972); and in some cases up to 100 µM (Momparler et al 1976) are necessary for 

inhibition of DNA and RNA synthesis. As discussed in the introduction, different 

mechanisms of action are likely to be involved at different drug concentrations.  

The delivery of doxorubicin to tumour cells is vastly improved when cTACE is used. 

Intratumoural drug concentration has been reported to be 60% of the injected dose 

(Raoul et al., 1992). Concentrations of doxorubicin within tumour tissue are 10 to 
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100 times higher after cTACE than after systemic application (Konno, 1990). 

Doxorubicin release from DC Bead after DEB-TACE has been reported as 52% at 

day 28, and 89% at day 90 (Namur et al., 2010). Low plasma concentrations after 

DEB-TACE compared to TACE suggest that tumour retention of doxorubicin is high 

(Hong et al., 2006). The loco-regional delivery of doxorubicin to HCCs therefore 

ensures that the tumour cells experience effective doses of chemotherapeutic. 

3.5.2 Relevance of Results to DEB-TACE. 

Here we have shown in vitro that there is a therapeutic window for doxorubicin of 10 

µM (= 5.8 µg/ml), where the drug is cytotoxic to both normoxic and hypoxic HepG2 

cells. Concentrations above 10 µM do not show increased cytotoxicity in normoxic 

cells. However, in hypoxic cells, concentrations above 10 µM have decreased 

cytotoxicity, even up to a concentration x 5 higher. 

So how does this in vitro finding translate to the clinical setting? Three studies have 

looked at the release and tissue penetration of doxorubicin from DEBDOX in 

embolised swine liver. In one, using radioopaque beads, MicroCT and epiflourescent 

microscopy demonstrated that the concentration of doxorubicin into liver tissue at 1 

to 4 hours post TACE reached a maximum of 150 µM within a distance of 10 μm 

from the bead. Doxorubicin concentration decreased with increasing distance from 

the bead and concentrations >10μM extended out to 250-350 μm from the bead 

surface. Necrosis was observed 24 hours post TACE and coincided with areas of 

high drug exposure (Reddy et al., 2010). Another study used fluorescence 

microscopy to image the distribution of doxorubicin in liver tissue after embolisation 

using DEBDOX 100 – 300 µm in diameter. Doxorubicin was detected up to 200 µm 

from the bead surface 2 hours after embolisation had taken place (Dreher et al., 

2009). In another study, livers were sampled at day 28 and day 90 post TACE. 
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Fourier transform IR spectroscopy/mass spectrometry (FTIR-MS) was then used to 

image the amount of doxorubicin left in the beads. Results showed that 52% of the 

doxorubicin had eluted from the bead at day 28, and that 89% of doxorubicin had 

eluted from the bead at day 90 (Namur et al., 2010). 

In fact, Namur et al (2008) had shown previously in an animal model that therapeutic 

doses of doxorubicin are released into liver tissue up to 90 days after application of 

DEBDOX (Namur et al., 2008a). Namur et al 2008 also looked at doxorubicin 

elution in liver explants from HCC patients who underwent TACE using DEBDOX 

prior to transplantation. Time between treatment and explantation ranged from one 

day to 36 days. For the 6 hour explant, doxorubicin was detected within the tumour 

up to a distance of 1.1 cm from the bead, with intratumoural concentrations of 6.4 

µM. No necrosis was evident in this explant. Doxorubicin was detected up to 600 µm 

from the beads in all explants. The concentration of doxorubicin decreased with 

distance, by up to 70% between 20 µm and 600 µm from the bead. Since the limit of 

oxygen diffusion in tissue is 100 – 200 µm from the capillary, it is clear that cells 

experiencing hypoxia which has not occurred as a result of the embolisation itself, 

are in contact with the drug (Namur et al., 2011). The concentration of doxorubicin 

decreased with time, from one day to 9 – 14 days, and from 9 -14 days to 32 – 36 

days after treatment in the Namur study. The tissue concentration of doxorubicin at 

day one was within the therapeutic window for both normoxic and hypoxic cells that 

we have identified in vitro, up to a distance of 600 µm from the bead. The extent of 

tumour necrosis correlated with penetration and concentration of doxorubicin, and 

necrotic/fibrotic tissue surrounded the beads at day 9 to day 36 explantation. 

Doxorubicin concentration in normal tissue in the Namur et al animal model was 

higher at time points and similar distances from the bead than doxorubicin 
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concentrations in HCCs. This is likely to be due to increased interstitial pressure in 

tumour compared to normal tissue. 

A retrospective study by Citron et al, (2008), looked at the distribution of drug and 

the extent of tumour necrosis following TACE using doxorubicin-loaded LC Bead™. 

Seven patients received one treatment, two patients received > one treatment. Doses 

were 150 mg doxorubicin per treatment. CT scan was used to assess treatment 

response prior to explantation, and further analysis investigated necrosis, drug 

diffusion and the relationship between the two. Histological analysis demonstrated 

cytostatic drug concentrations in tissue surrounding the beads up to several hundred 

microns away. Complete tumour necrosis was observed in all but one of the patients, 

who was transplanted 8 hours after treatment. Complete tumour necrosis was 

observed after histological assessment in all but two patients – the patient 

transplanted 8 hours after treatment and another patient where histology revealed a 

small residual focus. No tumour recurrence occurred during 15 months of follow up, 

although 2 patients died; one from Hepatitis C related liver failure and one from 

multi-organ failure after candidal infection (Citron et al., 2008). 

A recent study used contrast-enhanced ultrasonography (CEUS) to assess the 

efficacy of DEBDOX for the treatment of unresectable HCC. 10 patients were given 

a 4 ml dose of DEBs, preloaded with 25 mg doxorubicin/ml hydrated beads. After 2 

days, necrosis ranged from 21% to 70%, with a mean of 44%. After 35 to 40 days 

this had increased significantly (= 0.0012) to necrosis ranging between 24% and 

88%, with a mean of 52%. This suggests that during the first 2 days after treatment 

necrosis is evident, and that there is a sustained effect out to 40 days post TACE 

(Moschouris et al., 2010). 
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As discussed above, several clinical studies have now been published, citing 

improved treatment responses for DEB-TACE compared to cTACE (Lammer et al., 

2010, Dhanasekaran et al., 2010, Ferrer Puchol et al., 2011); and compared to bland 

embolisation using unloaded beads (Malagari et al., 2010). Other data, as cited 

above, demonstrates that doxorubicin elution from ionic exchange microspheres in 

vivo, in both animal models and HCC explants, provides tissue and intratumoural 

drug concentrations that result in necrosis (Reddy et al., 2010, Namur et al., 2010, 

Citron et al., 2008, Moschouris et al., 2010). The response of tumour cells to DEB-

TACE can be seen as soon as one day after embolisation and continues for at least 36 

days afterward (Moschouris et al., 2010). 

Here we have shown that concentrations above 5 µM are required for cell death in 

both normoxic and hypoxic cells. The reported intratumoural concentration of 

doxorubicin at distances up to 600 µm from the beads fits the therapeutic window 

that we have identified for both normoxic and hypoxic tumour cells. Viable hypoxic 

cells have been observed at distances of 50 – 250 µm from the nearest blood vessel 

(Sutherland, 1988). The drug is diffusing out to distances where cells are hypoxic, 

whether this hypoxia is due to distance from the nearest blood vessel or due to the 

embolisation procedure itself. Effects are time and dose dependent, and so the 

prolonged and sustained release of drug into the tumour associated with DEB-TACE 

is likely to provide optimal exposure of tumour cells to the drug. 

3.5.3 Increased Doxorubicin Resistance in Hypoxic Cells. 

The data here shows that hypoxia protects HepG2 cells from doxorubicin-induced 

cytotoxicity. This effect is seen at the 48 and 72 hour time points, at doxorubicin 

concentrations of 10, 25 and 50 µM (Figures 3.5 and 3.6). Hypoxia-induced 
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resistance to chemotherapeutics is well documented (Gupta and Costanzi, 1987, 

Kalra et al., 1993, Kennedy et al., 1983, Luk et al., 1990, Martin and McNally, 1980, 

Sakata et al., 1991, Sanna and Rofstad, 1994, Song et al., 2006, Tomida and Tsuruo, 

1999, Wilson et al., 1989, Yamagata et al., 1992, Yamauchi et al., 1987, Sullivan et 

al., 2008, Unruh et al., 2003, Liu et al., 2008b, Jung et al., 2010, Rohwer et al., 

2010) and interference with HIF-1α has been reported to reverse this (Chang et al., 

2006, Liu et al., 2008a, Wang and Minko, 2004, Song et al., 2006, Nardinocchi et 

al., 2009a, Daskalow et al., 2010). 

No data has been published to date on resistance to doxorubicin in HepG2 cells 

cultured in vitro under hypoxic conditions. However, a recent publication has shown 

that the unfolded protein response (UPR), which is activated in hypoxia, is activated 

in HCCs and protects against doxorubicin cytotoxicity to HepG2 cells in vitro (Al-

Rawashdeh et al., 2010). Another study has shown that hypoxia protects against 

doxorubicin cytotoxicity in Huh-7 HCC cells (Jung et al., 2010). 

As discussed in the introduction, the cytotoxicity of doxorubicin is due to a number 

of different mechanisms. Resistance to chemotherapies in hypoxic tumour cells is 

therefore likely to be multi-factorial. Oxygen is thought to be involved both directly 

and indirectly in mechanisms of action of doxorubicin (Teicher et al., 1981). 

3.5.3.1 Reduced Drug Accumulation in Hypoxia - Influence of the Extracellular 

Milieu. 

 

The interstitial fluid within solid tumours has increased acidity when compared to 

that of normal tissue, with a further increase in acidosis in hypoxic compartments 

(Vaupel et al., 1989; Chiche et al., 2010). Both glucose consumption and lactate 

production have been shown to increase by a factor of three in HepG2 cells exposed 

to severe hypoxia (Chevrollier et al., 2005). Doxorubicin is a weak base, and the 
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local pH affects the ionisation state of the drug. Increased acidity reduces the 

proportion of doxorubicin in the non-ionised, membrane-permeable form. As a 

consequence, there is a reduction in the accumulation of doxorubicin in hypoxic 

tumour cells (Mellor and Callaghan, 2011, Gerweck et al., 1999; De Milito and Fais, 

2005, Raghunand et al., 1999). 

3.5.3.2 Enhanced Drug Efflux Under Hypoxic Conditions. 

 

Drug efflux has long been recognised as a major contributor to chemoresistance. Pgp 

is a transmembrane glycoprotein which functions as an efflux pump for a wide range 

of xenobiotics and is widely expressed in hepatocytes (Thiebaut et al., 1987). 

Hypoxia has been shown to increase the expression of Pgp in HepG2 cells and in 

other cell lines (Comerford et al., 2002, Zhu et al., 2005, Wartenberg et al., 2003).  

3.5.3.3 Oxygen-Dependent Cytotoxicity. Free Radical Formation. 

 

Doxorubicin-induced free radical DNA damage occurs at doxorubicin concentrations 

> 10 µM (Ubezio and Civoli, 1994; Benchekroun et al., 1993a, Benchekroun et al., 

1993b). However, in hypoxic conditions, tumour cells may not be capable of 

carrying out these reductive reactions (Teicher et al., 1981). If this mechanism of 

cytotoxicity comes into effect above a threshold concentration, but is only seen in 

cells where the oxygen concentration is sufficiently high, this would explain the 

decrease in the cytotoxicity of doxorubicin towards hypoxic cells at higher drug 

concentrations.  

3.5.3.4 Reduced Levels of Topoisomerase II in Hypoxic Cells. 

 

Drug sensitivity correlates with cellular TOP2 levels and drug resistant cancer cells 

have been shown to have reduced activity and/or decreased levels of TOP2 (Beck et 

al., 1993, Hofmann and Mattern, 1993). Hypoxia has been shown to reduce 
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intracellular topoisomerase II levels and so reduce the cytotoxicity of TOP2 poisons 

(Sullivan and Graham, 2009). 

3.5.3.5 Hypoxia and Apoptosis. 

 

Hypoxia can induce both pro- and anti-apoptotic responses, depending on the 

severity and duration of oxygen depletion. The apoptotic cascade in hypoxia is to 

some extent directly regulated by HIF. (Goda et al., 2003, Sowter et al., 2001, Piret 

et al., 2005, Dong et al., 2003, Erler et al., 2004, Baek et al., 2000). In HepG2 cells 

hypoxia has been shown to protect from apoptosis (Sermeus et al., 2008; Piret et al., 

2005). 

3.5.4 The Nuclear Accumulation of HIF-1α in Response to Hypoxia and 

Doxorubicin. 

This study investigated the effect of doxorubicin, an anthracycline and 

Topoisomerase II poison, on the amount of HIF-1α in the nucleus of HepG2 cells 

cultured under normoxic and hypoxic conditions, and found that a doxorubicin dose 

of 50 µM significantly attenuated nuclear HIF-1α found in cells cultured under 

hypoxic conditions. A dose of 10 µM however, had no significant effect. 

Analysis of doxorubicin elution from embolisation particles following TACE 

demonstrates that concentrations of the drug may be as high as 150 µM up to 10 μm 

from the beads, whilst concentrations >10μM extend out to 250-350 μm from the 

beads (Reddy et al., 2010). Consequently, the high concentrations of doxorubicin 

which are found in cancer tissue close to the embolised blood vessel may be 

sufficient to block HIF-1 signalling in cells which experience hypoxia as a result of 

embolisation therapy itself, and inhibit the activation of hypoxia-induced survival 

pathways. Without the activation of compensatory mechanisms which enable a cell 

to adapt to hypoxia, the cells will undergo necrosis. 
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The investigations undertaken in this thesis have identified a therapeutic window of 

10 µM doxorubicin, where the drug is more toxic to hypoxic HepG2 cells than a 50 

µM dose. Hypoxic cells were found to be significantly more resistant to doxorubicin 

than normoxic cells at all effective concentrations. Whilst 50 µM doxorubicin 

attenuates the hypoxia stimulated nuclear accumulation of HIF-1α, a 10 µM 

application has no significant effect. It seems that the cytotoxicity of this critical 10 

µM dose is not connected to the ability of doxorubicin to inhibit HIF-1α 

accumulation in the nucleus. However, it may well be connected to the ability of 

doxorubicin to inhibit HIF-1 transcriptional activity, and block hypoxia-induced 

survival pathways. 

So why does a dose of 50 µM reduce HIF-1α levels? There are at least three possible 

explanations – firstly, doxorubicin increases the degradation of HIF-1α; secondly, 

doxorubicin decreases the translocation of HIF-1α to the cell nucleus; and thirdly, 

doxorubicin decreases the rate of transcription or translation of HIF-1α.  

The degradation of HIF-1α is dependent on oxygen and intracellular iron in the form 

of Fe
2+

. Under anaerobic conditions, the semiquinone free radical forms of 

doxorubicin catalyze the rapid release of iron from the intracellular iron storage 

molecule ferritin (Thomas and Aust, 1986). Free intracellular iron contributes to 

ROS formation and to the cytotoxic effects of doxorubicin via catalysation of the 

Fenton reaction. However, the degradation of HIF-1α depends not only on the 

presence of iron, but also on the presence of oxygen. Whether or not increased iron 

availability reduces the threshold oxygen concentration below which HIF-1α is 

stabilised has not yet been explored.  

Levels of cytoplasmic HIF-1α were undetectable both before and after doxorubicin 

treatment (data not shown), so it would seem that the reduction in nuclear 
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accumulation of HIF-1α is not a result of a decrease in the translocation of the 

protein from the cytoplasm to the nucleus. The rate of transcription of hif 1α could be 

reduced due to a stalling of transcriptional machinery as a result of the formation of 

doxorubicin/DNA complexes (Sinha and Chignell, 1979).  GL331 is a plant toxin 

derivative and Topoisomerase II poison (Lee and Huang, 2001) that has been shown 

to downregulate expression of HIF-1α mRNA by interfering with the binding of 

cellular components to the promoter region of the HIF-1α gene and so repressing its 

transcription (Chang et al., 2003). 

Doxorubicin is known to inhibit global protein synthesis at the elongation step of 

translation (White et al., 2007). Topotecan is a topoisomerase I poison that inhibits 

the translation of HIF-1α mRNA (Rapisarda et al., 2004a, Puppo et al., 2008). 

Metronomic doses of Topotecan inhibit angiogenesis and tumour growth in glioma 

xenograft models (Rapisarda et al., 2004b) and topotecan can also block the 

expression of IGF-1 induced HIF-1α in normoxic cancer cells (Beppu et al., 2005). 

The topoismerase II poison NSC 644221 inhibits the translation of HIF-1α and 

expression of HIF target genes in cancer cells (Creighton-Gutteridge et al., 2007). 

Yamazaki’s laboratory failed to observe any decrease in HIF-1α in HepG2 cells after 

doxorubicin treatment, although it should be noted that their group only tested 

concentrations of doxorubicin up to 0.5 µM (Yamazaki et al., 2006). Similarly, Lee’s 

group (Lee et al., 2009a) failed to observe any decrease of HIF-1α in Hep3B cells 

treated with doxorubicin, but only tested concentrations up to 10 uM. However, 

Lee’s group reported a downregulation of HIF-1 target genes after administration of 

10 uM doxorubicin. 

Further work is needed to elucidate the mechanism of HIF-1α inhibition by the 

higher dose of doxorubicin that we have observed here. Further work is also needed 
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to ascertain whether the lower dose of doxorubicin inhibits the transcriptional 

activity of HIF-1 on downstream genes in hypoxic HepG2 cells. 

3.5.5 Activation of the Transcription Factor NFkB. 

Activation of NF-kB is, in general, associated with upregulation of anti-apoptotic 

proteins, particularly in cancer cells. NF-kB is upregulated in HCC, probably as a 

result of hypoxia, and is associated with both pathogenesis and chemoresistance 

(Arsura and Cavin, 2005, He and Karin, 2011, Luedde and Schwabe, 2011). 

In this study doxorubicin treatment of normoxic cells induced nuclear localisation of 

p50 NFkB. Doxorubicin treatment of normoxic cells induces p50 NFkB activation 

(Figure 3.6). Anthracyclines have been widely reported to activate NFkB, and 

doxorubicin-induced NFkB activation is associated with chemoresistance (Wang et 

al., 2003, Gruber et al., 2008), and inhibition of NFkB sensitises cells to doxorubicin  

(Wang et al., 2003, Chiao et al., 2002, Gangadharan et al., 2009, Bednarski et al., 

2008, Ahn et al., 2008, Mi et al., 2008). Doxorubicin appears to activate NFkB via 

the canonical pathway and the degradation of IkB (Bednarski et al., 2008, Tapia et 

al., 2007). 

This study also found that hypoxia induced nuclear translocation of NFkB (Figure 

3.6). The mechanism of hypoxia-induced NFkB is not well described as yet. There 

are reports that hypoxia causes the activation of NFkB in an IKK-independent way 

(Koong et al., 1994a, Koong et al., 1994b) and also reports that it activates NFkB in 

an IKK-dependent way (Romano et al., 2004). Interestingly, hypoxic cells appeared 

to be protected from doxorubicin induced NFkB activation (Figure 3.6). 
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3.5.6 The Effects of Hypoxia and Doxorubicin on phosphorylation of p70 S6K. 

The phosphorylation of p70S6K was not affected by culture conditions or 

doxorubicin treatments. Levels of total S6K remained the same across all 

experimental conditions (Figure 3.7).  

3.5.7 The Effects of Hypoxia and Doxorubicin on phosphorylation of Akt. 

The phosphorylation of Akt was not affected by culture conditions or doxorubicin 

treatments. Levels of Akt remained the same across all treatments and culture 

conditions. Phosphorylated Akt was observed across all experimental conditions. 

Phosphorylation at this site is known to be mediated by mTORC2.  

3.6 Conclusions. 

We have here identified a doxorubicin concentration of 10 µM that is effective 

against normoxic and hypoxic HCC cells. This concentration is commensurate with 

reported tissue and intratumoural concentrations of doxorubicin released by drug-

eluting beads from both human and animal studies (Namur et al., 2008b, Namur et 

al., 2010, Reddy et al., 2010, Citron et al., 2008). The cytotoxicity of doxorubicin in 

vitro was also observed to be time and dose dependent, and this implies that the 

prolonged and sustained release of drug associated with DEB-TACE in vivo provides 

an effective method of drug delivery.  

50 µM doxorubicin, but not 10 µM doxorubicin, attenuated the stabilisation of HIF-

1α under hypoxic conditions. This suggests that the effectiveness of the 10 µM dose 

of doxorubicin towards hypoxic cells is not due to its activity preventing the 

stabilisation of HIF-1α. Doxorubicin induced nuclear localisation of NFkB in 

normoxic cells. Hypoxia alone also induced nuclear localisation of NFkB, with no 

further localisation observed after application of doxorubicin.  
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Recently there has been a great deal of interest in the use of the mTOR inhibitor 

rapamycin, and a number of rapalogs, in the treatment of HCC (Treiber, 2009). This 

came about after the observation that patients who were prescribed rapamycin as an 

immunosuppressant after liver transplantation had much lower rates of tumour 

recurrence than patients who were prescribed other immunosuppressants 

(Castroagudin et al., 2011). Rapamycin inhibits the mTOR pathway. mTOR is a 

central regulator of cell growth and angiogenesis, and the mTOR pathway is 

activated in 40-50% of patients with HCC (Sieghart et al., 2007). The following 

chapter will report on investigations into the effects of rapamycin on HepG2 cells 

cultured under normoxic and hypoxic conditions. 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 103 

Chapter 4  

 

The Effect of Rapamycin on the Viability of HepG2 Cells Cultured In Vitro 

under Normoxic and Hypoxic Conditions. 

 

4.1 Introduction. 

 

As the understanding of the molecular mechanisms and pathways involved in the 

initiation and progression of cancers increases, so opportunities have arisen to 

identify novel molecular targeted therapies in the fight against them. Pathways that 

are deregulated in cancer cells, and which may be essential for the survival of those 

cells, can be blocked or disrupted using agents that often have very specific targets. 

The PI3K/Akt/mTOR pathway is deregulated in many cancers and hyperactivity is 

implicated in tumourigenesis (Liu et al., 2009, Treiber, 2009, Zhou et al., 2009, 

Villanueva et al., 2008). Tumours with hyperactive mTOR tend to be highly 

vascularised and the mTOR signalling pathway has been shown to be deregulated in 

40-50 % of HCCs, and this is associated with a poor prognosis (Sahin et al., 2004, 

Zhou et al., 2009, Sieghart et al., 2007). If tumour cells are dependent on mTOR 

signalling for survival, there is a potential role for mTOR inhibitors in the treatment 

of cancers with deregulated PI3K/Akt/mTOR signalling (Tsang et al., 2007). 

Hypoxia is a negative regulator of mTOR in many cell lines (Arsham et al., 2003). 

However, cells which carry mutations to the PTEN/PI3K/Akt pathway have been 

shown to retain mTOR activity even under hypoxic conditions (Kaper et al., 2006). 

HepG2 cells and human hepatocarcinoma tissues have reduced levels of PTEN 

(Zhang et al., 2004, Tian et al., 2010a).  

4.1.1 Rapamycin. 

Recently there has been a great deal of interest in the use of rapamycin and other 

mTOR inhibitors in the treatment of HCC. This came about after the observation that 
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patients who were prescribed rapamycin as an immunosuppressant after liver 

transplantation had much lower rates of tumour recurrence than patients who were 

prescribed other immunosuppressant drugs (Toso et al., 2010, Vivarelli et al., 2010b, 

Zhou et al., 2008, Zimmerman et al., 2008). Rapamycin is a bacteria-derived 

macrolide which has antifungal, immunosuppressant and anti proliferative properties. 

Although the anticancer activity of rapamycin was first recognised by the National 

Cancer Institute in the 1970s, it was not extensively investigated until the late 90s. 

Rapamycin has been shown to have anti-tumoural effects in vitro and in vivo (Semela 

et al., 2007, Zhang et al., 2007, Huynh et al., 2009a, Huynh et al., 2008b, Huynh et 

al., 2009b, Rizell et al., 2008, Wang et al., 2008b, Wang et al., 2009b, Wang et al., 

2008c, Wang et al., 2009c, Heuer et al., 2009). The biological activity of rapamycin 

is due to inhibition of mTORC1. Results from pilot studies using rapamycin or its 

derivatives as a single agent for the treatment of HCC patients show promising 

results (Vivarelli et al., 2010a, Rizell et al., 2008, Zhu et al., 2011, Schoniger-Hekele 

and Muller, 2010, Hui et al., 2010). Clinical trials using rapamycin and rapalogs 

against a wide range of malignancies are currently underway (O'Donnell et al., 2008, 

Okamoto et al., 2010, Hudes et al., 2009, Slomovitz et al., 2010, Yao et al., 2008, 

Hess, 2009, Motzer et al., 2010, Lu et al., 2008). 

4.1.2 Rapamycin and HIF-1α. 

Some of the anticancer activity of appears to be due to inhibition of survival 

pathways induced by hypoxia. Rapamycin has been demonstrated to inhibit HIF-1α 

in a number of cancer cell types (Arsham et al., 2003, Wang et al., 2008b, Hudson et 

al., 2002, Jiang and Feng, 2004). mTOR activation enhances the rate of translation of 

HIF-1α (Land and Tee 2007), and mTOR is aberrantly activated in 40 – 50% of 

HCCs (Sieghart et al., 2007). Inhibition of mTOR using rapamycin inhibits tumour 
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growth and progression in HCC in vivo and in vitro (Heuer et al., 2009, Huynh et al., 

2008a, Jimenez et al., 2009, Ong et al., 2009, Shirouzu et al., 2010, Varma and 

Khandelwal, 2007, Wang et al., 2008b, Wang et al., 2009b, Wang et al., 2006, Wang 

et al., 2008c, Zhang et al., 2007). There is therefore a need to investigate the 

cytotoxicity of rapamycin to tumour cells cultured under hypoxic conditions in vitro.  

4.1.3 Rapamycin and S6K. 

Rapamycin inhibits the formation of mTORC1 and blocks downstream signalling, 

thus reducing cell growth and proliferation. S6K is directly regulated by mTORC1 

via phosphorylation of thr
389

. Rapamycin therefore reduces the phosphorylation of 

S6K at this residue. 

4.2 Aims. 

• To study the effects of rapamycin in a time and concentration dependent manner on 

the viability of HepG2 cells under normoxic and hypoxic conditions, and identify the 

minimum effective concentration. 

• To evaluate the response of HIF-1α and S6K expression in HepG2 cells under 

normoxic and hypoxic conditions.  

4.3 Objectives. 

 

Here the chemosensitivity of HepG2 cells cultured under normoxic and hypoxic 

conditions to the application of clinically relevant concentrations of rapamycin was 

investigated. Cell viability was estimated using the CellTiter 96
® 

Aqueous One 

Solution Proliferation Assay. Hypoxic culture conditions (oxygen = 1%) were 

established using the Coy Hypoxic Glove box, as described in the Methods section. 

SDS-PAGE and Western Blotting were used to quantify the nuclear accumulation of 

HIF-1α and the phosphorylation status of p70 S6K. 
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4.4 Results. 

4.4.1 Cell Viability at 24 Hours. 

At the 24 hour time point, 100 nM rapamycin was found to be the lowest effective 

concentration for decreasing cell viability in normoxic cells (p = 0.011). Hypoxic 

cells were resistant up to 500 nM rapamycin (Figure 4.1). 

4.4.2 Cell Viability at 48 Hours. 

At the 48 hour time point, 10 nM rapamycin was found to be the lowest effective 

concentration for decreasing cell viability in normoxic cells (p = 0.047), and 100 nM 

rapamycin was found to be the lowest effective concentration for decreasing cell 

viability in hypoxic cells (p = 0.023) (Figure 4.2). 

4.4.3 Cell Viability at 72 Hours. 

At the 72 hour time point no decrease in cell viability was observed at any rapamycin 

concentration in either of the culture conditions (Figure 4.3). Cell proliferation was 

significantly less at 72 hours in hypoxic cells compared to normoxic cells (p = 0.001) 

(Figure 4.4). 
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Figure 4.1 The Effects of 24 Hours Exposure to Rapamycin on the Viability of 

HepG2 Cells Cultured under Normoxic and Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to rapamycin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 24 hours. Cell viability was estimated using MTS assay and 

normalised to untreated control. Data points for normoxic conditions represents the 

mean of 6 separate experiments ± standard error of the mean for all rapamycin 

concentrations, except for 100 nM and 500 nM concentrations which represents the 

mean of 4 separate experiments ± standard error of the mean. Data points for hypoxic 

conditions represents the mean of 7 separate experiments ± standard error of the 

mean for all rapamycin concentrations, except for 100 nM and 500 nM 

concentrations which represents the mean of 5 separate experiments ± standard error 

of the mean. * denotes lowest effective rapamycin concentration that resulted in a 

significant decrease in cell viability compared to untreated control under same 

culture conditions using a one sample T test carried out using a one tailed 

comparison, 100 vs. < 100, p = < 0.05. 
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Figure 4.2 The Effects of 48 Hours Exposure to Rapamycin on the Viability of 

HepG2 Cells Cultured under Normoxic and Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to rapamycin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 48 hours. Cell viability was estimated using MTS assay and 

normalised to untreated control. Data points for normoxic conditions represents the 

mean of 6 separate experiments ± standard error of the mean for all rapamycin 

concentrations, except for 100 nM and 500 nM concentrations which represents the 

mean of 4 separate experiments ± standard error of the mean. Data points for hypoxic 

conditions represents the mean of 7 separate experiments ± standard error of the 

mean for all rapamycin concentrations, except for 100 nM and 500 nM 

concentrations which represents the mean of 5 separate experiments ± standard error 

of the mean. * denotes lowest effective rapamycin concentration that resulted in a 

significant decrease in cell viability compared to untreated control under same 

culture conditions using a one sample T test carried out using a one tailed 

comparison, 100 vs. < 100, p = < 0.05. 
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Figure 4.3 The Effects of 72 Hours Exposure to Rapamycin on the Viability of 

HepG2 Cells Cultured under Normoxic and Hypoxic Conditions.  
1x104 cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and exposed to rapamycin, 6 

replicate wells for each concentration. The plates were incubated under normoxic or 

hypoxic conditions for 72 hours. Cell viability was estimated using MTS assay and 

normalised to untreated control. Data points for normoxic conditions represents the 

mean of 6 separate experiments ± standard error of the mean for all rapamycin 

concentrations, except for 100 nM and 500 nM concentrations which represents the 

mean of 4 separate experiments ± standard error of the mean. Data points for hypoxic 

conditions represents the mean of 7 separate experiments ± standard error of the 

mean for all rapamycin concentrations, except for 100 nM and 500 nM 

concentrations which represents the mean of 5 separate experiments ± standard error 

of the mean.  
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Figure 4.4 Cell Proliferation in Normoxic Compared to Hypoxic Cells. 
1 x 10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The following day, the plates were 

removed to either normoxic or hypoxic conditions and the media was replenished. 

The plates were incubated under normoxic or hypoxic conditions for 24, 48 and 72 

hours. Cell viability was measured using MTS assay and normalised to cell viability 

at 0 hours. Data points represents the mean of 6 separate experiments ± standard 

error of the mean for normoxic cells and 7 separate experiments ± standard error of 

the mean for hypoxic cells. *denotes a significant difference, using a two sample one 

tailed T test, p = 0.001. 
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4.4.4 Rapamycin Attenuates Hypoxia Stimulated HIF-1α Nuclear 

Accumulation. 

To determine the effect of rapamycin treatment on hypoxia stimulated nuclear 

accumulation of HIF-1α, SDS-PAGE and Western Blotting was carried out on 

nuclear extracts from HepG2 cells cultured under normoxic and hypoxic conditions, 

and exposed to drug concentrations as shown, see Figure 4.5. After 24 hours, both 10 

nM rapamycin and 100 nM rapamycin treatments significantly reduced the amount 

of HIF-1α detected in the cell nucleus (p = 0.021 and p = 0.005 respectively), (Lanes 

4, 5 and 6). The 10 nM and 100 nM rapamycin treatments had no effect on levels of 

HIF-1α detected in the nucleus of normoxic cells (Lanes 1, 2 and 3).  

4.4.5 Effects of Rapamycin on Phosphorylation of S6K. 

To determine the effect of rapamycin treatment on S6K and the phosphorylation of 

S6K, SDS-PAGE and Western Blotting was carried out on cytoplasmic extracts from 

HepG2 cells cultured under normoxic and hypoxic conditions, and exposed to drug 

concentrations as shown, see Figure 4.6. Again, hypoxia had no effect on 

phosphorylation of p70 S6K (Lanes 1 and 4). Rapamycin was observed to decrease 

the ratio of phosphorylated S6K to total S6K in both hypoxia and normoxia, although 

the results were not significant (Lanes 1 – 3 and 4 – 6). Levels of total S6K 

compared to B actin remained the same across all treatments in culture conditions.
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Figure 4.5 Nuclear Accumulation of HIF-1α after Rapamycin Treatment.  

HepG2 cells were seeded onto T75 tissue culture flasks and incubated under 

normoxic conditions until 60% confluent. The cells were exposed to rapamycin in 

normoxic or hypoxic conditions and incubated for 24 hours. The cells were harvested 

and nuclear extracts were prepared. Equal quantities of protein were fractionated on a 

10% SDS-PAGE gel. The proteins were transferred to a PVDF membrane and 

probed with anti-HIF-1α antibodies. Proteins were visualised using 

chemiluminescent reagents. The membrane was stripped and reprobed using 

antibodies against the nuclear house-keeping protein Lamin B1. Protein levels were 

quantified using densitometry analysis. The amount of HIF-1α was normalised to 

Lamin. Fold change compared to untreated hypoxic cells was calculated. Data shown 

represents mean of 4 independent experiments ± standard error of the mean for 

hypoxic cells, and mean of 3 independent experiments ± standard error of the mean. 

for normoxic cells. Statistical analysis was carried out using a one sample one tailed 

T test, 1 vs. < 1. * denotes a statistically significant result, p = < 0.05; ** denotes a 

statistically significant result, p = < 0.01. 
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Figure 4.6 Cytoplasmic p70 S6K and p70 S6K (phospho T389) after Rapamycin 

Treatment of Normoxic and Hypoxic Cells.  

Cells were treated as described in Figure 6.2. Cytoplasmic extracts were prepared 

and fractionated on a 10% SDS-PAGE gel. The proteins were transferred to a PVDF 

membrane and probed with anti- p70 S6K (phospho T389) antibodies. Proteins were 

visualised and the membrane was stripped and reprobed using antibodies against 

total S6K, and antibodies against B actin. Protein levels were quantified using 

densitometry analysis. Ratio of p70 S6K (phospho T389) to total S6K was 

calculated, as was the amount of p70 S6K normalised to B actin. Data shown 

represents mean of 3 separate experiments ± standard error of the mean. 
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4.4.6 Statistical Analysis. 

 

Comparison 

Test statistic 

for normality 

 

N.D. 

 

Test used 

Test 

statistic 

 

p value 

 

Significant? 

 

Untreated vs. 100 nM 

 

0.647 

 

Yes 

 

One sample T 

 

0.011 

 

0.050 

 

Yes 
 

            Table 4.1 Comparisons for Factor [drug] after 24 Hours of Treatment under Normoxic Culture Conditions.  
To determine the lowest effective concentration of rapamycin, a one sample T test was carried out, using a one tailed 

comparison, 100 vs. < 100. 

 

 

Comparison 

Test statistic 

for normality 

 

N.D. 

 

Test used 

Test 

statistic 

 

p value 

 

Significant? 

 

Untreated vs. 10 nM 

 

0.596 

 

Yes 

 

One sample T 

 

0.047 

 

0.050 

 

Yes 
 

Table 4.2 Comparisons for Factor [drug] after 48 Hours of Treatment under Normoxic Culture Conditions.  

To determine the lowest effective concentration of rapamycin, a one sample T test was carried out, using a one  

tailed comparison, 100 vs. < 100. 

 

 

Comparison 

Test statistic 

for normality 

 

N.D. 

 

Test used 

Test 

statistic 

 

p value 

 

Significant? 

 

Untreated vs. 100 nM 

 

0.373 

 

Yes 

 

One sample T 

 

0.023 

 

0.050 

 

Yes 
 

Table 4.3 Comparisons for Factor [drug] after 48 Hours of Treatment under Hypoxic Culture Conditions.  

To determine the lowest effective concentration of rapamycin, a one sample T test was carried out, using a one  

tailed comparison, 100 vs. < 100. 
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4.5 Discussion. 

4.5.1 Cell Viability after Rapamycin Treatment. 

After 24 hours of treatment in normoxia, 100 nM rapamycin significantly inhibited 

the cell viability of HepG2 cells, and was observed to be more effective than 500 

nM. Rapamycin had no significant effect on hypoxic cells. 

After 48 hours, a rapamycin dose of 10 nM significantly inhibited the viability of 

HepG2 cells cultured under normoxic conditions (Figure 4.3). 10 nM rapamycin 

represents a clinically relevant dose, where clinical serum levels are between 5 – 10 

nM after a 5 mg daily oral dose (McAlister et al., 2000, Kneteman et al., 2004). 

However, a 100 nM dose was required for significant inhibition of viability in 

hypoxic cells. 

The findings for the normoxic cells are in line with other studies, as discussed below. 

A 2009 in vitro study demonstrated that low-dose rapamycin inhibited the growth of 

HepG2 cells at doses of 1, 5 and 10 nM.  Cell growth was reduced by 15% to 35% at 

48 and 72 hour time points. By 96 hours the growth inhibition was declining. There 

was a cut off dose of 20 nM, above which a decrease in growth inhibition was seen 

(Heuer et al., 2009). Heuer et al, 2009, hypothesised that there exists a rapamycin 

dose that reverses the mechanisms of action in treated cells, and above which 

increased dose results in a decreased inhibition of tumour cell growth. 

A study by Schumacker et al 2002 found that a 5 nM application of rapamycin for 5 

days caused G1 arrest in Hep3B and SKHep1 cells but not apoptosis (Schumacher et 

al., 2002). Similarly, when MHCC97H cells (highly metastatic) were treated with 10 

nM rapamycin, growth arrest at occurred at G0/G1 stage, but no apoptosis was seen 

(Wang et al., 2006). A 2007 in vitro study found that rapamycin between 30 nM and 

50 nM had a significant inhibitory effect on the growth of HepG2 cells via the 
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induction of apoptosis. The response was dose and time dependant up to 4 days 

(Zhang et al., 2007). The effect of rapamycin in the Zhang et al 2007 study was 

much more marked than our own and other findings, and interestingly, this was the 

only study which detected apoptosis. 

After 72 hours, the inhibitory effect of the drug towards normoxic cells is no longer 

seen (Figure 4.4). Continuous low dose rapamycin has been shown to be more 

effective than higher dose bolus application in vivo (Guba et al., 2005). In one in 

vitro study, rapamycin was renewed every 48 hours, rather than a single application 

at the start of the experiment, and rapamycin induced a dose dependent inhibition of 

tumour cell proliferation in the HCC cell lines PLC5 and HuH for seven days 

(Shirouzu et al., 2010). 

In the cells cultured under hypoxia, rapamycin appeared to have a stimulatory effect, 

although this was not statistically significant. Inhibition of mTORC1 can result in 

mTORC2 mediated phosphorylation and activation of Akt (Huang and Manning, 

2009), although prolonged exposure to rapamycin is thought to attenuate this effect 

by inhibiting the assembly of mTORC2 (Sarbassov et al., 2006). This may be one 

reason why metronomic administration of rapamycin is more effective than higher 

intermittent doses, although the low concentrations used and the short half life (60 

hours) of rapamycin may have an influence. Furthermore, the HepG2 cell line has 

little or no detectable PTEN protein (Zhang et al., 2004, Ma et al., 2005). PTEN 

functions by negatively counteracting PI3K signalling, and low PTEN expression is 

associated with liver malignancies (Peyrou et al., 2010). Hypoxia-induced mTOR 

inhibition is attenuated in cells lacking TSC2 or PTEN and cells retain mTOR 

activity and increased translation and protein synthesis under hypoxic conditions 
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(Kaper et al., 2006). Loss of PTEN facilitates the expression of HIF-1 gene 

expression via activation of Akt (Zundel et al., 2000). 

Rapamycin is known to be a substrate for Pgp (Arceci et al., 1992), and hypoxia-

induced overexpression of Pgp could potentially result in rapamycin resistance 

(Thews et al., 2008). 

The intrinsic anti-tumour activity of rapamycin towards normoxic HepG2 cells due 

to the inhibition of mTORC1 is not apparent in the cells cultured under hypoxic 

conditions. Is this because the drug isn’t getting into the cells, or because the 

pathway is different due to the cell responses to hypoxia? There is clearly a need to 

investigate the phosphorylation of proteins downstream of mTOR, and this will be 

addressed in Chapter 6. 

4.5.2 The Nuclear Accumulation of HIF-1α in Response to Rapamycin. 

Rapamycin significantly reduced the amount of HIF-1α detected in the nucleus of 

hypoxic HepG2 cells. 10 nM rapamycin and 100 nM rapamycin treatments both 

significantly inhibited the accumulation of HIF-1α in the nucleus of hypoxic cells, 

although the 10 nM treatment was not significantly more effective than the 100 nM 

treatment. This is in accordance with other studies. Wang et al (2009) found that 10 

nM rapamycin decreased the expression of cobalt chloride-induced HIF-1α in a 

metastatic HCC cell line. Rapamycin was found to inhibit expression of HIF-1α in 

human embryonic kidney cells (Arsham et al., 2003), and in in vivo models of 

ovarian cancer and pancreatic cancer, which also showed a concomitant increase in 

tumour apoptosis and decreased tumour growth (Hudson et al., 2002, Jiang and 

Feng, 2004). 
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4.5.3 Hypoxia, Rapamycin and phosphorylation of p70 S6K. 

In this study the effect of hypoxia on mTOR activity was investigated by analysing 

the phosphorylation status of the mTORC1 target S6K. Cell stressors, such as low 

oxygen, nutrient or iron availability, typically result in the downregulation of 

mTORC1 activity and inhibition of protein synthesis in order to conserve energy 

(Ellisen, 2005). Regulation of mTORC1 activity by hypoxia requires REDD1 and 

TSC2 (Brugarolas et al., 2004). However, the ability of cancer cells to survive in 

unfavourable environments is often due to mutation(s) to the PI3K/Akt/mTOR 

pathway, so that cells retain mTOR activity even under hypoxic conditions (Kaper et 

al., 2006). This investigation found that hypoxia had no effect on the ratio of S6K 

(phospho Thr389) to total S6K when compared to normoxia. This investigation also 

found that Akt was hyperphosphorylated in both normoxic and hypoxic cells. 

Activation of Akt was not affected by treatment with doxorubicin. Akt activation in 

HepG2 cells can be due to loss of  PTEN which results in constitutive activation of 

the PI3K/Akt/mTOR pathway, and is associated with mTOR dependent HIF-1α 

translation (Zundel et al., 2000). In HepG2 cells PTEN is barely detectable (Ma et 

al., 2005, Zhang et al., 2004). In conclusion, hypoxia does not inhibit the mTOR 

pathway downstream of mTOR itself. 

Next, the effect of rapamycin on mTORC1 activity was investigated by analysing the 

phosphorylation status of S6K. 10 nM and 100 nM rapamycin treatments inhibited 

phosphorylation of S6K in a dose dependent manner in both normoxic and hypoxic 

cells, although no significance was observed. Levels of total S6K remained the same 

under all conditions and treatments. Rapamycin appears to be inhibiting mTORC1 

activity under both normoxic and hypoxic conditions. However, comparing the 

pattern of mTOR inhibition with the cell proliferation data (Chapter 4), we can see 
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that the inhibition of phosphorylation of S6K does not necessarily go hand-in-hand 

with a decrease in cell proliferation. A 2009 study interrogated a panel of 

tumorigenic hepatic cell lines, some of which were rapamycin resistant. They found 

that rapamycin was effective at blocking mTORC1 signalling via S6K in all the cell 

lines, and concluded that ‘mechanisms of rapamycin resistance are not dependent on 

alterations in the direct actions of mTOR on its targets, but may be related to 

deregulation of the cell cycle’ (Jimenez et al., 2009). Hypoxia is known to affect cell 

cycling, and the effects of hypoxia on cell cycling in HepG2 cells are complex 

(Koshiji and Huang, 2004). 

Rapamycin was initially thought to inhibit mTORC1 exclusively (Jacinto et al., 

2004), although recent research suggests that this is dependent on the duration and 

dosage (Sarbassov et al., 2006, Foster and Toschi, 2009). mTORC2 positively feeds 

back to Akt via phosphorylation of Akt at Ser
473 

(Sarbassov et al., 2005). In this 

study we observed that Akt was phosphorylated at this residue, but phosphorylation 

was not increased by the application of rapamycin (data not shown). 

4.6 Conclusions. 

 

This study has shown that treatment with rapamycin can inhibit the cell proliferation 

of both normoxic and hypoxic HepG2 cells, although hypoxic cells are less 

susceptible to mTOR inhibition. The lowest effective concentration against normoxic 

cells was 100 nM, and the lowest effective concentration against hypoxic cells was 

100 nM. Using a single dose of rapamycin at time 0 leads to attenuation of the effect 

beyond 48 hours. Repeated administration every 24 hours warrants investigation. 

Rapamycin inhibited phosphorylation of S6K in a dose dependent manner in both 

normoxic and hypoxic cells, although not significantly. Rapamycin attenuated the 

stabilisation of HIF-1α under hypoxic conditions.  
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The effectiveness of chemotherapy can be improved by the administration of 

antitumour drugs in combination rather than as single agents (Forster, 2009). The use 

of molecular inhibitors in combination with traditional chemotherapeutics may 

facilitate the modulation of biochemical pathways in order to overcome 

chemoresistance in HCC (Boulin et al., 2011, Ferrer Puchol et al., 2011). In the 

following chapter, the activity of rapamycin and doxorubicin combinations against 

HepG2 cells cultured under normoxic and hypoxic conditions will be investigated.  
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Chapter 5  

 

The Effects of Doxorubicin in Combination with Low Dose Rapamycin on the 

Viability of HepG2 Cells Cultured In Vitro under Normoxic and Hypoxic 

Conditions. 

 

5.1 Introduction. 

 

The combination of standard chemotherapeutic agents with one (or more) of the 

recently identified molecular targeted therapies in the treatment of HCC presents 

opportunities to improve patient outcome.  

There have been quite a number of in vitro investigations into the effects of 

combinations of rapamycin (and rapamycin analogues) with other agents towards 

cancer cells. Doxorubicin and rapamycin combinations have been investigated in 

vitro and found to have synergistic or additive effects against leukaemias (Batista et 

al., 2011, Avellino et al., 2005); breast cancers (Mondesire et al., 2004, Steelman et 

al., 2008, Sokolosky et al., 2011a); T cell lymphoma (Huang et al., 2010); thyroid 

cancer (Lin et al., 2010); colon cancer (Sun et al., 2008, O'Reilly et al., 2011); 

mantle cell lymphoma (Haritunians et al., 2007); melanoma (Romano et al., 2004); 

cervical cancer (O'Reilly et al., 2011), lung cancer (O'Reilly et al., 2011), prostate 

cancer (Grunwald et al., 2002) and HCC (Piguet et al., 2008).  

5.1.1 Rapamycin and Doxorubicin Combinations. 

It has been shown in vitro that known clinical concentrations of doxorubicin in liver 

tumours post DEB-TACE may be effective against hypoxic as well as normoxic cells 

(Chapter 3), and that low dose rapamycin inhibited cell viability in normoxic cells, 

although doses tenfold higher were required to inhibit cell viability in hypoxic cells 

(Chapter 4). Combination therapies, where targeted therapies are administered in 

combination with standard chemotherapeutics, offer more of an opportunity to 
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interfere with activated signalling cascades which contribute to drug resistance, 

including pathways activated by hypoxia. 

5.1.2 Rapamycin and Doxorubicin Combinations and HIF-1α. 

Targeting HIF-1 in combination with doxorubicin has been to enhance the 

cytotoxicity of doxorubicin in a range of cancer types (Liang et al., 2010c, Liu et al., 

2008a, Wang et al., 2010, Nardinocchi et al., 2009b, Du et al., 2010, Chen et al., 

2009b). Doxorubicin and rapamycin combinations have been shown to be effective 

in an HCC model (Piguet et al., 2008), although the effects of the drug combination 

on HIF-1α were not investigated. 

Using a combination of localised and sustained delivery of doxorubicin with 

metronomic low dose orally administered rapamycin in vivo may result in decreased 

activation of hypoxia-induced survival pathways and improved treatment responses. 

There is also scope for loading rapamycin onto DEBs (Forster, 2009). Locoregional 

delivery of rapamycin may show some of the same pharmacokinetic advantages as 

the locoregional delivery of doxorubicin. There is clearly a need to investigate the 

activity of doxorubicin/rapamycin combinations at clinically relevant concentrations 

towards HCC cell lines cultured in vitro under normoxic and hypoxic conditions. 

5.2 Aims. 

 

• To assess the cell viability of HepG2 cells cultured under normoxic and hypoxic        

   conditions to rapamycin and doxorubicin in combination. 

• To investigate the nuclear accumulation of HIF-1α in response to this combination.  

• To investigate the nuclear accumulation of NFkB in response to this combination. 
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5.3 Objectives. 

 

Here the chemosensitivity of HepG2 cells cultured under normoxic and hypoxic 

conditions to the application of clinically relevant concentrations of doxorubicin and 

rapamycin in combination was investigated. Cell viability was estimated using the 

CellTiter 96
® 

Aqueous One Solution Proliferation Assay. Hypoxic culture conditions 

(oxygen = 1%) were established using the Coy Hypoxic Glove box, as described in 

the Methods section. SDS-PAGE and Western Blotting were used to quantify the 

nuclear accumulation of HIF-1α and NFkB. 

5.3 Results. 

5.3.1 Rapamycin and Doxorubicin Combination Treatments and Cell Viability.  

To investigate the effects of combinations of doxorubicin and rapamycin against 

HCC, HepG2 cells were incubated with a range of doxorubicin concentrations with 

or without the addition of 10 nM rapamycin. Cell viability was measured after 24, 48 

and 72 hours using the MTS assay.  

After 24 hours (Figures 5.1 and 5.4), cell viability was observed to be less with the 

addition of rapamycin compared to doxorubicin alone, and this was consistent for all 

concentrations investigated. The decrease in cell viability was significantly more for 

the combinations where doxorubicin concentrations were 1 µM (p = 0.006) and 25 

µM (p = 0.008) for normoxic cells, and 1 µM for hypoxic cells (p = 0.043). After 48 

hours (Figures 5.2 and 5.5), cell viability was observed to be less with the addition of 

rapamycin compared to doxorubicin alone, and this was consistent for all 

concentrations investigated except 0.1 µM doxorubicin in hypoxic cells. The 

decrease in cell viability was significantly more for the combinations where 

doxorubicin concentrations were 1 µM (p = 0.036) for normoxic cells, but there was 

no significant effect for any of the hypoxic cells. After 72 hours, (Figures 5.3 and 
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5.6), cell viability was observed to be less with the addition of rapamycin compared 

to doxorubicin alone, and this was consistent for all concentrations investigated 

except 25 µM doxorubicin in normoxic cells. The decrease in cell viability was 

significantly more for the combinations where doxorubicin concentrations were 10 

µM (p = 0.004) for hypoxic cells, but there was no significant effect for any of the 

normoxic cells. The additive effects of rapamycin were more pronounced at the 24 

hour time point than at either of the other time points, and more pronounced in the 

normoxic cells than in the hypoxic cells. 
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Figure 5.1 The Effects of 24 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Normoxic Conditions.  

1x10
4 

cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The media was removed and replaced 

with a range of doxorubicin concentrations + 10 nM rapamycin. 6 replicate wells for 

each concentration. The plates were incubated under normoxic conditions for 24 

hours. Cell viability was measured using MTS assay and normalised to untreated 

control. Data points represent mean of 3 separate experiments ± standard error of the 

mean. Statistical analysis was carried out using a one tailed paired t test. ** denotes a 

significant difference, p = < 0.01. 
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Figure 5.2 The Effects of 48 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Normoxic Conditions.  

1x10
4 

cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The media was removed and replaced 

with a range of doxorubicin concentrations + 10 nM rapamycin. 6 replicate wells for 

each concentration. The plates were incubated under normoxic conditions for 48 

hours. Cell viability was measured using MTS assay and normalised to untreated 

control. Data points represent mean of 3 separate experiments ± standard error of the 

mean. Statistical analysis was carried out using a one tailed paired t test. * denotes a 

significant difference, p = < 0.05. 
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Figure 5.3 The Effects of 72 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Normoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The media was removed and replaced 

with a range of doxorubicin concentrations + 10 nM rapamycin. 6 replicate wells for 

each concentration. The plates were incubated under normoxic conditions for 72 

hours. Cell viability was measured using MTS assay and normalised to untreated 

control. Data points represent mean of 3 separate experiments ± standard error of the 

mean. 
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Figure 5.4 The Effects of 24 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The plates were removed to hypoxic 
conditions and the media was removed and replaced with a range of doxorubicin 

concentrations + 10 nM rapamycin. 6 replicate wells for each concentration. The 

plates were incubated under hypoxic conditions for 24 hours. Cell viability was 

measured using MTS assay and normalised to untreated control. Data points 

represent mean of 3 separate experiments ± standard error of the mean. Statistical 

analysis was carried out using a one tailed paired t test. * denotes a significant 

difference, p = < 0.05. 
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Figure 5.5 The Effects of 48 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The plates were removed to hypoxic 
conditions and the media was removed and replaced with a range of doxorubicin 

concentrations + 10 nM rapamycin. 6 replicate wells for each concentration. The 

plates were incubated under hypoxic conditions for 48 hours. Cell viability was 

measured using MTS assay and normalised to untreated control. Data points 

represent mean of 3 separate experiments ± standard error of the mean. 
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Figure 5.6 The Effects of 72 Hours Exposure to Varying Concentrations of 

Doxorubicin + 10 nM Rapamycin on the Viability of HepG2 Cells Cultured 

under Hypoxic Conditions.  
1x10

4 
cells/200 µl were added to each well of a 96-well plate and incubated 

overnight at 37°C under normoxic conditions. The plates were removed to hypoxic 
conditions and the media was removed and replaced with a range of doxorubicin 

concentrations + 10 nM rapamycin. 6 replicate wells for each concentration. The 

plates were incubated under hypoxic conditions for 72 hours. Cell viability was 

measured using MTS assay and normalised to untreated control. Data points 

represent mean of 3 separate experiments ± standard error of the mean. Statistical 

analysis was carried out using a one tailed paired t test. * denotes a significant 

difference, p = < 0.05. 
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5.3.2 There is No Additive Effect on the Attenuation of Hypoxia Stimulated 

HIF-1α Nuclear Accumulation after Combination Treatments. 

To determine the effect of rapamycin and doxorubicin combination treatments on 

hypoxia stimulated nuclear accumulation of HIF-1α, SDS-PAGE and Western 

Blotting was carried out on nuclear extracts from HepG2 cells cultured under 

hypoxic conditions, and exposed to drug concentrations as shown, see Figure 5.7. 

Whilst the application of 10 nM rapamycin alone reduced the amount of  nuclear 

HIF-1α (p = 0.060) (Lanes 1 and 2), the addition of either 10 nM rapamycin or 100 

nM rapamycin to 10 µM doxorubicin did not result in increased reduction of HIF-1α 

when compared to 10 µM doxorubicin alone (Lanes 3, 4, and 5). The application of 

50 µM doxorubicin alone caused a reduction in HIF-1α, although the small sample 

size precluded statistical analysis (Lane 6). Again, the addition of either 10 nM 

rapamycin or 100 nM rapamycin to 50 µM doxorubicin did not result in increased 

reduction of HIF-1α when compared to 50 µM doxorubicin alone (Lanes 7 and 8). 

5.3.3 Nuclear Accumulation of NFkB p50 after Combination Treatments of 

Hypoxic Cells. 

To determine the effect of rapamycin alone, and rapamycin and doxorubicin 

combinations on hypoxia stimulated nuclear accumulation of NFkB p50, SDS-PAGE 

and Western Blotting was carried out on nuclear extracts from HepG2 cells cultured 

under hypoxic conditions, see Figure 5.8. Although there appeared to be some 

reduction in the amount of nuclear NFkB p50 after rapamycin treatment, no 

significant effect was observed (Lanes 1, 2 and 3). No other significant effects were 

observed, although the addition of rapamycin to doxorubicin treatments suggested 

increased NFkB activity compared to doxorubicin alone. 
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Figure 5.7 Nuclear Accumulation of HIF-1α after Rapamycin and Doxorubicin 

Combination Treatments.  
HepG2 cells were seeded into T75 tissue culture flasks and incubated under 

normoxic conditions until the cells reached 60% confluence. The flasks were 

removed to hypoxic conditions and the cells exposed to different concentrations of 

rapamycin, doxorubicin and both in combination in growth medium. The flasks were 

incubated under hypoxic conditions for 24 hours, and the cells were harvested. 

Nuclear extracts were prepared and equal quantities of protein were fractionated on a 

10% SDS-PAGE gel. The proteins were transferred to a PVDF membrane and 

probed with anti-HIF-1α antibodies. Proteins were visualised using 

chemiluminescent reagents. The membrane was stripped and reprobed using 

antibodies against the nuclear house-keeping protein Lamin B1. Protein levels were 

quantified using densitometry analysis. The amount of HIF-1α was normalised to 

Lamin. Fold change compared to untreated hypoxic cells was calculated. Data shown 

represents mean of 3 independent experiments ± standard error of the mean, unless 

indicated otherwise. 
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Figure 5.8 Nuclear Accumulation of NFkB p50 after Combination Treatments 

of Hypoxic Cells.  

HepG2 cells were seeded into T75 tissue culture flasks and incubated under 

normoxic conditions until the cells reached 60% confluence. The flasks were 

removed to hypoxic conditions and the cells exposed to different concentrations of 

rapamycin, doxorubicin and both in combination in growth medium. The flasks were 

incubated under hypoxic conditions for 24 hours, and the cells were harvested. 

Nuclear extracts were prepared and equal quantities of protein were fractionated on a 

10% SDS-PAGE gel. The proteins were transferred to a PVDF membrane and 

probed with anti-NFkB p50 antibodies. Proteins were visualised using 

chemiluminescent reagents. The membrane was stripped and reprobed using 

antibodies against the nuclear house-keeping protein Lamin B1. Protein levels were 

quantified using densitometry analysis. The amount of NFkB p50 was normalised to 

Lamin. Fold change compared to untreated hypoxic cells was calculated. Data shown 

represents mean of 3 separate experiments ± standard error of the mean. 
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5.4 Discussion. 

5.4.1 Combination Treatments and Cell Viability. 

This study has shown that the addition of the mTOR inhibitor rapamycin to the 

standard chemotherapeutic agent doxorubicin significantly decreases cell viability 

compared to doxorubicin treatment alone in both normoxic and hypoxic cells. The 

effects of rapamycin were more pronounced at 24 hours than at later time points and 

this is consistent with reports from in vitro and in vivo studies that metronomic 

applications of rapamycin appear to more effective than single applications (Guba et 

al., 2005, Tabernero et al., 2008). 

It has been suggested that pre-incubating cells with rapamycin before the addition of 

doxorubicin may be more effective than adding both the drugs at the same time. 

Semela and co-workers (2008) investigated doxorubicin and temsirolimus 

combinations on the viability of Morris Hepatoma (MH) cells (isogenic rat liver 

cancer cells) and rat endothelial cells. They used 1 nM and 10 nM temsirolimus in 

combination with 15 nM or 150 nM doxorubicin. In concordance with the data 

shown here, 150 nM doxorubicin monotherapy had only a weak effect on cell 

proliferation, and the addition of temsirolimus had no further effect. However, when 

the same regimen was tested on rat endothelial cells the minimum effective dose of 

doxorubicin as a monotherapy was found to be 15 nM, and the addition of rapamycin 

at both 1 nM and 10 nM increased the cytotoxic effects. Interestingly, the addition of 

temsirolimus to the higher dose of doxorubicin had no additive effect. 

As mentioned previously, one of the mechanisms contributing to drug resistance is 

the upregulation of P-glycoprotein MDR1 (Roninson, 1992). Rapamycin has been 

reported to improve the uptake of chemotherapeutics in multidrug-resistant cell lines 

due to competitive inhibition because of a direct interaction of rapamycin with Pgp 
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(Hoof et al., 1993, Arceci et al., 1992, Pawarode et al., 2007). In one study, 

rapamycin bound with high affinity to Pgp and enhanced growth inhibitory effects of 

doxorubicin in Chinese hamster ovary cells (Hoof et al., 1993). 1 uM rapamycin 

reduced the IC50 of doxorubicin from 18 ng/ml to 9 ng/ml in the parent cell line, and 

from 280 ng/ml to 200 ng/ml in a multi-drug resistant mutant (Hoof et al., 1993). 

Another study demonstrated a similar reversal of multi drug resistance by rapamycin, 

but only at µM concentrations that would not therefore be suitable in vivo (Arceci et 

al., 1992). Pawarode et al (2007) showed that rapamycin enhanced the cellular 

uptake of drugs in cells overexpressing Pgp and MDR-1. The optimal rapamycin 

concentration was 2.5 µM, but they showed an effect with 250 nM rapamycin if the 

cells were pre-incubated for 30 minutes prior to drug exposure, where the rapamycin 

saturated the MDR-1 binding sites before the application of doxorubicin (Pawarode 

et al., 2007). In this study there was less of an additive effect with rapamycin in 

hypoxic cells compared to normoxic cells. Hypoxic cells are likely to have 

upregulated drug resistance mechanisms as a consequence of HIF activation, and if 

rapamycin prevents some of the Pgp regulated doxorubicin resistance and therefore 

increases its cytotoxicity, would that be more apparent in hypoxic than in normoxic 

cells? Pre-incubation of the cells with rapamycin before the addition of doxorubicin 

may increase the additive effects, and this should be explored further. 

As discussed previously, the PI3K/Akt/mTOR pathway is constitutively active in 

many cancers, and this is often due to mutations or deletions in the tumour 

suppressor phosphatase protein PTEN. A 10 nM dose of rapamycin was shown to 

increase the sensitivity of the PTEN deleted cell line PC-3 to doxorubicin, as did 

transfection with a PTEN construct (Grunwald et al., 2002). Akt activation confers 

resistance to doxorubicin treatment (Tanaka et al., 2000, Tanaka et al., 2005), and 



136 

 

this may be due to protection from apoptosis (Huang et al., 2001). One study looked 

at the rapalog everolimus in combination with cisplatin in HCC cell lines with 

different p53 status (HepG2, He3p3B and PLC) and found that everolimus sensitised 

all the cell lines to cisplatin cytotoxicity. Whilst this was independent of p53, it 

appeared to be related to p21-induced apoptosis in response to DNA damage (Tam et 

al., 2009). This then raises the question of whether inhibition of mTOR using 

rapamycin sensitises PTEN deficient cells to doxorubicin induced apoptosis. 

5.4.2 Combination Treatments. 

There was no evidence of any complimentary inhibition of HIF-1α after combination 

treatments. Indeed, the results suggested that the addition of rapamycin led to an 

attenuation of the effect on HIF-1α of either drug alone. 

5.4.3 Activation of the Transcription Factor NFkB. 

There was a suggestion that 100 nM rapamycin inhibited the hypoxia stimulated 

activation of NFkB, although the result was not statistically significant (Figure 5.8, 

Lanes 1 and 3). It has been reported that rapamycin can prevent the translocation of 

NFkB to the nucleus. Rapamycin binds to FKBP51, which is an important co-factor 

of the IKK complex, inhibits IKK kinase activity and prevents degradation of IkB 

(Giordano et al., 2006, Romano et al., 2004). Furthermore, rapamycin has been 

shown to inhibit doxorubicin-induced NFkB activation and enhance apoptosis in 

melanoma cells (Romano et al., 2004). However, in this study rapamycin failed to 

inhibit p50 NFkB in doxorubicin-treated hypoxic cells (Figure 5.8, Lanes 4 – 9). This 

study did not investigate the effect of rapamycin on p50 NFkB in doxorubicin-treated 

normoxic cells, and this is work that clearly needs to be done. 
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5.5 Conclusions. 

 

A combination of low dose rapamycin and doxorubicin appears to have improved 

cytotoxicity towards both normoxic and hypoxic HepG2 cells than either treatment 

alone.  

Whilst 50 µM doxorubicin and 10 nM and 100 nM rapamycin attenuated the 

stabilisation of HIF-1α under hypoxic conditions, doxorubicin and rapamycin 

combinations showed no evidence of complimentary effects. Doxorubicin induced 

nuclear localisation of NFkB in normoxic cells. Hypoxia alone also induced nuclear 

localisation of NFkB, with no further localisation observed after application of 

doxorubicin. The results presented here suggest that rapamycin may inhibit the 

extent of NFkB activation. 

Consequent to the findings described above, the anti-tumour effects of doxorubicin 

and rapamycin both as monotherapies and in combination in vivo, were evaluated in 

a murine model of HCC. 
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Chapter 6  

 

In Vivo Investigations into the Effects of Doxorubicin-eluting Beads and 

Rapamycin as Monotherapies and in Combination on Tumour Burden in an 

Ectopic Xenograft Mouse Model of Hepatocellular Carcinoma. 

 

6.1 Introduction 

 

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide 

(Parkin et al., 2005). Treatment options for HCC are limited due to tumour stage at 

diagnosis, and treatment outcomes are often poor (Colombo and Sangiovanni, 2003, 

Raoul, 2008). The standard of care for patients unsuitable for the potentially curative 

therapies of ablation, resection or transplantation is TACE (Lencioni, 2010). DEB-

TACE using doxorubicin-loaded microspheres is a treatment regime which has been 

shown to have improved response rates when compared with conventional TACE 

(Dhanasekaran et al., 2010, Lammer et al., 2010). For patients with more advanced 

disease, sorafenib is the standard of care (Lencioni, 2010).     

Targeting signalling pathways that are aberrantly activated in HCC can potentially 

inhibit tumour growth (Whittaker et al., 2010). mTOR has a critical role in the 

pathogenesis of HCC and is associated with a poor prognosis (Villanueva et al., 2008, 

Chen et al., 2009a, Whittaker et al., 2010, Zhou et al., 2010b). Activated mTOR has 

been reported in 40% of explanted HCCs (Sieghart et al., 2007). Pre-clinical 

investigations of rapamycin and its analogues have shown anti-tumoural effects in 

mouse models of HCC (Guba et al., 2002, Huynh et al., 2008a, Huynh et al., 2008b, 

Ong et al., 2009, Wang et al., 2008b, Wang et al., 2008c, Semela et al., 2007, Piguet 

et al., 2011, O'Reilly et al., 2011).  

Since rapamycin demonstrates both immunosuppressive and anti-cancer effects, it is 

increasingly being utilised as the immunosuppressant of choice for HCC patients 

undergoing liver transplantation (Castroagudin et al., 2011, Sanchez Antolin et al., 
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2011). Fourteen clinical studies have been published which suggest improved 

survival times and anti-tumour effects of mTOR inhibition after liver transplantation 

for HCC (Schnitzbauer et al., 2011). However, no randomized trials evaluating 

immunosuppressive drugs and HCC recurrence after liver transplantation have so far 

been published, although a prospective randomised clinical trial is now underway 

(Schnitzbauer et al., 2010). One pilot study assessing rapamycin as a single agent for 

the treatment of advanced HCC found that, although the drug was well tolerated, it 

was only minimally effective (Schoniger-Hekele and Muller, 2010). However, 

another pilot study showed that the drug was well tolerated in cirrhotic patients with 

advanced HCC, and had a significant impact on tumour growth in 40% of the cohort 

(Decaens, 2009). A phase 1/2 study of everolimus for advanced HCC has shown 

preliminary evidence of anti-tumour activity (Zhu et al., 2011).  

In vivo animal research indicates that rapamycin may have additive or synergistic 

effects when used in combination with other chemotherapeutics or other molecular 

inhibitors (Huynh et al., 2008b, LoPiccolo et al., 2008, Wang et al., 2008c, Piguet et 

al., 2008, Piguet et al., 2011, Newell et al., 2009, Ong et al., 2009, Jasinghe et al., 

2008, Ribatti et al., 2007, Ahn et al., 2008). Rapamycin and doxorubicin have been 

demonstrated to have additive effects in vivo in murine models of liver, prostate, 

cervical and lung cancer (Piguet et al., 2008, O'Reilly et al., 2011, Grunwald et al., 

2002).  

It has recently been shown that rapamycin can be loaded onto drug-eluting beads 

either alone or in combination with doxorubicin, without compromising the loading 

or release kinetics of doxorubicin (Forster 2009). This fact, together with the 

evidence cited above, warrants further investigations into rapamycin and doxorubicin 

combinations towards HCC in vivo. 
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6.2 Aims. 

 

To evaluate the anti-cancer effects of rapamycin and doxorubicin monotherapies and 

combinations in HepG2 tumour-bearing mice treated with doxorubicin-loaded beads 

(DOXDEB); rapamycin-loaded beads (RAPADEB); rapamycin and doxorubicin co-

loaded beads (RAPADOXDEB); oral rapamycin (rapa p.o.); and DOXDEB in 

combination with oral rapamycin.  

6.3 Results. 

 

Using a mouse model of HCC we investigated the effects of DOXDEB; RAPADEB; 

RAPADOXDEB; rapamycin p.o.; and DOXDEB in combination with rapamycin p.o. 

HepG2 cells were implanted subcutaneously and tumour growth was monitored 

regularly. When tumours reached palpable size, at day 23, treatment regimes 

commenced.  Tumour burden was evaluated by measuring tumour volume (length x 

width x width x π/6) at days 23, 25, 28, 30, 32, 35, 42 and 45. Anti-tumour activity 

was assessed by comparing tumour volumes, comparing final tumour volume/control 

and comparing tumour weight post mortem. Toxicity was assessed using mouse body 

weight and behavioural and physiological observations. The sample size for each 

treatment was n = 3.  

6.3.1 Untreated Control. 

Unfortunately, the tumour transplantation was unsuccessful in one of the control 

animals, thus reducing the sample size of the control group to n = 2. The mean 

increase in tumour size in the successful transplants was > 700% between day 23 and 

day 45. 
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Figure 6.1 Anti-tumoural Activity of Doxorubicin and Rapamycin Treatments 

in a Mouse Model of HCC.  
5 x 10

6
 HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. 

Tumour volume was palpable at day 23 after implantation and treatment was 

initiated. Rapamycin was administered by gavage at a dose of 1 mg/kg/day. 100 ul of 

beads loaded as specified was injected adjacent to the tumour at day 23. Tumour 

volume was measured at days 23, 25, 28, 30, 32, 35, 37, 42 and 45. Data shown 

represents the mean value of 3 replicates per group ± standard error of the mean, 

apart from the control group where data represents mean of 2 replicates ± standard 

error of the mean. Data was found to be normally distributed with equal variance. 

Multivariate ANOVA (general linear model) data analysis showed a significant 

difference between the groups at day 45, p = < 0.01. Post hoc Bonferroni pairwise 

comparisons at day 45 identified significant differences between control vs. 

DOXDEB, p = < 0.05; control vs. RAPADOXDEB, p = < 0.01; and control vs. 

rapamycin p.o. + DOXDEB, p = < 0.05. * denotes a significant difference, p = < 

0.05; ** denotes a significant difference, p = < 0.01. 
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Figure 6.2 Anti-tumoural Activity of Doxorubicin and Rapamycin Treatments 

in a Mouse Model of HCC.  
5 x 10

6
 HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. 

Tumour volume was palpable at day 23 after implantation and treatment was 

initiated. Rapamycin was administered by gavage at a dose of 1 mg/kg/day. 100 ul of 

beads loaded as specified was injected adjacent to the tumour at day 23. Tumour 

volume was measured at days 23, 25, 28, 30, 32, 35, 37, 42 and 45. The difference 

(Δ) in tumour volume compared to day 23 was calculated for each treatment at each 

time point by subtraction. Data shown represents the mean value of 3 replicates per 

group ± standard error of the mean, apart from the control group where data 

represents mean of 2 replicates ± standard error of the mean. Data was found to be 

normally distributed with equal variance. Multivariate ANOVA (general linear 

model) data analysis showed a significant difference between the groups at day 28, p 

= < 0.05; day 30, p = < 0.05; and day 45, p = < 0.01. Post hoc Bonferroni pairwise 

comparisons at day 28 identified significant differences between rapamycin p.o. vs. 

RAPADOXDEB, p = < 0.05. Post hoc Bonferroni pairwise comparisons at day 30 

identified significant differences between control vs. rapamycin p.o. + DOXDEB, p 

= < 0.05.  Post hoc Bonferroni pairwise comparisons at day 45 identified significant 

differences between control vs. DOXDEB, p = < 0.05; control vs. RAPADEB, p = < 

0.05; control vs. RAPADOXDEB, p = < 0.01; control vs. rapamycin p.o., p = < 0.05; 

and control vs. rapamycin p.o. + DOXDEB, p = < 0.01. * denotes a significant 

difference, p = < 0.05; ** denotes a significant difference, p = < 0.01. 

 

 

 

 

 

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

23 25 28 30 32 35 37 42 45

Δ
tu

m
o

u
r 

vo
lu

m
e 

cm
3

Day after tumour cell implantation

Untreated control

DOXDEB

RAPADEB

RAPADOXDEB

Oral rapamycin

Oral rapamycin + 
DOXDEB

*
*

*
**
**

*



143 

 

 

 

 

 
 

Figure 6.3 Box Plots of Tumour Volumes and delta Tumour Volumes at Day 45.  

HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. Tumour 

volume was palpable at day 23 after implantation and treatment was initiated. 

Rapamycin was administered by gavage at a dose of 1 mg/kg/day. 100 ul of beads 

loaded as specified was injected adjacent to the tumour at day 23. Tumour volume 

was measured at day 45. Delta tumour volume was calculated by subtracting volume 

at day 23 from volume at day 45. Data shown represents 3 replicates per group ± 

standard error of the mean, apart from the control group where data represents 2 

replicates.  
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Figure 6.4 Box Plots of AUC Day 23 – 45 for Tumour Volumes and delta 

Tumour Volumes.  
HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. Tumour 

volume was palpable at day 23 after implantation and treatment was initiated. 

Rapamycin was administered by gavage at a dose of 1 mg/kg/day. 100 ul of beads 

loaded as specified was injected adjacent to the tumour at day 23. Tumour volume 

was measured at day 45. Delta tumour volume was calculated by subtracting volume 

at day 23 from volume at day 45. AUC between day 23 and day 45 was calculated 

for tumour volume and delta tumour volume. Data shown represents 3 replicates per 

group ± standard error of the mean, apart from the control group where data 

represents 2 replicates. 
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Figure 6.5 Effects of Doxorubicin and Rapamycin Treatments on Body Weight 

between Day 23 and Day 45 in a Mouse Model of HCC.  
Mice were weighed at days 23, 25, 28, 30, 32, 35, 37, 42 and 45. Data shown 

represents the mean value of 3 replicates per group ± standard error of the mean, 

apart from the control group where data represents mean of 2 replicates. Data was 

found to be normally distributed with equal variance. Multivariate ANOVA (general 

linear model) data analysis showed no significant differences in body weight 

between treatment groups, and no significant differences in body weight between 

days within each treatment group. 

 

 
Figure 6.6 % Change in Body Weight after Doxorubicin and Rapamycin 

Treatments in a Mouse Model of HCC.  
Data was found to be normally distributed with equal variance. Multivariate 

ANOVA (general linear model) data analysis showed a significant difference 

between the treatments at day 28 (p = 0.016). Post hoc Bonferroni pairwise 

comparisons identified this as a significant difference between the RAPADOX DEB 

vs. oral rapamycin + DOXDEB treated animals (p = 0.017). No significant 

differences were found between days within each treatment group. 
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Figure 6.7 Effects of Doxorubicin and Rapamycin Treatments on Tumour 

Weight at Day 45 in a Mouse Model of HCC.  
Mice were euthanized at day 45, and the tumours excised and weighed. Data 

represents mean ± standard error of the mean. Because of the small sample sizes, 

statistical analysis was not carried out. 

 

Treatment  Observations 

Control 1 No tumour growth 

Control 2 OK 

Control 3 OK 

DOXDEB 1 From day 42 ulceration  

DOXDEB 2 From day 37 ulceration 

DOXDEB 3 OK 

RAPADEB 1 OK 

RAPADEB 2 OK 

RAPADEB 3 OK 

RAPADOXDEB 1 From day 30 ulceration 

RAPADOXDEB 2 From day 35 ulceration 

RAPADOXDEB 3 From day 37 ulceration 

Rapamycin p.o. 1 OK 

Rapamycin p.o. 2 OK 

Rapamycin p.o. 3 OK 

Rapamycin p.o. + DOXDEB 1 OK 

Rapamycin p.o. + DOXDEB 2 From day 28 ulceration 

Rapamycin p.o. + DOXDEB 3 From day 28 ulceration 

 

Table 6. 1 Physiological Examination of Tumour-bearing Animals.  
HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. Tumour 

volume was palpable at day 23 when treatment was initiated. Rapamycin was 

administered by gavage at a dose of 1 mg/kg/day. 100 ul of beads loaded as specified 

was injected adjacent to the tumour at day 23. Gross physiological examination was 

made at days 23, 25, 28, 30, 32, 35, 37, 42 and 45. No behavioural changes were 

reported, and no mice were euthanized due to toxic effects or to tumour load being ≥ 

10% of body size. 
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Table 6.2 Anti-tumour Effects of Doxorubicin and Rapamycin Treatments in a Mouse Model of HCC at Day 45.  

HepG2 cells were subcutaneously implanted in NMRI: nu/nu mice at day 0. Tumour volume was palpable at day 23 after implantation 

and treatment was initiated. Rapamycin was administered by gavage at a dose of 1 mg/kg/day. 100 ul of beads loaded as specified was 

injected adjacent to the tumour at day 23. Tumour volume, mouse body weight and tumour weight of excised tumour were measured at 

day 45. Tumour volume and body weight data shown represents the mean value of 3 replicates per group ± standard error of the mean, 

apart from the control group where data represents mean of 2 replicates ± standard error of the mean. Statistical analysis of treatment vs. 

control was determined using a multivariate ANOVA with post hoc Bonferroni comparisons. Anti-tumour effect was expressed as T/C. 

Δ tumour volume = difference in tumour volume between day 23 and day 45 (subtracted). SEM, standard error of the mean; CI, 

Confidence Interval.  

 

 

 

Treatment 

 

Tumour volume   

(cm
3
) ± SEM 

 

Δ tumour volume   

(cm
3
) ± SEM 

Tumour 

volume T/C  

(95% CI) 

Δ tumour 

volume T/C  

(95% CI) 

 

Tumour 

weight T/C 

 

Body weight  

T/C  (95% CI) 

AUC Δ tumour 

volume  T/C  

(95% CI) 

 

Control 

 

0.871 ± 0.318  

 

0.753 ± 0.080 

 

1.00 (0.72) 1.00 (0.21) 1.00 (0.68) 1.00 (0.02) 

 

1.00 (1.03) 

 

DOXDEB 

 

0.118 ± 0.073 (p = 0.012) 

 

0.067 ± 0.070 (p = 0.005) 

 

0.14 (0.16) 0.09 (0.18) 0.25 (0.22) 1.03 (0.07) 

 

0.41 (0.38) 

 

RAPADEB 

 

0.310 ± 0.077 (p = 0.089) 

 

0.239 ± 0.038 (p = 0.045) 

 

0.36 (0.17) 0.32 (0.10) 0.35 (0.16) 1.01 (0.06) 

 

0.40 (0.14) 

 

RAPADOXDEB 

 

0.091 ± 0.090 (p = 0.009) 

 

0.033 ± 0.073 (p = 0.004) 

 

0.10 (0.20) 0.04 (0.19) 0.24 ( - ) 1.00 (0.17) 

 

0.57 (0.85) 

 

Rapamycin p.o. 

 

0.290 ± 0.030 (p = 0.072) 

 

0.238 ± 0.280 (p = 0.044) 

 

0.33 (0.07) 0.32 (0.73) 0.31 (0.07) 0.95 (0.05) 

 

0.31 (0.05) 

 

Rapamycin p.o. + DOXDEB 

 

0.152 ± 0.077 (p = 0.017) 

 

0.085 ± 0.069 (p = 0.007) 

 

0.17 (0.17) 0.11 (0.18) 0.26 (0.18) 0.98 (0.05) 

 

0.12 (0.16) 
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Figure 6.8 Tumour Volumes, Raw Data for each Mouse in a Treatment Group. 
NMRI: nu/nu mice were randomly assigned to one of six treatment groups, three 

mice per group. HepG2 cells were subcutaneously implanted and treatments were 

initiated at day 23. Tumours were measured at day 23, 25, 28, 30, 32, 35, 38, 42 and 

45. Tumour volume was calculated as length x width x width x π/2. 
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6.3.2 In Vivo Activity of DOXDEB. 

DOXDEB demonstrated sustained inhibition of tumour growth compared to control, 

with tumour regression from day 32. Tumour regression was more pronounced from 

day 42. At day 45, DOXDEB showed significant anti-tumour activity compared to 

untreated control (p = 0.12 for tumour volume, p = 0.05 for Δ tumour volume). The 

mean tumour weight at day 45 was 25% that of control (95% CI, 22) (Table 6.2). 

Final tumour volume was 14% of control (95% CI, 16); final Δ tumour volume was 

9% of control (95% CI, 18). Δ tumour volume over the time course of the experiment 

(as calculated using AUC day 23 - 45) was 41% that of control. There was no 

significant body weight loss compared to any of the other groups and no significant 

differences in body weight over time (Figure 6.5 and 6.6). Two of the mice in this 

group suffered ulceration at the tumour injection site; one from day 37 and one from 

day 42 (Table 6.1). 

6.3.3 In Vivo Activity of RAPADEB. 

RAPADEB demonstrated sustained inhibition of tumour growth compared to 

control, although no tumour regression was apparent. At day 45, RAPADEB showed 

significant anti-tumour activity compared to untreated control (p = 0.045 for Δ 

tumour volume). The mean tumour weight at day 45 was 35% (95% CI, 16) that of 

control (Table 6.2). Mean tumour volume at day 45 was 36% of control (95% CI, 

17), and mean Δ tumour volume at day 45 was 32% of control (95% CI, 10) (Figures 

6.1 and 6.2). Δ tumour volume over the time course of the experiment (as calculated 

using AUC day 23 - 45) was 40% that of control.  There was no significant body 

weight loss compared to any of the other groups and no significant difference in 
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body weight between days of treatment (Figures 6.5 and 6.6). None of the mice in 

this group suffered ulceration at the tumour injection site (Table 6.1). 

6.3.4 In Vivo Activity of RAPADOXDEB. 

RAPADOXDEB demonstrated inhibition of tumour growth up to day 30, and then 

tumour regression from day 32. Rapid tumour growth was reported between days 30 

and 32. At day 45, RAPADOXDEB showed significant anti-tumour activity 

compared to untreated control (p = 0.009 for tumour volume, p = 0.004 for Δ tumour 

volume). The mean tumour weight at day 45 was 24% that of control (one sample 

only) (see Table 6.2). Mean tumour volume at day 45 was 10% of control (95% CI, 

20), and mean Δ tumour volume at day 45 was 4% of control (95% CI, 19) (Table 

6.2). Δ tumour volume over the time course of the experiment (as calculated using 

AUC day 23 - 45) was 57% that of control.  At day 28 the % body weight loss was 

significantly more in this group compared to the group treated with rapamycin p.o. + 

DOXDEB (p = 0.017). There was no significant difference in body weight between 

days of treatment (Figures 6.5 and 6.6). Two of the mice in this group suffered 

ulceration at the tumour injection site; one from day 30, one from day 35 and one 

from day 37 (Table 6.1). 

6.3.5 In Vivo Activity of Rapamycin p.o. 

Monotherapy with oral rapamycin showed sustained inhibition of tumour growth 

across the time course of the experiment, with complete inhibition of tumour growth 

to day 28. At day 28, rapamycin p.o. showed significant anti-tumour activity 

compared to RAPADOXDEB (p = 0.033 for Δ tumour volume). The p value for 

rapamycin p.o.  vs. control was 0.051. At day 45, rapamycin p.o. showed significant 

anti-tumour activity compared to untreated control (p = 0.044 for Δ tumour volume). 
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The mean tumour weight at day 45 was 31% (95% CI, 7) that of control (see Table 

6.2). Mean tumour volume at day 45 was 33% of control (95% CI, 7), and mean Δ 

tumour volume at day 45 was 32% of control (95% CI, 73) (see Table 6.2). Δ tumour 

volume over the time course of the experiment (as calculated using AUC day 23 - 

45) was 31% that of control.  There was no significant body weight loss compared to 

any of the other groups and no significant difference in body weight between days of 

treatment (Figures 6.5 and 6.6). None of the mice in this group suffered ulceration at 

the tumour injection site (Table 6.1).  

6.3.6 In Vivo Activity Rapamycin p.o. in Combination with DOXDEB. 

The most effective treatment across the time course of the experiment was the 

combination of oral rapamycin with DOXDEB (Figure 6.4). Tumour growth was 

inhibited from day 23 to day 28, with evidence of tumour regression between days 28 

and 30, followed by complete inhibition between days 30 to 35. At day 30 rapamycin 

p.o. + DOXDEB showed significant anti-tumour activity compared to untreated 

control (p = 0.035 for Δ tumour volume). At day 45, rapamycin p.o. + DOXDEB 

showed significant anti-tumour activity compared to untreated control (p = 0.017 for 

tumour volume, p = 0.007 for Δ tumour volume). The mean tumour weight at day 45 

was 26% (95% CI, 18) of control (Table 6.2). Mean tumour volume at day 45 was 

17% of control (95% CI, 17), and mean Δ tumour volume at day 45 was 11% of 

control (95% CI, 18) (see Table 6.2). Δ tumour volume over the time course of the 

experiment (as calculated using AUC day 23 - 45) was 12% that of control.  There 

was a significant difference in % body weight loss at day 28 when compared with 

RAPADOXDEB, with weight loss being more in the RAPADOXDEB group (p = 

0.017) (Figure 6.6). There was no significant body weight loss compared to any of 
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the other groups and no significant difference in body weight between days of 

treatment (Figure 6.5). Two of the mice in this group suffered ulceration at the 

tumour injection site. In both cases the ulceration started at day 28 (Table 6.1). At 

day 45 complete tumour regression was reported in one of the mice. The tumour 

volume measurements for one of the mice in this group were unusual; with an 

increase in tumour size > 400% between day 30 and day 32, and this has skewed the 

data for the group. 

6.4 Discussion. 

6.4.1 DOXDEB as Monotherapy. 

We have shown that monotherapy using DOXDEB is an effective treatment for 

human HCC tumours growing as subcutaneous xenografts in immunocompromised 

mice. Tumour regression was observed, with a mean decrease in Δ tumour volume at 

day 45 of 90% compared to control, with a decrease in AUC for Δ tumour volume of 

59%. One of the mice showed tumour shrinkage of > 98% between days 32 and 45, 

by which point the tumour was barely palpable at 0.001 cm
3
. Another tumour from 

this treatment group weighed only 0.056 g at day 45. The treatment was well 

tolerated, as assessed using loss of body weight as a parameter for toxicity, although 

ulceration of the injection site was observed in two out of three animals.  

There is no other data on the effect of doxorubicin-eluting microspheres in this type 

of model with which to compare these results. There have been a few animal studies 

investigating doxorubicin-eluting beads for liver cancer. Three of these employed the 

Vx-2 rabbit tumour model. Vx-2 tumours are carcinomas derived from a virus-

induced rabbit papilloma, and are characterised by rapid growth (Kidd and Rous, 

1940). Vx-2 tumour cells can successfully be implanted into the liver of rabbits, 

resulting in the growth of a tumour with a hypervascular blood supply, similar to that 
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of human liver tumours. The size of the animal enables embolisation therapy to the 

established tumour and so provides a good animal model for investigating the effects 

of TACE and DEB-TACE (Lee et al., 2009b). One study used DOXDEB of 100 – 

300 µm diameters, and a doxorubicin dose of 2.6 – 3.2 mg/kg. Intratumoural 

doxorubicin concentration was 414 nM/g, 116 nM/g and 42 nM/g at 3, 7 and 14 days 

after treatment respectively. Necrosis was greatest at 7 days after treatment (Hong et 

al., 2006). Another study used Contour SE (Contour SE, Boston Scientific, Natick, 

Massachusetts) and two different prototype PVA microspheres (diameters 100 – 300 

µm) and a doxorubicin dose of 1 mg/kg. Two days after treatment the intratumoural 

concentration of doxorubicin was 160 nM/g (Lee et al., 2008). More recently, a study 

using doxorubicin-loaded Quadraspheres (QuadraSphere
s
 microspheres; BioSphere 

Medical, Inc., Rockland, MA, USA) resulted in intratumoural concentrations of 50 

nM/g at day 3 and 23 nM/g at day 7; in accordance with the DOXDEB study, 

necrosis was greatest 7 days after treatment (Lee et al., 2010). 

Here tumour regression was observed from 9 days after treatment in the DOXDEB 

and RAPADOXDEB groups, which continued out to day 45. The observations from 

this thesis and the other studies mentioned suggest that it takes some days for 

doxorubicin to elute from the beads and concentrate in sufficient amounts for 

necrosis to occur. It is interesting to note that at day 37 there is increased cell 

proliferation in the untreated control group, and that this occurs 5 days prior to 

increased tumour regression in the doxorubicin-treated groups. Several of the 

mechanisms of cytotoxicity of doxorubicin are known to be dependent on cell 

division (Aubel-Sadron and Londos-Gagliardi, 1984), perhaps explaining the 

connection between these two events. 
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6.4.2 Rapamycin Monotherapies. 

Monotherapy using RAPADEB was also shown to be an effective treatment using 

this model. Here, the observation was of a pattern of sustained inhibition of tumour 

growth, rather than tumour regression, with a mean decreases in tumour volume and 

tumour weight at day 45 of > 60% when compared to control; and a decrease in AUC 

for Δ tumour volume of 60%. The treatment was well tolerated and no ulceration was 

observed. Again, there is no comparable data from other studies available. 

Monotherapy using low dose metronomic orally administered rapamycin 

demonstrated anti-tumoural activity across the time course of the experiment, and 

complete inhibition of tumour growth to day 28. As was the case with RAPADEB 

we observed a pattern of sustained inhibition of tumour growth rather than tumour 

regression, with a mean decrease in tumour volume and tumour weight at day 45 of 

almost 70% when compared to control, and a decrease in AUC for Δ tumour volume 

of 69%. The treatment was well tolerated. These findings are in accordance with 

several other published studies on mTOR inhibition for HCC. 2 mg/kg/day of oral 

rapamycin for 4 weeks was found to significantly reduce HCC growth and improve 

survival in an orthotopic allograft rat model, primarily via antiangiogenesis (Semela 

et al., 2007). 1 mg/kg/day oral rapamycin inhibited tumour growth in an orthotopic 

intraportal HepG2 mouse model in mice (Ong et al., 2009). This group used Micro-

PET imaging and histological analysis to assess HCC inhibition, and concluded that 

rapamycin has anti-angiogenic activity towards both tumour and normal hepatocytes. 

Other studies using orthotopic highly metastatic mouse models of HCC found that 2 

mg/kg/day of oral rapamycin for five weeks prevented growth and metastatic 

progression and downregulated the expression of HIF-1α (Wang et al., 2009c). 

Another group used a chemically-induced HCC model in rats, and found that 



155 

 

rapamycin at doses 1.5 mg/kg/day and 4.5 mg/kg/day “repressed the expression of 

HIF-1α and VEGF…. and significantly inhibited the growth and metastasis of HCC” 

and that there was no significant difference between these two doses (Wang et al., 

2008b). Everolimus is a derivative of rapamycin which has improved aqueous 

solubility and bioavailability (Schuler et al., 1997), and suppresses tumour growth in 

subcutaneous HCC xenografts in mice (Tam et al., 2009, Huynh et al., 2008a). 

In this experiment oral rapamycin inhibited the growth of HCC more effectively than 

RAPADOX. The elution kinetics of rapamycin from the microspheres has not been 

extensively investigated, although we know that the theoretical maximum possible 

eluted dose is 0.67 mg in total. Several studies have suggested that a continuous low 

dose rapamycin therapy is the most effective regimen for inhibiting tumour growth 

(Guba et al., 2005, Heuer et al., 2009, Wang et al., 2008b, O'Reilly et al., 2011). It 

has also been established that the anti-angiogenic activity of rapamycin is due to 

interference with signalling pathways outside of the tumour itself (Wang et al., 

2008b, Semela et al., 2007). Rapamycin has a relatively long half-life of around 72 

hours (Yatscoff et al., 1995), and there is some evidence from animal models and 

phase I clinical trials that weekly doses are as effective as daily doses although daily 

dosing regimens seem to be the most effective (Boulay et al., 2004, Tabernero et al., 

2008, O'Donnell et al., 2008, Guba et al., 2005, Rizell et al., 2008). The optimal 

dosing regime is one that results in an effective and sustained inhibition of S6K. 

Higher doses may be less effective at S6K inhibition than lower doses (Guba et al., 

2002, Heuer et al., 2009). Lower doses of rapamycin are obviously advantageous in 

terms of minimising adverse side effects associated with rapamycin. Phase I/II 

clinical trials investigating everolimus for unresectable HCC are underway 

(NCT00390195, NCT01374750, NCT00516165, NCT01035229), as are Phase II/III 
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clinical trials investigating sirolimus after liver transplant for HCC (NCT01374750, 

NCT00328770). 

6.4.3 Combination Therapies. 

Here we have shown that combination therapy using RAPADOXDEB had anti-

tumoural activity against HCC tumours growing as subcutaneous xenografts in 

immunocompromised mice. Tumour inhibition was apparent from the start of 

treatment, and tumour regression was observed from day 32, with a mean decrease in 

Δ tumour volume at day 45 of > 90% compared to control, and a decrease in AUC 

for Δ tumour volume of 43%. Two of the mice in this group showed tumour 

reduction of > 99% between days 28 and 45, by which point the tumour was barely 

palpable at 0.001 cm
3
. This treatment had a noticeable, though not significant, impact 

on mouse body weight. Ulceration of the injection site was observed in all three 

animals. There is no other data on rapamycin/doxorubicin co-loaded microspheres 

with which to compare these results.  

Interestingly, the data for the individual mice treated with RAPADOXDEB shows 

wide inter-individual variability, with a noticeable increase in tumour volume 

between day 30 and day 32 in one animal. This may be due to Akt activation. 

Both rapamycin and everolimus inhibit mTORC1 but not mTORC2 (Jacinto et al., 

2004), although this is not clear cut and specific effects vary with cell type, 

mutations to cell signalling pathways, and dosing regimens (Foster and Toschi, 2009, 

Huang and Manning, 2009, Zhou et al., 2010a, Wander et al., 2011). There is a 

concern that positive feedback from mTORC2 to Akt may improve tumour cell 

survival. It has been demonstrated that endothelial cell proliferation in hypoxia 

depends on both mTORC1 and mTORC2, so that rapamycin does not fully block 

angiogenesis, although reports are not consensual (Li et al., 2007, Barilli et al., 
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2008). Akt takes centre stage in the PI3K/Akt/mTOR pathway, with a vast array of 

effectors under its control (Foster and Fingar, 2010). The outcomes of Akt activation 

are anti-apoptotic and pro-proliferative cell survival strategies (Jiang and Liu, 

2008a). There is some evidence to suggest that activation of Akt only occurs when 

higher doses of rapamycin/everolimus are used (Tabernero et al., 2008). We don’t 

know what the intratumoural concentration of rapamycin is after the administration 

of rapamycin-loaded beads, but it is likely to be higher than after oral administration, 

possibly leading to Akt activation in tumour cells. However, whilst we saw increased 

tumour volume in the RAPADOXDEB group, the same effect was not seen in the 

RAPADEB group. Akt activation potentially has more than one impact on cell 

survival in this model, since it protects against doxorubicin-induced apoptosis in 

HepG2 cells (Alexia et al., 2006). Of course, the rapid increase in tumour volume 

was only observed in one of the mice and more work needs to be done before we can 

draw any conclusions. 

The final combination treatment investigated was oral rapamycin and DOXDEB, 

which demonstrated the best anti-tumour activity over the time course of the 

experiment (Figure 6.4), with near-stable disease, and transient tumour regression. 

Tumour inhibition was apparent from the start of treatment. Tumour regression was 

observed at day 28, and complete inhibition of tumour growth from day 30 to day 35. 

However, from day 35 there was an increase in tumour volume. There was a mean 

decrease in Δ tumour volume at day 30 of > 60% compared to control, and a mean 

decrease in Δ tumour volume at day 45 of almost 90% compared to control. The 

decrease in AUC for Δ tumour volume was 88%. Ulceration of the injection site was 

observed in two animals. There was no significant body weight loss compared to any 

of the other groups and no significant difference in body weight between days of 
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treatment (Figure 6.5 and 6.6). At day 45 tumour cure was reported in one of the 

mice. There is no other data on oral rapamycin combined with doxorubicin-loaded 

microspheres with which to compare these results. 

A few other groups have looked at doxorubicin in combination with mTOR 

inhibition. In accordance with our findings, combination treatments were found to be 

more successful at tumour inhibition than monotherapies. Piguet et al (2008) 

reported additive effects in an orthotopic syngeneic rat HCC model. Pegylated 

liposomal doxorubicin was injected intravenously every four days, with a starting 

dose of 4.5 mg/kg and subsequent doses of 1 mg/kg. Rapamycin was administered in 

drinking water at a dose of 2 mg/kg/day. Treatments were well tolerated. T/C after 

30 days of treatment was reported as 52%, 56% and 27% for doxorubicin, rapamycin 

and both in combination respectively. Grunwald and colleagues (2002) reported 

additive effects in an ectopic xenograft mouse model of prostate cancer. Doxorubicin 

was administered i.v. as a single dose of 10 mg/kg and the rapamycin analogue CCI-

779 was administered i.p. for 5 days at a dose of 10 mg/kg. T/C after 33 days of 

treatment was reported as 61%, 30% and 23% for doxorubicin, rapamycin and both 

in combination respectively. Recently, O’Reilly and co-workers (2011) investigated 

everolimus in combination with doxorubicin for the treatment of ectopic xenograft 

mouse models of lung and cervical cancers. For the cervical cancer model they 

reported a synergistic effect when 5 mg/kg/week doxorubicin i.v. was administered 

alongside 2.5 mg/kg/day everolimus p.o., and for the lung cancer model they 

reported an additive effect for the same doses. T/C after 16 days of treatment for the 

cervical cancer model was 6%, 43% and 1% for doxorubicin, rapamycin and both in 

combination respectively. T/C after 16 days of treatment for the lung cancer model 

was 31%, 17% and 7% for doxorubicin, rapamycin and both in combination 
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respectively. Body weight loss was reported after doxorubicin monotherapies, and 

was more pronounced in the lung cancer model, but was not exacerbated by 

everolimus – indeed, in the lung cancer model everolimus protected against body 

weight loss. Continuing everolimus treatment after a one off doxorubicin treatment 

inhibited tumour outgrowth in the cervical cancer model. The inhibitory effect of 

DOXDEB in combination with rapamycin p.o. over the 22 day treatment period is 

striking.  

6.4.4 Tolerability. 

An important aspect to a pre-clinical study is an initial assessment of drug toxicity. 

Drug combinations may have additive or synergistic effects with regard to side 

effects and toxicity, rendering them unsuitable for clinical use. Here we monitored 

change in mouse body weight as a parameter for toxicity, with measurements taken 

twice weekly. Regular observations were also made to ascertain any gross 

physiological or behavioural changes. We used this data to assess the tolerability of 

the drugs in combination compared to either drug alone.  

6.4.4.1 Mouse Body Weight. 

Comparisons between the control and treatment showed no significant differences in 

mouse body weight for any of the treatments at any time point (Figure 6.3), and no 

significant differences in % change in mouse body weight compared to weight at day 

23 (Figure 6.4). Comparisons between the different time points within each treatment 

also showed no significant differences (multivariate ANOVA analysis, data not 

shown). Reduction in body weight was most pronounced in the mice treated with 

RAPADOXDEB. All the mice in this group were observed to have ulceration of the 

tumour injection site, and the weight loss may be connected to loss of appetite due to 
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general discomfort. We can conclude that body weight losses for all the treatments are 

within a tolerable range. However, it should be noted that tolerability data may not be 

accurate since the metabolism of the drug by the liver is not compromised by the 

presence of any underlying liver disease.  

6.4.4.2 Ulceration. 

Gross examination of the tumour injection site showed up localised ulceration, which 

in some cases was quite extensive. The ulceration was only associated with the 

application of beads loaded with doxorubicin, and is presumably due to its well 

recognised activity as a vesicant (causing blistering, ulceration and skin damage) if 

and when extravasation occurs (Schrijvers, 2003). Rapamycin-loaded microspheres 

did not cause ulceration, and it is therefore unlikely that either the bead itself or the 

alginate suspension were the cause. The fact that the beads are positioned 

subcutaneously and adjacent to the tumour means that extravasation is at least 

possible, or even likely. Ulceration after application of DOXDEB was reported in two 

mice, starting at day 37 and day 42 respectively. Ulceration after application of 

RAPADOXDEB was reported in all three mice starting at day 30, day 35 and day 37 

respectively. Ulceration after application of DOXDEB in combination with oral 

rapamycin was reported in two mice, starting at day 28 and day 28 respectively. The 

ulceration seems to start earlier and occur more frequently when doxorubicin is used in 

combination with rapamycin. The ulceration amongst the mice in the RAPADOXDEB 

group was reported as being the most severe. The local concentration of rapamycin as 

eluted from the microsphere is likely to be much higher than from an oral dose. 

Rapamycin is known to impair wound healing by a number of different mechanisms 

(Ekici et al., 2007, Weinreich et al., 2011), and may well be exacerbating the effects of 

the vesicant activity of the doxorubicin.  
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6.4.5 Limitations of the Mouse Model. 

There a several limitations regarding the use of this mouse model. Firstly, the 

tumours are implanted ectopically. This facilitates tumour measurement, but the 

tumour microenvironment is not accurately modelled, since the subcutaneous 

microenvironment is very different from the liver microenvironment. Interactions 

between the tumour cells and the graft site will affect the cell phenotype, the 

availability of growth factors and nutrients, microcirculation, angiogenesis and 

motility and invasiveness (Kubota, 1994, Fukumura et al., 1997, Cespedes et al., 

2006, Kerbel, 2003). The sensitivity and responses of cancer cells to 

chemotherapeutics can therefore be altered according to the site of implantation 

(Fidler et al., 1994, Cespedes et al., 2006). However, for early pre-clinical studies 

where budgets are limited, ectopic mouse models are useful predictors of outcome. 

Interesting or promising results can then be investigated further using a more suitable 

animal model.  

Secondly, the dose of doxorubicin delivered does not reflect the dose used in clinic. 

Here we used DEBs loaded with 25 mg/ml doxorubicin. 1 ml of DEB was then 

mixed with 3 ml of alginate solution, giving a final doxorubicin concentration of 6.25 

mg/ml. 100 µl of DEB was injected for each treatment, equivalent to 0.625 mg 

doxorubicin/mouse. This represents a theoretical maximum dose of 30 mg/kg. The 

maximum recommended clinical dosage of doxorubicin in one procedure is 150 mg. 

For DEB-TACE 4 ml of 37.5 mg/ml doxorubicin DOXDEB are injected per 

embolisation. This represents a dose of 2 – 3 mg/kg, and no systemic doxorubicin-

related toxicities at this dosage of DEB-TACE have been reported (Malagari, 2008). 

Animal studies have found that hepatic intra-arterial delivery of 3-4 mg 

doxorubicin/kg loaded into DEBs proves cytotoxic to cells at a locoregional site, and 
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is well tolerated by the animal (Lewis et al., 2006, Hong et al., 2006, Eyol et al., 

2008). However, doses in the range 15 – 60 mg/kg ‘were efficacious…..but induced 

significant hepato-toxicity, often leading to the death of the animal’ (Eyol et al., 

2008). We have delivered a theoretical maximum dose of 30 mg/kg. In vivo studies 

estimate that 43% of the drug is eluted from the bead 28 days after embolisation 

(Namur et al., 2010). The time course of our model ran out to 22 days, at which point 

we could expect < 50% of the drug, equivalent to < 15 mg/kg, to have eluted from 

the bead. Note that delivery was subcutaneous, so that the concentrations within the 

liver would not be as high as in the Eyol et al (2008) experiment; and that liver 

function in our experiment was not compromised by the presence of disease. So, 

whilst the delivered dose exceeds that used in the clinic, there is no evidence from 

the body weight data that it impacts on the general well-being of the mouse.  

Thirdly, and perhaps most importantly, the delivery of DOXDEB is not intra-arterial 

or embolic. DEBs were injected as close to the tumour as possible, and delivered in 

an alginate solution in an attempt to stop the DEBS drifting away from the tumour. 

Regions of hypoxia will be present in the subcutaneous tumours once they reach a 

palpable size, and the presence of the beads may well disrupt the supply of blood to 

the tumour, but the mode of delivery does not model DEB-TACE and the resulting 

intra-tumoural anoxia or hypoxia. Since we are interested in the effects of 

chemotherapeutics on hypoxia-induced survival pathways, we would ideally use an 

animal model which allows DEB-TACE. As discussed above, the rabbit Vx-2 

tumour model enables embolisation therapy to the established tumour. Previous 

experiments using this model demonstrate the existence of intrinsic intratumoural 

hypoxia (Rhee et al., 2007, Virmani et al., 2008), and show that TAE results in 

further increases in HIF-1α expression compared to control (Rhee et al., 2007), and 
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that post-TAE biopsy specimens have significantly higher HIF-1α levels than pre-

TAE specimens from the same rabbit (Virmani et al., 2008). This model has been 

used to study DEB-TACE using doxorubicin-eluting microspheres (Hong et al., 

2006, Lee et al., 2008, Lee et al., 2010). However, no investigations into mTOR 

inhibition in combination with DEB-TACE have yet been carried out using this 

model.  

6.5 Conclusions. 

 

In this study we evaluated tumour burden in a mouse model of HCC. Rapamycin 

monotherapies inhibited tumour growth for the duration of the experiment, and oral 

rapamycin inhibited tumour growth more effectively than RAPADEB, although the 

pattern of growth inhibition was the same for both treatments. DOXDEB inhibited 

tumour growth in a similar manner to RAPADEB up to day 32. We found that 

doxorubicin was necessary and sufficient for tumour regression, which occurred from 

day 32 in the DOXDEB and RAPADOXDEB groups. The most effective treatment 

overall was the combination of DOXDEB and oral rapamycin, which resulted in 

almost total inhibition of tumour growth to day 35; tumour regression day 28 to 30 and 

day 42 to 45; and complete tumour destruction reported in one animal by day 45. 

There was evidence of increased anti-tumoural activity with combination therapies 

compared to either treatment alone, and all treatments were well tolerated.  
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Chapter 7 

Discussion.  

Molecular oxygen is an essential substrate for eukaryotic cell respiration, and 

organisms have evolved a range of adaptive and protective mechanisms to survive 

episodes of decreased oxygen supply. The transcription factor HIF-1 regulates the 

expression of most of the genes involved in adaptations to hypoxia. The protein 

products of genes regulated by HIF-1 are involved in increasing oxygen availability 

and in regulating essential metabolic alterations that allow the cell and the organism 

to survive hypoxic conditions (Semenza, 2000a).  

Intratumoural hypoxia is a feature of solid tumours, and hypoxia-derived 

angiogenesis is a requirement for tumour growth (Harris, 2002). Cellular adaptations 

to hypoxia potentially increases the malignancy of the cancer, since HIF-1 

upregulates genes associated with increased survival, invasiveness, metastases and 

tumour growth; and radio- and chemo-therapy resistance (Huynh et al., 2009a, 

Maxwell et al., 2001; Unruh et al., 2003).  

Hepatocellular carcinoma is a major cause of cancer-related mortality. Treatment 

options are limited by disease stage at diagnosis, and overall survival rates for 

inoperable HCC are poor (Sapra et al., 2011b). The current standard of care for 

intermediate HCC combines locoregional delivery of the chemotherapeutic 

doxorubicin with trans-arterial embolisation. Embolisation therapies result in the 

necrosis of cells exposed to severe hypoxia or anoxia, but also result in the escape 

and proliferation of those cells which adapt to hypoxia and display a hypoxia-

resistant phenotype. Targeting HIF-1 presents an opportunity to improve treatment 

outcome for patients with HCC.  
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The majority of in vitro investigations are carried out at ambient (21%) oxygen, and 

do not properly model in vivo intratumoural physiology, wherein oxygen 

concentrations are likely to be much lower. The phenotypic alterations which occur 

as a result of hypoxia reduces the chemosensitivity of cancer cells via a number of 

different mechanisms (Dong et al., 2003, Tak et al., 2011, Erler et al., 2004, Baek et 

al., 2000; Comerford et al., 2002, Ding et al., 2010, Zhu et al., 2005). Toxic effects 

which are oxygen-dependent, as is the case with some of the anthracyclines, are also 

reduced in hypoxia (Gewirtz, 1999). 

In this thesis in vitro investigations were carried out under both normoxic and 

hypoxic culture conditions. The HepG2 cell line was used as a model for HCC. Two 

drugs – doxorubicin and rapamycin - were investigated, both as monotherapies and 

in combination. Doxorubicin is the current standard of care for TACE and there is 

some evidence that doxorubicin inhibits the activity of HIF-1 in cancer cells. 

Rapamycin is currently under investigation as a treatment for HCC, and 

downregulates HIF-1α expression via suppression of mTOR (Land and Tee, 2007).  

In addition to the potential for either one of these drugs to be used against HCC, 

there is also potential for using both in combination. The use of traditional 

chemotherapeutics in combination with therapies that target signalling pathways has 

been the subject of much recent investigation, and results from pre-clinical and 

clinical trials are encouraging. Whilst the cytotoxicity of the more traditional 

chemotherapeutic drugs depends on cell division, which has implications for other 

non-cancerous dividing cells in the body, drugs which target molecular pathways 

exert their effects on stromal tissues and cells and the processes which support 

tumour growth, as well as on tumour cells themselves. Rapamycin interferes with the 

PI3K/Akt/mTOR signalling pathway, a pathway that is known to play an important 
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role in cancer progression and is known to be dysregulated in around half of all 

HCCs (Sokolosky et al., 2011b). Rapamycin and doxorubicin have been 

demonstrated to have additive effects in vivo in murine models of liver, prostate, 

cervical and lung cancer (Piguet et al., 2008, O'Reilly et al., 2011, Grunwald et al., 

2002).  

The results from Chapter 3 demonstrate two important findings – that hypoxia 

protects cells from the cytotoxic effects of doxorubicin at doses of 5 µM and above; 

and that there is a biphasic effect where higher doses are significantly less effective 

against hypoxic HepG2 cells than the 10 µM treatment. 10 µM is as effective as 

higher doses in normoxic cells and so this study has identified a therapeutic window 

of 10 µM where doxorubicin inhibits cell proliferation of normoxic cells by ≈ 70% at 

48 hours and ≈ 90% at 72 hours, and hypoxic cells by ≈ 60% at 48 hours and ≈ 80% 

at 72 hours (Figures 3.2 and 3.3). The differences in cell viability between normoxic 

and hypoxic cells are significant for 10 µM treatment at both these time points. 

The results from Chapter 3 (Figure 3.5) clearly demonstrate that only the 50 µM dose 

of doxorubicin inhibits the hypoxia stimulated nuclear accumulation of HIF-1α. 

There are important experiments that need to be carried out for further elucidation of 

doxorubicin activity in hypoxic conditions. The first is to block the VHL pathway 

using the proteasome inhibitor MG132. The accumulation of HIF-1α after 

proteosome inhibition reflects the rate of synthesis of the protein and so it is possible 

to determine whether the abrogation of HIF-1α following 50 µM treatment is due to 

a reduction in the expression of the protein itself at the transcriptional or translational 

level, or if this concentration of doxorubicin stimulates the degradation of HIF-1α 

even in the absence of oxygen. It would also be interesting to observe the effects of 

doxorubicin on HIF-1α that has been stabilised in normoxia using a hypoxia mimetic 
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such as cobalt chloride or desferrioxamine. Experiments could then be carried out to 

determine the effects of doxorubicin on the expression of HIF-1α mRNA, and the 

effects of inhibiting translation using actinomycin D, a compound that inhibits 

protein synthesis (Wang et al., 2009a). The data presented here indicates that the 

mechanism by which doxorubicin exerts its cytotoxic effect is distinct from the 

mechanism by which it inhibits HIF-1α. 

An important next step will be to determine what effect 10 µM doxorubicin has on 

the expression of genes downstream of HIF-1, and whether doxorubicin interferes 

with the transcriptional activity of HIF-1, as has been reported in Hep3B cells (Lee et 

al., 2009a). 

Hypoxia-induced mechanisms of resistance to doxorubicin include reduced drug 

accumulation and increased drug efflux (Comerford et al., 2002, Ding et al., 2010, 

Zhu et al., 2005); resistance to apoptosis (Dong et al., 2003, Erler et al., 2004, 

Lechanteur et al., 2005, Piret et al., 2002a); decreased levels of topoisomerase II 

(Tomida and Tsuruo, 1999, Ogiso et al., 2000); and a reduction in free radical-

dependant DNA damage (Potmesil et al., 1983, Smith et al., 1980, Tannock, 1982, 

Rharass et al., 2008). 

NFkB activation and post-translational modification and the consequent effects of 

NFkB activation on apoptosis, seems to vary with cell type and with the NFkB 

inducer (Cho et al., 2008, Perkins, 2006). Looking at Figure 3.6, there would appear 

to be a difference in post translational modification of NFkB under hypoxia when 

compared to doxorubicin treatment. Doxorubicin-activated NFkB has been reported 

to be both anti-apoptotic (Bednarski et al., 2008, Chiao et al., 2002) and pro-

apoptotic (Wang et al., 2011). Basal levels of NFkB have been reported to increase 

resistance to doxorubicin (Gangadharan et al., 2009) and overexpression of VHL 



168 

 

protein increased the sensitivity of cells to doxorubicin in a mouse model of HCC 

(Wang et al., 2010). In this study doxorubicin was found to activate NFkB in 

normoxic cells. However, hypoxia was also observed to activate NFkB, and after 

doxorubicin treatment of hypoxic cells no further activation was observed (Figure 

3.6). It would be interesting to explore whether activation of NFkB by doxorubicin 

has pro-apoptotic consequences, and activation of NFkB by hypoxia has anti-

apoptotic consequences in HepG2 cells. 

However, the key finding from these investigations into doxorubicin and cell 

viability is the identification of 10 µM as a dose which is efficacious against both 

normoxic and hypoxic cells. This 10 µM dose is commensurate with concentrations 

of doxorubicin that are eluted from DC Beads at distances of up to 350 µm and 600 

µm in animal models, and where tissue necrosis was associated with penetration and 

concentration of doxorubicin (Reddy et al., 2010, Namur et al., 2008a). Evidence 

from the clinic suggests that effective concentrations of doxorubicin are eluted for up 

to 40 days post DEB-TACE (Moschouris et al., 2010). This is in accordance with the 

findings from the in vivo study presented in this thesis, where the application of 

doxorubicin-eluting microspheres significantly inhibited the growth of an ectopic 

xenograft tumour in a mouse model of HCC (Figure 6.1 and 6.2). It should be noted, 

however, that in this animal study, the tumour xenografts are subcutaneous and 

ectopic, so embolisation is not accurately modelled, and this will have an impact on 

intratumoural hypoxia. 

Following on from investigations into the effects of doxorubicin on normoxic and 

hypoxic HepG2 cells, the next stage of this thesis was concerned with the impact of 

rapamycin treatment. The effect of rapamycin on cell viability in normoxic and 

hypoxic cells was most noticeable after 48 hours (Figure 4.2). The minimum 
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concentration of rapamycin effective against normoxic cells was 10 nM, whilst for 

hypoxic cells the minimum effective concentration was 100 nM (Figure 4.2). After 

72 hours, the single dose of rapamycin had ceased to have an effect (Figure 4.3). 

Again, hypoxia protected the cells against the effects of rapamycin on cell viability. 

Both 10 nM and 100 nM rapamycin inhibited the hypoxia stimulated nuclear 

accumulation of HIF-1α, although 100 nM was more effective (Figure 4.5). Hypoxia 

did not result in a reduction in phosphorylation of p70 S6K, but rapamycin inhibited 

phosphorylation of p70 S6K in both normoxic and hypoxic cells. This suggests that 

the mechanism by which rapamycin inhibits cell viability is due to a reduction in cell 

growth and proliferation, being cytostatic rather than cytotoxic. This is supported by 

the fact that at 72 hours, the inhibitory effects of rapamycin were abolished. 

The effects of rapamycin as a monotherapy in the in vivo studies presented here are 

quite striking. Oral rapamycin appears to be more effective than rapamycin delivered 

loco-regionally and this may reflect the effects of rapamycin on inhibition of 

angiogenic signalling pathways in stromal cells (Figure 6.1 and 6.2). 

Finally, the effects of combined doxorubicin and rapamycin treatments were 

investigated. The addition of rapamycin to doxorubicin consistently led to a further 

decrease in cell viability (Figures 5.1 – 5.6). Spiking the cells with rapamycin every 

24 hours, or pre-treatment with rapamycin before the addition of doxorubicin should 

be investigated, as this may increase the additive effects that were observed after a 

single application of rapamycin. 

Paradoxically, the addition of rapamycin to doxorubicin treated cells appeared to 

abrogate any inhibitory effects of either drug as monotherapy on the nuclear 

accumulation of hypoxia stimulated HIF-1α, although these results were not 

statistically significant (Figure 5.7). Doxorubicin had no effect on the 
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phosphorylation of p70 S6K, which suggests that the inhibition of HIF-1α occurs by 

a different pathway or mechanism than inhibition of HIF-1α by rapamycin (Figure 

3.7). 

In vivo, the combination of oral rapamycin and loco-regional delivery of doxorubicin 

was the most effective of all the treatment regimens investigated. The combined 

loco-regional delivery was as effective at day 45, but the disease control across the 

time course of the experiment was not seen Figure 6.1). 

Little is yet know about the effect of doxorubicin/rapamycin combinations on the 

health of cardiomyocytes. The role of mTOR signalling in the survival of both cancer 

cells and cardiomyocytes could lead to off-target effects which potentially increase 

doxorubicin-induced cardiotoxicity (Xiang et al., 2011), or inhibit wound healing 

(Ekici et al., 2007, Weinreich et al., 2011). 

Further studies are needed on the anti-tumoural activity of combinations of 

doxorubicin DEB-TACE and low dose oral rapamycin, preferably using an animal 

model that allows true embolisation of an orthotopic HCC. Immunohistochemical 

analysis of post mortem tumour samples could improve the understanding of the 

molecular mechanisms involved. 

Clinical trials using DEBDOX in combination with oral administration of everolimus 

have recently begun. In Switzerland, the ‘Phase I Open Label/Phase II Randomized, 

Double Blind, Multicentre Trial investigating the combination of Everolimus and 

Transarterial Chemoembolization with Doxorubicin Versus Transarterial 

Chemoembolization with Doxorubicin Alone in Patients With Hepatocellular 

Carcinoma’ (NCT01009801) is currently recruiting participants. This study is chaired 

by Jean-Francois Dufour, MD (University Hospital Inselspital, Berne), for the Swiss 
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Group for Clinical Cancer Research. Phase I will determine the recommended dose of 

everolimus in patients with HCC treated with DEBDOX TACE, and Phase II will 

determine the efficacy and tolerability of everolimus in patients with HCC treated with 

TACE as compared to TACE alone. Entry criteria include confirmed HCC at 

Intermediate stage B (according to BCLC classification), a Child Pugh score < 8, and 

no tumour involvement in > 50% of the liver. Patients with advanced disease, presence 

or history of metastatic spread, or those awaiting OLT will not be included. The 

expected enrolment is 98 patients, from eight clinics in Switzerland. Phase I is a dose 

escalation study, where patients receive oral everolimus once daily, followed by 

DEBDOX TACE seven days later. After one month an MRI scan will be carried out. If 

a viable tumour is detected then patients will undergo TACE treatment monthly for up 

to five treatments. Phase II is a randomised two arm study. Arm I patients will receive 

an oral placebo once daily for up to 12 months, and undergo DEBDOX TACE as in 

phase I at the maximum tolerated dose (MTD). Arm II patients will receive oral 

everolimus once daily for up to 12 months, and undergo DEBDOX TACE as in phase 

I at the maximum tolerated dose (MTD). Primary Outcomes are dose limiting toxicity 

(Phase I), and time to progression (Phase II). Secondary Outcomes include adverse 

events, tumour response, progression-free survival at 12 months and overall survival. 

The start date was February 2010, and the estimated primary completion date is 

September 2012.  

The second clinical trial is based in Asia. The ‘Phase II Randomized, Double-blind, 

Multicenter Asian Study Investigating the Combination of Transcatheter Arterial 

Chemoembolization (TACE) and Oral Everolimus (RAD001, Afinitor®) in Localised 

Unresectable Hepatocellular Carcinoma (HCC) - The TRACER Study’ 

(NCT01379521), chaired by Professor Ronnie Poon and Novartis Pharmaceuticals, 
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started in June 2011 and is not yet recruiting participants. The Primary Outcome is 

time to progression, and Secondary Outcomes include overall response rate, disease 

control rate, overall survival, tumour response and adverse events. The estimated 

enrolment is 80 patients, recruited from Hong Kong, Taiwan, Thailand and the 

Republic of Korea. This is a two arm study, where one arm will receive everolimus 

with DEBDOX TACE, and the other will receive everolimus placebo with DEBDOX 

TACE. Entry criteria, as in the Swiss study, include confirmed HCC at Intermediate 

stage B. The estimated primary completion date is January 2013.  

If cancer cells with a hypoxic phenotype, as well as cancer cells with a normoxic 

phenotype, can be successfully targeted by specific drug regimens, as has been 

indicated by the data presented in this thesis, there is the possibility of improving the 

outcome of patients suffering from primary liver cancer, a disease which at present 

has a dismal prognosis. 
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