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Abstract

The region of the nuclear chart around A~100 is an area of structural
changes where different shapes coexist and therefore, an interesting
place to study structural evolution and test nuclear models. Within
the element that populate this region, zirconium is one which is ex-
pected to present well deformed states, but for which little experi-
mental data has been measured so far. The structure of the 10271087y
nuclei has been studied using the Interacting Boson Model (IBM).
Energy states and transition probabilities have been predicted and
tested using the limited amount of existing experimental data. How-
ever, the results of these calculations produced several possibilities, so
knowledge about non-yrast states is needed in order to deepen the un-
derstanding of the structural changes in zirconium nuclei. Therefore,
a series of experiments to measure non-yrast states of °2719%7r are re-
quired. A new technique, for separating different states of nuclei, has
been developed and tested at the University of Jyviskyld, using the
IGISOL IIT facility for the known case of °°Nb -decay into *°*Mo.
This technique has been successfully extended to allow the separate
study of the gamma-ray decay of states populated by the different par-
ent states. Lower spin states of 19271087y are populated via beta-decay
from 192718Y In order to measure the non-yrast states of 021087y
post-trap online spectroscopy will be used at IGISOL IV. IGISOL
IV is the improved version of IGISOL III and is currently under con-
struction. Part of my Ph.D. consisted of helping with the development
of IGISOL IV, the improvements of this facility are explained in this

thesis alongside its operation and several tests performed during 2012.
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"So you don’t have unique answers to your questions?"
"Adson, if T had, T would teach theology in Paris."
"Do they always have a right answer in Paris?"

"Never", said William, "but there they are quite confident of their

errors."

Umberto Eco, Il nome della rosa.
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Chapter 1

Introduction

There are several theoretical models of the atomic nucleus, divided into two main
categories: microscopic models, in which the degrees of freedom are those of the
particles constituting of the nucleus, and collective models, which describe the
properties of the nucleus as a whole. A major question remains in how to reconcile
both points of view. How do you explain collective properties from a microscopic
point of view? In the search for a better understanding, scientists are currently
challenging the limits of nuclear matter stability, pursuing new data which might
enlighten the complicated nuclear structure. Exotic-nuclei research has produced
an increasing amount of new experimental data, uncovering a wide range of new
nuclear behaviour that is not fully understood and, providing a testing ground
for nuclear models and highlighting the need for a theory able to explain these

exotic configurations.

Some nuclear properties, such as the nucleons’ separation energy, exhibit sudden
changes at certain numbers of nucleons, indicating the existence of large gaps be-
tween energy levels. These "magic numbers" of nucleons, which are more stable
configurations, constitute the origin of the shell model [1]. Closed-shell configura-
tions greatly simplify the description of the system, allowing an interpretation in
which only valence nucleons are taken into account. The nuclear shell model was

developed based on empirical data within a restricted area of the nuclear chart,



close to the stable isotopes. Due to the acquisition of new data on exotic nuclei,
the idea of the magic numbers validity across the entire nuclear chart has been
disputed in recent years [2, 3, 4]. Therefore, the evolution of shell structure along

the nuclear landscape has become one of the main unknowns in nuclear physics.

Away from closed shells, where several valence nucleons exist, other structural
representations prevail. Here collective motion dominates, changing the nucleus
from a spherical equilibrium shape to a deformed one. Structures are often ex-
plainable on the basis of geometric or dynamical symmetries, where the main two

archetypes are the harmonic vibrator and the symmetric rotor [5].

Across the nuclear landscape, transitions from spherical to deformed shape occur.
Although these transitions are often sudden, an intermediate condition of shape
coexistence is also possible. At present there are no simple theoretical models able
to describe these regions. In absentia of an appropriate structural framework, the
empirical observation is essential. The nucleus is an unique laboratory to examine
the quantum basis of shape coexistence, since it can exhibit properties associated

with both single-nucleon and collective motion.

The Interacting Boson Model (IBM) [6] treats the nucleus as a system of bosons
(pairs of fermions coupled to spin 0 or 2 in its simplest version, IBM-1) and
comprises a microscopic description able to explain collective properties. Such
a system of bosons, constitutes a unitary group which can undergo different de-
compositions, leading to three different dynamical symmetries. These limits in-
clude rotational and vibrational paradigms, linking with the geometrical model
description. Motivated by the shell model, the bosons are interpreted as pairs
of nucleons in the valence shell, thus the number of bosons for a given nucleus
is fixed and depends on the definition of closed shells. Therefore, in principle,
it should be possible to fit neighbouring nuclei using the same Hamiltonian but
different numbers of bosons; an approach which has been successful in some cases
[7]. The advantage of using the IBM framework is that it provides an easy way
to perform calculations for low spin states not only at the three limits, but in the

transition between them, examples of which can be found at references: [8, 9, 10].



The region of the nuclear chart A~100 is one of structural change, where different
shapes coexist [11, 12]. Large deformed ground states and shape transitions from
nearly spherical to well deformed prolate shapes have been observed in Sr, Zr
and Mo [13, 14, 15]. Evidence of triaxiality has also been found in Mo and Ru
isotopes [16] while, heavier Sr and Zr isotopes display an axially symmetric well
deformed shape. In addition, nuclei in the region as well have long lived isomers

[17, 18], providing new opportunities to study unusual nuclear states [19].

This thesis is dedicated to the study of the nuclear structure of 192-1%87Zr isotopes.
Zirconium nuclei in the A~100-110 region have been measured to have well-
deformed shapes [20], isomeric states [17, 21] and are predicted to exhibit different
configurations [22]. Chapter 2 briefly explains the basic nuclear models needed
in order to understand the nuclear deformation phenomenon. It also gives an
overview of the experimental indicators of deformation and structural evolution
in the area of interest. Chapter 3 applies the Interacting Boson Model (IBM)
to the study of 10271987y Given that almost no data is available for 194-1087y
the need to acquire new data in order to test and refine, not only the IBM
but also, other nuclear models is highlighted. This leads to the last two chapters,
which are dedicated to the experimental technique and facility in which Zirconium
data will be collected in the future. Chapter 4 focuses on a new technique, for
separating different states of nuclei [23|, which has been developed and tested at
the University of Jyviskylé, using the IGISOL III facility. The isomeric cleaning
technique has been extended to allow the separate study of the gamma-ray decay
following the -decay of different parent states and, was tested for the known case
of 'Nb decay into Mo [18]. It is known that lower spin states of %197 are
populated via beta-decay from 192108Y [17 24]. In order to measure the non-yrast
states and other structural information, a series of experiments using post-trap
online spectroscopy at the IGISOL IV will be performed. Therefore, the last
Chapter, 5, is dedicated to IGISOL TV, an upgraded version of the IGISOL III
facility. The development of the IGISOL TV facility and its current status, paying
particular attention to the work in which the author played a prominent part will

be presented.



Chapter 2
Physics Motivation

From the point of view of quantum mechanics, the phenomenon of deformation
is a prerequisite to collective rotation. It does not make sense to speak about
rotation of a spherical object given that such a system will be invariant under
rotations. Nuclear rotation and vibrations, and, therefore, nuclear deformation,
are well explained in the context of the geometrical model. Given that the struc-
ture of neutron rich zirconium nuclei is known to be well deformed for several
isotopes, it is essential to understand the nature of nuclear surface deformation.
On the other hand, the zirconium isotopes studied in this thesis, are situated in
the shape transition region around A~100, which shows a structural evolution
from spherical to well deformed states. For this reason, the present chapter is
focused on two topics: the basics of the collective nuclear model and nuclear
deformation, and the structural evolution of the region of interest, with partial

emphasis on the experimental and theoretical analysis of the zirconium nuclei.

2.1 Collective nuclear models

Postulated by N. Bohr and Kalckar in 1937 [25], the liquid drop model arose
from a comparison between the high density spectrum of sharp resonances, in

slow-neutron-capture reactions, and the vibrational modes of a drop of incom-



pressible fluid. As the shell structure of the nucleus was later experimentally
demonstrated, the need to reconcile individual particle and collective degrees of
freedom lead to the development of the collective model. The description of the
nucleus as a collective identity able to undergo vibrations and rotations, was
proposed by J. Rainwater [26] and developed by A. Bohr and B. R. Mottelson
[5, 27]. This model includes aspects of Shell and liquid drop models, explaining
certain electromagnetic properties of the nucleus that previous models had failed

to describe.

2.1.1 The vibrational modes of a spherical nucleus

7
3+
0+
0+’ 2+’ 3+’ 4+’ 6+
4+
g
4+’2+’0+
2t 2
ot ot
a) Harmonic vibrator b) Anharmonic vibrator

Figure 2.1: Low-lying levels of the: a) harmonic vibrator model; b) anharmonic
vibrator model.

Imagine the nucleus as a liquid drop of radius R, vibrating with small oscillations
around a spherical equilibrium configuration. While the average shape is spheri-
cal, the instantaneous form is not. Therefore, one can describe the changes in the
nuclear surface, due to the nuclear vibrations, through the following parametriza-
tion [28]:



R(0,¢) = Ry (1 +) _Z o, (1) Ya(0, gb)) (2.1)

A=0 p=—X

where A describes the multipolarity of the shape, Ry is the radius of the spherical
nucleus, Y), are the spherical harmonics and a, are the time-dependent expan-
sion coefficients which describe the vibrations of the nuclei. A = 0 corresponds
to a compression mode which is at high energy, A = 1 do not corresponds to a
deformation but to a shift of the center of mass, A\ = 2 represents a quadrupole
deformation, A = 3 an octupole deformation, etc. As the A\ = 0 component is
constant and the A = 1 term (dipolar vibration) gives a null average displace-
ment of the centre of mass, the lowest relevant shape component, in terms of
deformation, is the quadrupole one, for which the radius can be described by
setting A = 2 in eq. 2.1 (quadrupole approximation). The vibration quantum is
called a phonon by analogy to quantum electrodynamic theory; a single unit of
vibrational energy. A\ = 1 is called a dipole phonon and carries one unit of angu-
lar momentum, A = 2 is a quadrupole phonon and carries two units of angular
momentum, etc. Since the quadrupole deformation is the most important one,
it is useful to write the Hamiltonian for a quadrupole oscillator. By analogy to
the classical harmonic oscillator is possible to write a quantized Hamiltonian as

a function of the creation and annihilation operators b, and bL as follows:

thm(i bLbM+g>. (2.2)

Introducing the phonon number operator N = (Z Z)Lbﬂ) with eigenvalue N, the

energy spectrum will be given by:



By = hw(N +5/2), (2.3)

Therefore, the ground state is a state with N=0, N=1 corresponds to the first

exited state, N=2 corresponds to the second excited state and so on.

For an even-even nucleus adding one phonon (A = 2) to the 0% ground state, gives
only a 2% state, adding a second phonon leads to a triplet of states with spins
JT = 0%,27,4%, etc. Fig. 2.1 shows the level scheme for a typical vibrational
nucleus in the cases of a) an harmonic vibrator, which is the case described here
and, b) an anharmonic vibrator, which includes two-body residual interactions

which have the effect to break the degeneracy of the multiple phonon excitations.

2.1.2 Rotational model and deformed shapes

0 Prolate axis

Figure 2.2: The origin of the frame of reference represents the spherical shape,
and the point, P, represent an asymmetric deformed nuclear shape. The modulus
of the vector OP is the magnitude of the deformation, 3, and the angle with
respect to the horizontal axis is the asymmetry parameter, ~.

Rotational motion is only observed in nuclei with non-spherical equilibrium shapes,

thus the nuclei which present this behaviour are known as deformed nuclei. As



in the case of the vibrational motion the lowest applicable shape component is a

quadrupole distortion. Therefore, we shall focus on the case A = 2:

R =R, (1 + ) a3, Va0, gb)) . (2.4)

p=—2

It is possible to express «y, in terms of the Euler angles and two variables § and
v, so that the nuclear shape can be described in a two dimensional $-v plane,
using polar coordinates. Fig 2.2 shows the point P as a function of 3, which
represents the length of the vector (magnitude of quadrupole deformation), and
7, its angular coordinate (degree of axial symmetry). The variation of the nuclear

radius as function of these two parameters can be expressed as follows:

6R. = R— Ry =/ 2=BRocos(y — 2%), xk=1,2,3. (2.5)

Where the indices 1,2 and 3 correspond to the body-fixed frame axes x, y and z.
In the case of v = 0°, the nucleus is compressed in the x and y directions and
extended in the z direction, assuming what is called a prolate (rugby ball) shape;
if v = 27/3 and v = 47/3, the nucleus is compressed in the y and z directions and
extended in the xz and xy planes, respectively, turning into an oblate (disk-like)
shape. Both nuclear shapes are shown in fig. 2.3. Note that eq. 2.5 implies that
0 R, is invariant under cyclic permutations of values of v which are multiples of
7/3 and that v, v — 27/3 and v — 47/3 describe the same nuclear surface, and

that v and —~ also define the same surface.



a) Prolate b) Oblate

Figure 2.3: Representation of the two different deformed nuclear shapes.

2.1.2.1 Rotational Energies

Consider an axially symmetric nucleus undergoing rotational motion. Such a
nucleus will have a total angular momentum, I, which has a projection on the

symmetry axis denoted by K. The Hamiltonian for a rigid rotor is:

3 A

2
Hrot: Z !

B 2—%7 (26)

=

where .#; is the moment of inertia [29] [30] and k; are the three directions of the
system of reference. If the nucleus is axially symmetric, two moments of inertia

are equal and, for K=0 the expectation value of H,, can be written as:

h2
Erot — ﬂj([ + 1) (27)

This expression gives the energy of a rotating object in quantum mechanics and

can be used to reproduce the energy spectrum of a rotational nucleus. Different



values of I result in different rotational energies of the nucleus. The resulting
nuclear states form a sequence called a rotational band. The ground state of an
even-even nuclei has a spin-parity of 07 and the reflection symmetry of the nuclei
imposes even values of I, therefore the energy levels for a rotational nucleus are

expected to be:

E(07) =0,

B(2%) =61 (28)
B(4%) =202 '
B(6%) = 4207

and so on. The ratio E(47)/E(2") ~ 3.3 is one of the best signatures for rota-

tional motion and deformation, as will be discussed in section 2.2.

2.1.3 Rotations and vibrations of deformed nuclei

The last special case of collective motion in this section is the rotational-vibrational
model. Nuclei with an axially deformed minimum present small oscillations in
both the ~ and [ degrees of freedom. Therefore, in general, it is possible to

describe the Hamiltonian as:

H = Hyp + Hyo. (2.9)

The explicit expression of the Hamiltonian is a function which depends on the
deformation parameters, 5 and v, the total angular momentum, I, and its pro-
jection on the symmetry axis, K. The representation, in terms of the shape and
angle variables, provides a simple description of the situation in which the nucleus
oscillates around a nonspherical equilibrium shape. In this case, the motion of

the nucleus is composed of rotations and intrinsic shape vibrations:

10



1 1 h?
Bunati = hooglng + 5) + oy (20, + = | K | +1) + 2 [1(1+1) = K], (2.10)

where ng and n, are the number of quanta of vibration added in the g and ~
directions respectively. Due to the ambiguity in the choice of intrinsic axes, the
symmetrization of the wave function leads to the condition that only even values
of K are possible. Given that the wave function only depends on | K |, it is
enough to consider positive values of K. Fig. 2.4 shows the band structure of the
spectra generated by eq. 2.10 for an even-even nucleus. The bands are defined
by a set of quantum numbers (K,ng,n,). The ground state band correspond
to (0,0,0); the S-band to (010) (contains one quantum in [ direction) and, the
~v-band is characterized by K=2.

4 ——— 14647
1358.7

+

1314.6
1246.0

o.nN

11975

B band

1058.5

946.4
860.2

1024.6

NwWw A~ O,
+ o+ 4+

y band
614.4
4 ———— 2995

914

164

sh
g 68Er

Figure 2.4: Ground, v and 3 bands of a standard deformed nucleus, %4Er [31].

2.2 The deformation region A~100

In the study of nuclear structure some of the most interesting regions are those
of structural change, where the spherical shapes evolve into deformed configura-
tions. One of those regions has mass number A~100, where the nuclear shape is

predicted to change quite dramatically [22].

11



From an empirical point of view the main observables are the ratio between the
energy of the first excited 4 state and the energy of the first exited 2% state,
Rip—E(4])/E(2]); the energy of the first excited 2" state and, the reduced
transition probability, B(E2:2{ —07]), where the subscript 1 refers to the lowest

energy state with a given spin and parity.

3.5

3.3 A

—
+
725

Q‘— ' —-Ru (z=44)
L
23 -B-Mo (2=42)
+
o 2.1 Zr (z=40)
—
L 1.9 w7 -@-Sr (2=38)

17 Kr (2=36)

1.5 . . . . . . .

54 56 58 60 62 64 66 68 70

N

Figure 2.5: The energy ratio Ry, as a function of N, for even-A Ru, Mo, Zr, Sr
and Kr nuclei.

From the energy spectra in the previous section it is easy to follow that the value
of the energy ratio Ry/» can vary from 2 for a spherical vibrator to 3.33 for a
prolate symmetric rotor, so is a key indicator of nuclear deformation. Fig. 2.5
shows the evolution of the E(4])/E(2]) values in the A~100 region as a function
of the neutron number for Ru, Mo, Zr, Sr and Kr nuclei. As is illustrated in the
figure, the ratio changes from a minimum value around N = 58 to a maximum,
of approximately 3.3, for N = 62, 64; indicating the existence of well deformed

symmetric rotors in the cases of zirconium and strontium.

Fig. 2.6 shows that the energy of the first exited 2] state decreases as collectivity
(deformation) increases. The main changes in E(2]) occur in Sr and Zr in which

the excitation energy decreases, indicating a transition between a spherical shape

12



and a deformed rotor. The fast change in the deformation of the zirconium
isotopes is what makes it more interesting when compared with the other nuclei

in the region.

1850
1650 --Ru 1
-=Mo
1450 i
Zr
1250 F -@-Sr 4
Kr
< 1050 | .
)
~ 850 | 8
— -
N
~ 650 | B
w
450 | .
250 | \\o—o—o/‘ d
50
54 56 58 60 62 64 66 68 70 72

N

Figure 2.6: The energy of the first excited 2" state, as a function of N, for even-A
Ru, Mo, Zr, Sr and Kr nuclei.

The energy of the first excited 27 state can be used to calculate a 35 deformation

by using Grodzin’s formula [32]:

1225

where the E(2]) energy is in MeV and the subscript 2 correspond to the quadrupole
term (A = 2 in the previous section). The results of this calculation in the region
of interest are presented in Fig. 2.7 which shows a maximum for the N = 62, 64

nuclei.

B(E2:2] —07) is a key observable since it is directly related to the quadrupole
moment and hence the degree of deformation. The deformation parameter, (s,
can be calculated from the half-lives of the first 2] state via the transition prob-
ability, A, defined as:

13
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Figure 2.7: The deformation parameter (5, calculated using Grodzin’s formula,
as a function of N, for even-A Ru, Mo, Zr, Sr and Kr nuclei.

Y (2.12)

The transition probability, A, is also related to the reduced transition probabil-
ity for an electric multipole transition B(EL:initial state—final state). In the
present case, the transition studied is an electric quadrupole transition from the
first excited 2 state to the first OFstate, B(E2:2] —07), which is related to its
transition probability in the following way [33]:

A(E2) =1.22-10°E2B(E2) (2.13)

where E. is measured in MeV, A in s7! and the B(E2) value is in e*fm*. For an
axially symmetric nucleus (y = 0°) the B(E2) value is also related to the intrinsic

quadrupole moment Qq [34] by:
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B(E2:2f 0+:@ 2.14

Finally, the quadrupole moment is related to the deformation parameter through
the formula [34]:

Qo — \/%23052(1 +0.168) (2.15)

to second order in 5. It is assumed that Ry is the radius of the spherical nucleus
given by the equation: Ry = 1.2A'/3, in fm. Fig. 2.8 shows the results calculated
for Ru, Mo, Zr and Sr nuclei using this formula. In the cases of Zr and Sr a
large increase in the value of the deformation parameter occurs between N=58
and N=60.

0.6

05 -

Deformation, B,
o o o
N w iy

o
-

-0.1

54 56 58 60 62 64 66 68

N

Figure 2.8: The deformation parameter [, calculated from the half-lives [35, 36,
37, 38, 39, 40, 41], as a function of N.
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A more direct measurement of the shape is via the change in the nuclear mean-

square radius § < 7 >44", which can be expressed as a function of 3, by [42]:
/ 5
2 _AA_ 2 2 .
<> =0<r >y, + <71 >sph4ﬂ§'(5<@> (2.16)

where < 72 >, is the mean-square radius of a spherical nuclei of the same
volume, § < r? >, is the change in the mean-square radius respect to the
spherical shaped nucleus, and i denotes the multipole order. From isotope shift
measurements it is possible to obtain information about § < 72 >44" in the
region of interest. Fig. 2.9 shows the difference in the mean square charge radii
relative to N=50 for krypton [43], rubidium [44], strontium [45, 46], yttrium[42],
zirconium|[47] and molybdenum[11]. The figure clearly shows a large increase in
§ < r?2 >N around N=60, especially for Zr, Y, Sr and Rb. This has been

interpreted as the onset of deformation [42].

The experimental data presented in figs. 2.5, 2.6, 2.7, 2.8 and 2.9 shows a sudden
shape change around N=60, especially in the cases of Sr and Zr which jump from
spherical to well-deformed prolate configurations. Figs. 2.5, 2.6, 2.7, 2.8 and 2.9
also show that the zirconium nuclei are the isotopes with the greater degree of
deformation ( fig. 2.5 shows the Ry /2 value close to the value for a perfect rotor for
102,104,10677;) © Moreover fig. 2.8 shows that half-life measurements of the first 2*
states indicate that the quadrupole deformation increases toward N=64. However
the evolution of the structure of the ground state beyond °®Zr remains unknown,
as does the structural information about non-yrast states beyond '“2Zr. Cur-
rently, the only information available comes from several theoretical calculations,
which are still unproven. J. Skalski et al., using global shape calculations with
the Nilsson-Strutinsky method and the cranked Woods-Saxon average potential
[22], concluded that nuclei with oblate and prolate ground states are expected to
coexist in this region of the nuclear chart. In the case of Zr nuclei (Z=40) with
60<N<72, Skalski’s calculations indicate well-deformed prolate ground-states,
with oblate structures at excitation energies around 1 MeV. Also, specifically for

1067y, Salski predicted a prolate ground state with a deformation 3, — 0.37 and
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Figure 2.9: The difference in the mean square charge radii relative to N=>50 for
krypton [43], rubidium [44], strontium [45, 46|, yttrium[42]|, zirconium[47] and
molybdenum[11] as a function of the neutron number, N. Each isotope chain is
separated by 0.5 fm? in the figure, with the intention of making it clearer.

the oblate minimum at an excitation energy of 1.4 MeV. On the other hand, Chas-
man et al. [48], using the liquid drop model and the shell-correction approach
with the Woods-Saxon potential, predict that the transition to oblate shape will
occur at the mid shell isotone '%Zr. Further calculations by Xu et al. [49], based
on a non axial deformed WS potential in the framework of the cranked shell
model using the total Routhian surface show coexisting prolate (5 ~ 0.35) and
oblate (S5 ~ 0.2) minima for zirconium isotopes with 66 < N < 76. Xu also con-
cluded that the oblate shape is stabilised at high spin, by the addition of angular

momentum due to the alignment of pairs of g9/ protons and hy;/, neutrons.

Therefore the experimental and theoretical information to date suggests a picture
of shape coexistence in the zirconium isotopes and, at the same time, highlights
the need for new experimental information in order to understand the structural
evolution of these nuclei. As suggested in the introduction, the Interacting Boson

Model is a theoretical approach, which has been applied with success to study the
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low spin states of the nuclei in transitional regions [8, 9, 10]. The interpretation of

the zirconium isotopes within this model, will be the subject of the next chapter.
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Chapter 3

The Zr isotopes within the IBM

context

The interacting boson model (IBM) [6] is a theory used to study medium and
heavy nuclei in a relatively easy way. Based on the shell model but reducing
its complexity by combining the nucleons in pairs (bosons), it has many similar
properties to the collective models (described in section 2.1). This model is able
to determine quantitatively several properties of the atomic nucleus such as the
nuclear moment, the energy levels of the nucleus and their transition probabilities.

It has been widely used in the past in order to study exotic nuclei |7, 10, 50, 51].

Within the IBM-1 theoretical framework [52], a series of calculations have been
performed to provide a prediction and explanation of the low spin states of
102,104,106,10877;- - The TBM-1 programs used previously in [51] [7] and the last avail-
able experimental data, have been combined to study the structural evolution of

zirconium nuclei in the region A~100.

This chapter is structured as follows: Section 3.1 provides a brief introduction to
the IBM-1. In the following sections, the methodology used to perform the IBM
calculations for the case of 1921041067y and its results are explained. As the same
procedure is used in the three zirconium isotopes, it is only discussed in detail in

the case of 192Zr, while for °4197Zr only the results are presented. Finally, some
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general conclusions are highlighted and new data on '°Zr is discussed.

e/’ K”/K
u(5) PERECR SU(3)
€ K/e

K
x=-N7/2

Figure 3.1: Casten triangle.The parameters of the Casten triangle are based on
a simplified three-dimensional IBM Hamiltonian:H = eriy + £QX - QX + K'Pt . P.
Each vertex represents one of the three symmetry limits of the IBM. The value
of the coefficients giving each dynamical symmetry are indicated, as well as the
ratio between the coefficients which give the change between two limits (along
the sides of the triangle).

3.1 Interacting Boson Model

The Interacting Boson Model (IBM) or Interacting Boson Approximation (IBA)
[53| describes the collective excitations of even-even nuclei as a result of interac-
tion between bosons. In its simplest version, IBM-1, fermions (no distinction is
made between protons and neutrons) are coupled in pairs of angular momenta
0 and 2, known as s and d bosons. Therefore, low-lying collective states of the
nuclei can be described as a result of the interaction between these two types of
bosons. In the IBM, closed shells of either protons or neutrons are neglected,

thus the excitation spectra of the nuclei depends only on the valence space. It is
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possible to define the creation and annihilation operators of the s and d bosons
as follows [52]:

slng >= \/nglng — 1 >, stng >=/ng + I|n, +1 > (3.1)

du|ndu >= 1/ndu|ndu —1 >, dL|ndH >= \/Tldﬂ + 1|ndu +1>
where ng and n, are the number of d and s bosons respectively and u—2,1,...,-2.
The 36 bilinear products of the boson creation and annihilation operators satisfy
the commutation relations of the unity Lie algebra in six dimensions, U(6). In
addition, it is possible to express the Hamiltonian of a physical system described
by the bosons as a combination of these 36 operators. Such a Hamiltonian, in

the multipole expansion, it is often written in two forms:

H = Eﬁd+ﬁ@x 'QX—FH/[A/'[A/—FHHPAT 'p—i-Cng 'T3+C4T4'T4, (32)
or
H = erig+rQx-Qx+x'L-L+ K'Pt. P 3Ty - Ty + iy, (3.3)

where €, k, k', k", )\, c5 and ¢, are free parameters, 1, = d' - d is the number of d-
bosons and the last term, 7,2, leads to a so-called 7-compression which varies the
moment of inertia proportionally to the angular momentum [54]. L, = +/10[d x d],(})
is the angular momentum operator and, the operators Tg and T} are defined as
follows Ts, = [df x d]\ and Ty, = [d' x d)\’. Finally, the quadrupole operator
is Qx = [df x s+ sT x d]ff) + x[d" x d]&z) and, in the Consistent-Q Formalism [55],

the operator for electric quadrupole transitions is Tﬂ = ep Q).
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The 36 IBM operators which constitute the Hamiltonian conform the Lie algebra
U(6). The decomposition of U(6) into different subalgebras leads to separate
symmetries, three of which are interesting from a physical point of view, U(5),
SU(3) and O(6). The U(5) symmetry represents an anharmonic vibrator, the
SU(3) a symmetric rotor and the O(6) an gamma-soft rotor. The three sym-
metries generate different spectra, examples of which can be found in [53]. The
Hamiltonians, corresponding to each of these three limits, in multipole expansion

are:

U(5) — H:ETid-'-/i,[A/'lA-/—'—Cg,Tg'T3+C4T4'T4,
SUB3) — H=rQx-Qx+KL-L, (3.4)
0(6) — H:Klf/'ﬁ+K1/ﬁT'p+03T3'T3.

In reality, most nuclei do not satisfy the particular constraints of one of these sym-
metries, so that to perform realistic calculations a deviation from these limits, or
a transition between them, will be required. The three limits are illustrated in
fig. 3.1 and can be used as reference points to develop a more realistic description
of the low lying collective states of a single nucleus or series of nuclei [53|. The
figure shows a symmetry triangle. Based on a simplified 3D-Hamiltonian, each
vertex represents one of the analytic limits of the IBM, the three sides represent
a transition path between two limits while the inner space of the triangle repre-
sents the body of more general solutions that can be obtained from the general
Hamiltonian 3.2/3.3. The structure of a particular transition along the sides will
be determined, at any point, by the ratio between the two parameters which

characterize the symmetries in question.

From this discussion it is clear that the IBM provides an easy way to study
transition regions (besides the three basic symmetries) as a function of a small set
of parameters, constituting a significant simplification compared to other nuclear

models.
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Before discussing the calculations presented in this chapter, it is convenient to
make a brief introduction to the programs employed. During this study, three
programs have been used: fiti, ibm and ibmt. The first code, fiti, fits of the
parameters in the IBM1 Hamiltonian, which can be written in the two forms
discussed in section 3.1, in order to reproduce experimental energy levels and,
calculates E2 reduced transition probabilities; ibm calculates the energy levels for
a given set of parameters; and ibmt, uses the output provided by the ibm code to
calculate the reduced transition probabilities. The calculations performed for the
isotopes 1021041067 were performed with the fiti code and reproduced with ibm
and ibm1t. In the case of !%Zr, the three programs were used to provide original

results based on two different approaches.

3.2 Results for ">Zr and methodology:

For a given nucleus, the total number of bosons, N, is defined as half the num-
ber of valence particles or holes counted from the nearest proton and neutron
closed shell [34]. This means that the number of bosons is fixed for a given nu-
cleus and limits the maximum spin that can be calculated with this theory. This
also means that two nuclei with different numbers of neutrons and protons but
the same total number of bosons could be predicted to have exactly the same
behaviour (if they had the same values of the parameters in the Hamiltonian).
In order to avoid this problem, the relevant parameters have been adjusted fol-
lowing the convention adopted in [51]. Namely, a procedure which separately
considers chains of isotones (N= 62) and isobars (A=102), and provides a dif-
ferent set of parameters in each case. Tables 3.1 and 3.3 show respectively the
experimental energies and transition probabilities used for each nucleus in the iso-
baric (12Pd (N=5),1%Ru (N=7),12Mo (N=9),'92Zr (N=11)) and isotonic chains
(1Ru (N=9),'"Mo (N=10),'%2Zr (N=11)), to fit the low spin states in %2Zr.

In addition to the six parameters in each Hamiltonian in eq. 3.2 and 3.3, x and ¢,
also have to be determined. Ergo there are eight possible parameters to minimize.

Although these parameters might vary with the boson number, in order to keep
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Nucleus J™ Ey E, Es | Nucleus J™ Ey E, Es

102pq ot 0 1593 1658
(N=5) 2t 556 1534 1994

3T 2112

4T 1276 2138
5+

6T 2111

7t

8T 3340

9+

10" 3340

102Ru ot 0 944 1968 | '%Ru ot 0 991
(N=17) 2t 475 1103 1581 | (N=9) 2t 270 792

3t 1522 3t 1092

4t 1106 1799 4t 715 1307
5t 5t 1641

6t 1873 6t 1296 1908
Tt Tt 2284

8t 2706 8t 1973

9t 9t

10T 3434 10T 2705

02\ 0F 0 698 1334 | %Mo 0F 0 886
(N=9) 2F 297 848 1250 | (N—10) 2% 192 812

3t 1245 3t 1028

4t 744 1398 4t 561 1215

5t 5t 1476

6t 1327 6t 1080 1724

7t 7t 2037

8t 2019 8t 1722

9t 9t

10T 2418 10T 2455
1027y ot 0 895 1027y 0" 0 895
(N=11) 2% 152 1036 1211 | (N=11) 2t 152 1036 1211

3t 3t

4%t 478 1387 1538 4t 478 1387 1538

5t 5t

6t 965 1652 1829 6t 965 1652 1829

. 7t

8t 1595 8t 1595

9t 9t

10T 2351 10T 2351

Table 3.1: Experimental energies (in keV) for levels in neutron-rich A=102 iso-
baric and N=62 isotonic chains [38, 39, 40| used in the characterization of the
parameters for 1927r.
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the number of free parameters to a minimum they are taken as constant for a
given chain [51]. Therefore the structural changes within a chain depends only

on the boson number N.

The first task is to establish the value of x. Using the Hamiltonian proposed in
[51] (given by eq. 3.2 with " and k" equal to zero) and the experimental data
shown in tables 3.3 and 3.1, for the isobaric chain, it is possible to calculate the
root mean square (rms), of the difference between the calculated and experimental

energies and B(E2) values, in the following way [7]:

AE) =\ [ S (BL ~ By, (35)

A(E2) = \/ N S(B(E2), ~ B(E),), (35)

where N and Ngy are the number of energy levels and B(E2) values used in the
fit respectively. The value of x = —0.6 was found to be the one which gave smaller
values of both standards deviations. This calculation was repeated with different
Hamiltonians and it was found that the value of y which minimizes both standard
deviations almost does not vary on changing the Hamiltonian. Therefore a value
of x = —0.6 was used for all the calculations, and the next step is determine the

appropriate Hamiltonian.

As a starting point, the Hamiltonian corresponding to each of the three lim-
its of the IBM was tried. For each one, the initial values of the parameters
(€, R, K, K", c3,¢cq Or A) were varied in order to find a global minimum. As the
results displayed in table 3.2 show, all the three cases give a big rms deviation in
terms of energy, so it is possible to conclude that we are looking for a transitional

Hamiltonian.
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Symmetries Hamiltonian A(E)a(keV)  A(E2)a(me?b?)

SU(3) H=rQxX - QX+ r'L-L 471 108
0(6) H=#KL-L+K'Pt-P+cTy Ty 483 84
U(5) H= E’I’id + K'L-L + Cng . T3 + C4T4 . T4 312 121

Table 3.2: The table shows the rms deviation for the experimental energies and
reduced transition probabilities for the °2Zr isobaric chain in the case of the three
IBM-1 limits.

It was found that two or three-term Hamiltonians gave a poor result while more
than four term Hamiltonians lead to unstable solutions. Therefore, a four-term
Hamiltonian was decided to be the best option. In the multipolar expansion,
there are two possible Hamiltonians with six terms each, as defined in equations
3.2 and 3.3. Given that five of the six terms are common, combinatorics give
twenty five possible four-term Hamiltonians, which are shown in table 3.4. The
table shows the minimum energy and transition probability standard deviations
obtained for each of the Hamiltonians listed, by varying the parameters in each
Hamiltonian. All twenty five possibilities were tried for the isobaric chain, while
only the Hamiltonians which provided smaller values of energy rms deviation were

used for the isotonic chain.

Transition 102pq 102R Yy 102)\[o 1027, 1040\ [o 106Ry

27 — 07 | 0.0926(64) 0.1276(20)  0.1979(63) | 0.3924(871) | 0.2233(184) 0.1976(296)

4F - 27 1 0.1445(70) 0.1889(315) 0.2543(508) B 0.3208(98)
0 — 27 B 0.1005(160)  0.1935(760) B 0.3184(100)
25— 2f B 0.1454(181) B B B

Table 3.3: Experimental B(E2) values (in units €?0?) used in the calculation of
ey 38, 39, 40].
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rig | PYP | QxQx | LL | T5Ty | TuTy | g || A(E)a | A(E2)4 | AE)y | A(E2)y
(keV) | (me2b?) || (keV) | (me*b?)
1| X X X X 165 74 161 75
2 | X X X X 160 77 95 64
3|X| X X X 155 53 98 99
4 | X X X X 231 91
50X | X X X 192 58
6 | X X X X 192 68
7| X X | X | X 167 56 98 99
8§ | X X X X 166 83 128 147
9 | X X X X 146 63 97 138
10 | X X X X 312 140
11 X X | X X 325 99
12 X X | X | X 454 175
13 X X | X | X 336 103
14 X X X 327 87
15 X X X 414 131
16 | X X X X 214 72
17| X | X X X || 231 88
18| X | X X X || 237 94
19| X X X X 123 82 115 140
20 | X X X X 170 59
21 | X X X X 312 135
22 X X | X X || 462 198
23 X X X X 441 95
24 X X X X 442 195
25 X X X X 495 84

Table 3.4: The minimised root mean square values obtained by varying the pa-
rameters in each Hamiltonian. The first column assigns a number to each Hamil-
tonian; columns two to the eight indicate which terms of the general Hamiltonian
are considered in a particular calculation; finally, the last four columns show the
root mean square for the energy levels and B(E2) values (using ¢, = 0.11 eb), the
first two for the 192Zr isobaric chain and the last two for the °?Zr isotonic chain.

27



Isotones  (N=62)
Tig PP QxQx LL Ty, Ty g
2 108867 0.2803  0.0312 0.0143
3 | 1.0837 0.0735 -0.0291 -0.1443
7 10.8710 -0.0336  0.0035 -0.1330
9 | 1.1195 -0.0353 -0.1178 -0.1060
191 0.6739 -0.0277  0.0167 -0.0752
Isobars (A=102)
Tig PP QxQx LL Ty Ty g
2 109032 0.2629  0.0401 0.0146
3 10.9318 -0.06567 -0.0420 -0.1664
7 10.9140 -0.0296  0.0012  -0.1296
9 | 1.055 -0.0304 -0.1098 -0.0734
19 | 0.8534 -0.0283  0.0108 -0.0791

Table 3.5: The value of the coefficients for the Hamiltonians 2, 3, 7, 9 and 19 in
the 192Zr calculation. The first column assigns a number to each Hamiltonian;
columns two to eight indicate the different terms of the general Hamiltonian
considered in a particular calculation.

At this point, Hamiltonians 2,3,7,9 and 19 were used to calculate the reduced
effective charge, e, using all the reduced transition probabilities available in a
given chain. These are shown in table 3.3. For a given Hamiltonian, the matrix

elements are provided by the fit. As the B(E2) value is given by:

<I'llQx[11 > |?
B(E2;1 — 1) = 2|
(B2, Ty

(3.7)

the value of ¢, is calculated to minimize the difference between the theoretical
and experimental reduced transition probabilities. The value was calculated by
making an average of the quantities obtained for each chain using the five Hamil-

tonians mentioned earlier. The result was e, = 0.11.

The different results for the rms deviation in energy and reduced transition prob-

ability give an idea of the precision of this procedure. Inspection of the calculated
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rms deviations indicates that the Hamiltonians labelled as 2, 3, 7, 9, 19 give bet-
ter fits, although there is not enough difference to chose a particular one over the
others. The value of the calculated coefficients for each of these Hamiltonian are
shown in table 3.5. The presence of the 74 and QXQX terms in these Hamiltoni-
ans suggest a region of transition between U(5) and SU(3) symmetries, while the
small value of y and the existence of a PP term in two of the five Hamiltonians

indicates a certain degree of O(6) symmetry is also present.

Isobars (A=102)

Transition | Experimental H, Hj H, Hy Hiqg

2F — of 0.3924(871)  0.2347  0.3464 0.3320  0.4119 0.4585

4 — 2f 0.3385  0.5144 0.5022  0.5940 0.6431
25 — 0F 0.0703  0.1318 0.0517  0.0312 0.0794
25 — 0F 0.1021  0.0962 0.2020  0.2501 0.2389

Isotones  (N=62)

Transition | Experimental H, Hs H; Hy Hyg

27 — 0F | 0.3924(871) 0.2536  0.3727  0.3777  0.4529 0.4387

4f — of 0.3567  0.5389  0.5432  0.6354 0.6108
25 — 0F 0.1914  0.1653 0.0441 0.0382
05 — 25 0.0263

27 — 07 0.1905 0.2441  0.2357  0.2203 0.3072

Table 3.6: Experimental and theoretical B(E2) values (in units of e?b?) for transi-
tions in 192Zr. The upper half of the table shows the results calculated by fitting
the parameters of the Hamiltonians using the experimental data available in the
isobaric chain, while the bottom half shows the values obtained using the known
data in the isotonic chain. A value of e, = 0.11 is used in all the cases.

Figures 3.2 and 3.3 show the calculated energy levels of 1“2Zr using the Hamil-
tonians 2, 3, 7, 9 and 19 alongside the experimental data. The calculated values
for the yrast states are close to the experimental data in all cases, while the re-

sults become less precise as we move higher in energy, beyond the second spin
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0" state. All calculated transition probabilities are shown in tables 1 and 2 in
appendix A. Figures 3.2 and 3.3 also show the stronger transition probabilities,
namely the transitions which values are bigger than 0.09 e2b?. The levels in the
figures are grouped in bands according to the calculated transition probabilities.
The calculated set of levels are 0, 21, 4], 6], 05, 23, 45, 65, 05, 25, 45 and
64. Although the initial intention was to represent all the levels, the 03 level
was removed in most of the cases plotted in the figures due to small transition
probabilities connecting this level with the others. Given that figures 3.2 and 3.3
show that the g-band is lower in energy than the y-band for the particular case
of 192Zr and that is a common feature of the nuclei populating this region, we can
conclude looking at the figures that the results obtained using Hamiltonian 7 are

the only ones which verify this fact using both chains.

Table 3.6 shows the results for some reduced transition probabilities. For both
isobaric and isotonic chains, Hamiltonian 2 gives weaker B(E2) values while 9
and 19 predict stronger transitions. Four of the five Hamiltonians (3, 7, 9 and
19) provide a prediction which agrees within the error with the only transition
probability measured so far. The difference between the results of the calculations
obtained using different Hamiltonians and either the isobaric or isotonic chain

gives an idea of the limitations of the method.
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Figure 3.2: Experimental and theoretical energy levels of 1°2Zr. The parameters
in each Hamiltonian are obtained by minimizing the rms deviation with respect to
the energy levels of the isotonic chain. The levels are grouped in bands according
to the calculated transition probabilities, which are given in units of b
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Figure 3.3: Experimental and theoretical energy levels of 1°2Zr. The parameters
in each Hamiltonian are obtained by minimizing the rms deviation with respect to
the energy levels of the isobaric chain. The levels are grouped in bands according
to the calculated transition probabilities, which are given in units of b

32



3.3 Results for "“Zr:

In order to make a calculation of the energy levels and transition probabilities
in '%4Zr, data in two separate chains of nuclei have been used. The nuclei of the
isotonic chain (N=64) are: 'Pd, 1%Ru, !9 Mo and '°‘Zr; while the isobaric
chain (A=104) is composed of '%Ru, ®*Mo and °*Zr. The experimental energy
levels and B(E2) values used to fit the parameters in the Hamiltonian are shown
in tables 3 and 4, in appendix A, respectively. Following the procedure explained
in the previous section, the values obtained for e, and y were 0.1 and -0.3. The
value of the effective boson charge is similar to the one in the case of 1°2Zr, but
the value of y is significantly lower. Twenty-five four-term Hamiltonians were
tested and table 3.7 shows the root mean square deviation for the Hamiltonians
which have the smaller values (3, 7, 9, 19, 20). The root mean square deviations
obtained in all twenty five possibilities are shown in table 5, in appendix A. It
is observed that a very similar set of Hamiltonians as for '°?Zr have been found
to provide the fits to the available data with smaller value of root mean square
deviations. The calculated coefficients for this set of Hamiltonians are provided
in table. 3.8. The table shows how the coefficients have a bigger value when
calculated using the data of the isotonic chain, excluding &’ in Hamiltonian 7
and A in 20. The results of the energy calculations and the stronger associated
transition probabilities for this set of Hamiltonians, using the data of the iso-
baric and isotonic chains, are plotted fig. 3.4 and fig. 3.5 respectively. As in the
previous section the levels are grouped in bands; with the exception of Hamilto-
nians 7 and 19 which have some levels which do not appear to fit into a band
structure, given that their associated transition probabilities are weak. They are
easily recognizable because no transitions are indicated between them since the
calculated value of those transitions are smaller than 0.9 e?b?. The complete set
of calculated transition probabilities are in tables 6 and 7, in the appendix A.
For '™7Zr, the only calculation which shows the 3-band lower than the y-band,
is the one performed using the Hamiltonian 3 and the isotonic chain. Although
one might expect that **Zr will have a 3-band lower in energy than the v-band,

there are no data available at the moment which can confirm this hypothesis, so
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ia | PP | @G| B | Tty | T [ 2 | AB)y | A2y | AE)L | AE2),
(keV) | (meb?) || (keV) | (me?b?)

31X | X X X 80 84 76 80
7| X X X X 79 83 67 78
9 | X X X X 80 83 73 74
19| X X X X 80 90 54 80
20| X X X X 79 84 63 73

Table 3.7: 1%Zr. The minimum root mean square values obtained varying the
parameters in Hamiltonians 3, 7, 9, 19, 20. From left to right: the first column
assigns a number to each Hamiltonian; columns two to eight indicate which terms
of the general Hamiltonian are considered in a particular calculation; finally, the
last four columns show the root mean square for the energy levels and B(E2)
values, the first two for the isobaric chain and the last two for the isotonic chain.

no Hamiltonian can be discarded.

Table 3.9 shows the main calculated B(E2) values as well as the only reduced
transition probability in '*Zr which has been experimentally measured. The
calculated 2] — 0] transition probabilities are smaller than the experimental
value. Although none of the values for this transition agree with the experimental
data within one standard deviation, this result is not unexpected given that the
27 — 07 reduced transition probability value for 1°Zr is 0.2 units higher than the
corresponding values for this transition of the rest of the nuclei considered in both
chains, as is shown in table 3, appendix 6. The value of e, needed to fit the 27 —
0 transition probability would have to be 0.12, 0.02 bigger than the calculated.
This indicates the importance to measure other transition probabilities in '*4Zr.
The table also shows a considerable difference between the predictions obtained
using the two different chains, especially in the case of the two last transitions
listed in the table.

Table 3.5 shows that there is a difference between the parameters obtained for the
same Hamiltonian using different data sets and, therefore, for the energy levels
calculated with the same Hamiltonian for the different chains. This is highlighted

by the energy levels shown in figures 3.4 and 3.5 where the difference between
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Isotones  (N-64)
Thg PP QxQx LL Ty TWTy 1’
3 112114 0.0394  -0.0545 -0.2167
7 | 1.2038 -0.0586  -0.0013  -0.2275
9 | 1.1532 -0.0595 -0.2379  0.0289
19 | 1.159 -0.0440 0.0176 -0.1412
20 | 1.1611 -0.0559 -0.2066 -0.0071
Isobars  (A=104)
ig PP QxQx LL Ty, T 6
3 10.7948 -0.0186 -0.0394 -0.1098
7 1 0.9490 -0.0447  -0.0026  -0.1443
9 10.8030 -0.00408 -0.1297 0.0348
19 | 0.8681 -0.0385  0.0123 -0.0991
20 | 0.9604 -0.0459 -0.1285 -0.0203

Table 3.8: The value of the coefficients for the Hamiltonians 3, 7, 9, 19 and 20
in the 1%47Zr calculation. The first column assigns a number to each Hamiltonian;
columns two to the eight indicate the different terms of the general Hamiltonian

considered in a particular calculation.

the calculated energies for each chain can be seen. The calculation performed

with the data in the isobaric chain gives a lower energy for the 2], 47 and 6]

energy levels than the ones calculated with the isobaric chain (and also than the

experimental values), while the rest of the states are predicted to have a higher

energy in the calculation performed with the data of the isotonic chain.
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Isobars (A=104)
Transition | Experimental Hs H- Hyg Hig Hog
2F — of 0.5301(796)  0.3297  0.3384 0.3192  0.3569 0.3558
4F —2f 0.4797  0.4863 0.4641  0.4974 0.5078
275 — 0F 0.0222  0.0218 0.0226  0.0114 0.0205
25 — 0F 0.2244  0.2380 0.2212  0.2404 0.2509
Isotones  (N=64)
Transition | Experimental Hj H; Hy Hig Hyo
2F — of 0.5301(796)  0.3508  0.3473 0.3399  0.2592 0.3499
4 — 2f 0.4932  0.4881 0.4781  0.3564 0.4929
25 — 0F 0.0026  0.0016
05 — 24 0.0466  0.0069 0.0071
25 — 0F 0.0569  0.0310 0.2043  0.0777 0.0316

Table 3.9: Experimental and theoretical B(E2) values (in units of e2b?) for transi-
tions in !“Zr. The upper half of the table shows the results calculated by fitting
the parameters to the isobaric chain while the bottom half shows the predictions
obtained by fitting the parameters to the isotonic chain. A value of e, = 0.1 has

been used in all the cases.
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3.4 Results for %7Zr:

In the case of °°Zr the data used for the isotonic chain (N=66) includes the nuclei:
12pd, 110Ru, Mo and °Zr, and for the isobaric chain (A=106): °Ru, %Mo
and '°°Zr. The experimental data used in this fit is shown in table 8 (B(E2)s)
and table 9 (energy levels), in appendix A. The values of e, and y calculated with
these data are 0.09 and -0.3 respectively. The value of e, is slightly lower than in

the two previous cases but the value of y is the same as for 1%4Zr.

Table 3.10 shows the Hamiltonians with smaller root mean square standard de-
viations for both chains, while the results for all the tested Hamiltonians are
shown in table 10 of appendix A. The Hamiltonians which provide lower root
mean square values are: 2, 3, 7, 9, 19 and 20 and their coefficients are shown in
table 3.11. Therefore, there is a set of Hamiltonians (3, 7, 9 and 19) providing

lower rms values common to the three zirconium isotopes.

Figures 3.6 and 3.7 show the energy levels obtained by varying the parameters
in each Hamiltonian to minimize the rms energy using the data in the isotonic
(N=66) and isobaric (A=106) chains respectively, as well as the stronger transi-
tion probabilities. The main calculated reduced transition probabilities for the
chosen Hamiltonians are shown in table 3.12. As in the previous cases, the cal-
culations made with the two chains provide different results; but there is no
experimental data available to compare them with. All the calculated transition
probabilities are shown in tables 12 and 13, in appendix A. The levels shown are
grouped into bands except for some set of no bands levels shown for the calcu-
lation performed with the isobaric chain and the Hamiltonian 19. The figures
clearly show that the calculations performed with the isotonic chain gives a bet-
ter fit to the energies of the ground state band than the calculations performed
using the isobaric chain. The latter produces notably lower energies than the ex-
perimentally observed yrast levels and gives higher energy levels than fig. 3.6 for
non-yrast states. All the calculations performed with the isobaric chain present
a (-band lower in energy than the y-band, as do the calculations performed with

Hamiltonians 3, 7 and 9 and the isotonic chain.
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tig | PP | QxQx | LL | TyTy | TuTy | nd? || A(E)Ny | AE2)x | A(E)A | A(E2)A
(keV) | (me*?) || (keV) | (me?b?)

2 | X | X X X 68 143 88 138
31X | X X X 64 148 86 152
71X X X X 62 145 87 150
9 | X X X X 56 166 89 149
19 | X X X X 53 164 98 121
20| X X X X 61 142 87 151

Table 3.10: '%Zr. The minimum root mean square values obtained by varying the
initial parameters in Hamiltonians 2, 3, 7, 9, 19, 20. From left to right: the first
column assigns a number to each Hamiltonian; columns two to the eight indicate
which terms of the general Hamiltonian are considered in a particular calculation;
finally, the last four columns show the root mean square for the energy levels and
B(E2) values, the first two for the isotonic (N=66) chain and the last two for the
isobaric (A=106) chain.

Isotones  (N-66)
ig PP QxQx LL Ty T g
2 10.8652 0.2502 0.0361 0.0178
3 | 1.2325 0.1067 -0.0246 -0.1456
7 1 0.9585 -0.0313  0.0032  -0.1413
9 | 1.1716 -0.0244 -0.0712  -0.1348
19 1 0.7297 -0.0201  -0.0160 -0.0622
20 | 0.9980 -0.0315 -0.1725 -0.0173
Isobars (A=106)
ig PP QxQx LL Ty TT, g
2 | 1.2130 0.5273  0.0396 0.0133
3 109558 0.0685 -0.0385 -0.1297
7 1 0.9168 -0.0434  -0.0008  -0.1432
9 | 0.8681 -0.0431 -0.1431 0.0164
19| 1.1124 -0.0472 0.0166 -0.1457
201 0.9039 -0.0428 -0.1355 -0.0042

Table 3.11: The value of the coefficients for the Hamiltonians 2, 3, 7, 9, 19 and 20
in the 197Zr calculation. The first column assigns a number to each Hamiltonian;
columns two to the eight indicate the different terms of the general Hamiltonian
considered in a particular calculation.
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Isobars (A=106)

Transition HQ H3 H7 Hg H19 H20

27 — 07 [0.2708 0.3353 0.3273 0.3211 0.2066 0.3302
47 — 21 10.3814 0.4767 0.4656 0.4574 0.2856 0.4697
05 — 27 |0.1436 0.1343 0.1124 0.1224 0.0095 0.1130
25 — 07 [0.2124 0.2418 0.2349 0.2297 0.0607 0.2372

Isotones (N=66)

Transition HQ H3 H7 Hg H19 HQU
27 — 07 [0.2360 0.3015 0.2829 0.3579 0.3522 0.2628
47 — 21 10.3433  0.4396 0.4173 0.5028 0.4949 0.3920
05 — 25 0.2301 0.1697 0.0764 0.1854
25 — 05 | 0.0322 0.0212

27 — 05 | 0.1761 0.2211 0.2015 0.2430 0.2334 0.1935

Table 3.12: Calculated B(E2) values (in units of %) for transitions in “Zr.
The upper half of the table shows the calculations made with the isobaric chain
data while, the bottom half shows the results obtained with the isotonic chain
data. A value of eb = 0.09 was used in all the cases.
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3.5 Conclusions:

102=104=10677y. it is observed that there is a clear

After examining the results for
dependence of this method on the available experimental data. All the results
discussed in this chapter for the three nuclei considered show definite differences
depending on whether the isobaric or isotonic chain data are used. It is also
important to highlight the fact that because the IBM depends strongly on the
number of bosons, all the calculations depend on the definition of closed shells,
and therefore the existence of magic numbers in this region of deformation is
assumed. Finally, all the cases show a strong dependence on the Hamiltonian
chosen. For the three isotopes a similar set of four-term Hamiltonians was found
to produce the best results in terms of standard deviation and, in fact, tables 3.4,
3.7 and 3.10 show that there are four Hamiltonians which were selected for all of
the nuclei: 3, 7, 9 and 19. All these Hamiltonians contain the two terms: en, and
/{QX . The first of these is inherent of a vibrator and, the second one is inherent

to a symmetric rotor.

The nuclei of this region are know for having a structure in which the band-
head of the beta-band has an energy lower than the band-head of the gamma-
band. The calculations for 1°2Zr showed that only the results obtained using the
Hamiltonian 7 calculate a beta band which is lower than the gamma band for
both chains (isotonic and isobaric) of data. Therefore this is the best Hamiltonian
for this nucleus. Given that there is no data about non-yrast states of 194-1967y
it is not possible to extent this argument. Even if we assume that the beta band
will be lower than the gamma band for 1947197y the results are still inconclusive.
Only Hamiltonian 3 combined with the isotonic chain gives such a result for *Zr,
while Hamiltonians 2, 19 and 20 combined with the isotonic chain do so in the

case of 1967r.

Therefore, it is important to collect new data in order to refine these calculations
to provide a better interpretation of the nuclear structure of zirconium in the
IBM context. An increased set of data will hopefully contribute to choosing one

Hamiltonian over the others, and will provide a useful tool in order to study the
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changes in the nuclear shape due to the shell configurations, and thus the nuclear

structure.

3.6 Extension to %®Zr

A recent measurement of '%Zr [17] has produced the level scheme shown in fig. 3.8.
In order to compare this new data with the theory, a series of calculations have
been performed. Given the small amount of experimental data available in this
case, calculations are more tricky than for the previous zirconium isotopes con-
sidered. Therefore two different approaches have been tested: On one hand, it
is possible to make an extrapolation of the parameters for a given Hamiltonian,

based on the results for 10210410677

As discussed in the previous section, there
are four Hamiltonians which were selected for all of the zirconium nuclei studied:
3, 7, 9 and 19, therefore these are the only ones considered for '%Zr. Unfor-
tunately, this method is only available for the first three, since the ibm code,
which calculates the energy states for a given set of parameters, only contains
Hamiltonians of the form 3.2. Fig. 3.9 shows the evolution of the parameters of
Hamiltonian 7, as a function of the mass number. The values of the parameter for
102,104,106 7 are shown in black, while the extrapolated values to '°8Zr are shown in
red. The difficulty in extrapolating the parameters to 1%Zr is that we only have
three masses to try to establish a systematic trend. Inputting these parameters
into the programs provides results for both energy levels and transitions. Due to
the lack of experimental data, it is not possible to calculate the values for e, and

x as before, and therefore it has been decided to use the same ones as in the case

of 167,

Alternatively it is possible to use fiti to made a calculation based on the data

available for the zirconium isotopic chain (10%104106,10877;.)

in the same way as
discussed in previous sections. Given the lack of experimental information for
reduced transition probabilities in this chain, it was decided that the values of
e,—0.09 and y—-0.3 would be used, as they were the values obtained for 1%Zr. The

Hamiltonians used were 3, 7, 9 and 19, as in the previous case. Together both
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Figure 3.8: Proposed level scheme of '%®Zr [17].

methods provide seven possible outcomes which have been compared with the
experimental data shown in fig. 3.8 [17]. Based on this comparison, it has been
concluded that the best calculation uses Hamiltonian 7 and the isotopic chain
experimental data. Fig. 3.9 shows these parameters in blue. There is a clear
difference between these coefficients and the extrapolated ones (shown in red).
The difficulty of fitting the parameters by minimizing the standard deviation is
the small amount of data, which for three of the four nuclei in the isotopic chain,
consists only of the low spin energy levels of the ground state band. Therefore
one would expect larger discrepancy between theory and experimental data for

states of higher spin and energy.

Fig. 3.10 shows the results of fitting Hamiltonian 7 to the experimental data
in the isotopic chain. The first two bands in the theoretical level scheme have
been arranged to emulate the experimental data shown in fig. 3.8. These two
bands are extremely similar to the ones obtained with pure SU(3) symmetry.

In fact the calculations provide an almost perfect rotational ground state band
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(black); extrapolated coefficients to 1%Zr (red) and, calculated coefficients for
1087y (blue).

with RiﬁM —3.35, while the experimental data provides a ‘less rotational’ value,
Ria/”g:& Fig. 3.10 also shows a third set of states represented by dotted lines,
which is not a property of a rotational object. Even if it is possible arrange the
energy levels in a way to correspond to the first two bands of the figure with the
ground state and ~ bands, there is no similarity between the third band and the

beta band described in sec. 2.1.3.

The most striking feature of fig. 3.8 is the measurement of an isomeric 6% state
of T1/,=0.536(26) us. Shi etal. at [56] have explained this isomeric state as a two
quasineutron state of high K-value. In an extension of previous configuration-
constrained potential-energy-surface calculations [49], a possible K-isomeric state
of K™=6" and energy of 1.997 MeV is calculated, in good agreement with the
experimental data. Other authors point out the possibility that this state is
an isomer due to a tetrahedral shape [20]. Using the ibmt code and assuming
that this isomeric state is the second 6* state, E2 transition probabilities for

the 6; —8/ and 65 —5] transitions have been calculated and are shown in
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fig. 3.10. Although the value of B(E2:65 —8]) is very small, that is not the case
for the B(E2:65 —57). Using equation 2.13 shown in section 4.3, the calculated
B(E2:65 —57) and the calculated energy difference betwen the 65 level and the
57 level as the energy of the gamma-ray transition between both, a half-life of
2.17 ns has been calculated for the 6 energy state. The transition 6; —8; has
not been taken in account due to its small probability. Although this value does
not agree with the measured half life for the 65 [17], one should consider that the
calculations are base on the level scheme shown in fig. 3.8 which is the only data
published at the present. Recently, other measurements of '°®Zr have taken place
at RIKEN during the experiment NP 0702 RIBF26. The result of this research
will enlighten our knowledge of the structure of °®Zr and provide a new test of

the calculations presented in this chapter.
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Chapter 4

Experimental Method

This chapter is structured in three parts: Section 4.1 explains the IGISOL III
facility, where the zirconium isotopes are planned to be measured; section 4.2
explains why it is possible to perform this research using the IGISOL facility;
finally, section 4.3 explains the post-trap on line spectroscopy technique, that
will be used in the forthcoming attempts to measure zirconium at IGISOL IV,

and presents the results of using this method in the case of **Mo.

The zirconium isotope of interest for the present work is '°2Zr. Levels in '°?Zr have
been studied subsequent to the beta decay of °2Y [21, 57, 58|, uranium induced
fission [16, 59| and spontaneous fission of californium [60, 61|. The beta decay
studies have been complicated because of the existence of two decaying states
with very similar half lives in 'Y: a low spin state (T;,2=0.30(1) s) [57] and
a high spin one (T;/,=0.36(3) s) [58]. Therefore, a method able to distinguish
between the decay of the two states is needed. A new technique to separate
different states of nuclei has recently been developed [23], at the IGISOL facility
of the University of Jyviskyld. This now has been extended and applied for the
first time with gamma spectroscopy, in a proof of principle experiment for the
well known decay of the two states of 'Nb into “Mo [18]. It is proposed that
further experiments will produce a beam of a single state of °2Y, in a similar way

to the one used to produce the two separate states of the 1°°Nb, so the separate
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measurement of the different decay paths will be possible.

4.1 IGISOL III

\
Figure 4.1: Layout of the IGISOL facility. The following parts are numbered:1)
target chamber, 2) primary beam line, 3) beam dump, 4) extraction chamber,
5) dipole magnet, 6) beam switchyard, 7) RFQ cooler and buncher, 8) Penning
traps, 9) four-way quadrupole deflector, 10) beam line to collinear laser set-up,
and 11) detector set-up location (adapted from [62]).

The nuclei of interest are produced at the Ion Guide Isotope Separator On-Line
(IGISOL III) facility at the University of Jyviskyld, Finland [63]. Fig. 4.1 shows
a layout of the facility. A proton primary beam is produced in an ion source and
accelerated by the K-130 cyclotron. Protons are impinged, through the primary
beam line (labelled as 2 in fig. 4.1) on a thin target (1 in the figure) producing a fis-
sion reaction. Fission products recoiling from the target are thermalised, stopped
and converted into 11 ions by a helium buffer gas. Following extraction from the
gas cell, ions are transported through a radiofrequency sextupole device (SPIG)

[64] (situated between the target and the extraction chambers) to the extraction
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chamber (labelled as 4 in fig. 4.1). From the extraction chamber, the secondary
beam is subjected to a first mass selection inside the dipole magnet (5), before
it enters the swichyard (6), to be transferred into the ion beam cooler-buncher
(RFQ) (labelled as 7 in fig. 4.1) [65] . Inside the RFQ, ions are thermalised,
bunched and injected into the JYFL double Penning trap (8 in the figure) [66].
Here, the mass of the ions is selected using Ramseys technique [67], which allows
the selection of the mass by selecting the frequency of the radiofrequency fields.
After the JYFLTRAP, several detection set ups are possible (11).

4.1.1 Principle of the ion guide method

MAIN

Bean LNg EXTRACTOR CHAMBER TARGET CHAMBER
GROUND EXTRACTOR
ELECTRODE ELECTRODE FISSION ION GUIDE

plasma screen

—

fission fragments

primary beam
from cyclotron

ov +20 kV +30kV

Figure 4.2: Fission ion guide and extraction system (SPIG + extraction electrode)
68].

Fig. 4.2 shows the fission ion guide placed in the target chamber alongside the
SPIG and the extraction electrode. The primary beam enters the ion guide by
the havar beam window. Radioactive nuclei are produced in a fission reaction
and recoil out of the thin production target. The fact that the fission products
are produced with an almost isotropic spatial distribution, makes it possible to
separate them from the incident primary beam. Some of them travel through the
plasma screen and are stopped in a helium-filled chamber, where they lose kinetic
energy by collisions with the gas (thermalization). Thereupon, the products are

transported, due to the gas flow, out of the gas cell. This same gas flow is
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responsible for guiding the ions, through the radio frequency sextupole, SPIG,
into the beam line of the mass separator [64]. After the SPIG, the ions are guided
through the extraction electrode into the secondary beam line. Although some
buffer gas is always going into the SPIG with the produced ions, the diffusion oil

pumps drain the helium out.

4.1.2 JYFLTRAP

In addition to the ion guide, the most important component of the IGISOL is the
JYFLTRAP [66]. It consists of a radiofrequency quadrupole cooler and two Pen-
ning traps (labelled as 7 and 8 respectively on fig. 4.1) inside a superconducting
solenoid [23].

4.1.3 Ion beam cooler

Prior to entering the RFQ-cooler, the kinetic energy of the ions in the beam
is reduced from 30 keV to about 100 eV. The RFQ-cooler is an ion trap which
confines the ions using only electric fields, following the principle of a segmented
linear Paul trap [69]. The device is filled with helium gas (0.01-0.1 mbar) so the
ions entering the cooler are thermalized. The combination of the buffer gas with
the quadrupole field has the effect of cooling and centering the ions, which are
accumulated around the trap axis, directed to the exit of the RFQ-cooler [65] and

extracted as bunches.

4.1.4 Penning Trap system

In the JYFLTRAP, two Penning traps are used. The first Penning trap, the
purification trap, is used for isobaric cleaning and the second Penning trap, the
precision trap, is used for isomeric cleaning and high precision mass measurements
[23]. The main difference between the two traps is that the purification trap is

filled with a buffer gas (helium) while the precision trap is situated in ultra-high
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vacuum (<10~ mbar). Further information on the effect of the buffer gas can be

founded in reference [69].

Fig. 4.3 represents the motion of a charged particle in a Penning Trap. A magnetic
field confines the particles in the radial direction (p), while the axial direction (z)
confinement is executed by an electrostatic quadrupole field. The motion of the
ions inside the trap is a combination of an axial motion, which constitutes an
oscillation around the trap centre, and a radial motion, which can be expressed
as a sum of two independent eigenmotions: the magnetron motion with frequency
w; and the reduced cyclotron motion with frequency w_ [66]. Both eigenmotions
are circular in the plane perpendicular to the magnetic field (which is equal to
the trap axis). Since the cyclotron frequency given by w. = ¢B/m (where q is the
charge of the ion, m is its mass and B is the external magnetic field) can be written
as the sum of both frequencies w, and w_, determining the frequency ratio of
two ions, one of interest and one of calibration, will allow the measurement of the

mass of the first one.

Ion motion can be manipulated by applying azimutal multipole RF fields. A

magnetron
motion

cyclotron
motion

Figure 4.3: The orbit of an ion inside the Penning Trap. The dashed line repre-
sents the magnetron component of the motion. The movement produced by the
sum of the axial oscillation about the radial plane plus the magnetron compo-
nent is represented by the solid line. Adding the cyclotron motion to the sum,
the total motion of the ion is obtained. The whole movement can be visualized
as a cyclotron oscillation about the solid line. (Taken from [70])
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dipole field can be used to remove one (or all) of the ion species from the centre
of the trap. A quadrupole field can be used to excite the ion motions at sums
or differences of the frequencies w, and w_ and to convert one motion into the
other [71]. Since the quadrupole excitation of the cyclotron frequency is strongly
mass dependent, it is possible to centre a single ion species and extract it through
a small window situated in the central axis of the trap. Also, in the last years,
the Ramsey technique [67], which excites the ions with time-separated oscilla-
tory fields, has been introduced to the JYFLTRAP [23]. This has been used to
produced isomerically pure beams with mass resolving power greater than 105
[23].

4.2 Measuring zirconium with the IGISOL:
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Figure 4.4: A theoretical comparison between the production cross section for
proton and deuteron-induced fission for Yttrium isotopes [72].

The first attempt to measure 19271067y at IGISOL III was made in November
2009. Previously to this experiment, the possible rates of production for 1°0-1047y

were estimated using a series of calculations by V. A. Rubchenya [72] and yield
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measurements of masses A=100, 102, 104.

Fig. 4.4 shows the results of such a calculation for the relative population of Yt-
trium isotopes. For isotopes with mass number grater than 98, the theoretical
predictions indicate an expected increase in the cross section of the fission produc-
tion, using deuteron-induced fission rather than proton-induced fission. However,
the measurements, of the relative production of °=1%1Zr using 30 MeV proton
and 25 MeV deuteron-induced fission, did not show relevant difference. In the
case of the proton beam, the ratio of the intensities of the 2+ — 07 transitions is
1:0.129:0.007 for A—100, 102, 104 respectively; for deuterons, it is 1:0.104:0.005.
Fig. 4.5 shows the spectra collected, after the switchyard, during the yield mea-
surements with the proton beam. The 27 — 07 gamma-ray transition energies
in 100-1047r are 212.5, 151.7 and 139.9 keV. The beam current was 5uA and the
rate of emitted 2+ — 07 gamma-rays in *2Zr was 600 per second. The diagram

shows a clear need for the high resolution cleaning of the Penning trap.
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Figure 4.5: Gamma-ray spectra yield measurements for A=100, 102, 104 at
IGISOL III [73].
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The experimental time to measure 92147y was scheduled at the IGISOL III
in November 2009 and February 2010. Unfortunately it was not possible to
extract useful intensities of yttrium beam in either experiment. The problem was
not discovered until later when, during the transfer of the IGISOL to the new
experimental hall, an oil leak in the IGISOL roots blower system was discovered.
This caused contamination of the beam line with oil, leading to poisoning of
the radioactive species. As yttrium is a highly chemically reactive element, the
extraction of yttrium beams with enough intensity to perform the experiment was
impossible. In those circumstances, a proof of principle experiment was executed
instead. Such an experiment tested the possibility of combining the JYFLTRAP
isomer cleaning technique with gamma-spectroscopy, and is explained in detail in

the following section.

4.3 Trap-assisted gamma-ray spectroscopy. The

100NV case

Low-lying levels in °“Mo are known to be populated by beta decay from ground
(J™ = 17) and isomeric (J* = 5T) states in '°Nb. Fig. 4.6 shows the decay
scheme of Nb into Mo and contains only the gamma rays measured during
this experiment. The [-feeding from both parent states is also indicated. The
small energy difference between the two parent states of 313(23) keV [74] and
the similarity of their half lives (1.5(2)s [37| for the ground state and 3.0(1)s
[75] for the isomer) make it difficult to distinguish experimentally between the
two decay paths. Therefore, a technique able to separate the different states of
190Nb is needed and, thus, constitutes an ideal case to test the online post-trap

spectroscopy method.

The °Nb nuclei were produced at the IGISOL via proton induced fission. The
proton beam was accelerated to 30 MeV in the K-130 cyclotron and impinged
on a Uranium target of effective thickness 123 mg/cm?. Section 4.1 explains

how fission products recoiling from the target were transported out to the gas
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Figure 4.6: A schematic of the beta decay of "’ Nb isomeric and ground states
into levels in ““Mo. Levels with 3-feeding lower than 3% are represented by
dotted lines. Spins and energies of the levels are taken from [37].

cell, through the SPIG, to the JYFLTRAP. Fig. 4.7 shows one of the mass-scans
performed with the second Penning trap in order to determine the frequency
needed to select ions of ®“Nb in the ground state and in the isomeric state. In
this case, the "°Nb ground state is expected at a frequency of 1075395 Hz, and
the 1Nb isomeric state at 1075391 Hz. The Nb and Nb* labels indicate the
frequencies at which these masses are expected with the small energy difference
(313 keV) corresponding to a separation in the frequency of 3.6 Hz. The A=100
Mo peak is expected a further 74 Hz away but due to the timing pattern used
in the Ramsey technique, peaks are repeated every 16 Hz [23]. The Mo peak
observed in fig. 4.7 is therefore the fourth ‘repeat’ peak, expected 10 Hz from
the Nb peak. The spectrum shows a clear separation between '“’Nb and Mo
but also, the close proximity of both states in Nb, which makes the experiment
difficult. Many frequency scans in the precision trap were performed in order to

ascertain the frequency to optimize the extraction of a purified ion sample.
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Figure 4.7: The number of transmited ions, in arbitrary units, as a function
of dipole frequency in the precision trap. The dotted straight lines show the
frequency where nuclei in the ground state (1075395 Hz) and in the isomeric
state (1075391.4 Hz) were expected.

The beam exits the JYFLTRAP and is implanted in an aluminium stopper. Since
the ions travel down the pipe with very small kinetic energy, they can be stopped
in a deposition point. Two separate measurements were performed. One, at
1075395 Hz, where the ions were implanted during 3 s and, allowed to decay for
an other 3 s before the reopening of the trap. The other measurement, at 1075391

Hz, was set up with a cycle of 6 s implantation/ 6 s decay.

A 37 cylindrical beta detector and three germanium detectors (two clover de-
tectors at 90° and 270°, and one LOAX at 180°) were placed surrounding the

deposition point. The beta detector was a 2 mm thick plastic scintillator.

4.3.1 Gamma-ray spectroscopy

The gamma-ray detectors were energy calibrated using two different sources, each

one placed at the deposition point for ten minutes. One source was a mixture of
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133Ba and »?Eu. The other was composed of 2! Am, 39Ce, ®°Co. With these two

specimens an energy range from 59 keV to 1408 keV was covered.
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Figure 4.8: The absolute efficiency of a)the clover detector and, b) the Loax
detector. The efficiency was calculated using the **Ba and »?Eu source and
including add-back.The lines show the result of the efficiency fitting performed
with the RADWARE package, as it is explained in the text.

Efficiency curves were obtained from the !3*Ba and '®>Eu source. The position
and size of the peaks were processed using the RADWARE package to obtain the

absolute efficiency. The efficiency data was fitted to the following expression:

Eff = exp|[((A+ Bz + C2*)"C 4+ (D + Ex + Fa?)~¢))~1/] (4.1)

where x = In(E,/100keV) and y = In(E,/1MeV). Fig. 4.8 shows the abso-
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lute efficiency curves, for the clover and loax detectors. Both clover and loax

efficiencies have a maximum around an energy of 100 keV.

The 37 beta-detector efficiency was provided by the IGISOL team, from the
University of Jyviskyla, and is about ~ 70% efficient.

4.3.2 Analysis procedure and results

SHiiee (_— Clover
A B Source w
® ¢
D C L Imaginary line
Front Side view

Figure 4.9: .

The relative position of the source with respect to the clover detector. The
gamma-ray source is situated perpendicular to the front of the detector
(represented on the right side of the figure). The distribution of germanium
crystals within a clover detector is shown on the left side of the figure.

The trigger for the data acquisition was either a beta-gamma coincidence or a
gamma-gamma coincidence event. Energies from beta and/or gamma decays were
recorded in a event-by-event basis for further off-line analysis by two different si-
multaneous systems; an analog system, MIDAS (Multi Instance Data Acquisition

System), and a digital one DAS (Digital Acquisition System).

Each germanium clover detector is composed of four germanium crystals (labelled
A, B, C and D) as shown in fig. 4.9. The spatial distribution of the crystals
within the clover detectors is shown in fig. 4.9 (left side) as well as the position

of the source relative to the detector. Table 4.1 shows the number of single
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(only one crystal fired), double (two crystals fired), triple (three crystals fired)
and quadruple hits (four crystals fired) for each germanium detector obtained
with the ?3Ba and '%?Eu source. Fig. 4.10 shows that horizontal (A+B, D+C)
and vertical (A+D, B+C) events are more likely to occur than diagonal ones
(A+C, D+C). This can be explained due to the bigger grater contact area in the
first case, leading to the conclusion that double hits are essentially constituted
by gamma-rays scattered between the crystals. Therefore add back has been
performed. The energy of the photons belonging to these multiple hits has been
added to obtain the original energy of the gamma ray emitted from the deposition
point. The percentage of double hits is 6.6% for one of the clover detectors and
9.1% for the other, so the add back had a relevant effect in the improvement of

the gamma spectra efficiency.

Clover 1 Clover 2
Number of counts % | Number of counts %
Singles 6090440 92.7 6161092 90.1
Doubles 436588 6.6 623042 9.1
Triples 43092 0.6 50965 0.7
Quadruples 2163 0.03 2413 0.03

Table 4.1: Measured proportion of single, double, triple and quadruple hits in
each germanium detector obtained with the 33Ba and %2Eu source.

During the experiment, two sets of data were measured; one at a trap frequency
of 1075395 Hz and the other at 1075391 Hz, where ground and isomeric states
of 1Nb respectively are expected to be selected. Fig. 4.11 shows a segment of
the measured spectra for trap frequencies of 1075391 Hz and 1075395 Hz. A key
signature of the parent state nature is the ratio between the 47 — 2 (600.5(1)
keV) and the 27 — 0 (535.7(1) keV) transition intensities in the daughter nu-
cleus. This ratio is known to be 73(6)% from the isomer decay [74| and 1.2(1)%
from the ground state [75]. The reason for this behaviour, is that the (J™ = 47)
energy level, which decays via the 600.5 keV gamma ray, is strongly populated
by the J* = 57 1%Nb isomer, but not by the J* = 1% Nb ground state. A

similar case is the 461.1 keV gamma ray, whose level of origin is not fed by the
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ground state at all. Another significant difference between the two spectra is
the change in relative the intensities of the 535.7 keV 27 — 0], and 159.1 keV
07 — 2] transitions, also due to the different feeding patterns from the isomeric

and ground states in 1°°Nb.

In order to establish which parent state contributes to the creation of each of the
measured spectra, measured gamma-ray intensities have been compared to the
characteristic gamma rays of Mo from ““Nb ground-state [37] and isomeric
state decay [76]. This is shown in table 4.2 where the first column lists energies
of gamma-rays observed in this work and, the second and third columns show
respectively, the measured intensities for each transition from previous studies [37]
[76]. The two following columns lists the intensities of the gamma-rays obtained
in this experiment, for the frequencies 1075391 Hz and 1075395 Hz normalized
for the 535.7 keV transition. Finally, the last column list the calculated isomeric

state intensities using the data presented in columns 4 and 5.

Branching ratios have also been calculated, for those cases in which it was possi-
ble, and compared to known values [37] [76]. The results are given in table 4.3.

This table shows, in column order, from left to right, the energy level of origin

of the gamma raye the ocamma_rav enorov and the hranchine ratine rg]lculated in

150000 — —

Number of hits

:
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Combination of crystals

Figure 4.10: Double hits represented as a function of the crystals which have fired
for one of the germanium detectors using the ¥3Ba and *?Eu source .
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E, Ground state Isomeric state | 1075395 Hz 1075391 Hz Calculated
Isomeric state

(keV) L, (%) [37] L, (%) [76] L, (%) L, (%) L, (%)
159.5 (1) 19.3 (11) 3.8 (5) 29 (2) 14 (1) 0(3)
440.9 (1) 2.3 (1) 1.9 (2)
461.1 (2) 8.2 (5) 4.2 (8) 8(2)
528.3 (2) 19.9 (4) 10 (1) 21 (2) 14 (1) 7(3)
535.7 (1) 100.0 (2) 100 100 (8) 100 (5) 99 (16)
543.5 (1) 0.9 (1) 5.5 (8) 2.6 (5) 5.2 (9)
573.6 (2) 0.6 (1) 0.9 (1)
600.5 (1) 1.2 (1) 73 (6) 0.8 (1) 37.4 (31) 74 (8)
622.5 (2) 3.3 (7) 3.7 (4)
768.7 (1) 7.4 (7) 5.2 (5) 8.1 (6) 5 (1) 1(2)
792.8 (2) 4.2 (6) 1.7 (4) 3.3 (7)
928.3 (1) 5.5 (2) 3.7 (4) 7.3 (6) 5.3 (6) 3 (1)
952.5 (3) 4.9 (6) 2.1 (4) 4.2( 8)
967.0 (2) 17 (2) 11 (1) 22 (3)
969.1 (1) 5.7 (7) 5.6 (5)
1022.5 (3) 10.7 (13) 12 (1) 4.0 (6) -4.4 (16)*
1063.7 (1) 7.2 (4) 4.4 (9) 8.9 (7) 8 (1) 7(2)
1071.7 (2) 1.1 (2) 3.8 (7) 0.9 (1) 1.8 (3) 2.6 (7)
1246.4 (3) 2.7 (4) 2.9 (7) 6 (1)
1257.0 (6) 2.0 (2) 2.1 (3)
1280.3 (2) 24 (3) 11 (1) 22 (3)
1441.5 (2) 0.6 (1) 1.2 (2)
1501.9 (1) 9.6 (7) 13 (1) 6 (1) -1(2)°
1516.8 (3) 4.0 (6) 1.6 (4) 3.2 (9)
1550.5 (3) 1.5 (2) 2.3 (2)
1567.4 (3) 6.0 (9) 3.3 (6) 7(1)
1653.9 (2) 2.7 (2) 3.0 (4)
2434.6 (5) 3.0 (2) 3.3 (5)

* A negative intensity is clearly non physical and will be discussed in the text.

Table 4.2: Gamma-ray energies and intensities for transitions in *®Mo. Columns 2 and
3 list the intensities previously measured following the beta decay of the ground [37]
and isomeric |[76] states in ' Nb. Columns 4 and 5 list the intensities measured with
Penning trap frequencies of 1075395 Hz and 1075391 Hz respectively. Column 6 lists
the isomer state intensities calculated using the results of this experiment (columns 4

and 5).
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Figure 4.11: The beta-gated gamma-ray spectra measured at frequencies of
1075391 Hz (measured during 3 h and 12 min) and 1075395 Hz (measured during
10 h and 19 min). The upper plot, 1075391 Hz, contains 461.1 keV and 600.5 keV
peaks which are missing in the lower plot. There is also a notable difference in
the relative intensities of the 159.5 keV and 535.7 keV peaks in the two spectra.

the case of: the ground state [37], the isomeric state [76], the 1075395 Hz data file
and the 1075391 Hz data file. All the branching ratios obtained in this experiment
are in agreement, within two standard deviations, with those calculated from pre-
vious studies [37] [76], except in one case. As one can infer from table 4.3, the
branching ratio for the 1607 keV level (543.5(1) and 1071.7(2) keV transitions) is
not consistent between the two measurements [37] [76]. Although the measured
branching ratio for the 1607 keV level agrees with Suhonen’s measurement |76],

it has been removed from further calculations.

The percentage of each parent state at each frequency can be calculated using
the assumption that the measured intensity for each frequency must be a linear
combination of ground and isomeric states. Expressing this idea through an

equation:
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where the subscript i labels each gamma-ray, I{ is the known intensity of the i
gamma-ray from the ground state decay and I! is the known intensity of the i’
gamma-ray from the isomer state decay. In addition, since a-+b=1, it is possible
to express the measured intensity of each measured gamma-ray as a function of
one parameter a; and, therefore, a weighted mean value of a can be calculated

using the following equations:

Level E, Ground state Isomeric state | 1075395 Hz 1075391 Hz
(keV) (keV) [37] [76]
1064 | 528.3 (2) 100 (2) 100 (12) 100 (5) 100 (8)
1063.7 (1) 36 (2) 42 (10) 42 (4) 57 (10)
1464 | 768.7 (1) 100 (9) 100 (10) 100 (8) 100 (22)
928.3 (1) 73 (7) 71 (10) 91 (10) 115 (29)
1505 | 969.1 (1) 100 (12) 100 (8)
440.9 (1) 41 (5) 34 (5)
1607 | 543.5 (1) 100 (8) 100 (14) 100 (17)
1071.7 (2) 117 (21) 69 (16) 69 (2)
2037 | 151.9 (1) 100 () 100 ()
573.6 (2) 6 (1) 7(1)
2086 | 1022.5 (3) 100 () 100 ()
1550.5 (3) 14 (2) 18 (3)
622.5 (2) 31 (7) 30 (4)
2103 | 967.0 (2) 100 (11) 100 (11)
1567.4 (3) 35 (6) 30 (6)
2416 | 1280.3 (2) 100 (11) 100 (11)
952.5 (3) 21 (3) 19 (4)
2564 | 461.1 (2) 100 (6) 100 (19)
792.8 (2) 51 (8) 40 (12)

Table 4.3: Branching ratios, in increasing order of level energy, observed in decay
from the ground state [37], the isomer |76] and for the data collected at frequencies
of 1075395 Hz and 1075391 Hz respectively.

65



sz‘ai
dowi

a =

(4.3)

where the individual weights, w;, are calculated from the errors, Aa;, for each

coefficient a;:

e (LY »

and the weighted error of a is given by:

Aa = 1 (4.5)

V2w

This calculation gives the following results: at a frequency of 1075395 Hz the
10ONb ground state was successfully separated, with a purity of about 100%; at
a frequency of 1075391 Hz, a mixture between the two states was measured with

isomeric state proportion of about 50% (a = 0.50(2)).

Using the value @ = 0.50(2) the intensities of the gamma rays populated in the
decay of the isomeric state of '“”’Nb can be obtained. The results of such a
calculation are listed in the sixth column of table 4.2 and should be compared
with those in column three. 79% of the intensities listed in column six agree
within one standard deviation with those in columns three and four, 95% agree
within two standard deviations and 100% agree within three standard deviations.
The last case (1022.5 keV) with a calculated intensity of —4.4(16) constitutes a
problematic interpretation from the physical point of view, since it is a negative
intensity even within 20. Nonetheless, this could be interpreted from the point
of view of the statistical nature of experimental data [77] which says that, for a

normal distribution, the true value has ~ 68% probability of being within one
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standard deviation of the measured value, ~ 95% of being within two standard
deviations and ~ 99.7% of being within three standard deviations. Therefore,
the calculated intensities are consistent with those presented in the literature,
although the high errors obtained for these calculated intensities highlight the

need to improve the separation technique in order to increase its precision.

700 I T T I T T

Implantation, I, Decay
1 r 1
|

1075395 Hz

3
o
LA LI LA L (L NI B

" ™

gg 0 1000 2000 3000
o
O

}

Time (ms)

N
(o]
Q
o

=
a
(@]
o

LA B R B B

1075395 Hz

3
|

A | (R )
1000 1500

o
n
O K
o

Energy (keV)

Figure 4.12: Above: The time of the gamma-ray emission relative to trap opening,
for the 1075395 Hz data file, showing part of the implantation time as well as the
decay time. Below: The gamma-ray spectrum corresponding to the above time
spectrum. The dashed lines show how a gate can be set on one of the energy
peaks to obtain the time spectra relevant to that peak.

Is also possible to measure the half-life of each state. As stated at the beginning
of this section, ions were implanted during 3 s and allowed to decay for another 3
s at the 1075395 Hz frequency; the same procedure in cycles of 6 s implantation/
6 s decay was used in the case of 1075391 Hz. The data collected using the Digital
Acquisition System (DAS) was used for this analysis and sorted into time versus

gamma-ray energy matrix. Figure 4.12 shows the projection of this matrix in
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the case of a frequency of 1075395 Hz . The top spectrum shows the number of
counts relative to the time and shows part of the implantation time as well as
the decay time. The spectrum on the bottom of fig. 4.12 represents the recorded

gamma-ray energies.

Setting a gate on a gamma-ray peak, as indicated by the dashed lines in the lower
diagram of Figure 4.12, allows a background subtracted time spectrum for that
peak to be obtained. This time spectrum can be used to calculate the half-life
of the state selected at each frequency. Due to the small statistics the final data
needed to be rebinned in order to minimize the spectra fluctuations, and was

fitted to the exponential law of radioactive decay:

N(t) = Nye™™. (4.6)

In the case of the data collected at 1075395 Hz, time spectra obtained by gating
on the peaks: 159.5(1), 535.7(1) and 1022.5(3) keV have been added together.
The final spectrum was rebinned by 100, 200 and 300 and fitted to de equation
4.6. The half-life obtained, by performing a weighted mean of the three sets, is
T1P7%*% = 1.40(2) s. This result is close to the expected 1.5(2) s [37] reported
in previous studies and is consistent with the hypothesis of 100% °°Nb ground

state data.

The 1075391.4 Hz time spectrum was made by adding the individual time spectra
obtained by gating on the peaks: 535.7(1), 600.5(1) and 1022.5 (3) keV rebinned
by 300, 500 and 700. In this case, the analysis of the intensities, discussed above,
indicates that the decay should comprise 50%-50% of the ground and isomeric
states. So it is logical to expect the half-life fit to have two components. The

radioactive decay law for this particular case is:

N(t) = Nie™Mt 4 Nye ! (4.7)
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Figure 4.13: Below: the time profile of 159.5(1), 535.7(1) and 1022.5(3) keV
gamma rays measured at a frequency of 1075395 Hz . Above: the time profile
of 535.7(1), 600.5(1) and 1022.5 (3) keV gamma rays measured at a frequency of
1075391.4 Hz. The solid line shows the results of a constrained fit to the expo-

nential decay law, performed assuming equal initial populations of both states of
10Nb and known half-lives (1.5(2) s [37] and 3.0(1)s [75]).

where the subscripts 1 and 2 refer to the ground and isomeric states of °“Nb.
However, the low statistics in this case made it impossible to separate the two
components, and the best possible fit calculated one exponential function with a
resulting half-life dominated by the isomeric state (777" = 2.7(1), x*=2.76 ).
Constraining the fit, such that the value of the decay constants relates to half-
lives of 1.5 and 3.0 s and that the initial populations of both parent states are
equal, gives a reduced y?—3.02. Fig 4.13 shows the fit of the to the radioactive
decay law. The lower graph shows the fit for the spectra collected at 1075395
Hz. The upper picture represents the constrained fitting for the 1075391 Hz case,

showing that the data is consistent with the results obtained in the calculation
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of the percentages of the parent state population previously explained.
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Chapter 5

IGISOL 1V

The upgrade from IGISOL III to IGISOL IV started with the acquisition of the
MCC30 light ion cyclotron. The previous facility was moved to a new building
adjacent to the existing one, which was constructed in order to house the new
accelerator and IGISOL IV. As a consequence, a new layout was designed to adapt
the IGISOL to the new experimental hall and to include several improvements

which will be discussed in this section.

The MCC30 light ion cyclotron provides proton (30 MeV, 100 pA) and deuteron
(15 MeV, 50 pA) beams and is capable of producing two beam simultaneously
[78]. In addition it will be used only by the IGISOL facility and '®F production to
make a compound called FDG, used for PET. The IGISOL will also have access to
the K130 heavy ion cyclotron but, since IGISOL is mainly using light ion induced
fission reactions, the annual beam time of the facility is expected to be increased
up to 4000 hours [79]; and longer experimental runs will also be possible. The use
of neutron converter targets (currently being designed) will enable the creation of
primary neutron beams for neutron induced fission reactions. The combination of
proton, deuteron and neutron beams with several actinide targets and optimized

gas cells will expand the limits of the production of neutron-rich nuclei beyond
the limits of IGISOL III.

Since no significant modifications have been made to the IGISOL front-end, the
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Figure 5.1: A 3D sketch of the new hall where the main components of IGISOL
IV have been labelled. The green arrows indicate the access of the pulsed lasers
to the target chamber from the FURIOS cabin and of the collinear laser to the
RFQ from the collinear laser hut [68|.

upgrade of the layout does not affect the efficiency of the IGISOL technique.
Fig. 5.1 represents a 3D sketch of the new experimental area. Beam lines of access
from both accelerators are shown inside the IGISOL cave. A beam switching
magnet provides access to the primary beam from the MCC30 cyclotron, which
is situated behind the cave back wall. The two green arrows, from the FURIOS
laser cabin (situated above the cave) to the target cave, show the laser paths for
the LIS (laser ion source)and LIST (laser ion source trap) methods [80]. The
access of the laser light to the IGISOL front-end has been considerably improved
by the new outline. In the new design a 15° bender, situated after the extraction
chamber, gives direct access of the laser light to the SPIG [64]. This set-up allows

high selectivity RIB (radioactive ion beam) production through a novel technique
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in which laser ionization is performed within the expanding gas jet immediately

following the gas cell [81].

Following the beam line beyond the target chamber the next important change
is the existence of a vertical line as shown in fig. 5.1. A 90 ° degree bender can be
used to get off-line beam into the main beam line from an off-line source situated
upstairs. A series of off-line sources (e.g. discharge source, alpha-decay recoil
source, carbon cluster source) are commonly used to tune the beam line and
for mass measurement calibrations [82], as will be explained in section 5.1. The
IGISOL beam line often needs to be tested between experiments so the vertical
line provides a way to avoid the high radiation levels in the cave. After the 90°
degree bender the line continues into the switchyard, through the mass selecting
dipole magnet. The new switchyard has been designed in order to switch between
three different lines: the main beam line, a permanent monitoring station and, a
third line for spectroscopy experiments [79]. Fig. 5.1 shows how the main beam
line continues to the Radiofrequency cooler and buncher (RFQ) [65] and, from
there to the JYFLTRAP [66]. Given that the RF(Q is exactly the same as before,
a similar performance is expected. The JYFLTRAP is also the same one but,
as a consequence of the increased space after the trap, bigger and more complex
detector setups can be built to perform trap-assisted measurements. The beam
transfer line from the RFQ to the collinear laser spectroscopy hut is indicated
by an arrow in fig. 5.1. In the new configuration, this line is shorter and, the
visibility to the optical axis of the RFQ improves the optical manipulation of
the ionic ensemble, used to populate metastable states which are subsequently
used in the collinear experiments [83]. Furthermore, the trap and the RFQ are
electrically isolated from each other, which permits the independent operation of

both devices affording more flexibility on operation.

Despite all these changes, there is no expected significant improvement in the
upgrade of the IGISOL facility regarding the '“2Zr measurements. The principal
elements of the old IGISOL (SPIG, cooler-buncher, Penning trap) are the same,
with most of the changes being a matter of layout, and the main improvements
(vertical line for offline sources, optimization of the pulsed laser line, radiation

safety, etc ) not affecting the isomeric cleaning. On the other hand, from laser
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measurements, an improvement by a factor of 5/3 in the fission yield have been
observed. This might be due to better extraction optics in the front end (IGISOL
IV has two extractor electrodes where, in the past, there was only one, and the
apertures of the electrodes have been opened up so it may have less losses in

transmission to the mass separator).

5.1 First beamline tests at IGISOL IV

From the target chamber \

To the collinear
laser hut.

Figure 5.2: The placement of the Faraday cups, fluorescence panels and silicon
detectors used in the first test of the IGISOL IV beam line. Faraday cups are
placed at positions 1 to 5. Fluorescence panels were also situated in spots 2 to 5.
Finally, 3 silicon detectors were used at 2, 3 and 5.

The first tests of IGISOL IV were performed in February 2012 and measured the
performance of the facility from the target chamber to the switchyard. At that

moment, the vacuum level in the beam line was 107° mbar and the gas lines
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were not completed. Therefore, the tests were performed by injecting the buffer

gas into the ion guide directly from a gas bottle.

Originally, a spark source placed at the ion guide site was used to create an ionic
beam. A spark source is a method used to produce ions from a solid sample.
The prepared solid sample is vaporized and partially ionized by an intermittent
discharge or spark. In this particular case, within the gas cell, an electrical pulse
(spark) between two copper electrodes is used to vaporize and ionize surface
atoms. These ions are stopped in the gas cell which contains the electrodes and
are then extracted by the gas flow and are guided through the radio frequency
sextupole into the beam line of the mass separator (see section 4.1.1). The pro-
duced current was used to tune the beam settings and give an initial estimation
of the performance of the beamline. Fig. 5.2 shows the positions along the beam
line in which a series of fluorescence panels and Faraday Cups were placed in or-
der to measure the current and shape of the stable ion beam. This set up allowed
the tuning of the focusing and directional elements of the facility in different
stages, facilitating the optimization of its current and intensity. The results were
similar to the ones obtained for IGISOL III. About 400 nA were measured after
the SPIG (position labelled as 1 in fig. 5.2) and 100 nA in the beam line about
32 c¢m after the switchyard (5 in fig. 5.2). It is convenient to remark that these
numbers should not be taken as an estimation of the transmission efficiency since

the Faraday Cups used have different sizes.

Following the discharge source test, an alpha recoil source was used to study the
efficiency of the IGISOL, which is the main performance criterion of the facility.
In order to detect the ions, the Faraday cups were replaced by silicon detectors

in the locations tagged as 2,3 and 5 in fig. 5.2.

The ?*Ra a-decay recoil source used for these measurements was made using a
22T Ac¢ source by the method described in [84]. The efficiency was recorded by
measuring the alpha-particles emitted by the first daughter in the decay chain,
29Rn, using a silicon detector. Fig. 5.3 shows the 22?Ac decay chain, where the

nuclei of interest are highlighted.
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Figure 5.3: The 22" Ac decay chain.

For the purpose of measuring the efficiency of the beam line, the ?**Ra alpha-
decay needle tip source was placed in an ion guide installed within the target
chamber in a transverse position with respect to the extraction axis of the ion
guide. A silicon detector used to measure the recoils from the a source, was
located after the switchyard (position 5 in fig. 5.2). The signal from the detector
was amplified and manipulated by a computer program so that the rate of a-
particles from 2'Rn with energy 6819.1(3) keV were the only ones used to perform
the efficiency measurements. Fig. 5.4 shows the relative transmission efficiency
as function of the He pressure with different voltage settings for the SPIG and
different distances between the repeller and the ion guide exit hole. All the tuning
elements along the beam line were also used in order to maximize the measured
yield. The behaviour of the efficiency, shown in fig. 5.4, can be explained by the
change of the gas flow field caused by the transverse position of the alpha source
with respect to the beam line [84]. The best efficiency is obtained in case b), at
a He pressure of 38 mbar, distance between the repeller and the exit hole of the
ion guide is 12(1) mm and the SPIG voltages are optimized for such a distance.
Fig. 5.5 was taken from [84], and shows the first results obtained for a previous
SPIG in comparison with ones for the skimmer at IGISOL II. Is possible to see
that the results in the case of a broken axial symmetry shown in fig. 5.5 a) are in

good agreement with the ones presented in fig. 5.4; while in the case of full axial
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Figure 5.4: The relative efficiency, measured using the alpha recoil source, as a
function of He pressure. The three graphs show the response obtained with the
transverse « recoil source a)Initial SPIG voltage settings [64]. Distance between
the repeller and the exit hole of the ion guide d=12(1) mm; b)Optimized voltage
settings, d=12(1) mm; c¢) Same voltages as in b), d=5(1) mm.

symmetry, fig. 5.5 b), there is a smoother pattern, with no secondary maxima.
The measurements reported in [84] were obtained for a different chamber with
different volume, shape, distances and voltages. Therefore, the change in the
position of the maxima and the relative efficiency, as well as the different pressure
range are not unexpected. No simulations have been done to study the influence
of a source placed in a transverse position over the gas flow inside the ion guide,
but comparing the results in fig. 5.4 and in fig. 5.5 a) it is clear that they show a
similar pattern. In both cases, the efficiency curve shows an absolute maximum,

a deep minimum and a secondary maximum.

The results of the alpha-source experiments gave an overall efficiency of 1% mea-
sured at the silicon detector placed at position 5 in fig. 5.2, and a transport
efficiency of about 50% from the ion guide to the silicon detector situated after

the switchyard.

Finally, the light ion guide was tested on line using the reactions **Ni(p,n)**Cu
and ®*Fe(p,n)®**Co. The measurements of the Cu atoms were performed with the
same silicon detectors. He and Ar gases were separately employed in an attempt
to increase the efficiency. The transport efficiency of the system using He as the

buffer gas was similar to that obtained in the case of the alpha recoil source (50%
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Figure 5.5: Taken from [84]. The efficiency, measured with the alpha recoil source
as a function of He pressure, for different ion guide set-ups at IGISOL II. a) Axial
symmetry broken; b) Full axial symmetry. The acronym HIGISOL means heavy-
ion ion guide isotope separator on-line and is different from the light ion guide
used for the 2012 tests.

transmission efficiency). No significant differences were perceived by replacing
the He with Ar.

5.2 Further experiments:

Between February and August 2012 several improvements were performed at the
facility, such as the construction of the gas feeding lines, new alignments, the
addition of new beam-line tuning elements, etc. The first experiment at IGISOL
IV was scheduled for the last week of August 2012. As a consequence a series of
new tests and fine tuning were carried out to the IGISOL 1V front end. Fig. 5.6
shows a schematic view of the beam line used in these experiments, from the
target chamber to the switchyard, and the spectroscopy set up consisting of one
47 scintillator and two germanium detectors at the deposition point. Fig. 5.6
show the set up used in all the test mentioned in this section so, in the following,

all the descriptions of the set up will refer to different devices shown in this figure.
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Figure 5.6: A schematic view of the IGISOL IV beam line used in the test run
during August 2012.The beam produced in the target chamber (ion guide) is
transported through the SPIG to the mass separator and directed to the dipole
magnet. In the magnet a single mass is selected and injected into the switchyard
through a slit. Several detection devices are placed between the slit and the
deposition point, allowing different kind of measurements depending on the test
realized.

The first study consisted of the testing of the dipole magnet and its mass cali-
bration. For that purpose the discharge source was placed in the target chamber,
inside the ion guide. Also, a small amount of Xe gas was introduced into the ion
guide along with helium. A mixture of stable isotopes of Xe gas, with masses
between 124 and 136 u, was used. The mass separation of the accelerated nuclei
is done using an electrical dipole magnet that splits the trajectory of the ions

according to their mass to charge ratio.

The mass resolution of the magnet, is its ability to distinguish between close
masses and, is defined as the ratio between the full width at half maximum
(FWHM) and the centroid of the peak. The smaller the figure for the resolution

the better the magnet will be able to distinguish between two nuclei with adja-
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Figure 5.7: The resolution of a Xe mass scan with a 3.1 mm slit: a) the current
of the dipole magnet; b) the magnetic field of the dipole magnet; and c), the
measured current at the switchyard Faraday cup (see fig. 5.6), as a function of
the atomic mass. Xenon isotopic abundances are labelled accordingly.

cent masses. Different m/q ratios correspond to different curvature radii in the
magnetic field, so that a beam of desired m/q ratio is selected by a slit located
at the entrance of the switchyard, as can be seen in fig. 5.6. By varying the
magnetic field inside the magnet it is possible to perform a mass scan in order to
see the different masses produced at the ion guide. Fig. 5.7 shows a mass scan
performed for the Xe isotopes using a 3.1 mm slit. In the bottom graph, c), the y
axis shows the current collected at the Faraday cup situated inside the switchyard
(see fig. 5.6) in A per 1.341 s, while the x axis shows the approximate mass unit.
The size of each peak is proportional to the particular Xe isotope abundance and,
the resolution is clearly not enough to separate adjacent masses. Fig. 5.7 a) and

b) show, respectively, the current of the dipole magnet and the magnetic field
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of the dipole magnet as a function of the mass. Both relations are linear and,
assuming that the straight line "magnetic field versus mass" goes though zero,
one can do a calibration with a single known mass. This figure can be compared
with fig. 4.7 which shows the much higher resolution of the double Penning Trap.
The mass scan for molybdenum performed with JYFLTRAP presents a clear sep-
aration between masses with one unit of difference, while fig. 5.7 shows a clear

overlapping between those.
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Figure 5.8: A Cu mass scan for two different slit widths: a) 1.2 mm; b)10.4 mm

Similar to optical spectroscopy, low resolution is achieved using wide slits while
high resolution is attained employing narrow slits. This behaviour is illustrated in
fig. 5.8 which shows two mass scans corresponding to two different slit widths for
0365Cu. Fig. 5.8 a) shows a mass scan for a slit width of 1.2 mm and, presenting a
characteristic triangular peak with a low mass tale while, fig. 5.8 b) used a width

of 10.4 mm and illustrates a lower resolution with a flatter top peak.

The mass resolution of the dipole magnet for different slit widths is shown in

Fig. 5.9 a) calculated for the cases of **Xe and *Xe. For both masses, it is
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possible to see how the resolution increases as the width decreases. However, it
should be emphasized that as the resolution increases the transmission decreases,
as can be seen in fig. 5.9 b); where the transmission is taken as the number of
counts in 1.341s at the central mass for each peak. So in order to get a reasonable
number of ions for a particular experiment it is necessary to find a compromise

between these two limitations.

Finally, in order to compare these results with the performance of IGISOL III, it
is convenient to define the mass resolving power: M RP = M/AM. For IGISOL
III, it has been established that the MRP was 300 between the dipole magnet
and the SPIG for a slit width of 7 mm [85]. In the present case, the MRP varies
from a value close to 300, for a slit width of 1.2 mm, to less than 200 for a slit
width of 5.6 mm. Considering these results, it is natural to conclude that the
MRP after the dipole magnet could still be improved by manipulating the beam.
As the MRP depends on the quality of the beam, i. e. of the beam emittance,
further adjustments in the beam tuning implemented with the SPIG and the
different focusing elements, or any changes affecting the beam (like alignment

modifications), could result in a better resolution.

5.2.1 The light ion guide

Once the dipole magnet was ready, the discharge source was replaced by the
light ion guide. A primary beam of 18 MeV protons impinged onto a 8Ni target
(thickness 1.8 mg/cm?) to produce 5Cu via the *Ni(p,n) reaction. For a pressure
of 128 mbar, the maximum count rate was found for a magnetic field of 1160
G. Fig. 5.10 shows a pressure test conducted with the light ion guide with the
magnetic field of the dipole magnet fixed at this value. The number of ions
detected by the silicon detectors after the switchyard during a period of time of
30 s is plotted against the pressure inside the light ion guide. The plot shows a
region of saturation between 150 and 200 mbar, thus this region appears to be

suitable for optimal running.

The pressure was then set at 200 mbar, the magnetic field at the dipole mag-
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Figure 5.9: The resolution and transmission of the dipole magnet in the case of
134Xe and '%Xe: a) Slit width VS resolution; b) Transmission VS resolution.

net was chosen to select mass 58 (1160.82 G) and all the beam line elements
were tuned to maximize the current of the small Faraday cup located before the
spectroscopy set up (see fig. 5.6). In IGISOL III, indirect measurements of **Cu
performed with a similar set-up, a primary current of 1uA resulted in a mea-
sured yield of 6850 ions/s. In the present case measurements were taken using
a primary beam of 500 pA. Tons were implanted in an aluminium foil in front
of the silicon detector, resulting in a rate of 17500 ions/30s. Given that the ef-
ficiency of such a detector using the foil is 33%, the actual rate per second is
1750 ions, which extrapolates to about 3500 ions/s for a primary beam of 1 pA.
This is two times lower than in the case of IGISOL III, which is a reasonable
result at this stage. Finally, the y-ray spectrum of the 5Cu was measured with
the spectroscopy set up. The results are shown in fig. 5.11 where the key **Cu
gamma-rays, 1321.2, 1448.2 and 1454.45 keV are clearly visible, proving that the
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Figure 5.10: The number of 5Cu ions observed in 30 s in function of the pressure
inside the ion guide.

IGISOL IV is able to provide mass selected radioactive ion beams.

Work on the IGISOL facility has continued since the test experiments described
in this section. Currently the trap line is finished and transmission efficiencies
have been measured all the way through the line [86]. Also, some test have been
performed using the JYFLTRAP proving that both traps are working. Nonethe-
less, all results are preliminary. The transmission through the trap beam line is
to be refined, the transport between both traps needs to be improved, a charac-
terization of the JYFLTRAP settings is needed, etc.

The off-line preparation of the collinear laser spectroscopy set-up has been com-
pleted. On-line beams produced via proton-induced fission have been delivered to
the collinear laser line with similar spectroscopy efficiencies to the ones obtained
for IGISOL III [87]. Also some advances in the status of the FURIOS laser system

have been accomplished and are reported in [88].

In addition to the ongoing work in the construction and refinement of the IGISOL

IV facility, the first beam time proposals have already been performed at the

84



5000

40K ]
4000 .
) 3000 — |
I
S % .
8 2
2000 § —
— o
o
[o0)
L]

1300 13 1450

50 1400
Energy (keV)

Figure 5.11: The %¥Cu gamma-ray spectrum.

laboratory. These were all rather simple implantation experiments which did not

need the trap which is currently being prepared for first experiments [86].
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Chapter 6

Conclusions

The information presented in this thesis shows the importance of study the struc-
ture of neutron-rich zirconium isotopes. Strong deformation, predicted shape co-
existence and isomerism are key phenomena in the study of nuclear physics. The
calculations performed within the IBM-1 model, have provided a set of four-term
Hamiltonians, all of them including a term proportional to the quadrupole mo-
ment, responsible for deformation. This is consistent with the known rotational
behaviour of the ground state bands of zirconium nuclei. Despite the present
results being too broad to provide a real understanding of the structure in this
region, there are four possible Hamiltonians which are consistent with the system-
atics shown in Chapter 1. The zirconium nuclei have greater deformation than
the rest of the ones used in these calculations, so the procedure employed in this
thesis might not be the most appropriate. It would be interesting to repeat the
calculations for the isotopic chain when a increased amount of experimental data
becomes available; Especially data regarding the transition probabilities which
are currently almost completely unknown in the case of zirconium. It would also
be interesting to compare the calculations for 1°Zr with new data, given that the

experimental level scheme used is only tentatively known.

The online post-trap spectroscopy method developed at IGISOL TIT and explained
in chapter 4, will provide the opportunity to measure new low-lying states in

102,104,106 77 “study the separated decay of the °2Zr isomeric state and, in general,
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find new information about these nuclei which will help us to understand their
structure and behaviour. A paper on this method has been published [18] and it
is the hope of the author, that it will prove a useful technique, not only in the
study of zirconium, but for general research of nuclear isomerism. It also might
be that, in the future, the new IGISOL IV facility will be able to produce even
more neutron-rich zirconium nuclei and, with it, develop a further understanding

of deformed atomic nuclei.
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Isobars (A=102)

Transition H, Hs H- Hy Hig
B[E2; 2(1)—> 0(1)] | 0.2347  0.3464 0.3320 0.4119  0.4585
B[E2; 4(1)—> 2(1)] | 0.3385 0.5144 0.5022 0.5940  0.6431
B|E2; 6(1)—> 4(1)] | 0.3588  0.5672 0.5635 0.6453  0.6819
B|E2; 2(2)—> 0(2)] | 0.0703 0.1318 0.0517  0.0312  0.0794
B[E2; 4(2)—> 2(2)] | 0.1372  0.1517  0.1842  0.2091  0.2544
B|E2; 6(2)—> 4(2)] | 0.2412  0.3276 0.3467  0.3876  0.4245
B|E2; 0(3)—> 2(3)] | 0.0451 0.0915 0.1025 0.1082  0.0579
B|E2; 4(3)—> 2(3)] | 0.1789  0.2136 0.3197  0.3761  0.3872
B|E2; 6(3)—> 4(3)] | 0.2304  0.3459 0.3614 0.3899  0.4368
B|E2; 2(2)—> 0(1)] | 0.0349 0.0095 0.0182 0.0146  0.0095
B|E2; 0(2)—> 2(1)] | 0.0486 0.1034 0.1109 0.0522  0.0047
B|E2; 4(2)—> 2(1)] | 0.0210  0.0130 0.0107  0.0085  0.0045
B|E2; 6(2)—> 4(1)] | 0.0156 0.0140 0.0106 0.0084  0.0030
B|E2; 2(3)—> 0(2)] | 0.1021  0.0962 0.2020 0.2501  0.2389
B|E2; 0(3)—> 2(2)] | 0.0446 0.0974 0.0089 0.0088  0.0054
B|E2; 4(3)—> 2(2)] | 0.0481 0.1150 0.0118 0.0043  0.0179
B|E2; 6(3)—> 4(2)] | 0.0120 0.0149 0.0087  0.0052  0.0049
B|E2; 2(3)—> 0(1)] | 0.0059 0.0087 0.0015 0.0005  0.00001
B[E2; 0(3) > 2(1)] | 0.0012 0.0014 0.0013 0.0039  0.0089
B[E2; 4(3) > 2(1)] | 0.0002 0.00002  0.0001  0.00005 0.0025
B|E2; 6(3)—> 4(1)] | 0.0011  0.0006  0.00003  0.0007  0.0055
B|E2; 4(2)—> 2(3)] | 0.0038 0.0265 0.0055 0.0055  0.0029
B|E2; 6(2)—> 4(3)] | 0.0003 0.0011 0.0006 0.0012  0.0010

Table 1: Experimental and theoretical B(E2) values (in units of €?b?) for transi-
tions in °2Zr. The table shows the results calculated by fitting the parameters
of the Hamiltonians using the experimental data available in the isobaric chain.
A value of e, = 0.11 eb is used in all the cases.
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Isotones (N=62)

Transition H, Hs H- Hg Hqg
B[E2; 2(1)—> 0(1)] | 0.2536  0.3727  0.3777  0.4529  (0.4387
BIE2; 4(1)—> 2(1)] | 0.3567  0.5389  0.5432  0.6354 0.6108
BIE2; 6(1)—> 4(1)] | 0.3777  0.5896  0.5915  0.6738  0.6421
B[E2; 0(2)—> 2(2)] | 0.1914  0.1653 0.0441  0.0382
B|E2; 2(2)—> 0(2)] 0.0263
B|E2; 4(2)—> 2(2)] | 0.1498  0.1882  0.1855 0.1996  0.1951
B|E2; 6(2)—> 4(2)] | 0.2701  0.3588  0.3540  0.3669  0.3608
B|E2; 0(3)—> 2(3)] | 0.0172  0.0529  0.0850  0.0161 0.00002
B|E2; 4(3)—> 2(3)] | 0.2651  0.3528  0.3524  0.2568  (.4183
BIE2; 6(3)—> 4(3)] | 0.2775  0.3747  0.3777  0.1394  0.4256
B|E2; 2(2)—> 0(1)] | 0.0438  0.0175  0.0166  0.0094  0.0045
B|E2; 0(2)—> 2(1)] | 0.0076  0.0337  0.0390  0.0025  0.0069
B|E2; 4(2)—> 2(1)] | 0.0204 0.0098  0.0109  0.0063  0.0020
B|E2; 6(2)—> 4(1)] | 0.0142  0.0096  0.0108  0.0068 0.0013
B|E2; 2(3)—> 0(2)] | 0.1905  0.2441  0.2357  0.2203  0.3072
B|E2; 0(3)—> 2(2)] | 0.0061  0.0009  0.0052  0.0005 0.0095
B[E2; 4(3)-> 2(2)] | 0.0049  0.0040  0.0027  0.0018  0.0001
B[E2; 6(3)-> 4(2)] | 0.0056  0.0053  0.0045  0.0002  0.0007
B[E2; 2(3)-> 0(1)] | 0.0001  0.0005  0.0010 0.00008 0.0032
B|E2; 0(3)—> 2(1)] | 0.0003  0.0008  0.0010  0.0061  0.0017
B|E2; 4(3)—> 2(1)] | 0.00002 0.00002 0.0001  0.0014  0.0069
B|E2; 6(3)—> 4(1)] | 0.0001  0.00008 0.00004 0.0015 0.0097
B[E2; 4(2) > 2(3)] | 0.0181  0.0099  0.0069  0.0012  0.0065
B[E2; 6(2) > 4(3)] | 0.0145 0.0032  0.0025 0.0050 0.0041

Table 2: Experimental and theoretical B(E2) values (in units of €?b?) for transi-
tions in °2Zr. The table shows the values obtained using the known data in the
isotonic chain. A value of e, = 0.11 eb is used in all the cases.
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Transition Hopq 18Ry 106)\[o 1047y 104\ o 104Ry
57 507 | 0.1769(28) 0.1891(157) 0.3059(10) | 0.5301(796) | 0.2231(184) 0.1713(30)
4F 5 2r | 0.2828(21) 0.3134(234) 0.4217(846) - 0.3208(90)  0.2414(258)
67 — 4+ | 0.3415(34) 0.3874(1660) ~ 0.3183(100)

8+ 67 B 0.2664(362) B B B

0; 27 ~ - ~ - 0.07229(82)

Table 3: Experimental B(E2) values (in units €?b?) used in the calculations of e,

for the 1%4Zr [41] [39] [40] .
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Nucleus JT E1 E2 E5 Nucleus J7T E1 E2 E3
Hopq 0* 0 947
(N=9) 2% 374 813 1214

3T 1212

4T 0921 1398

5+

6T 1574 2061

7+

8+

9+

10"
18Ry 0" 0 976 4Ry 0" 0 988
(N=10) 2% 242 710 1249 | (N=38) 2t 358 893

3t 975 3T 1242

4T 665 1068 4T 888 1503 2080

5T 5t 1872

6T 1240 1761 6T 1556 2196

8" 8T 2320

107" 10T 3112
106\ o 0f 0 956 104Mo 0" 0 886
(N=11) 2t 171 710 1150 | (N=10) 2% 192 812

3T 885 3T 1028

4T 522 1068 4t 561 1215 1583

5t 5t 1476

6T 1033 1563 6T 1080 1724

8F 8T 1722

10" 10t 2455
1047y 0" 0 1047y 0" 0
(N=12) 2t 139 (N=12) 2t 139

3* 3*

4T 452 4T 452

5T 5t

6T 926 6T 926

Table 4: Experimental energies (in keV) for levels in neutron-rich A=104 iso-
baric and N=64 isotonic chains [41] [39] [40] used in the characterization of the

parameters for *4Zr.
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g Ptp QXQX LL | T5Ty | TyTy | 134 (E)n | A(E2)N (E)a | A(E2)4
(keV) | (meb?) || (keV) | (me?b?)
1 X X X X 104 112
2 | X X X X 133 100
31X X X X 80 84 76 80
4 | X X X X 273 320
5 | X X X X 357 328
6 | X X X X 102 103 106 -
71X X X X 79 83 67 78
8 | X X X X 129 108
9 | X X X X 80 83 73 84
10 | X X X X 193 184
11 X X X X 167 124
12 X X X X 192 118
13 X X X X 164 113
14 X X X X 169 88
15 X X X X 142 196
16 | X X X X 143 108
17| X X X X 147 120
18 | X X X X 157 128
19| X X X X 80 90 54 80
20| X X X X 79 84 63 73
211 X X X X 193 184
22 X X X X 250 231
23 X X X X 251 217
24 X X X X 250 231
25 X X X X 242 230

Table 5: The root mean square values obtained by fitting different Hamiltoni-
ans. From left to right: the first column assigns a number to each Hamiltonian;
columns two to the eight indicate which terms of the general Hamiltonian are
considered in a particular calculation; finally, the last four columns show the root
mean square for the energy levels and B(E2) values, the first two for the isobaric

(A=104) chain and the last two for the isotonic (N=64) chain.
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Isobars (A=104)

Transition Hj H; Hy Hig Hog
B[E2; 2(1)—> 0(1)] | 0.3297 0.3384  0.3192  0.3569  0.3558
B[E2; 4(1)—> 2(1)] | 0.4797 0.4863  0.4641  0.4974  0.5078
B|E2; 6(1)—> 4(1)] | 0.5326 0.5330  0.5158  0.5241  0.5516
B|E2; 0(2)—> 2(2)] | 0.2731 0.2011  0.2698  0.0717  0.1583
B[E2; 4(2)—> 2(2)] | 0.2008 0.1854  0.1933  0.1688  0.1870
B|E2; 6(2)—> 4(2)] | 0.3656 0.3524  0.3555  0.3138  0.3554
B[E2; 0(3)—> 2(3)] | 0.0271 0.0277  0.0206  0.0004 0.0279
B|E2; 2(3)—> 0(3)] | 0.0054 0.0055  0.0041  0.0001  0.0056
B|E2; 4(3)—> 2(3)] | 0.0962 0.2659  0.0788  0.3147  0.3506
B|E2; 6(3)—> 4(3)] | 0.2270 0.3167  0.2124  0.3160  0.3741
B|E2; 2(2)—> 0(1)] | 0.0222 0.0218  0.0226  0.0114  0.0205
B|E2; 0(2)—> 2(1)] | 0.0310 0.0165  0.0244 0.0034 0.0117
B|E2; 4(2)—> 2(1)] | 0.0071 0.0090  0.0074  0.0040  0.0093
B|E2; 6(2)—> 4(1)] | 0.0044 0.0065  0.0044  0.0024 0.0074
B[E2; 2(3)—> 0(2)] | 0.2244 0.2380  0.2212  0.2404  0.2509
B|E2; 0(3)—> 2(2)] | 0.0014 0.0011  0.0014 0.0108  0.0003
B|E2; 4(3)—> 2(2)] | 0.0442 0.0215  0.0466  0.0009  0.0039
B[E2; 6(3)-> 4(2)] | 0.0122 0.0092  0.0121  0.0018  0.0044
B[E2; 2(3)-> 0(1)] | 0.0016 0.0007  0.0016  0.0024  0.0003
B[E2; 0(3)-> 2(1)] | 0.0000 0.0000  0.00007 0.0099  0.0004
B|E2; 4(3)—> 2(1)] | 0.0003 0.0001  0.0002  0.0046 0.000005
B|E2; 6(3)—> 4(1)] | 0.0001 0.0000  0.0001  0.0065 0.00005
B|E2; 2(2)—> 0(3)] | 0.0003 0.0002  0.0003  0.0021 0.00007
B[E2; 4(2) > 2(3)] | 0.0225 0.0189  0.0231  0.0119  0.0161
B[E2; 6(2) > 4(3)] | 0.0009 0.0069  0.0008 0.0084  0.0085
B|E2; 2(3)—> 4(2)] | 0.0405 0.0341  0.0415 0.0215  0.0290

Table 6: Experimental and theoretical B(E2) values (in units of €b?) for transi-
tions in '94Zr. The table shows the results calculated by fitting the parameters
to the isobaric chain. A value of ¢, = 0.1 has been used in all the cases.

94



Isotones (N=64)

Transition Hj H; Hy Hig Hsg
B[E2; 2(1)—> 0(1)] | 0.3508  0.3473  0.3399  0.2592  0.3499
BIE2; 4(1)—> 2(1)] | 0.4932  0.4881  0.4781  0.3564  0.4929
BIE2; 6(1)-> 4(1)] | 0.5248  0.5189  0.5090  0.3654  0.5253
BE2; 0(2)—> 2(2)] 0.0466  0.0069  0.0071
BIE2; 2(2)—> 0(2)] | 0.0026  0.0016
BIE2; 4(2)—> 2(2)] | 0.1667  0.1071  0.1628  0.0884  0.1593
BIE2; 6(2)—> 4(2)] | 0.3038  0.1564  0.2097  0.1630  0.2394
BIE2 2(3)—> 0(3)] | 01202 0.0899  0.0107  0.0367  0.1117
BIE2; 4(3)—> 2(3)] | 0.0859  0.0387 02769  0.0493  0.0475
BIE2; 6(3)-> 4(3)] | 0.0196  0.0033 02412  0.0008  0.0007
B[E2; 2(2)—> 0(1)] | 0.0158  0.0151  0.0161  0.0039  0.0159
B[E2; 0(2)—> 2(1)] | 0.00002 0.000004 0.0009  0.0009  0.000002
BIE2; 4(2)-> 2(1)] | 0.0110  0.0070  0.0121  0.0012  0.0102
BIE2 6(2)—> 4(1)] | 0.0112  0.0087  0.0126  0.0010  0.0091
BIE2 2(3)—> 0(2)] | 0.0569  0.0310 02043  0.0777  0.0316
BIE2; 0(3)—> 2(2)] | 0.0388  0.0360  0.0028  0.0143  0.0450
BIE2; 4(3)—> 2(2)] | 0.0018  0.0564  0.0015  0.0012  0.0081
B[E2; 6(3)—> 4(2)] | 0.0003  0.0488  0.0044  0.0002  0.0395
B[E2; 2(3)—> 0(1)] | 0.00003  0.0000  0.00002  0.0017  0.000001
B[E2; 0(3)—> 2(1)] | 0.0006  0.0008  0.0003  0.0823  0.0016
BIE2; 4(3)—> 2(1)] | 0.0002  0.0039  0.0004  0.00006  0.0006
BIE2; 6(3)—> 4(1)] | 0.0001  0.0010  0.0009 0.000001  0.0007
BIE2; 2(2)—> 0(3)] | 0.0078  0.0072  0.0006  0.0028  0.0090
BIE2; 4(2) >~ 2(3)] | 0.0021  0.0093  0.0024  0.0063  0.00002
BIE2; 6(2) - 4(3)] | 0.0008  0.0612  0.0004  0.0003  0.0067
BIE2; 2(3)—> 4(2)] | 0.0037  0.0168  0.0043  0.0114  0.00004

Table 7: Experimental and theoretical B(E2) values (in units of €?b?) for transi-
tions in '94Zr. The table shows the results calculated by fitting the parameters
to the isotonic chain. A value of ¢, = 0.1 has been used in all the cases.
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Transition | "2Pd LO0Ry W08)\[o | 1067y | 106)fg L06R
27 — 07 | 0.1310(22) 0.2197(137) 0.4276(256) | _ | 0.3059(1) 0.1976(29)
4F - 2f 0.2291(211) | 0.4217(84)

6 — 47 0.3743(155) | 0.3875(160)

85 — 67 B B | 0.2664(361)

Table 8: Experimental B(E2) values (in units e?b?) used in the (A=104) isobaric
and isotonic (N=64) chains calculations [41] [39] [40] for the 1%Zr.
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Nucleus J™ Ey Es  Es | Nucleus J™ Ey E, Es
112Pd 0+ 0
(N=10) 2% 348 736
3T 1096
4T 883 1362
5t 1759
6T 1550 2002
7T 2483
8T 2318
9t 3085
10" 3049
HORy 0* 0 106Ru 0" 0 991
(N=11) 2+ 241 613 (N=9) 2T 270 792 1392
3t 860 3T 1092
4T 663 1084 4T 715 1307
5t 1375 5T 1641
67 1239 1684 6T 1296 1908
72021 7T 2284
8T 1945 2397 8T 1973 2960
9t 2777 9*
10T 2759 3225 10T 2705
108\ o 0" 0 106\ o 0" 0 956
(N=12) 2% 193 586 (N=11) 2 171 710 1150
3t 783 3T 885
4T 564 978 4T 522 1068
5t 1232 5T 1307
6T 1090 1508 6T 1033 1563
7T 1817 7t 1868
8T 1753 2170 8T 1688 2194
9T 2524 9+
10T 2529 2950 10T 2474
10677, 0+ 0 10677, o+ 0
(N=13) 2% 152 607 (N=13) 2 152 607
3t 3*
4T 476 4T 476

Table 9: Experimental energies (in keV) for levels in neutron-rich A=106 iso-
baric and N=66 isotonic chains [41] [39] [40] used in the characterization of the

parameters for '°°7r.
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g | PP | QxQx | LL | TyTy | TWTy | i || A(E)w | A(E2)x || A(E)A | A(E2)4
(keV) | (me*b?) || (keV) | (me?b?)
1]X| X | X X 73 145 109 165
2 |X| X | X | X 68 143 88 138
30X X | X X 64 148 86 152
4X] X X | X 84 145 130 145
50X X X 82 163
6|X]| X X | X 81 164
71X X X 62 145 87 150
8 | X X | X X 92 155
9| X X X | X 56 166 89 149
10 | X X X X 196 168
11 X | X | X X 175 179
12 X X X X 232 260
13 X X | X | X 88 156
14 X | X| X | X 71 159
15 X X X X 171 270
16X | X | X X || 27 266
17 | X X X X 83 161
18| X X X 85 140 128 140
19| X X X X 53 164 98 121
20 | X X X X 61 142 87 151
21 | X X | X X || 169 168
22 X | X | X X || 236 160
23 X X X X 246 267
24 X X X X 223 149
25 X X X X 239 145

Table 10: The root mean square values obtained by fitting different Hamiltoni-
ans. From left to right: the first column assigns a number to each Hamiltonian;
columns two to the eight indicate which terms of the general Hamiltonian are
considered in a particular calculation; finally, the last four columns show the root
mean square for the energy levels and B(E2) values, the first two for the isobaric
(A=106) chain and the last two for the isotonic (N=66) chain.

J*" Eewpy Ens Epr  Epg

2t 174 132 151 208
4T 522 435 470 580
67 1000 899 940 1091
8t 1642 1517 1550 1725

Table 11: Experimental [17] and theoretical energy levels (in keV) '%8Zr.
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Isobars (A=106)

Transition H, Hj H- Hy Hig Hog
B|E2; 2(1)—> 0(1)] | 0.2708 0.3353 0.3273 0.3211  0.2066 0.3302
B|E2; 4(1)—> 2(1)] | 0.3814 0.4767 0.4656 0.4574  0.2856 0.4697
B|E2; 6(1)—> 4(1)] | 0.4086 0.5182 0.5059 0.4982  0.2970 0.5102
BIE2; 0(2)—> 2(2)] | 0.1436 0.1314 0.1124 0.1224  0.0095 0.1130
B[E2; 4(2)—> 2(2)] | 0.1452 0.1744 0.1685 0.1662  0.0747  0.1702
B|E2; 6(2)—> 4(2)] | 0.2768 0.3383 0.3264 0.3239  0.1327  0.3293
B|E2; 0(3)—> 2(3)] | 0.0005 0.0154 0.0201 0.0227  0.0149 0.0200
B|E2; 2(3)—> 0(3)] | 0.0001 0.0031 0.0040 0.0045  0.0030 0.0040
BIE2; 4(3)—> 2(3)] | 0.2955 0.3241 0.3346 0.3285  0.0194 0.3372
BIE2; 6(3)—> 4(3)] | 0.3109 0.3498 0.3611 0.3580  0.0049 0.3632
B|E2; 2(2)—> 0(1)] | 0.0277 0.0184 0.0179 0.0185  0.0017  0.0178
B|E2; 0(2)—> 2(1)] | 0.0001 0.0037 0.0057 0.0064  0.0017  0.0057
B|E2; 4(2)—> 2(1)] | 0.0137 0.0083 0.0091 0.0092  0.0009 0.0089
B|E2; 6(2)—> 4(1)] | 0.0098 0.0058 0.0072 0.0069  0.0004 0.0071
BIE2; 2(3)—> 0(2)] | 0.2124 0.2418 0.2349 0.2297  0.0607  0.2372
B[E2; 0(3)-> 2(2)] | 0.00001  0.0004 0.0005 0.0010  0.0164 0.0004
B[E2; 4(3)-> 2(2)] | 0.0011 0.0059 0.0012 0.0017  0.0001 0.0012
B[E2; 6(3)-> 4(2)] | 0.0027 0.0049 0.0024 0.0027  0.0001 0.0025
B|E2; 2(3)—> 0(1)] | 0.000002  0.0002 0.0003 0.0004 0.00001  0.0002
B|E2; 0(3)—> 2(1)] | 0.00002 0.00001 0.0001 0.00003 0.0914 0.0002
B[E2; 4(3) > 2(1)] | 0.00003  0.0001 0.00005 0.0001  0.00002 0.00004
B[E2; 6(3) > 4(1)] | 0.0001  0.00001 0.00000 0.00002  0.0000 0.000003
B[E2; 2(2) > 0(3)] | 0.000001  0.0001 0.0001 0.0002  0.0033 0.0001
B|E2; 4(2)—> 2(3)] | 0.0195 0.0172 0.0135 0.0148  0.0000 0.0136
B|E2; 6(2)—> 4(3)] | 0.0166 0.0116 0.0087 0.0099  0.0010 0.0087
B|E2; 2(3)—> 4(2)] | 0.0351 0.0310 0.0243 0.0267  0.0000 0.0244

Table 12: Calculated B(E2) values (in units of €?0?) for transitions in %Zr.
The table shows the calculations made with the isobaric chain data. A value of
eb = 0.09 eb was used in all the cases.
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Isotones (N=66)

Transition H, Hs H- Hy Hyg Hog
B|E2; 2(1)—> 0(1)] | 0.2360  0.3015 0.2829 0.3579  0.3522 0.2628
B|E2; 4(1)—> 2(1)] | 0.3433  0.4396 0.4173 0.5028  0.4949 0.3920
B[E2; 6(1)—> 4(1)] | 0.3754  0.4883 0.4642 0.5350  0.5262 0.4397
B[E2; 0(2)—> 2(2)] 0.2301 0.1697 0.0764 0.1854
B[E2; 2(2)—> 0(2)] | 0.0322 0.0212
B|E2; 4(2)—> 2(2)] | 0.1401  0.1789 0.1591 0.1781  0.1846 0.1515
B|E2; 6(2)—> 4(2)] | 0.2556  0.3271 0.2985 0.3281  0.3328 0.2861
B|E2; 0(3)—> 2(3)] | 0.0312  0.0278 0.0180 0.0108 0.000001  0.0521
B[E2; 2(3)—> 0(3)] | 0.0062  0.0056 0.0036 0.0022  0.0000 0.0104
BIE2; 4(3)—> 2(3)] | 0.2527  0.1696 0.0034 0.3257  0.3262 0.2850
B|E2; 6(3)—> 4(3)] | 0.2578  0.2245 0.0012 0.2800  0.3394 0.3061
B|E2; 0(2)—> 2(1)] | 0.0298  0.0232 0.0399 0.0021  0.0038 0.0458
B|E2; 4(2)—> 2(1)] | 0.0144  0.0075 0.0100 0.0054  0.0055 0.0106
B|E2; 6(2)—> 4(1)] | 0.0120  0.0067 0.0099 0.0039  0.0035 0.0106
B|E2; 2(3)—> 0(2)] | 0.1761  0.2211 0.2015 0.2430  0.2334 0.1935
B|E2; 0(3)—> 2(2)] | 0.0012 0.000001 0.00001 0.0088  0.0532 0.0003
B[E2; 4(3)-> 2(2)] | 0.0048  0.0348 0.00001 0.0007  0.0015 0.0067
B[E2; 6(3)-> 4(2)] | 0.0053  0.0105 0.0008 0.0016  0.0018 0.0064
B|E2; 2(3)—> 0(1)] | 0.0001  0.0003 0.0002 0.0009  0.0013 0.0003
B|E2; 0(3)—> 2(1)] | 0.0011  0.0003 0.0004 0.0011  0.0011 0.0011
B|E2; 4(3)—> 2(1)] | 0.0001 0.000001 0.0000 0.0031  0.0055  0.00001
B[E2; 6(3) > 4(1)] | 0.0005  0.0001 0.00005 0.0037  0.0090 0.0003
B[E2; 2(2) > 0(3)] | 0.0002  0.0000 0.0000 0.0018  0.0106 0.0001
B|E2; 4(2)—> 2(3)] | 0.0081  0.0168 0.0077 0.0095  0.0096 0.0076
B|E2; 6(2)—> 4(3)] | 0.0032  0.0010 0.0001 0.0054  0.0044 0.0013
B|E2; 2(2)—> 0(2)] | 0.0322  0.0460 0.0339 0.0153  0.0212 0.0371
B[E2; 2(3)—> 4(2)] | 0.0147  0.0302 0.0138 0.0171  0.0173 0.0136

Table 13: Calculated B(E2) values (in units of €?0?) for transitions in 9Zr.
The table shows the calculations made with the isotonic chain data. A value of
eb = 0.09 eb was used in all the cases.
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