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Abstract 

Contamination of surface waters with faeces may lead to increased public risk of human 

exposure to pathogens through drinking water supply, aquaculture, and recreational activities. 

Determining the source(s) of contamination is important for assessing the degree of risk to 

public health, and for selecting appropriate mitigation measures. Phage-based microbial source 

tracking (MST) techniques have been promoted as effective, simple and low-cost. The 

intestinal enterococci are a faecal “indicator of choice” in many parts of the world for 

determining water quality, and recently, phages capable of infecting Enterococcus faecalis have 

been proposed as a potential alternative indicator of human faecal contamination. The primary 

aim of this study was to evaluate critically the suitability and efficacy of phages infecting host 

strains of Enterococcus species as a low-cost tool for MST. 

In total, 390 potential Enterococcus hosts were screened for their ability to detect phage in 

reference faecal samples. Development and implementation of a tiered screening approach 

allowed the initial large number of enterococcal hosts to be reduced rapidly to a smaller 

subgroup suitable for phage enumeration and MST. Twenty-nine hosts were further tested 

using additional faecal samples of human and non-human origin. Their specificity and 

sensitivity were found to vary, ranging from 44 to 100% and from 17 to 83%, respectively. 

Most notably, seven strains exhibited 100% specificity to cattle, human, or pig samples. 

Twenty phages infecting a human-specific host strain (MW47) were viewed by transmission 

electron microscopy (TEM) to determine their morphological diversity. The TEM examination 

revealed that all phages were members of the Siphoviridae and Myoviridae families. Pilot 

inactivation experiments using three phages (two members of the Siphoviridae family with 

differing capsid structures, and one myovirus), indicated that their survival did not vary 

significantly (P > 0.05). 

The findings of this study offer an insight into host-phage interactions, specificity, sensitivity, 

and the suitability for  MST application of phages infecting different Enterococcus strains. The 

high host specificity demonstrated by strains in this study suggests that they have a potential 

future role in MST. Although TEM revealed a range of phage morphologies capable of 

infecting MW47, the pilot inactivation study suggests that the phages have similar survival 

characteristics. These findings offer other scientists the opportunity to isolate effective 

enterococcal hosts for source tracking for a variety of scenarios in other parts of the world, and 

as such, this work supports the application of MST as a global tool for human health protection. 
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Chapter One: Introduction  

1.1 Water-related disease burden  

Contamination of surface waters with faeces of human and non-human origin leads to 

increased risk of human exposure to pathogens through drinking water supply, aquaculture, 

and recreational activities. Unsafe water, inadequate sanitation, and insufficient hygiene are 

estimated to result in over two million deaths every year, amounting to 4% of all deaths 

globally, and 5.7% of the total disease burden in disability-adjusted life years (DALY) 

(Prüss et al., 2002). In this estimate, diarrhoeal diseases, including cholera, typhoid and 

dysentery, account for an estimated 1.5 million deaths per year, and children, 

predominantly those in less economically developed countries (LEDC), bear the largest 

share of this disease burden.  

 

In recognition of the burden of waterborne disease, Goal Seven, of the eight Millennium 

Development Goals (MDG) agreed at the United Nations (UN) Millennium Summit in 

2000, aims to reduce by 50% the population without sustainable access to ‘improved’ 

drinking water and basic sanitation by 2015. Although this is the only target specifically 

related to providing access to water and sanitation, it can be argued that all eight MDG 

relate to water quality in some way. Goal Four in particular has the target of reducing child 

mortality (under fives) by two thirds from 1990 to 2015. Many child deaths are directly 

caused by diarrhoea, or indirectly caused by malnutrition as a result of repeated diarrhoea 

caused predominantly by waterborne disease. A recent MDG report indicated that the world 

was likely to meet and surpass the drinking water target by 2015, but that this would still 

leave 1 in 10 people without sustainable access to safe drinking water (UN, 2011).  
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Despite advances in wastewater technology and access to treated drinking water, outbreaks 

of waterborne diseases are still reported in more economically developed countries 

(MEDC) (Rangel et al., 2005; Smith et al., 2006; Craun et al., 2010). In the UK during the 

last twenty years, Cryptosporidium, Campylobacter and Giardia spp. have been the enteric 

pathogens most frequently associated with waterborne disease outbreaks (Meinhardt et al., 

1996; Smith et al., 2006).  

 

Environmental factors affect the transmission of waterborne disease and statistically 

significant relationships have been found between rainfall and outbreaks of disease 

(Curriero et al., 2001; Nichols et al., 2009). In the US, Curriero et al. (2001) analysed 548 

reported outbreaks (from 1948 to 1994), and found that 68% of these were preceded by 

heavy rainfall events. The outbreaks related to surface waters were found to have the 

strongest relationship with heavy rainfall events. Similarly, in the UK, Nichols et al. (2009) 

considered 89 outbreaks associated with the consumption of drinking water (between 1910 

and 1999), and found that there was a significant association between cumulative rainfall 

(>40mm in the seven antecedent days) and disease outbreaks. Climate change predictions 

for the UK describe warmer, drier summer months, and warmer, potentially wetter winter 

months (Murphy et al., 2009). Climate change may also lead to an increase in extreme 

weather events, including heavy rainfall (Anon, 2011). Increases in rainfall during winter 

months, and increased frequency and intensity of extreme heavy rainfall events, could 

therefore potentially lead to increased incidence of waterborne disease outbreaks.   

 

In 2009 the UK Environment Agency used the 2002 medium high UK climate impacts 

scenario (UKCIP02) to calculate the potential impact of population growth on water 
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availability in England and Wales. They determined that a predicted population increase in 

England and Wales of 20 million during the next 40 years could lead to a 15% reduction in 

available water (Office of National Statistics, 2008). Population growth is likely to increase 

pressures on water resources, through increases in wastewater discharges into surface 

waters, potentially decreasing water quality and limiting available drinking water 

abstraction sites. Predicted warmer, drier summers may further increase pressures on 

existing water resources as a result of increased water-usage and reduced dilution of 

contaminants. 

 

Poor water quality also has economic consequences. Failures to meet microbial water 

quality standards can cause loss of revenue through the closures of beaches, shellfish 

harvesting sites, and the associated costs of increased morbidity and loss in working days. 

In California, the most conservative cost estimates equate to a loss of between $US 21 

million and $US 51 million each year, as a result of human gastroenteritis contracted from 

swimming in faecally contaminated surface waters (Given, 2006). Ralston et al. (2011) 

employed a cost-of-illness model to calculate estimates of the economic impact of water-

borne disease in coastal environments across the entire USA. Their findings suggested that 

marine-borne pathogens were responsible for an annual loss of $US 900 million. Losses 

resulting from seafood-borne disease and gastrointestinal illness from beach recreation 

were estimated to be $300 million in each case, and a loss of $30 million was estimated as a 

result of direct human exposure to Vibrio species.  
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1.2 Waterborne disease and its transmission 

Pathogenic organisms present in human and non-human animal faeces may enter the 

aquatic environment by way of point and non-point diffuse sources. Point sources of faecal 

pollution, such as wastewater discharges, enter surface waters at distinct sites and are 

readily identifiable. Non-point diffuse faecal pollution, such as agricultural run-off and the 

faeces of wild animals, may derive from a combination of sources over a larger area and is 

therefore less easily identified. Water provides an effective vehicle of pathogen 

transmission, enabling pathogenic organisms to come into contact with greater numbers of 

the public via contaminated drinking water, recreational water, and food sources (Moe, 

1997).    

 

Bradley (1977) was the first to develop an environmental classification for water-related 

disease (Table 1.1). Within this classification, water-related diseases were divided into four 

main categories, waterborne, water-washed, water-based and water-related insect vectors.  

 

Table 1.1 Bradley’s environmental classification of water-related diseases  

Category Description  

Waterborne Diseases resulting from physical contact with microbially contaminated 

water or ingestion of contaminated water, or food items which have come 

into contact with contaminated water.   

Water-washed Diseases whose transmission is facilitated by insufficient quantities of 

water. 

Water-based Caused by pathogenic worms which must spend part of their life cycle 

within intermediate vertebrate or invertebrate hosts that reside in aquatic 

environments. Diseases are acquired by contact with contaminated water 

or inadvertent ingestion of infested intermediate host animals.  

Water-related 

insect vectors 

Diseases transmitted by insects that breed or spend part of their life cycle 

in water. 

(Bradley, 1977) 
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In 1975 Feachem modified Bradley’s classification by combining waterborne and water-

washed diseases, with the exception of skin and eye infections, into one category 

designated the faeco-oral diseases. This was an important distinction, reflecting the nature 

of waterborne and water-washed disease transportation via faecal-oral transmission 

pathways. The main faecal-oral transmission pathways are illustrated in Figure 1.1. 

 

 
Figure 1.1 Transmission pathways of faecal-oral disease (Pruss et al., 2008). 

 

1.2.1 Waterborne pathogens  

Waterborne diseases are principally caused by three groups of organisms; bacteria, viruses 

and protozoa. The characteristics of major bacterial, viral and protozoal agents of 

waterborne disease are summarised in Table 1.2. Whilst associated severe diseases are also 

listed in Table 1.2, infection does not always result in disease. Disease refers to the 

symptomatic manifestation of an infection. Many pathogenic agents may be spread in low 

numbers producing asymptomatic infections (Leclerc et al., 2002). Although asymptomatic 

infections do not result in disease symptoms, infected persons may be sources of 
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continuous infection for the immediate population (Craun et al., 2006). The most common 

disease symptom of waterborne disease is diarrhoea. Global deaths from diarrhoea alone 

were calculated as 2.5 million by the World Health Organisation in 2008, of which 1.5 

million can be attributed to waterborne disease (Prüss et al., 2002).   

 

Table 1.2 Summary of the major bacterial, viral and protozoal agents of waterborne disease 

(Woodall, 2009) 

Organism Stability 

in water 

Resistance 

to chlorine  

Size 

(µm) 

Associated disease 

Bacterium     

Burkholderia pseudomallei Can 

multiply 

Low 1.0–4.0 Melioidosis (septicaemia) 

Campylobacter jejuni, C. 

coli 

Moderate Low 

 

1.5–4.0 Diarrhoea (frequently with 

blood in the faeces) 

Escherichia coli 

(pathogenic and 

enterohaemorrhagic) 

Moderate Low 0.2–2.0 Diarrhoea (frequently with 

blood in the faeces); 

haemolytic uraemic 

syndrome 

Legionella species Can 

multiply 

Low 0.5–3.0 Fatal pneumonia 

Salmonella typhi Moderate Low 0.2–2.0 Typhoid fever 

Shigella species Short Low 0.2–2.0 Bacillary dysentery 

Vibrio cholera Short Low 1.0–3.0 Cholera 

Yersinia enterocolitica Long Low 0.2–2.0 Diarrhoea (frequently with 

blood in the faeces) 

Virus     

Adenovirus 40, 41 High Moderate 0.07 Severe childhood 

gastroenteritis 

Astroviruses High Moderate 0.03 Mild gastroenteritis 

Enteroviruses High Moderate 0.03 Myalgia, meningitis, 

paralysis 

Hepatitis A virus High Moderate 0.03 Hepatitis 

Hepatitis E virus High Moderate 0.03 Hepatitis 

Noroviruses High Moderate 0.03 Mild gastroenteritis 

Sapoviruses High Moderate 0.03 Mild gastroenteritis 

Rotaviruses High Moderate 0.06 Severe childhood 

gastroenteritis 

Protozoan     

Cryptosporidium parvum High High 4.0–10.0 Cryptosporidiosis 

(diarrhoea) 

Cyclospora cayetanensis High High 8.0–10.0 Cyclosporiasis (diarrhoea) 

Entamoeba histolytica Moderate  High  8.0–15.0 Amoebiasis (amoebic 

dysentery) 

Giardia intestinalis Moderate  High  7.0–12.0 Giardiasis (diarrhoea) 

Toxoplasma gondii High High 2.0–70.0 Toxoplasmosis 
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The primary factors affecting the waterborne spread of infection by pathogenic organisms 

are: latency (the period after excretion when the pathogen is inactive or dormant); pathogen 

survival in the environment; the ability of the pathogen to multiply in the environment; and 

the dose required for infection to occur (infectivity) in a susceptible host (Leclerc et al., 

2004). Different classes of waterborne pathogens have different transmission 

characteristics. Generally, viruses and protozoa have relatively low infectious doses (1 to 

50 infectious units, plaque-forming units, cysts or oocysts), whereas bacterial pathogens 

require much larger infectious doses (in the range of 10
7
 to 10

8 
cells) to overcome the 

human immune response and cause infection (Moe, 1997; Mara and Feachem, 1999). The 

infectious dose will also vary according to the susceptibility of the host. Factors that have 

been observed to influence host susceptibility include immune status, behaviour, nutrition, 

age, occupation, education, income, and genetic traits (Craun et al., 2006). 

 

Viruses are unable to multiply outside living cells in receiving waters, but generally have 

much greater resistance to natural inactivation and treatment than bacteria (Bonadonna et 

al., 2002[a]; Fujioka and Yoneyama, 2002; Leclerc et al., 2004). Some enteric bacterial 

pathogens are able to multiply outside the gut environment. For example, studies have 

shown that the bacterial pathogen Legionella pneumophila is able to multiply in free-living 

protozoa (Barbaree et al., 1986; Fields et al., 1989).  

 

Waterborne pathogens can cause a variety of diseases and Table 1.2 lists the diseases 

associated with the major bacterial, viral and protozoal waterborne pathogens. However, 

the global burden of waterborne disease is difficult to quantify. Intermittent contamination 

of drinking water sources and recreational surface waters with pathogens (often in very low 
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concentrations), may lead to sporadic cases of illness and these cases may therefore not be 

recognised as waterborne outbreaks. It is particularly difficult to confirm the waterborne 

transmission of single disease cases, because pathogens may be transmitted by a number of 

pathways (Craun et al., 2006).   

 

It is generally recognised that human faecal contamination of water poses a greater risk to 

human health, because it is more likely to contain human-specific pathogens that may cause 

infection (Fong and Lipp, 2005). However, faecal contamination from animals may also 

pose a risk to human health from zoonotic pathogens (organisms capable of causing disease 

in animal and human hosts), particularly in catchments where the ratio of grazing animals 

to humans is high (Sinton et al., 1998). Recent research has suggested that the risk to 

human health attributable to contamination by non-human faecal sources is varied and that 

the risk from fresh cattle and bird faeces in recreational waters is not substantially different 

than that from human faecal contamination (Colford et al., 2007; Soller et al., 2010). 

Contamination of water by non-human faeces poses a potential risk of human infection by 

zoonotic pathogens such as Escherichia coli (E. coli) O157, Giardia spp., Campylobacter 

spp., and Cryptosporidium spp. (Craun et al., 2004). A major concern is the emergence of 

zoonotic bacteria with new virulence factors, which may result in potent new pathogens 

(Till et al., 2004) and according to the WHO (2004), almost 75% of emerging waterborne 

pathogens may be of zoonotic origin. 

 

1.3 Sources of faecal contamination in receiving waters 

In many countries water pollution prevention has traditionally focused on the control of 

point sources of faecal contamination. Improvements to technology and the management of 
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wastewater treatment facilities have minimised faecal contributions from these sources in 

industrialised countries. Yet in some situations levels of faecal contamination have not been 

significantly reduced by these improvements (Connolly et al., 1999) and in a number of 

studies non-point diffuse sources of faecal pollution have been identified as dominant 

contributors to the problem of water pollution (Schnauder et al., 2007; Zhu et al., 2011). 

Importantly, the burden of water-borne disease is primarily felt in LEDC where 

uncontrolled point and non-point faecal pollution sources may be diverse and numerous. In 

many LEDC, the provision of potable water is often inadequate. Large proportions of the 

population may not be connected to water supplies let alone wastewater networks. 

Alternative water sources, such as springs, wells and streams, whose microbiological 

quality may be compromised by both point and diffuse sources of faecal pollution, 

therefore represent a significant public health concern in these areas (Dorice et al., 2010). 

However, most research into the contribution of different pollution sources and the survival 

of their microbial components derives from industrialised countries, which are often in 

temperate climates.  

 

1.3.1 Point sources 

Raw (untreated or partially treated) municipal wastewater, often comprised of both human 

and non-human faeces, commonly enters receiving waters through point sources. Where 

combined sewer systems are used, storm water and wastewater are collected in the same 

conduit. Combined sewer overflows (CSO) are flows that exceed the capacity of 

wastewater treatment works (WWTW) and sewerage systems and by-pass treatment, 

entering directly into receiving waters (Hammer and Hammer, 2008), constituting a 

significant source of faecal pollution. 
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Raw wastewater contains numerous pathogens and parasites and consequently poses a 

hazard to human health (Table 1.2). It is therefore important for wastewater to be treated 

prior to discharge into receiving waters. Physical, chemical and biological processes are 

involved in the treatment of wastewater. The degree of treatment is largely dependent on 

the type of receiving water and the stringency of wastewater standards, as set out in 

legislation (discussed further in section 1.5). Kay et al. (2008) obtained 1933 samples from 

12 types of wastewater related discharge from the UK and Jersey. These included untreated 

sewage, primary, secondary and tertiary treated effluents. The results demonstrated a high 

variability in faecal bacteria concentrations in sewage related discharges. Faecal coliform 

concentrations ranged from <3 CFU/100ml
-1

 (tertiary-treated effluent) to 3.3 x 10
9
 

CFU/100ml
-1

 (untreated sewage) and enterococci concentrations ranged from <3 

CFU/100ml
-1

 (tertiary-treated effluent) to 4.8 x 10
7
 CFU/100ml

-1
 (secondary-treated 

effluent). Results suggested that there were statistically significant reductions in faecal 

bacteria concentrations following secondary and tertiary treatments. It is however important 

to note that the data should be regarded as ‘indicative’, because they were not based on 

comparisons of faecal bacteria concentrations in matched pairs of samples (Kay et al., 

2008). 

 

1.3.2 Diffuse sources 

The composition of diffuse pollution can be highly variable. Diffuse pollution of water 

bodies may include contaminated urban run-off, leakage from septic tanks, and faeces from 

agricultural livestock, wild and domesticated animals. Many rural communities rely on 

septic systems, which store and partially treat wastewater onsite. Without regular and 

efficient maintenance these systems may fail and release faecal material (containing 
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pathogens) into the aquatic environment. The failure of septic systems is relatively 

common. Ahmed et al. (2005[a]) surveyed 48 septic systems in the Eudlo catchment, 

Australia, and found that 41 (85%) of the assessed systems were defective. In catchments 

where septic systems are common, they can be major sources of faecal contamination (Peed 

et al., 2011). 

 

Agriculture and livestock farming can also be a significant contributor to faecal pollution 

loads in receiving waters. Diffuse agricultural inputs are associated with run-off from fields 

used for grazing, hard-standing areas, and sites where animals can access surface waters. In 

farms the presence of both stored and fresh faecal material therefore represents a source of 

microbiological contamination. Edwards et al. (2008) analysed the microbiological and 

chemical composition of roof and hard-standing run-off in four livestock farms and found 

variable but frequently high concentrations of numerous groups of contaminants (including 

faecal coliforms and intestinal enterococci). The results suggested that run-off arising from 

hard-standing areas represented a long-term source of contamination as faecal material is 

renewed frequently.  

 

In many countries manure application onto land is common practice to increase nutrients 

and to promote the growth of crops. Application of manure reduces the costs associated 

with applying artificial fertilisers. Cattle manure (from fresh, stored and composted 

sources) has been shown to harbour high levels of faecal bacteria (10
5 

to 10
8
 CFU g

-1
) and a 

diverse range of zoonotic pathogens (Klein et al., 2010). Pathogens such as E. coli 

O157:H7 may survive for long periods (over a year) in stored manure, emphasising its 

importance as a potential reservoir of zoonotic pathogens (Kudva et al., 1998). The 
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application of slurry (liquid form of manure) and manures also affects soil erosion 

processes. Ramos et al. (2006) noted that when manure was applied to soil surfaces, the 

quantity of material eroded during rainfall events decreased as the soil was protected, but 

run-off increased by up to 30%. They found the highest levels of microorganisms in run-off 

when rainfall occurred shortly after application. 

 

Faecal material deposited directly onto land by grazing animals has been shown to be a 

significant source of microorganisms, including pathogens (Weaver et al., 2005; Donnison 

et al., 2008). Indeed, grazing areas of critical importance are those with direct connections 

to receiving waters (Heathwaite et al., 2005). Extensive research has been conducted into 

the survival of E. coli and intestinal enterococci in cattle pats (Meays et al., 2005; Sinton et 

al., 2007; Soupir et al., 2008; Texier et al., 2008; Muirhead et al., 2009; Oliver et al., 2010) 

and in New Zealand Sinton et al. (2007) demonstrated that, provided that pat water content 

remained above 80%, (7-30 days after deposition depending on the season and weather), 

there was growth of faecal bacteria (intestinal enterococci and E. coli). Results indicated 

that sunlight initially assisted replication of bacteria, enabling a crust to form, thus helping 

to retain moisture and providing optimum growth temperatures. Research has suggested 

that cattle pats may remain substantial sources of E. coli for at least 30 days and that 

concentrations in soil (grazed land) may remain elevated for up to six months after the 

removal of animals (Muirhead et al., 2005; Van Kessel et al., 2007; Muirhead et al., 2009).  

 

Diffuse pollution from wildlife sources can be harder to ascertain and quantify, but it is 

recognised that large populations of birds can have a large impact on water quality (Wither 

et al., 2005; Muirhead et al., 2011). The faeces of gull (Laridae), geese (Branta 
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canadensis) and duck (Anas platyrhinchos) are reported to contain average faecal coliform 

concentrations of 3.68 x 10
8
, 1.53 x 10

4
 and 7.83 x 10

10
 per gramme, respectively 

(Alderisio and DeLuca, 1999; Obiri-Danso and Jones, 1999). Pathogenic bacteria have also 

been identified in the faeces of gulls and wildfowl, implying there may be a public health 

risk from these faecal sources (Samadpour et al., 2002; Albarnaz et al., 2007). Evidence of 

waterborne human disease from exposure to bird faeces is limited, but in 1999 E. coli 

O157:H7 (associated with a waterborne outbreak) was identified in duck faeces and water 

samples from Battle Ground Lake, Vancouver (Samadpour et al., 2002). However, it was 

not clear if resident ducks from the lake were the source of contamination or if they were 

transiently infected by water contaminated from other sources. In coastal areas of the UK, 

gulls (Laridae), pigeons (Columbidae) and starlings (Sturnidae) are all prominent, whilst 

wildfowl such as swans, ducks and geese (from the family Anatidae) are common in inland 

and transitional surface waters.  

 

Numerous worldwide studies have shown wildlife, including deer, fish, muskrats, racoons, 

rats, turtles and voles to be important contributors of faecal pollution to receiving waters 

(Ram et al., 2007; Ruecker et al., 2007; Somarelli et al., 2007; Habersack et al., 2011; Viau 

et al., 2011). In urbanised catchments companion animals such as cats and dogs can 

contribute to diffuse faecal pollution (Dabritz et al., 2006; Ram et al., 2007). Results from a 

water quality modelling study in South Florida, looking into non-point sources of faecal 

bacteria at recreational marine beaches, demonstrated that dog faeces had a large transient 

impact on concentrations of faecal bacteria within a few hours of deposition, contributing to 

the high (>300 CFU/100ml) concentrations of faecal bacteria observed in this study (Zhu et 

al., 2011). 
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1.4  Monitoring microbiological water quality 

The ultimate aim of monitoring the microbiological quality of water is to protect public 

health. Bench marking the results against standards set out in national, European or 

international legislation (section 1.5) allows an estimate of the risk to human health. Water 

quality is often assessed using faecal indicator organisms (FIO), such as total and faecal 

coliforms, Clostridium perfringens, Escherichia coli, and intestinal enterococci. They are 

an index of faecal pollution because they inhabit the gastrointestinal tracts of human and 

non-human animals and are present in high numbers in faeces. Ideally, pathogenic 

organisms of concern would be monitored directly. However, it is often prohibitively 

expensive and complex to do so, because pathogens may be present in low numbers, have 

non-homogenous distributions, be difficult to culture and be highly infectious at low doses. 

Ideal faecal indicators should be non-pathogenic, unable to reproduce in the environment, 

correlated with the presence of pathogens, be rapidly detected and easily enumerated and 

have a survival profile similar to the pathogen they indicate (Cimenti et al., 2007). In reality 

however, it is unlikely that any current or future FIO will satisfy all these criteria and 

compromises will need to be met.  

 

Epidemiological studies have demonstrated the relationship between FIO and illnesses 

(Cabelli et al., 1979, 1982; Cheung et al., 1990; Corbett et al., 1993; Kay et al., 1994; Haile 

et al., 1999; Wyer et al., 1999; Lipp et al., 2001). Reported symptoms after exposure to 

contaminated bathing waters include respiratory illness, gastroenteritis, skin complaints, 

and eye, ear and nose infections. Research has shown that rates of these symptoms increase 

among swimmers compared with non-swimmers (Prüss, 1998). Some authors have argued 

that symptoms are often minor and can be the result of contact with water itself or 



 

15 

 

prolonged periods in the sun (Prüss, 1998, Turbow et al., 2008). However, even minor 

symptoms can have a large cumulative impact on economies (Fleisher et al., 1998).  

 

The validity of using bacterial faecal indicators to predict the presence of pathogens has 

been questioned (Harwood et al., 2005). Research has consistently failed to demonstrate a 

strong correlation between current bacterial faecal indicator levels and the presence of viral 

and protozoan pathogens, largely because bacterial indicators are more susceptible to 

natural inactivation and treatment processes (Bonadonna et al., 2002[b]; Lipp et al., 2001). 

There are also concerns over the possible re-growth of bacterial indicators in environmental 

matrices (Ferguson and Signoretto, 2001). Alternative indicators of faecal pollution have 

therefore been investigated (Savichtcheva and Okabe, 2006). Even though internationally 

there are concerns over the interpretation of faecal indicator bacteria data, legislation 

currently prioritises the monitoring and reduction of E.coli and intestinal enterococci.  

 

1.5 European water quality legislation 

In order to protect public health in Europe there are a number of EU Directives in place to 

monitor and regulate water quality. Important Directives include the Water Framework 

Directive (2000/60/EC), Bathing Water Directive (76/160/EEC) and revised Directive 

(2006/7/EC), the Urban Waste Water Treatment Directive (91/271/EEC), Freshwater Fish 

Directive (2006/44/EC), Shellfish Waters Directive (2006/113/EC), Groundwater Directive 

(2006/118/EC) Nitrates Directive (91/676/EEC), Dangerous Substances Directive 

(2006/11/EC) and the Drinking Water Directive (98/83/EC) (Commission of the European 

Union (CEU), 1976, 1991 [a, b], 1998, 2000, 2006 [a, b, c, d, e]).  
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1.5.1 The EU Bathing Water Directive 

During the 1970s concern about environmental degradation and the health risks of bathing 

led to calls for water quality to be monitored and tested in order to protect bathers and the 

environment.  In 1976, one of the first pieces of European environmental legislation was 

created in the form of the Council Directive 76/160/EEC on Bathing Water Quality (CEU, 

1976). The Directive required Member States to identify popular bathing waters and to 

monitor these throughout the bathing season. The Bathing Water Directive set standards for 

different microbiological and physico-chemical parameters. Water quality had to comply 

with ‘mandatory’ standards and the achievement of the higher ‘guideline’ standards was 

encouraged (CEU, 1976). Mandatory standards were provided for ten parameters, namely 

total coliforms, faecal coliforms, salmonella, enteroviruses, pH level, colour, mineral oils, 

surface active substances (detergents), phenols and transparency (CEU, 1976). The 

Commission of the European Communities set mandatory standards for total and faecal 

coliforms (Tables 1.3 and 1.4), and three physico-chemical parameters (surface active 

substances, mineral oils and phenols) to determine compliance of bathing waters.  

 

Table 1.3 EU mandatory standards for bathing waters (CEU, 1976) 

 CFU/100ml Percentage of samples 

Total coliforms 10,000 95% 

Faecal coliforms 2,000 95% 

CFU= Colony Forming Units 

 

Table 1.4 EU guideline standards for bathing waters (CEU, 1976) 

 CFU/100ml Percentage of samples 

Total Coliforms 500 80% 

Faecal coliforms 100 80% 

Faecal streptococci 100 90% 

CFU= Colony Forming Units                                                                      
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It was widely accepted that the Bathing Water Directive (76/160/EEC) required revision to 

take into account advances in science and knowledge regarding the risks associated with 

bathing. Changes in environmental protection offered in more recent EU legislation, such 

as the Water Framework Directive, also highlighted the need for an updated and simplified 

Bathing Water Directive (76/160/EEC) (CEU, 2000). The revised Bathing Water Directive 

(2006/7/EC) came into force on the 24
th

 of March 2006. The revised Bathing Water 

Directive (2006/7/EC) focuses on the protection of public health at bathing water sites, but 

not all waters used for recreational activity are designated bathing waters under this piece 

of legislation. Some recreational waters are used all year round for a number of activities, 

including surfing, kayaking, canoeing, diving, wind surfing, kite surfing and sailing. These 

recreational pursuits can result in considerable contact with water, and may be undertaken 

hundreds of metres from the coast. Sports such as windsurfing are permitted on waters that 

have been judged unsafe for swimming, although research suggests these activities pose the 

same or greater level of risk to human health (Dewailly et al., 1986; Turbow et al., 2008). 

Water sports such as surfing and diving that involve full-body immersion have become 

more popular in recent years and wet/dry suits allow these sports to continue all year round 

in temperate climates (Bradley and Hancock, 2003). This may be a cause for concern as 

water quality monitoring is restricted to the identified bathing season and near-shore areas. 

 

The revised Directive has simplified the way in which water quality is measured by 

focusing on fewer microbiological indicators, namely intestinal enterococci and 

Escherichia coli. From 2012, bathing waters will be classified as ‘excellent’, ‘good’, 

‘sufficient’ or ‘poor’. Tables 1.5 and 1.6 show the revised EU standards for inland, coastal 

and transitional waters. 
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Table 1.5 EU standard values for intestinal enterococci and E.coli in inland waters (CEU, 

2006) 

Parameter Excellent quality Good quality Sufficient 

Intestinal enterococci (cfu/100ml) 200 (*) 400 (*) 330 (**) 

Escherichia coli (cfu/100ml) 500 (*) 1000 (*) 900 (**) 

(*) Based upon a 95-percentile evaluation 

(**) Based upon a 90-percentile evaluation       

 

Table 1.6 EU standard values for intestinal enterococci and E.coli in coastal and 

transitional waters (CEU, 2006) 

Parameter Excellent quality Good quality Sufficient 

Intestinal enterococci (cfu/100ml) 100 (*) 200 (*) 185 (**) 

Escherichia coli (cfu/100ml) 250 (*) 500 (*) 500 (**) 

(*) Based upon a 95-percentile evaluation 

(**) Based upon a 90-percentile evaluation       

 

The selection of faecal indicator organisms (E. coli and intestinal enterococci) for use in the 

revised EU Bathing Water Directive (2006/7/EC) was influenced by a World Health 

Organization review of epidemiological evidence (Prüss, 1998). The review conducted by 

Prüss (1998) suggested that intestinal enterococci were the most appropriate currently 

available indicator of health risk in fresh and marine waters, whereas E. coli concentrations 

were predictive of illness in freshwater. Standard concentrations of E.coli and intestinal 

enterococci set out in the Directive are based on studies demonstrating dose-response 

relationships relating faecal indicator concentrations to rates of illness (Kay et al., 1994; 

Fleisher et al., 1998).  

 

1.5.2 Water Framework Directive  

The Water Framework Directive (WFD) is a major piece of European legislation, which 

came into force in December 2000 and was transposed into UK law in 2003 (CEU, 2000). 
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The WFD and its related Directives repeal twelve Directives that had previously created a 

fragmented regulatory system, consequently streamlining and improving current regulation. 

The Directive’s purpose is to establish a framework for the protection of inland surface 

waters, transitional waters, coastal waters and groundwater, with the aim of preventing 

further deterioration, whilst protecting and enhancing the status of aquatic ecosystems, 

wetlands and the water needs of terrestrial ecosystems (CEU, 2000). The Directive also 

aims to promote the sustainable use of water, ensuring the continual reduction of pollution 

and prevention of pollution of groundwater. 

  

The WFD sets objectives that aim to ensure that all waters meet a ‘good status’ by 2015. 

The Directive ensures that there is active participation in water management activities from 

all stakeholders, including non-governmental organisations (NGO) and local communities. 

The WFD sets objectives for ecological and chemical aspects of water quality. There are no 

direct objectives related to levels of FIO and waterborne pathogens, but the Directive does 

aim to reduce and control pollution from all sources, not just from point sources. The 

absence of microbial objectives is a potential shortcoming of the Directive, because 

improvements in ecological and chemical status may not automatically lead to reductions in 

levels of microbial pathogens. A key feature of the WFD is the introduction of River Basin 

Districts. Member States are required to identify river basins within their territory and 

assign them to districts. River basin districts are not restricted to territorial borders and 

follow the natural geographical and hydrological units of river basins. If basins cross 

member state borders then they are assigned to an international river basin district. For 

every district a River Basin Management Plan is required (CEU, 2000).  
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1.6 Microbial source tracking 

As mentioned previously, FIO are currently used to assess the hygienic quality of water and 

are present in both the faeces of human and non-human animals. Their detection therefore 

offers no insight into the potential source(s) of contamination. Distinguishing the source(s) 

of contamination can potentially support the achievement of water quality standards set out 

in legislation through the selection, implementation and evaluation of appropriate 

mitigation measures, and can also help in assigning legal responsibility for such measures. 

 

Recent international legislation in the form of the WFD (EU) and the Clean Water Act 

(USA) require the identification and management of point and diffuse sources of microbial 

pollution that lead to ‘non-compliance’ (EU) and ‘impairment’ (USA) in surface waters 

(CEU, 2000; USEPA, 2002). The WFD requires the establishment of a ‘programme of 

measures’ for identified noncompliant river basin districts and in the USA, impaired waters 

are investigated and actions set out by the principal of ‘total maximum daily loads’ 

(TDML). Determining the source(s) of faecal pollution can also give valuable information 

regarding the potential risk to human health as it is acknowledged that risks may vary 

according to animal host sources (Soller et al., 2010). MST can therefore support risk 

assessments, providing information on which reference pathogens to look for in samples.  

 

Legislative requirements, the need to predict risk to human health accurately, and the 

implications of source on the selection of remediation measures, have led to the recent 

development of the field of microbial source tracking (MST). The field of MST 

encompasses a broad range of techniques that aim to distinguish source(s) of faecal 

contamination in surface waters utilising microbial populations with specificity to particular 
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animal hosts. MST is a rapidly advancing field but there is currently no single standardised 

method available to distinguish sources of faecal contamination in surface waters in all 

situations (Meays et al., 2004; Domingo et al., 2007). Many researchers have concluded 

that no single technique will be able to satisfy all scenarios and instead a ‘toolbox’ 

approach using multiple methods in conjunction is frequently recommended (Vogel et al., 

2007; Plummer et al., 2009; Gourmelon et al., 2010[a]). MST methods should be chosen to 

suit the particular catchment scenario (problem-orientated), time and financial constraints 

of the region concerned.  

 

MST methods may be either ‘library-dependent’ or ‘library-independent’ and can be further 

classified as either ‘culture-dependent’ or ‘culture–independent’. Culture-dependent 

methods require the growth of particular microorganisms from water samples and library-

dependent methods (LDM) require the construction of a library of bacterial isolate 

characteristics from known sources. Environmental isolates of unknown origin can then be 

compared to those from the library to determine the source(s) of faecal pollution. Libraries 

can contain phenotypic or genotypic bacterial characteristics (profiles), and the success of 

these methods relies heavily on the construction of a representative library (Field and 

Samadpour, 2007). Sufficient library size and diversity depends largely on the technique 

and organisms used. The two fundamental problems when using E. coli and enterococci in 

LDM are their high diversity and limited host adaptation. Cosmopolitan strains (strains that 

reside in more than one host type) hinder the identification of faecal sources and can cause 

inaccurate source identifications (Harwood, 2007). Phenotypic libraries tend to be much 

larger than those constructed for genotypic methods (Albert et al., 2003; Scott et al., 2003; 

Moore et al., 2005; Sayah et al., 2005). Small, unrepresentative libraries can result in 
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misclassifications (Olivas and Faulkner, 2008) and the development of comprehensive 

libraries, even with relatively low-cost resources is expensive and time-consuming. 

Importantly, the geographical stability of libraries (applicability of libraries across different 

geographical regions) has been shown to vary (Ebdon and Taylor, 2006; Ahmed and 

Katouli, 2008). Consequently separate libraries are recommended for larger geographical 

regions (Wiggins, 2003; Ebdon and Taylor, 2006). Many authors have also found temporal 

instability in genotypic and phenotypic characteristics when using E. coli and enterococci 

(Molina, 2005; Hansen et al., 2009) and this necessitates regular library updates to account 

for these changes. Additionally, the choice of statistical methods used to classify isolates in 

LDM has been shown to influence results (Hassan et al., 2005; Lasalde et al., 2005). 

 

Because of the limitations of LDM, in recent years research into new MST tools has 

increasingly moved towards library-independent methods (LIM). These methods are either 

based on the cultivation of source-specific bacteria, or on the detection of source-specific 

genetic markers. LIM markers require validation against a range of faecal sources to ensure 

their specificity, but as the name suggests, they do not require libraries or databases of 

isolates from known sources. With culture independent LIM, multiple assays with multiple 

microbial targets may be performed with a single DNA extract relatively quickly (within a 

few hours). However, the major limitations of LIM relate to targeting a single gene, as the 

target may be present in the sample at low numbers (Stewart et al., 2007).  

 

Cultivation-independent, library-independent PCR methods have emerged in recent years. 

They are often rapid, sensitive and can be less expensive than library-dependent 

comparisons. These techniques are based on the detection of molecular markers. Molecular 
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approaches can be used to detect markers that are difficult or impossible to culture, as is the 

case with many anaerobic bacteria present in the intestinal gut of humans and non-human 

animals. The majority of library-independent molecular methods target the 16S rRNA gene 

in sequences obtained from metagenomic fragments. Methods usually involve enrichment 

of target genes, extraction of nucleic acids, and then the amplification of target genes by 

PCR and quantitative PCR (qPCR) (Wuertz et al., 2011). There are two main differences 

between conventional PCR and real-time qPCR: 1) in qPCR the amplified target is 

quantified using a fluorescent reporter rather than traditional use of gel electrophoresis; and 

2) in qPCR the amplified target is measured during each PCR cycle (McPherson and 

Møller, 2006).  

 

The main advantage of using qPCR over conventional PCR is the ability to directly 

determine the concentration of a target gene. Whilst the quantification of faecal source 

contributions cannot be accomplished with qPCR-based MST data alone, recent studies 

have shown that it is possible to quantify faecal source contributions by relating MST 

results to other measures of water quality, including the level of total faecal pollution 

(Reischer et al., 2008; 2011). A probabilistic model has also been developed recently by 

Wang et al. (2010) that aims to account for the uncertainties with qPCR measurements, 

making quantitative MST feasible by connecting measured concentrations of host-specific 

faecal markers with a statistical model. There is concern that qPCR methods may 

overestimate concentrations because they are not capable of differentiating between viable 

and dead or dying cells (Byappanahalli et al., 2010; Noble et al., 2010). However, qPCR 

methods that can distinguish dead cells from viable cells have been developed in an attempt 

to determine recent pollution events (Bae and Wuertz, 2009). Recent advances in PCR 
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technology also mean it is now possible to produce PCR results for thousands of samples in 

a single day (Harwood et al., 2011).  

 

In addition to MST markers, chemical tracers have been investigated as faecal source 

indicators. Caffeine, faecal sterols, pharmaceutical and personal care products, bile acids, 

laundry brighteners, surfactants, fragrances, pesticides, and polycyclic aromatic 

hydrocarbons have all been used to differentiate human from non-human faecal pollution in 

surface waters (Field and Samadpour, 2007).  

 

MST has developed rapidly during the past fifteen years and the available literature is 

extensive. The following Tables (1.7-1.10) therefore give an overview of the main 

techniques developed for MST in recent years. Descriptions of MST techniques, including 

their advantages and disadvantages, are divided according to the following classification: 

library-dependent, phenotypic methods (Table 1.7), library-dependent, genotypic methods 

(Table 1.8), library-independent, culture-dependent methods (Table 1.9), and library-

independent, culture-independent methods (Table 1.10). Those MST methods with direct 

relevance to the programme of research presented here are discussed in greater detail in 

Chapter Two. 
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Table 1.7 Library-dependent, phenotypic MST methods 

Method Brief outline Advantages Disadvantages Investigators 

Antibiotic 

resistance  

Strains of faecal bacteria (E.coli and 

intestinal enterococci) can become 

resistant when exposed to antibiotics 

for prolonged periods of time.  

Antibiotic resistance profiles can 

therefore be developed by testing the 

resistance of faecal bacteria to a 

selection of antibiotics. A library of 

known resistance profiles from 

potential sources may be created and 

used to identify the source of unknown 

isolates. 

 

High average rates of correct 

classification (ARCC) have been 

reported (≥95% for human vs. non-

human classification).  

The method requires a 

library of antibiotic 

resistance patterns from 

isolates of known origin. 

These libraries have been 

shown to temporally and 

geographically unstable. 

There is also evidence that 

resistance genes may 

transfer between bacteria.  

 

Wiggins, 1996; Hagedorn et al., 

1999; Wiggins et al., 1999; 

Harwood et al., 2000; Whitlock 

et al., 2002; Wiggins et al., 

2003; Harwood et al., 2003; 

Ebdon et al., 2004; Carroll et 

al., 2005; Ebdon and Taylor, 

2006; Vantarakis et al., 2006; 

Graves et al., 2007 

 

Carbon- 

source 

utilization 

Carbon-source (CSU) utilization 

profiling is a phenotypic MST method 

in which microplate systems 

containing substrates for bacterial 

growth are used to produce substrate 

utilization patterns of isolates of faecal 

indicator bacteria. Substrate utilisation 

patterns are then compared to a known 

source library. 

 

Microplate systems are commercially 

available (Biolog and PhPlate). CSU 

is a relatively simple and rapid MST 

technique that can be used with large 

numbers of isolates.  The 

commercially available Biolog 

system has been reported to achieve 

ARCC as high as 92.7% for a human 

vs. non-human classification. 

In MST comparison studies 

CSU has performed poorly, 

In one such study CSU was 

only able to identify the 

dominant source of faecal 

pollution correctly in 50% 

of samples.  

Parveen et al., 2001;  Griffith et 

al., 2003; Hagedorn et al., 2003; 

Wallis et al., 2003; Ahmed et 

al., 2005[b]; Blanch et al., 2006; 

Ahmed and Katouli, 2008  

Fatty acid 

methyl 

ester 

profiling 

Fatty acid methyl ester (FAME) 

profiling is phenotypic MST method. 

Bacteria have distinct FAME profiles, 

which have been used to distinguish 

faecal sources in water. 

Studies have shown that FAME 

profiles of faecal indicator bacteria 

have both quantitative and qualitative 

host species distributions. They 

present evidence that FAME profiles 

have statistically significant host 

specificity and are therefore useful in 
determining sources of faecal 

pollution. 

Although initial results have 

been very positive, more 

recent studies have found 

that FAME profiling 

achieves much lower ARCC 

when classifying isolates 

into individual host groups 
(≤ 66%).  

Parveen et al., 2001; Genthner 

et al., 2005; Haznedaroglu et 
al., 2005; Duran et al., 2006; 

Seurinck et al., 2006; 

Haznedaroglu et al., 2007; 

Duran et al., 2009 
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Table 1.8 Library-dependent, genotypic MST methods  

Method Brief outline Advantages Disadvantages Investigators 

Ribotyping Ribotyping refers to methods that create a 

banding pattern from 16S ribosomal DNA 

extracted from bacterial isolates. The banding 

pattern is used to distinguish between isolates 

from different faecal sources.  

Ribotyping has excellent 

reproducibility and 

discriminatory power. 

Studies have reported high 

ARCC (≥ 95%) when 

distinguishing between 

human and non-human 

faecal sources. 

 

The method is slow, expensive and 

labour intensive. Studies have shown 

geographic and temporal instability 

of libraries. Cosmopolitan subspecies 

can result in misclassifications of 

isolates.  

 

Parveen et al., 

1999; Carson et al., 
2001; Hartel et al., 

2002; Jenkins et al., 

2003; Scott et al., 

2003; Scott et al., 

2004; Kelsey, 2008 

Repetitive 

element-based 

polymerase 

chain reaction 

 

In repetitive element-based polymerase chain 

reaction (rep-PCR), palindromic sequences 

occurring in multiple copies within bacterial 

genomes are amplified. Four types of rep-PCR 

have been applied in MST studies; repetitive 

extragenic palindromic PCR (REP-PCR), 

enterobacterial repetitive intergenic consensus 

sequence PCR (ERIC-PCR), PCR with 

extragenic repeating elements (BOX-PCR), and 

the polytrinucleotide sequences (GTG)5. 

 

High rates of ARCC 

(≥96%) have been 

demonstrated, particularly 

with rep-PCR (BOX A1R 

primers) which has been 

shown to produce 

significantly superior 

ARCC to ribotyping. Less 

expensive than other 

genotypic methods.  

Whilst rep-PCR methods are less 

technically demanding than other 

genotypic LDM, traditional PCR 

methods are dependent on cultivation 

and the construction of a known host 

source library. As is the case with 

other LDM, geographical and 

temporal instability is a major 

limitation of rep-PCR.  

Dombek et al., 
2000; Carson et al., 

2003; McLellan et 
al., 2003; Myoda et 

al. 2003; Johnson et 

al., 2004; Leung et 

al., 2004; Seurinck 

et al., 2005; 

Mohapatra et al., 

2007 

Pulsed-Field 

Gel 

Electrophoresis  

 

In pulsed-field gel electrophoresis (PFGE) rare-

cutting restriction enzymes are used on the 

whole DNA genome. Genomic fragments are 

then separated by alternatively pulsed, 

perpendicularly orientated electrical fields. This 

is followed by electrophoretic analysis to 

produce banding patterns. Banding patterns are 

compared to a known source library in order to 

determine the host source. 

The technique has been 

widely used in clinical 

microbiology and the DNA 

fingerprints created are 

considered to be the ‘gold 

standard’ in this field. 

PFGE is a highly sensitive 

and discriminatory method. 

Due to the high sensitivity of the 

method, an extensive library is often 

required. Consequently the method 

can be labour-intensive and 

expensive. PFGE also requires a 

series of time-consuming steps and 

therefore may not be appropriate for 

complex studies where larger known 

host source libraries are required. 

Tynkkynen et al., 

1999; Hager et al., 

2001; Simpson et 
al., 2002; Myoda et 

al., 2003; Lu et al., 
2004; Meays et al., 

2004  
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Table 1.8 Library-dependent, genotypic MST methods (continued) 

Method Brief outline Advantages Disadvantages Investigators 

Amplified Fragment 

Length 

Polymorphism  

 

Amplified fragment length polymorphism 

involves the selective PCR amplification 

of restriction fragments from a total digest 

of genome DNA. 

The method has good 

reproducibility, resolution 

and sensitivity. Studies using 

AFLP have reported high 

ARCC for E. coli isolates 

from human and non-human 

sources (90-98%). 

 

AFLP shares the drawbacks of 

many DNA fingerprinting methods, 

as it requires highly skilled labour, 

is time-consuming and relatively 

expensive.  

Vos et al., 1995; 

Gaun et al., 2002; 

Leung et al., 2004 

Random amplified 

polymorphic DNA 

analysis 

 

In Random amplified polymorphic DNA 

(RAPD) analysis, DNA fragments from 

PCR amplification of random segments of 

genomic DNA are used to create 

fingerprints. RAPD has not been used 

extensively in MST. 

The method has relatively 

high specificity and 

sensitivity. RAPD has been 

shown to have higher 

discriminatory ability than 

ribotyping when subtyping 

E.coli. 

 

The main limitation of the method 

is the random relationship between 

the primers and target sites, making 

the method sensitive to alterations 

in reaction conditions.  

Olive and Bean, 

1999; Vogel et al., 
2000; Ting et al., 

2003; Venieri et al., 
2004 

Denaturing 

Gradient Gel 

Electrophoresis 

 

Denaturing gradient gel electrophoresis 

(DGGE) produces ‘fingerprints’ by 

separating closely related PCR generated 

DNA fragments, based on their different 

DNA sequences. The band created on the 

gel, results from a specific sequence of a 

gene. 

 

The method has relatively 

high sensitivity. Unique 

distributions have been 

found in human and non-

human animal E. coli 

isolates. Species-specific 

community fingerprints can 

be generated. 

 

The technique has been described 

as being comparable to antibiotic 

resistance analysis and analysis of 

repetitive DNA fingerprints, but has 

lower reported ARCC then 

ribotyping and AFLP, by which 

rates of >90% have been observed.  

 

Farnleitner et al., 
2000; Buchan et al., 

2001; Chee-Sanford 

et al., 2001; 

Madigan et al., 

2003; Sigler and 

Pasutti, 2006; 

D’Elia et al., 2007 

Matrix-assisted 

laser desorption/ 

ionization time of 

flight mass 

spectroscopy 

Matrix-assisted laser desorption/ 

ionization time of flight mass spectroscopy 

(MALDI-TOF-MS) is a soft ionization 

technique that enables spectral fingerprints 

to be produced rapidly. The method has 

been applied in very few MST studies. 

A high level of correct 

classification was achieved 

when assigning E. coli 
isolates to human, bovine, 

canine and avian source 

groups (73%) 

Lower reproducibility in 

comparison to techniques such as 

rep-PCR. Reproducibility can be 

increased by treating samples with 

lysozyme for 20 hours, but this 

makes the method time-consuming.  

Siegrist et al., 2007; 

Giebel et al., 2008 
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Table 1.9 Library-independent, culture-dependent MST methods 

Method Brief outline Advantages Disadvantages Investigators 

Detection of 

Bifidobacterium 

species  

 

Bifidobacterium spp. are anaerobic 

bacteria that are found in high 

numbers in the human intestine and 

have been investigated as possible 

indicators of human faecal pollution. 

Proposed as a robust method 

for differentiating between 

human and animal faeces. 

Where sorbitol-fermenting 

bifidobacteria have been found 

in animal faeces, they have 

been isolated in different 

frequencies for different 

animals. Library-independent. 

 

Rapid die-off of the bacterium at 

higher temperatures limits the use 

of bifidobacteria in summer 

months in temperate climates and 

in tropical and subtropical 

climates. 

Mara and Oragui, 1983; 

Gavini et al., 1991; Jagals 

and Grabow, 1996; Rhodes 

and Kator, 1999; Bonjoch et 

al., 2005; Blanch et al., 

2006; Bonjoch et al., 2009; 

Ottoson et al., 2009; Mushi 

et al., 2010  

Detection of 

Clostridium 

perfringens  

 

Clostridium perfringens is a species 

of anaerobic, spore-forming bacteria. 

The species has been proposed as a 

conservative marker of 

anthropogenic faecal pollution 

because it has been found in human, 

livestock, and carnivore animal 

faeces but has been rarely detected 

in herbivore wildlife faeces 

 

They have been proposed as an 

alternative indicator of faecal 

pollution in tropical waters 

because it is unlikely to 

multiply in the environment. 

Library-independent. 

The species has high resistance to 

natural inactivation and 

wastewater treatment. It may, 

therefore persist for long periods 

in the environment. Its detection 

might not always represent recent 

contamination.  

 

Bisson and Cabelli, 1980; 

Roll and Fujioka, 1997; 

Byamukama et al., 2005; 

Cimenti et al., 2005; 

Farnleitner et al., 2010  

Detection of 

Rhodococcus 

coprophilus 

 

Rhodococcus coprophilus is a 

species of an aerobic actinomycete. 

The bacterium has been proposed as 

an indicator of non-human faecal 

pollution. 

 

The bacterium is highly 

restricted to non-human animal 

faecal pollution. Library-

independent. 

The method is limited by the 

need for a lengthy incubation 

period (18 days). Rhodococcus 
coprophilus is able to persist for 

long periods in the environment 

(120 days) and therefore its 

presence may not indicate recent 

faecal contamination 

 

Rowbotham and Cross, 

1977; Mara and Oragui, 

1981; Oragui and Mara, 

1983; Jagals et al., 1995 

Bacteriophage 

methods 

The assessment of sewage pollution of sea water by analysis of bacteriophages infecting E.coli was first proposed by Kott (1966). Since 
then a number of phage detection methods have been developed for a variety of bacterial host strains. Bacteriophage methods are discussed 

in greater detail in Chapter Two (section 2.3). 
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Table 1.10 Library-independent, culture-independent MST methods 

Method Brief outline Advantages Disadvantages Investigators 

Host-

specific 

16S rRNA 

gene 

markers 

 

Host-specific 16S rRNA gene 

markers have been used to 

differentiate a range of faecal 

source groups including human, 

herbivore, ruminant, bovine, 

cattle, pig, elk, horse, gull, and 

dog. 

 

Bacteroidales markers appear to 

be geographically stable, having 

been used in many geographical 

regions including the US, 

Canada, Europe, Hawaii, Japan, 

and New Zealand. Correlations 

have been found between 

Bacteroidales markers and 

faecal indicator organisms. 

Library-independent. 

 

A limitation of targeting host 

specific 16S rRNA gene markers is 

the possible horizontal transfer of 

faecal bacteria among animal 

species in close contact. This may 

affect the specificity of the method 

and its ability to discriminate 

between sources. 

Bernhard and Field, 2000; Savill et 

al., 2001; Gilpin et al., 2003; 

Simpson et al., 2004; Dick et al., 

2005; Seurinck et al., 2005; 

Betancourt and Fujioka, 2006; 

Layton et al., 2006; Reischer et al., 

2006, 2007; Sosiak and Dixon, 

2006; Kildare et al., 2007; Okabe et 

al., 2007; Lu et al., 2008; Mieszkin 

et al., 2009; Zheng et al., 2009  

 

Toxin/ 

virulence 

gene 

markers 

 

Among Enterococcus faecium the 

enterococcal surface protein (esp) 

gene (a putative virulence factor) 

has been targeted, as a possible 

indicator of human faecal 

pollution. Assays have also been 

developed for E.coli toxin genes 

showing specificity to cattle, 

human, rabbit and bird faeces. 

The methods are rapid in 

comparison to LDM. E.coli 

toxin genes appear to be highly 

host specific. Library-

independent.  

The Scott et al. (2005) esp gene 
method is only partly library-

independent. Inconsistency of 

detection of the esp gene in human 

faecal samples.  Detection of the 

gene in non-human animal faeces. 

The prevalence of E.coli toxin 

genes is low. Horizontal gene 

transfer may affect the specificity of 

these markers. 

 

Ochman et al., 2000; Khatib et al., 
2002, 2003; Field et al., 2003; 

Chern et al., 2004; Harada et al., 

2005; Scott et al., 2005; Jiang et al., 

2007; Ahmed et al., 2008; 

Byappanahalli et al., 2008; Layton 

et al., 2009; Balleste et al., 2010 

 

Viral 

markers 

 

Human-specific viruses proposed 

as MST markers include: 

enteroviruses, adenoviruses, 

noroviruses and polyomaviruses. 

Bovine-specific adenoviruses and 

enteroviruses, and porcine- and 

ovine-specific adenoviruses have 

also been proposed as markers of 
non-human faecal pollution 

Highly host-specific. Directly 

related to human health risk and 

disease. Can be monitored 

directly without the need for 

culturing. 

Viral pathogens are present in low 

numbers in environmental waters. 

Viral pathogens are likely to be 

highly infectious at low doses. 

Traditionally time-consuming. 

Jiang et al., 2001; De Motes et al., 
2004; Fong et al., 2005; Fong and 

Lipp, 2005; He and Jiang, 2005; 

Xagoraraki et al., 2007; Ahmed et 

al., 2010; Tong et al., 2011 
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Chapter Two: Introduction to the ecology of 

the genus Enterococcus and its phages 

2.1 The genus Enterococcus 

2.1.1 Historical background  

The term “entérocoque” was first coined by Thiercelin in 1899, when he used it to describe 

a newly isolated Gram-positive diplococcus of intestinal origin. The genus Enterococcus 

was later officially named by Thiercelin and Jouhaud (1903). In 1906 Andrewes and 

Horder named an organism, which had been isolated from a patient with endocarditis, 

Streptococcus faecalis. A second organism within this genus was later described as 

Streptococcus faecium (Orla-Jensen, 1919). A review by Sherman (1937) proposed a 

classification scheme that divided streptococci into four separate divisions: pyogenic, 

viridans, lactic, and enterococcus. Organisms within the enterococcus division were those 

that grew at 10 and 45
o
C, in 6.5% sodium chloride (NaCl), and at pH 9.6, and which 

survived at 60
o
C for 30 minutes (Sherman, 1937).  In 1970, the establishment of a genus for 

the enterococcal streptococci was proposed, with S. faecalis and S. faecium and the 

subspecies of these two taxons being classified as Enterococcus (Kalina, 1970). However, 

the use of the genus name Streptococcus continued until 1984, when DNA-DNA and DNA-

RNA hybridisation studies demonstrated that Streptococcus faecalis and Streptococcus 

faecium were sufficiently different from non-enterococcal streptococci (Streptococcus bovis 

and Streptococcus equinus), to warrant their transfer to a separate genus, Enterococcus 

(Schleifer and Kilpper-Balz, 1984).  
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2.1.2 Identification and taxonomy of enterococcal species 

A large variety of phenotypic and genotypic methods exist for the identification of 

enterococcal species. Phenotypic typing methods that have been applied to differentiate 

these organisms include bio-typing (Devriese et al., 1994, 1995, 1996; Manafi, 1996; Kühn 

et al., 1995; Manero and Blanch, 1999; Reed et al., 1999; Day et al., 2001) protein 

fingerprinting by standardised sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(Andrighetto et al., 2001), multilocus enzyme electrophoresis (Tsakalidou et al., 1993), 

antimicrobial susceptibility testing (Willey et al., 1999), serotyping (Petts, 1995), long-

chain fatty acid analysis (Tyrrell et al., 2002), fatty acid methyl esters (FAME) analysis 

(Lang et al., 2001), enterocin typing (Pompei et al., 1992), pyrolysis mass spectrometry 

(Morrison et al., 1999), vibrational spectroscopic methods (Kirschner et al., 2001) and 

proton magnetic resonance spectroscopy (Bourne et al., 2001).  

 

Bio-typing is considered the traditional method for identifying Enterococcus species. 

Identification relies on results from an array of biochemical tests detecting carbohydrate 

fermentation and enzyme activity, demonstrated by a change in colour of indicator dyes. 

Identification using biochemical tests can be complicated as it requires a large number of 

tests, making routine application difficult. Manero and Blanch (1999) developed a six step 

biochemical key based on biochemical data from the analysis of over 1,600 isolates. The 

key identifies 19 Enterococcus species, including all of the most commonly isolated 

species. Twelve tests are presented, but only six are required for the identification of a 

single isolate. The key has an identification threshold of 99%, with only a few exceptions 

(87, 91.5, and 97% for E. avium, E. hirae, and E. durans, respectively). The system may be 

considered practicable, reliable and easy to perform, producing rapid results.  
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Commercial test kits have also been designed to simplify and reduce the time-consuming 

nature of bio-typing methods. The most commonly used test kits have included API 20 

Strep (BioMérieux, UK), Rapid ID32 Strep (BioMérieux, UK), API 50 CH (BioMérieux, 

UK), Api zym (BioMérieux, UK), the PhenePlate PhP plate system (PhPlate Microplate 

Techniques, Sweden), and the automated system Vitek 2 (BioMérieux, UK). The 

commercial test kits offer a rapid identification of Enterococcus species. Many authors 

have raised concerns over the misclassification of isolates when using commercial kits. 

Facklam and Texeira (2003) questioned the accuracy of the tests, suggesting that they could 

only reliably identify Enterococcus faecalis. Phenotypic methods may certainly fail to 

identify Enterococcus isolates that display resistance to antibiotics (Reed et al., 1999; 

Eisner et al., 2005; Winston et al., 2004), although the reliability of the methods have 

improved in recent years (Garcia-Garrote et al., 2000; Van den Braack et al., 2001). The 

main advantage of using commercial test kits is their ability to identify large numbers of 

isolates with relative ease. For example, the PhenePlate PhP plate system was successfully 

used for the preliminary identification of species in a large pan-European study in which 

more than 20,000 isolates from 2868 samples were analysed (Kühn et al., 2003). In 

response to concerns about the accuracy of commercial kits, it has been recommended that 

they be used in combination with more traditional biochemical tests (Fontan et al., 2002). 

 

The genotypic methods that have been used in the identification of Enterococcus species 

include restriction endonuclease analysis (REA) of total chromosomal DNA (Stosor et al., 

1999), plasmid profiles (Morrison et al., 1999), pulsed-field gel electrophoresis (Gelsomino 

et al., 2002), ribosomal RNA gene restriction analysis (Švec et al., 2001), polymerase chain 

reaction (PCR)- based typing systems (Table 2.1), nucleic acid hybridisation (Lewis et al., 
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2002), PCR identification [genus specific (Ke et al., 1999), species specific (Knijff et al., 

2001[a]), and detection of van genes and multiplex assays (Kariyama et al., 2000)], reverse 

transcription-PCR (Privitera et al., 1999), partial sequence analysis (Poyart et al., 2000), 

multilocus sequence typing (Naser et al., 2005), and whole-cell protein (WCP) analysis 

(Tyrrell et al., 2002).  

 

Table 2.1 Polymerase chain reaction (PCR) - based typing systems used to identify species 

of the genus Enterococcus 

Method Reference 

Randomly amplified polymorphic DNA (RAPD)-PCR  Quednau et al., 1998 

Specific and random amplification (SARA)-PCR  Knijff et al., 2001[b] 

Amplified fragment length polymorphism (AFLP) Antonishyn et al., 2000 

Rep-PCR Del Vecchio, 1998 

PCR-ribotyping Sechi et al., 1998 

PCR amplification of intergenic rRNA spacer regions (ITS-

PCR) 
Nelson et al., 2000 

Amplified ribosomal DNA restriction analysis (ARDRA) Moschetti et al., 1995 

Restriction fragment length polymorphism (RFLP) of PCR- 

amplified 16 S rDNA 
Müller et al., 2001 

Broad range PCR-RFLP Teng et al., 2001 

Temporal temperature gradient gel electrophoresis (TGGE) Monstein et al., 2001 

Denaturing gradient gel electrophoresis (DGGE) Ercolini et al., 2001 

intergenic length polymorphism analysis (tRNA-PCR) Devriese et al., 2002 

 

Novel species are currently included in the genus Enterococcus on the basis of a 

combination of results from DNA-DNA re-association studies, 16S rRNA gene sequencing, 

whole-cell protein (WCP) analysis and conventional phenotypic tests.  
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Phenotypic methods, such as conventional biochemical tests and commercially available 

test systems, were traditionally used to identify enterococcal species in taxonomic studies. 

Many recently described species included in the genus Enterococcus (based on 

phylogenetic evidence from 16S rRNA sequencing) do not show typical phenotypic 

characteristics classically associated with the genus, thus making identification of species 

using phenotypic methods increasingly difficult (Devriese et al., 1993, 2002). 

Misclassifications are also more common with phenotypic methods, as some enterococcal 

species differ by just a single phenotypic trait. Studies have also shown a lack of correlation 

between identification by phenotypic methods such as API 20 Strep, the Vitek-2 system 

and PCR-based methods (Eisner et al., 2005; Velasco et al., 2004; Gomes et al., 2007). It 

has therefore been suggested that phenotypic tests should, where feasible, be used in 

conjunction with genotypic methods to increase accuracy (Scheidegger et al., 2009).  

 

Table 2.2 lists the forty-one currently recognised Enterococcus species, as of 6
th

 October 

2011 (Euzéby, 2011). However it is noted that further investigations of taxonomic 

relatedness suggest that E. porcinus is a later synonym of E. villorum (De Graef et al., 

2003), and that E. flavescens and E. saccharominimus are later synonyms of E. 

casseliflavus and E. italicus, respectively (Naser et al., 2006). Genotypic and phenotypic 

evidence also supports the transfer of E. solitarius to the genus Tetragenococcus (Ennahar 

and Cai, 2005), and high levels of DNA relatedness between strains of Lactococcus 

garvieae and E. seriolicida also suggest that E. seriolicida is a later synonym of 

Lactococcus garvieae (Teixeira et al., 1996).   
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          Table 2.2 Recognised species of the genus Enterococcus (as of 2011) 

Enterococcus species Reference 

E. aquimarinus Švec et al., 2005 

E. asini De Vaux et al., 1998 

E. avium Collins et al., 1984 

E. caccae Carvalho et al., 2006 

E. camelliae Sukontasing et al., 2007 

E. canintestini Naser et al., 2005 

E. canis De Graef., et al 2003 

E. casseliflavus Collins et al., 1984 

E. cecorum Devriese et al., 1983 

E. columbae Devriese et al., 1993 

E. devriesei Švec et al., 2005 

E. dispar Collins et al., 1991 

E. durans Collins et al., 1984 

E. faecalis Schleifer and Kilpperbalz, 1984 

E. faecium Schleifer and Kilpperbalz, 1984 

E. flavescens  Pompei et al., 1992 

E. gallinarum Collins et al., 1984 

E. gilvus Tyrrell et al., 2002 

E. haemoperoxidus Švec et al., 2001 

E. hermanniensis Koort et al., 2004 

E. hirae Farrow and Collins, 1985 

E. italicus Fortina et al., 2004 

E. malodoratus Collins et al., 1984 

E. moraviensis Švec et al., 2001 

E. mundtii Collins et al., 1986 

E. pallens Tyrrell et al., 2002 

E. phoeniculicola Law-Brown and Meyers, 2003 

E. porcinus  Texeira et al., 2001 

E. pseudoavium Collins et al., 1989 

E. raffinosus Collins et al., 1989 

E. ratti Texeira et al., 2001 

E. saccharolyticus Rodrigues and Collins, 1990 

E. saccharominimus  Vancanneyt et al., 2004 

E. seriolicida  Kusada et al., 1991 

E. silesiacus Švec et al., 2006 

E. solitaries Collins et al., 1989 

E. sulfurous Martinez-Murcia and Collins, 1991 

E. termitis Švec et al., 2006 

E. thailandicus Tanasupawat et al., 2008 

E. viikkiensis Rahkila et al., 2011 

E. villorum Vancanneyt et al., 2001 
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2.1.3 Habitat of Enterococcus spp. 

Enterococci are ubiquitous in the gastrointestinal tracts of human and non-human animal 

sources (Martin and Mundt, 1972; Devreise et al., 1987; Kuhn et al., 2003; Farnleitner et 

al., 2010; Layton et al., 2010). Enterococcal species are also commonly isolated from the 

surface of plants, from water and sediment (Müller et al., 2001; Badgley et al., 2011). A 

number of enterococci have also been isolated from processed foods (Collins et al., 1984; 

Fortina et al., 2004; Vancanneyt et al., 2004; Tanasupawat et al., 2008). A list of 

enterococci species associated with different human and non-human host sources is given 

in Table 2.3.  

 

Enterococcus densities between 10
5 

and 10
8
 CFU/g have been observed in the human 

intestine (Tannock and Cook, 2002) and the most abundant species detected in human 

faeces and wastewaters are E. faecalis and E. faecium (Ruoff et al., 1990; Manero et al., 

2002; Gelsomino et al., 2003). Enterococcus avium, E. casseliflavus, E. durans, E. 

gallinarum, and E. hirae are also commonly isolated from human faecal sources. A diverse 

range of enterococcal species have been associated with the non-human mammalian gut 

and in some cases species have displayed a degree of host specificity. Among the species 

showing higher specificity, E. asini has been found exclusively in donkeys, and E. 

columbae appears to be specific to pigeons. A number of the newly recognised species of 

Enterococcus currently have only been found in the faeces of the mammalian host from 

which they were originally isolated (Table 2.3).  Species of Enterococcus have also been 

found in the guts of a number of invertebrates, including snails and insects such as beetles, 

cockroaches, houseflies, horseflies and weevils (Martin and Mundt, 1972; Švec et al., 2002; 

Ahmad et al., 2011).  
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Table 2.3 Enterococcal species and their association with human and non-human hosts 

Enterococcus spp.  Host   

E. asini Donkey  

E. avium Birds, broiler processing plant air, cats, cattle, dogs, fish, gulls, horses, humans, pigs, poultry, sea lions, seals, sewage 

E. caccae Humans 

E. canintestini Dogs, and humans (clinical infection)  

E. canis Dogs 

E. casseliflavus Birds, cattle, chickens, dogs, geese, gulls, horses, humans, insects, poultry, pigeons, seals, sewage, sheep, and snails  

E. cecorum Cattle, cats, chickens, dogs, humans (clinical infection), pigs, pigeons and poultry  

E. columbae Pigeons  

E. devriesei Bovine 

E. dispar Human sources  

E. durans Broiler processing plant air, cattle, dogs, gulls, horses, humans, pigs, poultry, sea lions, seals, sewage, and sheep  

E. faecalis Birds, cattle, dogs, goats, gulls, horses, humans, insects, pigs, poultry, pigeons, rabbits, sea lions, seals, sewage, and 

sheep  

E. faecium Birds, cats, cattle, dogs, fish, gulls, goats, horses, humans, insects, pigs, pigeons, poultry, rabbits, sea lions, seals, 

sewage, and sheep   

E. flavescens  Humans, cattle, horses and sheep 

E. gallinarum Birds, cattle, cats, dogs, domestic fowls, gulls, horses, humans, insects, pigs, pigeons, sea lions, seals, sewage, sheep  

E. gilvus Broiler processing plant air and human clinical specimens  

E. hermanniensis Broiler meat and canine tonsils  

E. hirae Birds, cattle, cats, chickens, dogs, geese, gulls, horses, humans, insects, pigs, poultry, sea lions, sewage, horses and sheep  

E. malodoratus Broiler processing plant air, humans, pigs and poultry 
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Table 2.3 Enterococcal species and their association with human and non-human hosts (continued) 

Enterococcus spp.  Host   

E. mundtii Cattle, horses, pigs, poultry, sheep, and silkworms  

E. pallens Human clinical specimens  

E. phoeniculicola Birds  

E. porcinus  Pigs intestines and faeces  

E. pseudoavium Cattle and sheep  

E. raffinosus Cats, dogs, and humans  

E. ratti Intestines and faeces of rats  

E. saccharolyticus Cattle, sewage  

E. seriolicida  Fish  

E. solitarius Humans   

E. termitis Termites  

E. viikkiensis Broiler processing plant air 

E. villorum Chickens, pigeons and piglets 

References: Devriese et al., 1983, 1987, 1991, 1992[a], 1992[b], 1993, 1994; Collins et al., 1984; Schleifer and Kilpperbalz, 1984; Farrow and 

Collins, 1985; Collins et al., 1989; Rodrigues and Collins, 1990; Collins et al., 1991; Devriese et al., 1991; Kusada et al., 1991; Pompei et al., 

1992; De Vaux et al., 1998; Texeira et al., 2001; Vancanneyt et al., 2001; Baele et al., 2002; Murase et al., 2002; Rodrigues et al., 2002; Švec 

et al., 2002; Tyrrell et al., 2002; De Graef., et al 2003; Law-Brown and Meyers, 2003; Koort et al., 2004; Naser et al., 2005; Švec et al., 2005; 

Carvalho et al., 2006; Fei et al., 2006; Švec et al., 2006; Larson et al., 2008; Graves et al., 2009; Marrow et al., 2009; Moneoang and 

Bezuidenhout, 2009; Bulushi et al., 2010; Layton et al., 2010; Ahmad et al., 2011; Han et al., 2011; Jackson et al., 2011; Rahkila et al., 2011 
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E. faecium, E. faecalis, E. casseliflavus, E. hirae, E. mundtii, and E. sulfureus have all been 

associated with plant habitats (Martinez-Murcia and Collins, 1991; Cai, 1999; Ulrich and 

Müller, 1998; Müller et al., 2001). Whilst many of these species have also been isolated 

from human and non-human animal faeces, evidence presented by Ulrich and Müller 

(1998) and Müller et al. (2001) suggests that the phenotypic characteristics of some plant-

associated enterococci may be dissimilar to species commonly isolated in the guts of 

human and non-human animals. The presence of plant associated enterococci in human and 

non-human animal faeces may be the result of incorporation into the digestive tract through 

the host animals’ diet (Layton et al., 2010).  

 

Once enterococci are excreted from their primary hosts, they are often able to survive in 

secondary habitats in the aquatic environment (Ferguson et al., 2005; Badgley et al., 2011; 

Halliday et al., 2011). Badgley et al. (2010) investigated enterococcal concentrations in 

water, sediment and submerged aquatic vegetation, and discovered high densities of 

enterococci in all three matrices. Three enterococcal strains (E. faecium, E. mundtii and E. 

hirae) were present at high levels in all three sample types and may have represented 

naturalised environmental strains. Populations of enterococci have also been found in beach 

sand at consistently higher levels than in the overlying waters, and on material deposited on 

beaches, such as algae, seaweed, and debris (Bonilla et al., 2007; Imamura et al., 2011). 

The survival and potential multiplication of enterococci in secondary habitats is discussed 

further in section 2.1.4. 
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2.1.4 Survival of enterococci in the environment 

The survival of enterococci in the environment is influenced by a variety of factors, 

including sunlight, temperature, salinity, predation, turbidity (including particle size), 

nutrient availability, organic carbon, pH level, dissolved oxygen concentration, and the 

presence of chemicals used in disinfection, such as chlorine (Tyrrell et al., 1995; Burkhardt 

et al., 2000; Davies and Bavor, 2000; Sinton et al., 2002; Kay et al., 2005; Fries et al., 

2006; Haller et al., 2009; Bolton et al., 2010; Chandran et al., 2011). Of these factors, solar 

radiation from sunlight has repeatedly been shown to be the dominant influence on the 

survival of faecal indicator bacteria in surface waters (Davies-Colley et al., 1994; Sinton et 

al., 1994; Sinton et al., 1999).  Sinton et al. (2002) found that the degree of inactivation of 

faecal indicators in sunlight including that of enterococci was ten times greater than that 

observed in the dark. Their results suggested that, although enterococci are initially more 

resistant to solar radiation than faecal coliforms, once damage to enterococcal cells occurs, 

it appears to be irreversible. Damage in enterococcal cells may be irreversible because 

unlike faecal coliforms, enterococci lack repair mechanisms and are unable to photo-

reactivate (Harris et al., 1987; Locas et al., 2008).These findings were supported by Noble 

et al. (2004), who demonstrated that solar irradiation and temperature had significant 

effects on rates of inactivation (P<0.001), and recorded faster inactivation of enterococci in 

sunlight than Escherichia coli (a member of the faecal coliform group). Higher levels of 

turbidity appear to decrease inactivation rates. Indeed, results from a study by Kay et al. 

(2005) suggested that the decay of enterococci in waters with turbidity of >200 NTU was 

similar to that observed under dark conditions. These results indicate that sediments in the 

water column may protect bacteria from irradiation.  
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It is generally recognised that enterococci survive longer in marine environments in 

comparison to members of the coliform group (Vasconcelos and Swartz, 1976; Evison and 

Tosti, 1981). The longer survival of enterococci in marine environments may be due to 

their greater tolerance of higher concentrations of NaCl (Sherman, 1937). Imamura et al. 

(2011) demonstrated that beach wrack, such a kelp and seaweeds, appears to increase the 

survival of enterococci in marine waters and sediments. Research has shown that 

attachment to secondary habitats can provide favourable environments for bacterial 

survival, largely because of reductions in sunlight inactivation and predation, and the 

increased availability of nutrients and organic carbon (Sinton et al., 1999; Davies and 

Bavor, 2000; Haller et al., 2009; Chandran et al., 2011). Authors have suggested that 

secondary habitats, such as sediments, seaweeds and algae, can provide reservoirs for 

faecal indicator bacteria and act as suitable substrates for multiplication (Anderson et al., 

1997; Byappanahalli et al., 2003; Ferguson et al., 2005; Pote et al., 2009).  

 

2.1.5 Isolation and enumeration  

A variety of techniques and media for the isolation and enumeration of enterococci in food, 

water, environmental, faecal and clinical samples has been described and critically 

reviewed (Barnes, 1976; Levin et al., 1975; Sinton et al., 1993[a]; Domig et al., 2003). 

Enterococci are difficult to grow on synthetic media as they require several vitamins and 

amino acids. Rapid growth is achievable with rich complex media such as Tryptone Soya 

(TS) and Brain Heart Infusion (BHI). These media sustain the growth of a number of 

bacteria, not just enterococci. The use of intestinal enterococci as faecal indicator 

organisms was prevented until the advent of selective media, which allowed for isolation of 

enterococci from environmental samples (Mallman and Seligmann, 1950). Initially 
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concentrations of intestinal enterococci were determined using the most probable number 

(MPN) method, but a membrane filtration method, first reported by Slanetz and Bartley 

(1957), soon followed. Membrane filtration has the advantage of producing faster results, 

enabling direct colony counts and allowing large sample volumes to be tested (Sinton et al., 

1993[a]). Slanetz and Bartley (SB), otherwise known as m-Enterococcus agar, KF 

streptococcus agar and Kanamycin Aesculin agar (KAA) are the media that have been most 

commonly used with the membrane filtration method.  

 

The influence of different incubation temperatures and duration times on the isolation of 

enterococci has been investigated.  Elevated temperatures (between 42
o
C and 44

o
C), and 

shorter incubation duration can increase selectivity and reduce the growth of background 

microflora, but ultimately higher sensitivity results in lower counts (Brodsky and 

Schiemann, 1976; Dutka and Kwan, 1978; Reuter, 1985). There is therefore a trade-off 

between selectivity and recovery rates. The current ISO European and British standard for 

the isolation of enterococci from surface waters and wastewaters recommends membrane 

filtration using Slanetz and Bartley medium (m- Enterococcus agar) with incubation at 

37
o
C and a confirmation step using bile aesculin-azide agar (Anon, 2000).  For this 

medium, a confirmation step is necessary to differentiate enterococci from Lancefield 

group D streptococci species such as Streptococcus bovis (Chuard and Reller, 1998).  

 

For further confirmation of isolates belonging to the genus Enterococcus, additional tests 

may be performed. The genus Enterococcus is described in Bergey’s Manual of 

Determinative Bacteriology (1994) as being comprised of Gram positive, facultatively 

anaerobic, spherical or ovoid cells occurring in pairs or short chains. They are catalase 
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negative and usually grow at both 10
o
C and 45

 o
C, at pH 9.6, with 6.5% NaCl, and with 

40% bile. By testing an isolate for a combination of these characteristics, most members of 

the enterococcal genus can be differentiated from those of other Gram-positive, 

facultatively anaerobic genera. This differentiation is often necessary before an isolate can 

be identified to the species level. Although these characteristics are true for most 

enterococci, as noted in section 2.1.2, some recently described species included in the 

genus Enterococcus do not share all of the these conventional traits.  

 

2.1.6 The use of species of Enterococcus in MST  

Enterococcal species are good candidate organisms for MST because they are present in 

high numbers in faeces, and several species although found in a number of host animals, 

can be divided into host-specific groups on the basis of phenotypic and genotypic 

characteristics (Devriese et al., 1993; Quednau et al., 1999). Enterococci were first used in 

MST in 1969 when Geldreich and Kenner proposed the faecal coliform to faecal 

streptococci (enterococci) ratio as a tool for discerning human from non-human sources of 

faecal pollution after Litsky et al. (1955) found a 1:7 E.coli: enterococci ratio in surface 

water, but a 13:1 ratio in raw wastewater (Litsky et al., 1953). Geldreich and Kenner (1969) 

determined that a high faecal coliform to faecal streptococci ratio (>4.0) indicated human 

faecal pollution, whereas lower ratios were representative of mixed faecal sources. In 1976 

Geldreich further suggested that a ratio of <0.7 should be considered indicative of animal 

faecal sources. However, later research showed the ratio to be unreliable. The ratios were 

found to be inconsistent in human and animal faeces and further research suggested that the 

two bacterial groups displayed unequal survival rates in the environment (Doran and Linn, 

1979; Mara and Oragui, 1981; Pourcher et al., 1991). Subsequently, enterococci have been 
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the focus of considerable numbers of MST studies involving numerous phenotypic, 

genotypic, library-dependent and independent methodologies (Bahirathan et al., 1998; 

Wheeler et al., 2002; Wiggins et al., 2003; Moore et al., 2005; Scott et al., 2005; Soule et 

al., 2006; Ahmed et al., 2007; Brownell et al., 2007; Dikerson et al., 2007; Jiang et al., 

2007; Whitman et al., 2007; Korajkic et al., 2009). 

 

Some authors have suggested that specific Enterococcus species have potential application 

as MST markers. Bahirathan et al. (1998) explored the potential of using a ratio of E.coli to 

yellow pigmented enterococci, combined with vancomycin susceptibility profiles, as an 

indication of human and non-human sources of faecal pollution. Their results showed 

yellow-pigmented enterococci were more prevalent and abundant in non-human faecal 

sources. Wheeler et al. (2002) targeted E. faecalis species and used ribotyping to 

distinguish isolates from human and chicken sources. Soule et al. (2006) used DNA 

microarrays to identify library-independent, host-specific Enterococcus markers. They 

identified fifteen markers originating from human, cattle, and cervid (elk and deer) isolates. 

Two markers were cattle specific, five were human specific, one was associated with elk 

and deer, and the remaining markers were found to be present in a number of other non-

human hosts. Interestingly, cervid markers were only present in E. mundtii and E. 

casseliflavus, while E. faecalis harboured only human markers. Many other authors have 

focused their efforts on a human-associated esp gene marker for E. faecium, although there 

is contradictory evidence regarding its specificity, and therefore its suitability as an 

indicator of human faecal pollution is in doubt (Scott et al., 2005; Ahmed et al., 2008; 

Byappanahalli et al., 2008; Layton et al., 2009).  
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2.2 The basis of phage lysis as an MST tool 

In this section the biology of bacteriophages is briefly described before the current use of 

phages of enteric bacteria (including the enterococci) as faecal indicator organisms, 

microbial source tracking markers and potential pathogen surrogates is critically reviewed.  

 

2.2.1 Basic phage biology  

Bacteriophages are viruses capable of infecting, and multiplying within, prokaryotes 

(Abedon, 2008). Phages can be either ‘virulent’ or ‘temperate’. Temperate phages are able 

to multiply by either a lytic cycle, ultimately resulting in the lysis of the host cell (Figure 

2.1), or alternatively by means of a lysogenic cycle. Virulent phages can only replicate by 

means of a lytic cycle. There are variations in the life cycles of various phages. A basic 

lytic cycle is illustrated in Figure 2.1, and involves the stages of adsorption, infection, and 

the eventual lysis of the host cell and release of progeny phages.  

 

 

Figure 2.1 The life cycle of a typical lytic bacteriophage. (A) A single infective phage 

particle with its bacterial host cell. (B) The phage binds to receptors on the surface of its 

host (adsorption) and injects its genome into the bacterial cytoplasm. (C) Within the 

bacterial cell the phage genome is copied, phage structural proteins are synthesised, and the 

genome is packaged. (D) At the end of the latent period, the host cell lyses, releasing the 

new progeny phages. The cycle may then start again (Kerr et al., 2008) 
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Adsorption is the process by which tailed phages with specialised structures (fibres or 

spikes), bind to specific receptors on the host bacterium. Receptor sites may be proteins, 

oligosaccharides, or lipopolysaccharides. Several phages require concentrated clusters of 

these sites in order to position the tail for penetration, however some are capable of utilising 

receptors that are only present in a few copies per cell (Guttman et al., 2005).  Successful 

adsorption is followed by the onset of the latent period and subsequent infection of the 

bacterial cell. At this stage genetic material is transferred from the phage into the host 

through the tail (in most cases). The host converts into a phage-producing cell (redirecting 

biosynthetic pathways to make copies of nucleic acid and to synthesise phage proteins) by 

transcribing and translating phage genes (Malacinski, 2005). Phage particles are assembled 

by a process referred to as morphogenesis. During morphogenesis DNA is packaged into 

icosahedral protein shells (procapsids). Phages are then assembled via complex interactions 

between scaffolding proteins and head structural proteins. The separately assembled tail is 

combined once the head is complete (Guttman et al., 2005). Phage lysis then allows for the 

release of new progeny phage. In the case of filamentous phage (discussed later in this 

chapter), release does not always result in the destruction of the host cell (Abedon, 2006).  

 

Within a lysogenic cycle, the phage does not actively replicate. Instead the phage genome 

adopts a dormant state (known as a prophage), integrated into the host genome or 

maintained as a plasmid (Guttman et al., 2005). In this state replication occurs as the host 

cell reproduces to make a clone of cells, all containing prophages. It has been postulated 

that lysogeny may be an adaption for phages to maintain their populations during ‘hard 

times’, when bacterial densities fall below what is necessary for phage populations to be 

maintained through lytic infection alone (Stewart and Levin, 1984).  
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It is thought that there are approximately 10
30

 to 10
32

 phages within the earth’s diverse 

environments, making them ten or more times greater in number than bacteria (Whitman et 

al., 1998; Summers, 2005). Phages are known to infect over 140 bacterial genera 

(Ackermann, 2001) and whereas many have very restrictive host ranges, others display 

broader host specificity (Kutter, 2009).  

 

2.2.2 Early research into phage ecology  

The activity of phages was independently observed and reported by Frederick W. Twort in 

1915 and by Felix d’Herrelle in 1917. Twort (1915) reported a “glassy transformation” of 

micrococci cultures, whilst d’Herrelle noted lysis in liquid culture by a microbe 

“antagonistic” to bacteria.  D’Herrelle (1917) also observed killing in discrete patches (he 

named these plaques) on the surface of an agar seeded with the bacteria (Calender, 2006). 

D’Herrelle conceived the concept of “ultraviruses” that invaded bacteria and multiplied at 

their expense. He named these microbes bacteriophages, from the Latin for ‘bacteria eater’ 

(Summers, 2005). For many years the phage phenomenon discovered by Twort and 

d’Herrelle caused substantial controversy and debate, directly challenging the views of 

many bacteriologists at the time. It is now however understood that bacteriophages are 

viruses with prokaryotic host ranges (Summers, 2005; Abedon, 2008).  

 

2.2.3 Phage classification 

Electron microscopy allows simple, rapid and cost-effective phage identification by 

morphological criteria. Over 5500 phages have been examined under the electron 

microscope since 1959. They are primarily identified by defining the nature of their nucleic 

acid and virion morphology (Ackermann, 2007). The International Committee of 
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Taxonomy of Viruses (ICTV), founded in 1966, currently recognises one order, fourteen 

families (with at least five other potential families), and 37 genera of phages (Ackermann, 

2009). The ICTV adopts the ‘polythetic species concept’ that defines species by a set of 

properties, some of which may be absent from any given member (Van Regenmortel, 

2000). As many as 70 phage properties have been used to characterise phage, but two of the 

most useful of these properties are the nature of the nucleic acid and morphology. Figure 

2.2 illustrates the major phage groups.  

 

Figure 2.2 Schematic representations of prokaryote virus morphotypes. Descriptions are 

given in Table 2.4 (Ackermann, 2009) 

 

The groups include phage with double-stranded DNA (dsDNA), single-stranded DNA 

(ssDNA), single-stranded RNA (ssRNA), and double-stranded RNA (dsRNA). Over 96% 

of all characterised phage contain dsDNA and are tailed (Ackermann, 2009). All tailed 

phages are members of the order Caudovirales. They contain dsDNA and have icosahedral 
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or elongated heads, helical tails and are of binary symmetry (Ackermann, 2005). Although 

members of the Caudovirales share common features, they are an extremely diverse group 

of viruses (Casjens, 2005). The order Caudovirales is divided into three families that may 

be differentiated primarily by tail structure: 

 

1. Myoviridae- Myoviruses tend to be larger than other phage groups, and include 

some of the largest and most highly evolved tailed phages. Their tails are contractile 

and consist of a neck, a contractile sheath, and a central tube. Myoviruses constitute 

25% of known tailed phages (Ackermann, 2006; 2009). 

2. Siphoviridae- Siphoviruses have long simple tails that are non-contractile, and have 

flexible or rigid tubes. Sixty percent of characterised tailed phages are members of 

the Siphoviridae family (Ackermann, 2009).   

3. Podoviridae- Podoviruses have short non-contractile tails. They constitute 14% of 

known tailed phages (Ackermann, 2006). 

 

Polyhedral, filamentous, and pleomorphic (tail-less) phages account for the remaining 3.6% 

of all phages observed to date (190 viruses). There are currently eleven accepted families, 

with a further six families awaiting classification (Figure 2.2). The polyhedral or ‘cubic’ 

phages, as they have recently been termed by Ackermann (2009), include Microviridae, 

Corticoviridae, Tectiviridae, SH1 (from “Serpentine-lake-Hispanica’), STIV (Sulfolobus-

Icosahedral-Turreted-Virus), Leviviridae, and Cystoviridae. The filamentous phage families 

are Inoviridae, Lipothrixviridae and Rudiviridae, and the pleomorphic phages include the 

families Plasmaviridae, Fuselloviridae, Salterprovirus, Guttaviridae, Ampullaviridae, 

Bicaudaviridae and Globuloviridae.  
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2.2.4 Classification of phages infecting Enterococcus species 

Ideally bacterial host strains capable of detecting homogenous groups of phages are 

recommended for use in MST-phage based methods (Queralt et al., 2003). Studies have 

shown that phages of different morphologies may have different survival characteristics, 

which can lead to inaccurate interpretation of results (Muniesa et al., 1999; Muniesa et al., 

2009). It is therefore important to assess the morphology of phages capable of infecting 

Enterococcus host strains with potential MST application. 

 

A relatively limited number of enterococcal phages have been examined by electron 

microscopy. The majority of these have belonged to tailed phage families, of which most 

are members of the Siphoviridae family (Ackermann, 2007). Much of the published 

research into enterococcal phage has focused on phages that are infectious against antibiotic 

resistant bacteria and therefore have potential therapeutic use. These phages have shown 

varying host ranges. Some phage appear only to be able to infect their original host, whilst 

others are able to infect almost all Enterococcus species (Paisano et al., 2004; Ramírez et 

al., 2006; Son et al., 2010; Vinodkumar et al., 2011). Although the majority of enterococcal 

phages observed have been members of the Siphoviridae family, authors have reported tail-

less phages capable of infecting enterococcal host strains. Bachrach et al. (2003) reported 

tail-less phages that were uniform, spherical, enveloped, spiked structures with a diameter 

of roughly 70 nm. Fard et al. (2010) recently reported the isolation of novel polyhedral, 

filamentous and pleomorphic phages capable of infecting Enterococcus species (Figure 

2.3). Filamentous phages were isolated from E. faecalis, and E. gallinarum host strains. 

Polyhedral phages were isolated from an E. faecium strain and pleomorphic-shaped phages 
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were isolated from an E. faecalis host strain. The study demonstrated the large diversity of 

phages capable of infecting enterococcal host strains of animal origin.   

 

 

Figure 2.3 Enterococcal polyhedral, filamentous and pleomorphic phages. (a) A 

filamentous phage. (b) A filamentous phage. (c) Spherical (polyhedral) phages. (d) A 

droplet-shaped (pleomorphic) phage. (e) A lemon-shaped (pleomorphic) phage. (f) A 

lemon-shaped (pleomorphic) phage (Fard et al., 2010) 
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2.3 Application of phages as water quality indicators and markers for MST 

Studies have shown that enteric viruses survive longer in the environment then traditional 

bacterial faecal indicators such as E.coli (Nasser and Oman, 1999; Moce-Llivina et al., 

2005). Bacteriophages therefore have been suggested as alternative indicators that may 

better predict health risks associated with enteric viruses. Three phage types have been 

investigated for potential use as faecal indicator and index organisms - the somatic 

coliphage, the F-specific RNA phage, and the phages of Bacteroides fragilis (Tartera et al., 

1989; Scott et al., 2002; Moce-Llivina et al., 2005; Ebdon et al., 2007). All are considered 

potentially useful for determining water quality because they share with some important 

groups of human viruses, similar resistance to environmental stressors and water treatment 

processes (IAWPRC, 1991).  

 

2.3.1 Phages infecting Bacteroides species 

Phages capable of infecting host strains of Bacteroides fragilis (B. fragilis), an obligately 

anaerobic, Gram negative, rod-shaped bacterium, have been used as water quality 

indicators and as MST markers (Tartera et al., 1989; Grabow et al., 1994; Puig et al., 1999; 

Blanch et al., 2004; Payan et al., 2005; Ebdon et al., 2007; Gomez-Donate et al., 2011).  B. 

fragilis is one of the most numerous bacterial species in the human intestine, and 

experiences rapid inactivation in the environment under oxic conditions (Ballesté and 

Blanch, 2010). Importantly, the presence of B. fragilis phages in the environment has been 

correlated with the presence of human enteric viruses (Jofre et al., 1989; Ebdon et al., 

2011). 
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During the 1980s a University of Barcelona research group experimented with 12 strains of 

B. fragilis before focusing on HSP40 (Jofre et al., 1986), a strain only found in human 

faeces. No phage of HSP40 were found in the faeces of non-human animals, including 

cows, pigs, rabbits, mice, hens, quail, seabirds, or even larger primates, such as gorillas, 

orangutans and chimpanzees. Their findings also suggested that phages active against B. 

fragilis species were unable to replicate in the environment, potentially making them an 

ideal faecal indicator and MST marker. Unfortunately, in areas of northern Europe and the 

United States the percentage of the human population that excrete HSP40 appears to be low 

and consequently recorded phage counts have been lower in these geographic locations 

(Puig et al., 1999). The detection of low phage numbers in some wastewaters prompted 

Puig et al. (1999) to look for additional host strains of Bacteroides in an attempt to isolate 

hosts that would have greater potential as an effective MST marker than HSP40. This led to 

the isolation of alternative host strains including a strain known as RYC2056, which 

detected larger numbers of phages in waters known to be affected by human faecal 

pollution. RYC2056 demonstrated higher sensitivity than HSP40, but lower specificity. 

RYC2056 detected phage in low numbers in some non-human faeces. 

 

To overcome the problem of geographical instability, Payan et al. (2005) presented a 

method for isolating new Bacteroides host strains that could be used for different 

geographic areas. They undertook four trials (in Spain, Colombia and the UK) in which 

they isolated Bacteroides host strains from raw municipal wastewater. Useful strains were 

identified in both Spain and the UK (where strains GA-17 and GB-124 were isolated 

respectively) (Payan et al., 2005). A further study conducted at the University of Brighton 

by Ebdon et al. (2007) into the potential of GB-124 as a host strain, demonstrated that high 
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levels of GB-124 phages were present in municipal wastewater and river samples impacted 

by human faecal pollution. It was also noted that GB-124 phages were absent in the faeces 

of non-human animals. Isolating local host strains for MST use in specific regions has 

successfully countered the geographical stability question associated with this approach. 

Vijayavel et al. (2010) recently isolated and applied host strain HB-73 (specific to human 

wastewater) to Hawaii beaches, the results suggesting that raised enterococcal levels may 

not be a result of human faecal contamination.  

  

More recently, research has focused on isolating Bacteroides host strains for the detection 

of animal faecal contamination in surface waters. In 2011, both Gomez-Donate et al. and 

Wicki et al. isolated host strains with potential use as indicators and markers of animal 

faecal contamination. Gomez-Donate et al. (2011) isolated host strains that showed some 

specificity to individual animal sources (cow, pig, and poultry). Although the host strains 

were not 100% host specific they detected fewer phages in non-target samples.  

 

2.3.2 Coliphages 

Coliphages are viruses that infect E.coli and other closely related species (Gerba, 2006). 

They can be divided into two groups: Somatic coliphages and F-specific RNA coliphages. 

Somatic coliphage attach to the lipopolysaccharide of E.coli and F-specific RNA 

coliphages only infect bacteria that have an F plasmid, which codes for an F pilus that 

serves as the attachment site for the phage (Scott et al., 2002). Somatic coliphage are 

present in higher numbers in the environment than phage infecting Bacteroides species, 

largely because E. coli are facultative anaerobes (Mocé-Llivina et al., 2005), but they 

cannot be used to determine sources of pollution as they do not demonstrate host specificity 
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(Skraber et al., 2002). F-specific coliphage have been correlated with the presence of 

enteric viruses in the environment (IAWPRC, 1991; Havelaar et al., 1993).  

 

There are four subgroups into which F-specific RNA coliphage can be classified: I, II, III 

and IV. Group I contains phages present in both human and animal faeces, as well as 

wastewater. Those in groups II and III have strong associations with human faecal pollution 

and domestic wastewater, and group IV coliphages are more commonly associated with the 

faeces of non-human animals including livestock (Sinton et al., 1998; Scott et al., 2002). In 

order to classify faecal sources using these phages, the subgroup must be identified by 

either serotyping or genotyping. Serotyping has often produced unclear results and this has 

led to greater use of genotyping (Hsu et al., 1995; Beekwilder et al., 1996). The varying 

incidence of these four groups in the faeces of human and non-human animal hosts has 

been used to determine likely sources of faecal contamination (Griffin et al., 1999; 

Gourmelon et al., 2010 [a], [b]; Lee et al., 2011), but the additional step of genotyping 

makes the method more expensive and laborious than methods based on phage lysis alone. 

The use of F-specific RNA coliphage has also been questioned, because survival studies 

have shown differing persistence rates between the four subgroups (Brion et al., 2002; 

Muniesa et al., 2009). The limitations of differential phage survival are discussed in greater 

detail in section 2.4.  

 

2.3.3 Phages infecting Enterococcus species 

In 2010 Bonilla et al. described a group of phage (which they referred to as ‘enterophage’), 

that infected an E. faecalis host strain and appeared to be specific to human faecal pollution 

(absent in non-human animals including birds, dogs, cats and sand flies). They were able to 
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detect phages infecting the E. faecalis host strain in wastewater and environmental samples, 

including surface water and beach sand and their results suggested that these phages may 

have potential for MST application. The data also indicated that there were different phage 

populations able to infect the E. faecalis host strain, but initial survival experiments showed 

that the phages all showed similar survival. The potential use of ‘enterophage’ as an 

indicator of human faecal pollution was further supported in 2010, when Santiago-

Rodríguez et al. proposed ‘enterophage’ as a potential surrogate of enteric viruses in 

recreational waters, as they were more resistant to primary and tertiary wastewater 

treatment then somatic coliphage, and their survival in fresh and marine waters was 

comparable. The specificity of the E. faecalis host strain has been tested against a relatively 

small range of animal faecal sources (cattle, birds, dogs, cats and sand flies) and the 

numbers of samples tested for all host animals apart from cattle is unclear. The 

geographical stability of ‘enterophages’ also needs further elucidation. 

 

2.4 Phage survival  

Somatic coliphage represents a heterogeneous group of phages encompassing Myoviridae, 

Siphoviridae, Podoviridae, and Microviridae (Francki et al., 1991) and the heterogeneity of 

these organisms raises questions as to their suitability as a faecal indicator. Studies have 

shown that resistance to environmental stressors and water treatment processes differ 

between somatic coliphage of different families, and even between phage of the same 

family (Muniesa et al., 1999; Muniesa et al., 2009; Lee and Sobsey, 2011). Muniesa et al. 

(1999) found Siphoviridae and Myoviridae to be the most abundant coliphage groups in 

raw wastewater, treated wastewater and faecally contaminated river water. Siphoviridae 

demonstrated greater resistance to natural inactivation in fresh water environments (in situ 
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inactivation experiment in the River Llobregat). Many authors state that a major limitation 

of using somatic coliphage as a faecal indicator is their ability to replicate in the water 

environment (Seeley and Primrose, 1980; Borrego et al., 1990). These authors propose that 

coliphages are capable of replicating once they have left the host in E. coli or in other 

enterobacteria occurring naturally in the environment. More recent research however 

suggests that naturally occurring densities of bacterial hosts and phages are much less than 

would be required for significant phage replication in environmental matrixes (Jofre, 2009). 

Contributions from replication of somatic coliphage are therefore likely to have a negligible 

influence on the numbers of somatic coliphage detected in surface waters.   

 

F-specific RNA coliphages represent a more homogenous group than somatic coliphage, 

belonging to the families Leviviridae and Inoviridae. However, numerous studies have 

shown differential survival of the four subgroups of F-specific RNA phage in aquatic 

environments (Brion et al., 2002; Long and Sobsey, 2004; Schaper et al., 2002; Muniesa et 

al., 2009). The most recent of these studies conducted by Muniesa et al. (2009) found that 

the distribution of the percentages of each subgroup changed following inactivation by 

natural stressors (including sunlight, pH level and temperature), and after wastewater 

treatment processes such as activated sludge, and tertiary disinfection. These findings 

weaken the case for the use of F-specific RNA coliphage as an MST tool, because 

differential persistence may lead to incorrect source identification.  

 

Phages infecting B. fragilis are predominantly from the Siphoviridae family, showing a 

greater degree of homogeneity than both types of coliphages described above (Queralt et 

al., 2003). Inactivation studies have shown phages of B. fragilis to be more resistant to 
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water and wastewater treatment than either somatic coliphages or F-specific RNA 

coliphages (Jofre et al., 1995; Duran et al., 2003). Duran et al. (2003) found that the 

Siphoviridae group demonstrate significantly lower inactivation rates than phages of the 

Myoviridae and Microviridae families.  

 

2.5 Rationale for use of phages infecting Enterococcus in MST 

As demonstrated above, research has shown that phages have potential to be effective 

indicator and index organisms in water quality assessment. All the phage groups discussed 

in this chapter have, to some degree, co-presented in polluted aquatic environments with 

enteric viruses, and they share similar or greater resistance to inactivation by natural 

stressors and treatment processes. F-specific RNA phages and phages infecting Bacteroides 

species have been used to distinguish sources of faecal pollution in water (Gourmelon et 

al., 2010[a]; Vijayavel et al., 2010; Gómez-Doñate et al., 2011). In this chapter the 

limitations of these phages as faecal indicators and potential MST markers have been 

discussed. In brief, the subgroups of F-specific RNA phages require identification by 

serotyping or genotyping, making the method more expensive and time-consuming (Scott 

et al., 2002). Differential survival of the sub-groups also calls into question the use of these 

indicators for MST (Muniesa et al., 2009). The use of phages of Bacteroides species in 

MST appears more promising. A key advantage of using an anaerobic host is that it is 

unlikely to replicate outside the gut environment. However, recent research into the ecology 

of somatic coliphage suggests that any replication of their bacterial host in the natural 

environment is unlikely to have a significant impact on the numbers of phages detected 

(Jofre, 2009). Bacteroides species require strictly anaerobic growth conditions, 

necessitating overnight growth of the host before phage assays can be performed. The 
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relatively slower growth of the Bacteroides hosts, results in slower plaque formation (18-

24h incubation being typical). Recreational water quality can vary significantly over short 

periods (minutes to hours), and within 24 hours the risk to public health may have changed 

considerably, putting into question the validity of decisions based on tests requiring 18 to 

24hours incubation prior to enumeration (Rabinovici et al., 2004). With the above points in 

mind, it could be highly beneficial to use an alternative bacterial host genus for phage 

detection, one which has simpler growth requirements and more rapid growth, and which 

ideally facilitates same-day assessment of water quality. 

 

At a time of climate uncertainty, environmental and public health legislation is developing 

rapidly. In Europe attempts to implement the ‘river basin management plans’ required by 

the EU Water Framework Directive, and the ‘bathing water profiles’ required by the 2006 

revision of the EU Bathing Water Directive have already demonstrated a need for better 

tools to monitor and predict effectively the dynamics of faecal pollution entering recipient 

waters during dry weather and storm events (CEU, 2000; CEU 2006). These European 

legislative developments coincide with a growing public concern about the impact on 

human health of emerging waterborne zoonotic diseases. More than 75% of emerging or re-

emerging human diseases are caused by pathogens originating from animal reservoirs 

(Cotruvo et al., 2004) and the identification of both human and non-human (point and 

diffuse) sources of faecal contamination in waters, would support effective river basin 

management plans and consequently protect human health.  

 

The European environmental and public health agenda may therefore be considered to 

support the need for cost-effective pollution source tracking methods. More specifically, in 
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the area of MST it is timely to investigate how a group of enteric bacteria (namely the 

intestinal enterococci), which are used extensively to quantify levels of faecal pollution in 

water, may also form the basis of a relatively simple MST approach (namely, phage lysis). 

Strains of various Enterococcus species were considered as potential alternative hosts 

because some species are more abundant in human faeces (E. faecalis and E. faecium) 

(Wheeler et al., 2002), whilst others are more restricted to the faeces of non-human animals 

(e.g., yellow-pigmented E. casseliflavus) (Bahirathan et al., 1998). The intestinal 

enterococci are also considered to be a ‘faecal indicator of choice’ for water quality testing 

in many parts of the world, as they survive longer in marine environments and a correlation 

with gastro-enteric disease has been demonstrated (Noble et al., 2003). Enterococci are 

easily cultured and can produce confluent lawns within 4h, allowing for same-day 

assessment. Species of the genus Enterococcus were therefore selected for further 

investigation as potential alternative host strains for MST and water quality assessment.  

 

2.6 Aim and objectives 

The aim of this programme of research was to evaluate the suitability and effectiveness of 

bacteriophages (phages) infecting host strains of Enterococcus species as a low-cost tool 

for MST. To achieve this overall aim, four primary objectives were set, namely; 

1) To develop an effective protocol for isolating Enterococcus spp. host strains suitable 

for MST;  

2) To evaluate critically the ability of phages infecting host strains of Enterococcus spp. 

to detect both human and non-human sources of faecal pollution; 
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3) To assess the diversity and survival of phages capable of infecting potential 

Enterococcus host strains.  

4) To evaluate critically the practical and economic case for implementing phage lysis of 

Enterococcus as a future MST tool.  

 

These objectives were designed as a rational and tiered approach to providing the evidence 

needed to support a new MST protocol.  
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Chapter Three: Materials and methods 

3.1 Sample collection 

Samples of animal faeces, livestock run-off, municipal wastewater and surface water were 

collected for the isolation of potential Enterococcus host strains and for subsequent 

bacteriophage (phage) detection. Faecal material, from either pooled faecal samples (at 

least twenty individuals) or agricultural run-off was collected from cattle, ducks, geese, 

goats, horses, pigs, rabbits, and sheep from eight farms, all located in South East England, 

UK. Gull (Larus spp.) faeces were collected on fishing boat jetties, located in the estuary of 

the River Ouse, Newhaven, UK.  Samples were collected using sterile swabs and 100ml 

sampling containers (Fisher) as appropriate, between October 2008 and December 2010.  

Faecally contaminated run-off water was collected from cattle housing and from the 

drainage channels of pig housing at Wales Farm, Plumpton Agricultural College, in East 

Sussex, UK. Samples of municipal wastewater (raw and treated) were collected from seven 

wastewater treatment works (WWTW) situated in South East England, UK. Population 

equivalents of the sites ranged from 258 to 53,425 (Table 3.1).  

 

Table 3.1 Population equivalent data for WWTW from which municipal wastewater 

samples were taken  

Site Population equivalent 
a
  

Ditchling 1,621 
Fittleworth 723 
Goddards Green 49,410 
Poynings 258 
Scaynes Hill 37,327 
Shoreham 53,425 
Steyning 10,037 
a
 Population equivalent data provided by Southern Water Ltd (UK). 
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Surface water samples were collected downstream of two livestock farms (Wales Farm and 

Pellingbridge Farm) and downstream of a medium-sized wastewater treatment works 

(WWTW) (population equivalent, 55,955). All surface water samples were collected in 1 

litre sterile polypropylene sample bottles (Nalgene) using an extendable sampling pole, 

from approximately 30 cm below the surface of the water. Wastewater samples were 

collected by lowering a steel can into the flow of water, and decanting the sample into 1 

litre sterile sample bottles, in accordance with Southern Water’s sample collection policy. 

Following collection, samples were transported to the laboratory in the dark, at 4 
o
C, within 

4 h. In the laboratory individual stool samples were pooled, mixed and homogenized using 

a Seward Stomacher 400 (Lab System, UK) in sterile one quarter strength Ringer’s solution 

(Fisher Scientific, UK). Samples collected for the isolation of enterococci were processed 

immediately, whereas samples for phage enumeration were preserved with 10% glycerol at 

-20 
o
C (Mendez et al., 2002) for analysis within four weeks. 

 

3.2 Phage enumeration 

Phages were detected and enumerated for the purpose of host screening, host specificity 

and sensitivity analysis, and in order to isolate phage for characterisation (discussed in 

sections 3.5, and 3.7, respectively). The double agar-layer and spot test plaque assays as 

described below were used during this study (Adams, 1959). A negative control was used 

for both methods and for all assays performed. Tryptone soya broth (TSB) (Oxoid, Fisher 

Scientific, UK) was used as the growth medium for enterococcal hosts. TSB is a general 

medium used for culturing and maintenance of enterococci and a number of other aerobic 

and facultative bacteria.  
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3.2.1 Double agar-layer plaque assay 

Phages infecting Enterococcus hosts were enumerated using the double-agar-layer
 
method 

as described elsewhere (Adams, 1959; Jofre et al., 1986; Tartera et al., 1992) and clearly 

visible circular ‘zones of lysis’ in a confluent lawn of enterococcal host were expressed as 

plaque-forming units (PFU) (Figure 3.1) per 100 ml of sample.  

 

 

Figure 3.1 Enterococcal host strain demonstrating zones of lysis (plaques) 

 

Homogenised faecal samples were diluted (1:10 w/v) with one quarter strength Ringer’s 

solution and centrifuged at 3000 x g for 10 minutes. The resulting supernatants were 

filtered through 0.22 µm polyvinylidene difluoride membrane syringe filter units 

(Millipore, US), to remove bacteria and organic debris, whilst retaining phages in the 

sample. 1 ml of each sample was added to 1 ml of exponentially growing host strain 

(approximately 2 x 10
8
 bacterial cells per ml, measured as 0.3 OD at 600 nm on a 

spectrophotometer), and 2.5 ml of tryptone semi-solid agar (TSAss). The resulting 

suspension was mixed briefly using a Whirlimixer™ (Fisher Scientific, UK), and poured 

onto previously prepared tryptone soya agar (TSA) (Oxoid, Fisher Scientific, UK) in 90 
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mm diameter Petri-plates. Once the top layer had solidified, plates were inverted and 

incubated at 37 
o
C (±2 

o
C) for 18-24 h. The concentrations of agar in top and bottom layers 

used were the same as those reported elsewhere (ISO 10705/2) (Anon, 2001[a]).  

 

3.2.2 Spot test assay 

The spot test assay has the advantage of being simpler, faster and more efficient than a 

double agar-layer assay, particularly when large numbers of samples are processed 

(Mazzocco et al., 2009). The disadvantage of the assay is that only small volumes of 

sample (5-20 µl) can be assessed. The spot test was therefore used for determining the titres 

of highly concentrated phage lysates, but not for testing environmental samples.  

 

Double agar-layer plates were produced (as described above), with 1 ml of exponentially 

growing Enterococcus host and 2.5 ml of tryptone soya semi-solid agar (TSAss), without 

the addition of sample and were poured onto previously prepared 90 mm TSA bottom agar 

-layer Petri-plates. Once solidified, 10 µl phage lysates and dilutions thereof were spotted 

onto the top agar, being careful to label each spot, so that they could be identified after 

incubation (Figure 3.2). The drops were left to air dry before plates were inverted and 

incubated at 37 
o
C (±2 

o
C) for 18-24 h. Following incubation, as with the double agar-layer 

assay method, circular ’zones of lysis’ in the confluent lawn were expressed as PFU per ml 

of sample.  
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Figure 3.2 Spot test assays showing different degrees of lysis, (A) well-defined plaques 

and (B) complete clearance as a result of a high phage titre

A 

B 



67 

   

3.3 Isolation of presumptive Enterococcus spp.     

Potential host strains were isolated from faecal material from pooled cattle samples, cattle 

and pig run-off, municipal wastewater, and surface waters impacted by human and non-

human livestock sources of faecal contamination in Southeast England, UK. The reference 

strain Enterococcus faecalis (ATCC 19433) was used as a quality control for all media used 

in the isolation of presumptive Enterococcus spp. 

 

Grossly contaminated samples were serially diluted prior to isolation of presumptive 

enterococci. Samples were passed through 0.45 µm nitrocellulose membrane filters for 

isolation of presumptive enterococci in accordance with ISO 7899/2 (Anon, 2000). M-

Enterococcus agar (Difco, BDMS, UK) was used as a selective medium for the isolation of 

presumptive enterococci, and was incubated at 37 
o
C (±2 

o
C) for 44 h (±2 h). M-

Enterococcus agar contains sodium azide to suppress the growth of Gram negative 

organisms and triphenyl tetrazolium chloride, a dye, which is reduced to red formazan by 

intestinal enterococci, resulting in red colonies (Anon, 2000) (Figure 3.3).  

 

Figure 3.3 Presumptive intestinal enterococci colony forming units (CFU) on m-

Enterococcus agar (Difco, BDMS, UK) after incubation for 44 hours
1
 

 
1
Original in Colour 
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Following incubation, 0.45 µm filter membranes (Thermo Scientific Nalgene, UK) with 

between 10-60 colony forming units (CFU) were transferred to pre-warmed bile aesculin 

agar (BEA) (Oxoid, UK) plates and incubated for a further 4 h at 44 
o
C. BEA (Oxoid, 

Fisher Scientific, UK) is used to differentiate enterococci and to distinguish the 

Streptococcus bovis group from other streptococci. Intestinal enterococci are able to 

hydrolyse aesculin, (6, 7-dihydroxycoumarin, combines with iron (III) ions) giving a tan-

coloured to black compound which diffuses into the medium around the colony (Anon, 

2000). The appearance of a tan to black colour around the colony therefore acts as a 

confirmation for presumptive enterococci. Aesculin positive colonies were picked and 

streaked onto m-Enterococcus agar (Difco, BDMS, UK) in order to obtain pure cultures.  

 

Further identification was achieved by undertaking catalase and Gram stain tests (in which 

morphology was also recorded). Catalase activity was assessed by adding one drop of 3% 

hydrogen peroxide to a single colony of host on a glass microscope slide. The slide was 

examined immediately for the generation of gas (bubble) formation. The reference strains 

Staphylococcus aureus (ATCC 6538) and Enterococcus faecalis (ATCC 19433) were used 

as positive and negative controls for catalase tests, respectively. Gram staining was 

performed with a Gram stain kit (Pro-Lab Diagnostics, UK) and assessed under a 

conventional light microscope. Presumptive Enterococcus host strains (Gram positive, 

coccoid, catalase negative, and aesculin positive) were then grown at 37 
o
C (±2 

o
C) for 24 h 

(±2 h) in tryptone soya broth (TSB). Those host strains demonstrating good growth after 

24h (±2 h) were mixed with 50% glycerol (Fisher Scientific, UK) and preserved at -80 
o
C 

in cryogenic vials (Fisher Scientific, UK) for up to six months, prior to further testing. The 

hosts were named according to their origin. For example, hosts isolated from municipal 
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wastewater were named MW followed by the number of their isolation, MW1 being the 

first host isolated from municipal wastewater, and so on.  

 

3.4 Calibration of absorbance measurements for counts of viable host bacteria 

Standard methodologies for the enumeration of phage (Anon, 2001[a]; Anon, 2001[b]; 

Anon, 2001[c]), recommend that inoculum host cultures used in double agar-layer assays 

should be used once they reach an exponential (log) growth phase, when the suspension 

contains approximately 2 x 10
8
 to 5 x 10

8
 cells/ml. Previous research has also shown that 

host culture cell numbers of between 2 x 10
8
 and 5 x 10

8
 cells/ml produce the largest and 

most visible plaques (Tartera et al., 1992). It was therefore important to determine the 

absorbance measurements that corresponded to these cell densities for the Enterococcus 

host strains, in order to optimise plaque visualisation. Initial growth curves were performed 

using Enterococcus host strain CR1, to calibrate absorbance measurements for subsequent 

phage assays.  

 

Growth curves were performed by growing the host strain (CR1) in TSB at 37 
o
C. The 

optical density (OD) was measured at 30 minute intervals  using a spectrophotometer at 

600nm and zeroed using a pre-warmed TSB blank, and 1 ml of the host (and dilutions 

thereof) were taken and passed through 0.45 µm membrane filters in duplicate. The filters 

were placed onto m-Enterococcus agar and incubated at 37 
o
C (±2 

o
C) for 44 h (±2 h) 

(Anon, 2000). Resultant colonies growing on the surface of the agar were enumerated and 

expressed as mean CFU per ml. 
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3.5 Screening for potential host strains 

In order to facilitate the isolation of potential Enterococcus host strains a tiered approach 

was designed (Purnell et al., 2011 and discussed in detail in Chapter Five). This was 

implemented in order to reduce, in a rational manner, the initial large number of 

enterococcal hosts to a smaller sub-group that would be suitable for phage enumeration and 

MST (Figure 3.4). This approach provided a protocol that could rapidly eliminate 

enterococcal strains that would not be effective hosts (due to a lack of specificity and low 

phage detection), and focus efforts on those host strains warranting further investigation.  

 

 

Figure 3.4 Tiered approach to the isolation of Enterococcus host strains 
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Tier 1 hosts were those strains confirmed as being presumptive Enterococcus spp. that grew 

well at 37 
o
C (±2 

o
C) for 24 h (±2 h) in TSB. All tier 1 host strains were screened against a 

battery of reference samples containing phages from municipal wastewater, and cattle, 

sheep and pig faeces. Reference samples were comprised of pooled faecal or wastewater 

samples. This allowed the initial specificity of host strains (to a particular source) to be 

determined rapidly from a small number of assays, keeping labour and consumable costs to 

a minimum. It is important to note that the use of pooled samples can inflate the sensitivity 

(to a particular source) of host strains. For example, if one sample positive for phages is 

included into a pooled sample, the sample will be positive even if all other samples 

included are negative. For this reason the sensitivity of the host strains was not calculated at 

this stage. Reference samples were prepared in bulk in advance of screening and preserved 

in multiple containers with 10% glycerol at -20
o
C. For every new batch of host strains 

tested, fresh reference samples were defrosted and used within 24h. Enterococcal strains 

that detected one or more PFU per 100 ml (tier 2 hosts) were ranked according to their 

specificity and to the numbers of phages that they detected (PFU/100 ml). It was also 

important that phages infecting the hosts produced clear well-defined plaques (Figure 3.1). 

Hosts that demonstrated plaques that were unclear, and therefore difficult to identify and 

enumerate, were not assessed further. Tier 2 hosts that showed specificity to a particular 

faecal source or source group (tier 3 hosts), and which also detected phage in greater 

numbers than 100 PFU per 100 ml (tier 4 hosts) were considered to be the host strains with 

the greatest potential for MST application.  

 

To assess further the performance of the hosts for MST application, all tier 4 hosts (Figure 

3.4), as well as tier 3 hosts demonstrating 100% specificity and clear plaque production, 
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were subjected to additional testing using a broad range of inputs representative of those 

present across the study catchment (i.e. municipal wastewater and faeces from cattle, ducks, 

geese, goats, horses, pigs, rabbits, and Larus spp. gulls) in triplicate.  

 

3.6 Identification of potential host strains 

Identification of presumptive Enterococcus host strains to species level was carried out 

using the API 20 Strep identification system (BioMérieux, UK) according to the 

manufacturer’s instructions, and a six step biochemical key described by Manero and 

Blanch (1999). Initially, only API 20 Strep identification was used. The biochemical key 

was introduced after API 20 Strep failed to identify successfully three of the isolates. All 

host strains were then subsequently re-tested and reconfirmed using the six step 

biochemical key (Manero and Blanch, 1999). A negative control was used for both 

identification methods 

 

API 20 Strep strips combine twenty biochemical tests (enzymatic and carbohydrate 

fermentation tests) and a haemolysis test, enabling the identification of the majority of 

streptococci and enterococci. To test for haemolysis, a well-isolated host colony was 

suspended in 300 µl of sterile water and homogenised. This suspension was used to flood a 

Columbia sheep blood agar plate (BioMérieux, UK), which was then incubated for 24 h (±2 

h) at 36 
o
C (±2 

o
C) under anaerobic conditions. Following incubation, a reaction was 

recorded as either ß- haemolysis positive (complete lysis of red cells in the media), or 

negative. API strip tests were performed in accordance with the manufacturer’s 

instructions. For enzymatic tests, a positive reaction resulted in a colour change, either 

spontaneously, or after the addition of reagents (Figure 3.5), signalling metabolism. 
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Positive fermentation of carbohydrates resulted in a shift in pH level and a colour change 

from red to yellow (Figure 3.5).   

 

 

Figure 3.5 Inoculated API 20 Strep test strip before incubation (A) and after incubation 

(B), with resultant colour changes.
1
This isolate was consequently identified as 

Enterococcus gallinarum  

 

To aid identification using API 20 Strep, tests for yellow pigmentation were also 

performed. Production of yellow pigmentation was demonstrated by growing the 

enterococcal hosts on nutrient agar and incubating for 24 h at 37 
o
C. Following incubation, 

host strains were checked for yellow pigmentation against a white filter paper.  

 

The biochemical key described by Manero and Blanch (1999) consists of a total of twelve 

different tests, with only six tests required for the identification of an isolate. The key 

identifies nineteen species of Enterococcus (Figure 3.6).   

 
1
Original in Colour 

BEFORE 

AFTER 
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Figure 3.6 Identification key for Enterococcus spp. (Manero and Blanch, 1999)  

 

Only nine tests were required for the identification of isolates in this study. Six 

carbohydrate fermentation tests (L-arabinose, mannitol, methyl-α-D glucopyranoside, 

ribose, sorbose, and sucrose) were performed along with the yellow pigmentation, 

pyrrolidonyl aminopeptidase (PYRase) (Oxoid, Fisher Scientific UK) and arginine 

dihydrolase tests.   



 

75 

   

To determine carbohydrate fermentation, one percent concentrations of L-arabinose, 

mannitol, methyl-α-D glucopyranoside, ribose, sorbose, and sucrose were added to phenol 

red broth, with the pH adjusted to between 7.4 and 7.5 with sodium hydroxide. The phenol 

red broth (200 µl), with carbohydrate added, was pipetted into the wells of 96-well sterile 

microplates (Fisher Scientific, UK). A small quantity of isolated host was picked using a 

toothpick from a streaked plate and inoculated into each well containing carbohydrate. The 

96-well plates containing the inoculated carbohydrate broths were then incubated at
 
37 

o
C 

(±2 
o
C) for 24 h (±2 h). A positive reaction was only recorded if the broth turned 

yellow.
1
PYRase activity was determined using the Oxoid Biochemical Identification 

System (O.B.I.S) PYR test kit. The test was performed according to the manufacturer’s 

instructions. Development of a vivid purple colour on and around the colonies within 20 

seconds confirmed PYRase activity. Finally, an arginine dihydrolase test was performed 

according to standard methods (MacFaddin, 2000) using Møller decarboxylase base 

medium. The medium, which had a thin mineral oil layer added to the surface, was 

inoculated with host and incubated at 37 
o
C (±2 

o
C) for 24 h (±2 h). A purple to violet 

colour change after 24 h (±2 h) indicated a positive result.  

 

3.7 Phage isolation, purification and concentration 

Well-distributed plaques enumerated by the double agar-layer method (section 3.2.1) were 

picked at random for isolation to avoid plaque morphology bias, with the intention of 

characterising twenty bacteriophages, from a single host bacterium.  Twenty bacteriophages 

were isolated, as it has been previously suggested that this is the minimum number 

necessary to estimate the diversity of a microbial population (Bianchi and Bianchi, 1982).  

 
1
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The Enterococcus host strain analysed for bacteriophage isolation was MW47 (Municipal 

Wastewater 47), an Enterococcus faecium host that showed specificity to wastewater in this 

study (Chapter Six). This host strain was chosen because it has high potential for future 

application in MST investigations. Phage were purified and concentrated by a plate 

propagation method, modified from previously described methods used by Carey-Smith et 

al. (2006) and Fard et al. (2010). Cores of agar containing a distinct single plaque were 

picked using sterile glass Pasteur pipettes (Figure 3.7) and suspended in 200 µl of phage 

buffer (19.5 mM Na2HPO4, 22 mM KH2PO4, 85.5 mM NaCl, 1 mM MgSO4, 0.1 mM 

CaCl2) in microcentrifuge tubes (Fisher Scientific, UK). The phage suspensions were left at 

4
o
C overnight to allow diffusion of phage into the buffer. The phage suspensions and 

dilutions were retested with the double agar-layer method (section 3.2.1), to purify and 

confirm the presence of phage. This was repeated three times to obtain purified phage.  

 

 

Figure 3.7 A core of agar containing a single plaque, picked using a sterile glass Pasteur 

pipette
1
 

 

 
1
 Original in Colour 
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Once purified, 5 ml of phage buffer were added to plates with near complete lysis of the 

host bacterium, and left at room temperature for 1 h, the plates being ‘swirled’ regularly. 

The liquid and top agar-layer were then scraped into a 50 ml centrifuge tube (Fisher 

Scientific, UK), and mixed briefly using a Whirlimixer™, and left at room temperature for 

a further thirty minutes. Bacterial debris and top agar-layer were removed from the 

suspension by centrifugation at 3000 g for 20 min. The supernatant was then filtered 

through 0.22 µm polyvinylidene difluoride membrane syringe filter units, and stored in 

light tight glass bottles at 4 
o
C in the dark. The titre of the suspension was determined by 

testing ten-fold dilutions (10
-1

-10
-8

) using the spot test assay (section 3.2.2). The process 

was repeated until a minimum titre of 1 x 10
8 

PFU/ml was achieved with all phage 

suspensions.  

 

3.8 Phage characterisation 

3.8.1 Transmission electron microscopy 

All twenty propagated phages were examined by transmission electron microscopy (TEM), 

so that phage morphology could be determined. Novel phages are no longer characterised 

using TEM alone, but TEM was chosen for this study because the technique has been 

widely applied in virology and allows instant comparison, classification, and identification 

of viruses. Further characterisation of phages was not required for this research. It was 

important to determine the level of morphological diversity between the phages, because 

phages with differing morphology may have dissimilar resistance to inactivation, limiting 

their use as MST markers. This is discussed further in section 3.9. In order to view phage 

under the TEM, the phage suspensions were negatively stained. This is achieved by mixing 

the phage particles with an electron-dense solution of a metal salt of high molecular weight 
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and small molecular size, into which the particles are embedded, appearing white on a dark 

background (Ackermann, 2009). Uranyl acetate (UA) stain (pH 4-4.5) was used to stain the 

phage suspensions. UA produces good contrast but does have the disadvantage of 

producing unpredictable results, as it can produce both negative and positive staining, often 

on the same grid (Ackermann, 2009). One drop (10 µl) of previously prepared high-titre 

phage suspension (section 3.7) was applied to 200 mesh Formvar/Carbon copper electron 

microscope grids (Agar Scientific, UK). After two minutes, any excess suspension was 

removed with Whatman No.1 filter paper (Whatman, UK). One drop (10 µl) of UA stain (1 

% w/v, previously filtered through a 0.22 µm filter unit) was then applied to the grid for 

one minute. Excess stain was removed again with Whatman No. 1 filter paper, and the grids 

were then left to dry. Grids were kept in labelled Petri-plates (55mm) prior to viewing 

under the TEM (Hitachi-7100) at 100 kV.  

 

3.8.2 Assessment of phage host range 

The host range of a bacteriophage is defined by what bacterial genera, species and strains it 

can lyse (Kutter, 2009). The phages isolated from the Enterococcus faecium host strain 

MW47 were tested for their ability to infect other species of the genus Enterococcus 

(including, E. asini, E. casseliflavus, E. durans, E. faecalis, E. gallinarum, E. hirae, and E. 

mundti, E. pseudoavium, E. saccharolyticus, and E. sulfureus), and their ability to infect 

two other bacterial host strains from genetically very different genera, GB-124 

(Bacteroides) and WG5 (E. coli). Host strains used in MST, require phage with narrow host 

ranges, to ensure the accurate detection of faecal contamination from the target source. 

Host range also provides further information on phage diversity and was determined by 
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spot tests of dilutions (10
-1

-10
-8

) of each high titre phage stock suspension on lawns of each 

host bacterium. Spot tests were performed in triplicate and reported as mean PFU/ml.  

 

3.9 Phage inactivation experiments  

In vitro inactivation experiments were performed to gain a greater understanding of the 

inactivation characteristics of phages capable of infecting host strain MW47. It was 

important to perform these initial investigations into phage survival at this point because an 

observed limitation of some phage-lysis methods has been the different resistance of phages 

(infecting certain host strains) to inactivation from natural stressors and wastewater 

treatment (Muniesa et al., 1999; Brion et al., 2002; Long and Sobsey, 2004; Schaper et al., 

2002; Muniesa et al., 2009). These limitations are discussed in detail, in section 2.4. The 

three phages (from the 22 isolated in this study active against host strain MW47) with the 

most distinct morphologies (MW47-1, MW47-5 and MW47-15) were chosen for in vitro 

inactivation experiments in fresh- and sea-water.  

 

Two litre surface water samples (sea water and fresh water) were taken from Newhaven 

beach (adjacent to the mouth of the River Ouse), UK, and from the Bevern Stream, a 

tributary of the River Ouse, UK. The samples were analysed for temperature, pH level, 

electrical conductivity, salinity, dissolved oxygen, and turbidity, in situ using an Aquaread 

probe (Aquaread Ltd, UK). All three phages were spiked into 500 ml of both fresh water 

and sea water in stoppered glass bottles (bottles were pre-sterilised by autoclaving at 121 
o
C 

for 15 minutes) at concentrations greater than 1 x 10
4
 PFU/ml. High titre phage 

concentrations were used to avoid interference from background levels of phages cable of 

infecting host strain MW47. To limit the variables affecting phage survival, the stoppered 
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glass bottles were wrapped in foil to exclude light and placed in the dark at 4 
o
C. All three 

phage were enumerated by the double agar-layer method (section 3.2.1) for both fresh 

water and sea water in duplicate, immediately after spiking (T0), and after two (T48), seven 

(T168), 14 (T336), 21 (T504) and 28 (T672) days. Results were reported as mean PFU per ml of 

sample. 

 

3.10 Statistical analysis  

Statistical tests were performed using the statistical package SPSS 18.0, with the 

significance level set at 5%. The Spearman’s correlation coefficient, Wilcoxon signed-rank, 

Friedman’s ANOVA, Kruskal-Wallis and Mann Whitney tests are all non-parametric and 

were used where the data failed to meet parametric assumptions (not normally distributed), 

even after log-transformation. Parametric statistical test ANOVA and the independent t-test 

were used when analysing phage inactivation data, as these data were normally distributed 

and therefore did meet parametric assumptions. 

 

3.10.1 Specificity and sensitivity 

Performance of the enterococcal strains as potential hosts for MST was evaluated in 

relation to their specificity and sensitivity to a particular faecal source. Wilbur and 

Whitlock (2007) define the sensitivity and specificity with respect to a particular source as 

the “probability that a sample from that source will be correctly identified as originating 

from that source”, and the “probability that a sample which is not from that source is 

correctly identified as not originating from that source” respectively. Table 3.2 shows the 

possible outcomes when testing a sample.  
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Table 3.2 Four possible outcomes of source identification (Wilbur and Whitlock, 2007) 

Actual status Test positive Test negative 

Positive True Positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

A result was considered a true positive when phages were correctly detected in a target 

faecal sample (e.g., a human associated host strain detected phages in a human wastewater 

sample). A result was considered a true negative when phages were not detected in a non-

target faecal sample (e.g., a human associated host strain did not detect phages in a cattle 

faecal sample). False positive results were recorded where phages were detected in non-

target samples (e.g., a human associated host strain detected phages in a cattle faecal 

sample) and false negative results were recorded when phages were not detected in target 

samples (e.g., a human associated host strain did not detect phage in a human wastewater 

sample). Once the outcomes of source identification were recorded the sensitivity and 

specificity percentages of Enterococcus host strains could be calculated as follows: 

 

Sensitivity (Se) = 
TP 

x100 
(TP+ FN) 

                                                          

Specificity (Sp) = 
TN 

x100 
(TN+FP) 

 

Qualitative approaches to calculating specificity and sensitivity such as this are only one 

part of determining methodological performance, but approaches like this are an important 

first step. It is important to note however that this approach does not harness the potential 
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of quantitative measurements, which are becoming increasingly important (Wuertz et al., 

2011).  

 

3.10.2 Spearman’s rank correlation coefficient  

The Spearman’s rank correlation coefficient was used to test the hypothesis that a negative 

relationship between specificity and sensitivity existed. The test operates by first ranking 

the data and then applying Pearson’s equation, shown below:   

 

 

 

Where x is the first variable, y is the second variable, cov is the covariance, sx and sy are the 

standard deviations of the first variable and second variable,   and   are the sample means of 

x and y, xi and yi are particular sample points, and N is the total sample size (Field, 2009). 

 

3.10.3 Wilcoxon signed-rank test 

The Wilcoxon signed-rank test was used to determine the significance of differences 

between plaque sizes and phage numbers detected by MW47 at two optical densities (OD). 

The test is based on the differences calculated between the two conditions. Positive and 

negative ranks are calculated and the smaller of the two numbers becomes the test statistic 

(T). To calculate the significance of T, the mean      and standard error          are determined. 

The test statistic is then converted to a z-score using the following equation:  
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 If the values are larger than 1.96 then the test is significant (p < 0.05) (Field, 2009). 

 

3.10.4 Friedman’s ANOVA 

Friedman’s ANOVA was used to determine whether host strain MW47 detected 

statistically greater phage numbers and plaque sizes (using the reference phage MW47-1) at 

different optical densities. It is designed to test the differences between several related 

groups and is based on ranked data. Each of the data points for all optical densities were 

ranked. Once the sum of ranks was calculated for each of the optical densities, the test 

statistic, Fr, is calculated as: 

 

 

 

Ri is the sum of ranks for each group, N is the total sample size and k is the number of 

conditions (Field, 2009).  

 

3.10.5 The Kruskal-Wallis test 

The Kruskal-Wallis test was used to determine variation of specificity and phage numbers 

detected on host strains obtained from different source groups. First the data are ranked, 

ignoring the groups to which the data belong. The scores are then collected back into 

groups and added together. The sum of ranks for each group is denoted by Ri (where i is 
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used to denote the particular group). After the sum of ranks is calculated for each group, the 

test statistic, H, is calculated as: 

 

 

 

Where Ri represents the sum of ranks for each group, N is the total sample size and ni 

represents the sample size of the particular group (Field, 2009). The Kruskal-Wallis test 

helped to determine whether variation of specificity and phage numbers detected, between 

the host source groups occurred. The test however, does not demonstrate between which 

groups this variation took place. Post hoc Mann Whitney tests were therefore used to assess 

where the variation occurred.  

 

3.10.6 Post hoc Mann-Whitney tests  

Six Mann-Whitney tests were used as a follow up to the Kruskal-Wallis test to determine 

variation between each of the host strain source groups for both specificity and phage 

numbers detected. By performing multiple Mann-Whitney tests, the Type I error rate is 

inflated, which is why Mann-Whitney is not used instead of the Kruskal-Wallis test. The 

Bonferroni correction (Sullivan et al., 2011) was used to prevent type I errors from 

exceeding 0.05. Therefore, instead of using 0.05 as the critical value for significance for 

each test, the critical value of 0.05 divided by the number of tests conducted was used. Six 

tests were performed, and so the critical value of significance used was 0.008.  
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3.10.7 Independent t-test 

An independent t-test was used to test the significance of differences in inactivation 

between two phage families isolated in this study. The test produces a t-statistic which is 

calculated using the equation below (assuming the sample sizes are equal): 

 

 

 

Where     and      are the overall means for the two sample groups, s1 and s2 are the standard 

deviations of the two sample groups and N1 and N2 are the total sample size of the two 

groups (Field, 2009).  

 

3.10.8 Independent ANOVA 

Independent ANOVA was used to determine the significance of differences between the 

inactivation rates of phages. ANOVA tests the null hypothesis that all group means 

(differences) are equal. This is accomplished by fitting a regression model to the data and 

using the F-statistic to determine how well the data fit the model (Field, 2009). F is the 

ratio of the model to its error and is calculated using the equation below: 
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Where MSM represents the mean squares for the model and MSR represents the residual 

mean squares. 

 

3.10.9 Inactivation rate coefficient  

In accordance with the literature, the inactivation rate coefficient (kD) was calculated for 

phages MW47-1, MW47-5 and MW47-15 in freshwater and seawater so that comparisons 

between the phages could be made. Linear regression was applied to log-transformed 

values of phage enumerations to determine kD values in log units per day (Noble et al., 

2004). For further comparison with results from other studies, the time to reach a 90% 

reduction in phage concentrations (T90) was calculated. T90 values were taken from the kD 

value as 2.303/ kD (given that 1n (0.1) = -2.303) (Noble et al., 2004; Santiago-Rodríguez et 

al., 2010).  
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Chapter Four: Development of a tiered 

screening approach 

A tiered screening approach was created in order to maximise the chance of successfully 

identifying an Enterococcus host strain suitable for MST application (Purnell et al., 2011), 

and reducing the effort required to screen for effective new host strains (Figure 3.4). The 

aim was therefore to create a system that rapidly eliminated enterococcal host strains that 

would not be suitable for MST application, allowing effort to be focussed on those host 

strains worthy of further investigation. Four screening tiers were designed, each of which 

considered characteristics previously demonstrated to be important for effective MST.  

 

4.1 Tier 1 

The target host was the genus Enterococcus, so the first screening tier was primarily 

designed to eliminate other genera. At this stage, host strains that did not demonstrate good 

growth overnight in TSB were also eliminated from further investigation. The ability of a 

host strain to grow relatively rapidly was considered important, largely because, as 

highlighted above, rapid methods have the potential to produce more reliable information 

for health risk management and as such may ultimately lead to a reduction in costly and 

unnecessary closures of recreational waters.   

 

4.2 Tier 2 

The second tier was designed to reduce further the potential number of host strains by 

screening them against a battery of reference samples containing phages from municipal 

wastewater, and cattle, sheep and pig faeces. Host strains that did not detect phages in these 
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reference samples were not investigated further. The four reference samples were selected 

to represent major sources of faecal contamination present in Southeast England. Therefore 

host strains demonstrating specificity to these faecal sources, may have applications as 

useful MST hosts within this geographical region. Host strains were not tested against a 

broader set of faecal samples at this stage, in order to minimise time and costs associated 

with labour and consumables during the screening process.  

 

4.3 Tier 3 

It has been proposed that emerging candidate MST approaches should be assessed using a 

unified set of performance criteria, which would allow techniques to be compared on a 

rational basis, and enable those that do not meet set standards to be eliminated at an early 

stage (Domingo et al., 2007; Field and Samadpour, 2007). The specificity of a marker to a 

faecal source, is considered one of the most important criteria for effective MST, and this 

characteristic is widely used to assess their performance as an MST marker (Gourmelon et 

al., 2007; Stoeckel and Harwood, 2007; Harwood et al., 2009). Specificity was chosen as 

the major criterion to assess the performance of the host strains at this stage of the 

screening process.  Tier 2 host strains were ranked, and divided into three groups:  

1) host strains demonstrating no specificity;  

2) host strains demonstrating specificity to a broader source category (e.g., non-human 

or ruminants); and,  

3) host strains with specificity to a single faecal source (e.g., cattle faeces).  

Host strains that demonstrated specificity to a source category, or to an individual faecal 

source were considered to be useful for MST purposes, and were consequently elevated to 

the third tier.  
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4.4 Tier 4 

Finally, the threshold level of faecal contamination above which MST markers can be 

detected (known as the detection limit) is a key consideration (Stoeckel and Harwood, 

2007). The phage must be present at sufficiently high concentrations in faecal samples if 

they are likely to be present at detectable levels in faecally contaminated waters. 

Consequently, the fourth and final tier was designed to eliminate host strains that detected 

phage at very low numbers in faecal samples (<100 PFU/100ml). This tiered approach to 

selecting potentially effective MST markers resulted in a more manageable group of 

strains, which were subsequently challenged against faeces from a range of sources in the 

study region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

90 

   

Chapter Five Results: Development of the 

method 

5.1 Development of a double agar-layer assay for Enterococcus host strains   

Although the double agar-layer assay has been standardised for the detection and 

enumeration of somatic coliphages infecting Escherichia coli host strains (Anon, 2001[a]), 

phages infecting Bacteroides spp. (Anon, 2001[b]), and F-specific RNA phages (Anon, 

2001[c]), a number of modifications were required in order to optimise the assay for use 

with Enterococcus host strains. Ideally assay optimisation should be undertaken for every 

new host strain used. However it was not feasible to optimise the method for all the host 

strains isolated throughout this research programme. Therefore to keep labour and 

consumable costs to a minimum, the host strain ‘Cattle Run-off 1’ (CR1), and reference 

phage CR1-1, isolated from Wales Farm, Plumpton, UK, were used in all initial double 

agar-layer assay development experiments. Additional optimisation was performed for host 

strain ‘Municipal Wastewater 47’ (MW47) before use in survival experiments.  

 

5.1.1   Development of assay growth medium 

M-Enterococcus agar (Becton Dickinson Microbiology Systems, UK), nutrient agar (NA), 

KF streptococcus agar, brain heart infusion (BHI) agar and tryptone soya agar (TSA) 

(Oxoid, Basingstoke, UK) were all tested as potential top and bottom agar-layers for phage 

enumeration. The concentrations of agar used in both agar-layers were the same as those 

reported in standard phage enumeration methodology elsewhere (ISO 10705/2) (Anon, 

2001[a]). The two main considerations in choosing the medium were the growth of a 

confluent lawn of bacteria, which was required for the visualisation and clarity of plaques 
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on the agar surface. However, m-Enterococcus agar and KF streptococcus agar, both 

selective media for the isolation of Enterococcus spp., did not support sufficient growth to 

produce a confluent lawn of bacteria. NA, BHI agar and TSA, all successfully supported 

growth of the host strain to produce a confluent lawn of bacteria and when double agar-

layer assays were performed, plaques were visible on all three media. The clearest plaques 

however, were obtained using TSA for both agar-layers. This observation was in agreement 

with results from a previous study that focused on phage of E. faecalis (Bonilla et al., 

2010). Therefore, TSA was selected for all future phage assays.  

 

5.1.2 Calibration of absorbance measurements for counts of viable host bacteria 

It was important to calibrate absorbance measures for counts of viable host bacteria because 

cell density affects the length of time available for productive phage infections. The 

majority of phages require the host to be in an exponential growth phase to sustain 

productive infections (Gallet et al., 2011). Plaque size and phage yield can therefore be 

maximised when cell density is optimised. A growth curve was performed for host strain 

CR1 (methodology discussed in Chapter Three), in order to calibrate the absorbance 

measurements for viable counts of enterococcal host bacteria. The growth curve was 

repeated in triplicate. As it was not feasible to perform growth curves for all potential host 

strains, the results for CR1 (Figure 5.1) were used as a guideline for future phage assays 

using isolated enterococcal host strains.  

 

 



 

92 

   

 

Figure 5.1 The results of three growth curves performed with Enterococcus host strain 

CR1 (Error bars represent the standard error of triplicate samples)
1
 

2
 

All three growth curves show an exponential growth phase from an optical density (OD) of 

0.050. The recommended optimum cell density (2 x 10
8 

cells/ml; Chapter Three) was 

reached between 0.180 and 0.220 OD and remained within the upper recommended limit (5 

x 10
8
 cells/ml) until an OD of at least 0.460 was reached. As the host strain consistently 

reached an optimum cell density at 0.250 OD and greater, all future phage assays were 

performed with host strains at 0.250 OD. To optimise the plating efficiency of phages 

infecting host strain ‘Municipal Wastewater 47’ (MW47) before use in survival 

experiments, additional growth curves were completed. The results of the three growth 

curves performed in triplicate are shown in Figure 5.2.  
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Figure 5.2 The results of three growth curves performed with Enterococcus host strain 

MW47 (Error bars represent the standard error of triplicate samples)
1
 

 

Host strain MW47 displayed faster growth than host strain CR1. Exponential growth was 

evident from between 0.060 and 0.080 OD. Unlike host strain CR1, two of the growth 

curves (2 and 3) show diminishing growth at approximately 0.280 OD, followed by a 

stationary phase from an OD of 0.400. An optimum cell density (2 x 10
8 

cells/ml) was 

achieved at between 0.080 and 0.110 OD. The upper recommended limit (5 x 10
8
 cells/ml) 

was reached at between 0.120 and 0.180 OD.  

Double agar-layer assays were then performed, in quintuplicate, using a reference phage 

isolated from Enterococcus host strain MW47 (MW47-1). Assays were carried out with the 
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host strain MW47 at optical densities of 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 

0.400, 0.450, 0.500 and 0.550. The purpose of the assays was to determine the cell density 

that provided the optimum phage detection and plaque clarity. Plaques with larger 

diameters are more desirable because they are easier to identify. However in this instance 

plaques were clearly visible at all optical densities tested and plaque size did not affect 

plaque clarity (Figure 5.3). The diameters of ten plaques from each assay were measured 

using a hand lens and a calliper to determine mean plaque size. The results of mean plaque 

size and mean phage numbers are shown in Figures 5.4 and 5.5.  

 

 

Figure 5.3 Photographic evidence of plaque clarity at different optical densities 
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Figure 5.4 Mean plaque size at different optical densities  

 

 

Figure 5.5 Mean plaque numbers at different optical densities 
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Mean plaque size and phage numbers at different optical densities were significantly varied 

(P=<0.01; Friedman’s ANOVA). The largest mean plaque sizes were observed at 0.050 and 

0.100 OD (2.0 and 1.9mm, respectively). The highest mean phage numbers were also 

observed at 0.050 and 0.100 OD (72 and 71 PFU/ml, respectively). Plaque size and phage 

numbers were not significantly different between an OD of 0.050 and 0.100 (P=>0.05; 

Wilcoxon signed- rank). It is likely that plaque diameter and phage yield were largest at an 

OD of between 0.050 and 0.100, because this OD corresponds to the early exponential 

growth phase of the host strain (Figure 5.2). All inactivation assays were performed with 

the host strain (MW47) at an OD of 0.100, because optimum cell density was achieved 

between 0.080 and 0.180 OD and significantly greater plaque size and phage numbers were 

observed at optical densities of 0.100 and lower (P=<0.01; Wilcoxon signed- rank). 
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Chapter Six Results: Isolation of Enterococcus 

host strains 

6.1 Isolation and screening of potential host strains 

In total, 554 potential enterococcal host strains were isolated and screened using the tiered 

screening approach (as previously discussed in Chapters Three and Five). Three hundred 

and ninety potential host strains were initially isolated and confirmed as tier 1 strains (Table 

6.1).  

 

Table 6.1 Assignment of potential Enterococcus host strains from various sources according 

to tier category  

Host Origin 
No. of 

samples 

No. of strains in: 

Tier 1
a 
 Tier 2

b 
(%) Tier 3

c 
(%) Tier 4

d 
(%) 

Pooled faeces 

from cattle  
1 76 1 (1) 1 (1) 0 (0) 

Liquid run-off 

from cattle  
2 83 56 (67) 52 (63) 17 (20) 

Liquid run-off 

from Pig  
1 31 21 (68) 12 (39) 1 (3) 

Municipal 

wastewater 
1 112 38 (34) 29 (26) 1 (1) 

Impacted surface 

waters 
3 88 31 (35) 23 (26) 6 (7) 

Total 8 390 147 (38) 117 (30) 25 (6) 
a 

Tier 1, Presumptive Enterococcus (Gram positive, catalase negative, aesculin positive and 

exhibiting good growth after 24h at 37
o
C in TSB). 

b 
Tier 2, tier 1 strains that detect 

bacteriophage >0 PFU/ml in human, cattle, pig or sheep reference faecal samples.  
c 

Tier 3, 

tier 2 strains that show potential specificity to human, cattle, pig, sheep or animal reference 

faecal samples. 
d 

Tier 4, tier 3 strains detecting bacteriophage in reference faecal samples 

>100PFU/ml. 

 
 

 

       

Thirty-eight percent of tier 1 host strains detected phage in reference samples from cattle, 

pig, sheep and raw municipal wastewater (tier 2 strains). A high percentage of host strains 

(67% and 68%) isolated from cattle and pig run-off, respectively detected phages in 
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reference samples, but far fewer host strains were isolated from both municipal wastewater 

and surface waters (34% and 35%, respectively) and only one of 76 hosts obtained from 

pooled cattle pats detected phages in any of the four reference samples.  

 

One hundred and seventeen tier 2 strains (30%) were restricted to one faecal source or 

source group (tier 3 strains). A large proportion (44%) of the tier 3 host strains, were 

isolated from liquid cattle run-off. Twenty-five tier 3 strains detected phages in numbers 

greater than 1.0 x 10
4
 per 100 ml of sample (tier 4 strains). Sixty-eight percent of tier 4 

strains originated from cattle run-off, 24% from surface waters, 4% from pig run-off and 

4% from raw municipal wastewater. Table 6.2 shows the screening results for the 25 tier 4 

host strains and four additional tier 3 strains (selected for further investigation because of 

their 100% specificity to a particular source and their excellent plaque clarity), which were 

chosen for further specificity testing using a broader range of inputs representative of those 

present across the study catchment. 

 

Twenty host strains appeared to be restricted to a single faecal source at this stage. Seven 

host strains isolated from cattle and pig-runoff detected phage in both pig and cattle faecal 

run-off reference samples. This could be the result of the close proximity and potential 

mixing of these faecal sources at the site of isolation (Wales Farm, Plumpton). 

Interestingly, two host strains isolated from cattle run-off demonstrated broader host 

ranges, also detecting phages in sheep faeces. 
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Table 6.2 Mean numbers of plaque forming units (PFU/100ml) detected by tier 4 (and 

certain tier 3) Enterococcus strains in pooled faecal samples from different origins 

  Sample Origin (No. of samples) 

Host strain origin Host 

ID. 
Municipal 

wastewate

r (n=7) 

Cattle run-

off (n=5) 

Pig run-off 

(n=5) 

Sheep 

faeces 

(n=5) 

Cattle run-off CR1 <1
b 

1.7 x 10
4
 <1

b
 <1

b
 

Cattle run-off CR4 <1
b
 1.4 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR6 <1
b
 2.1 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR7 <1
b
 1.3 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR15 <1
b
 8.3 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR16 <1
b
 4.4 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR17 <1
b
 7.1 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR37 <1
b
 1.2 x 10

5
 <1

b
 <1

b
 

Cattle run-off CR45 <1
b
 1.8 x 10

4
 6.0 x 10

2
 <1

b
 

Cattle run-off CR47 <1
b
 4.8 x 10

4
 1.2 x 10

3
 <1

b
 

Cattle run-off CR51 <1
b
 5.2 x 10

4
 2.0 x 10

3
 <1

b
 

Cattle run-off CR58 <1
b
 1.9 x 10

4
 <1

b
 2.0 x 10

2
 

Cattle run-off CR61 <1
b
 2.2 x 10

4
 1.7 x 10

3
 <1

b
 

Cattle run-off CR63 <1
b
 3.4 x 10

4
 <1

b
 <1

b
 

Cattle run-off CR70 <1
b
 7.3 x 10

4
 1.0 x 10

3
 <1

b
 

Cattle run-off CR73 <1
b
 2.3 x 10

4
 2.1 x 10

3
 <1

b
 

Cattle run-off CR75 <1
b
 4.8 x 10

4
 1.0 x 10

2
 3.0 x 10

2
 

Municipal wastewater MW42
a
 2.7 x 10

3
 <1

b
 <1

b
 <1

b
 

Municipal wastewater MW47
a
 3.4 x 10

3
 <1

b
 <1

b
 <1

b
 

Municipal wastewater MW96 <1
b
 <1

b
 >2.0 x 10

5 <1
b
 

Newhaven-River Ouse NRO5
a
 <1

b
 <1

b
 9.8 x 10

3
 <1

b
 

Newhaven-River Ouse NRO8
a
 3.4 x 10

3
 <1

b
 <1

b
 <1

b
 

Newhaven-River Ouse NRO20 <1
b
 1.0 x 10

5
 <1

b
 <1

b
 

Newhaven-River Ouse NRO24 <1
b
 <1

b
 1.1 x 10

5
 <1

b
 

Newhaven-River Ouse NRO30 <1
b
 1.2 x 10

4
 <1

b
 <1

b
 

Newhaven-River Ouse NRO39 <1
b
 2.5 x 10

4
 <1

b
 <1

b
 

Pig run-off PR3 <1
b
 2.2 x 10

4
 1.0 x 10

2
 <1

b
 

Pellingbridge-River Ouse PRO4 <1
b
 2.0 x 10

4
 <1

b
 <1

b
 

Wales Farm Stream WFS7 <1
b
 6.2 x 10

4
 <1

b
 <1

b
 

a 
Tier 3 strains with 100% specificity and excellent plaque clarity, but detected lower plaque 

counts (<1.0 x 10
4
) than Tier 4 strains 

b
Phages were absent in these samples, although no detection limits were determined 

     

 



 

100 

   

6.2 Specificity vs. sensitivity 

The suitability of the tier 4 enterococcal host strains (along with the subset of certain tier 3 

strains) was further tested by exposing them to additional samples from ten source groups. 

Host performance was determined using calculated specificity and sensitivity percentages 

(Table 6.3). 

 

Table 6.3 Specificity and sensitivity percentages of tier 4 (and certain tier 3) strains 

Enterococcus hosts 

Host strain origin Host ID. Specificity (%) Sensitivity (%) 

0 Cattle run-off CR1 93 33 

Cattle run-off CR4 80 33 

Cattle run-off CR6 100 33 

Cattle run-off CR7 93 22 

Cattle run-off CR15 83 33 

Cattle run-off CR16 94 33 

Cattle run-off CR17 100 33 

Cattle run-off CR37 78 33 

Cattle run-off CR45 89 50 

Cattle run-off CR47 78 83 

Cattle run-off CR51 78 83 

Cattle run-off CR58 73 40 

Cattle run-off CR61 81 83 

Cattle run-off CR63 92 17 

Cattle run-off CR70 89 83 

Cattle run-off CR73 67 78 

Cattle run-off CR75 73 60 

Municipal wastewater MW42
a
 100 33 

Municipal wastewater MW47
a
 100 67 

Municipal wastewater MW96 77 60 

Newhaven-River Ouse NRO5
a
 71 40 

Newhaven-River Ouse NRO8
a
 100 7 

Newhaven-River Ouse NRO20 74 33 

Newhaven-River Ouse NRO24 100 20 

Newhaven-River Ouse NRO30 87 33 

Newhaven-River Ouse NRO39 80 33 

Pig run-off PR3 39 71 

Pellingbridge-River Ouse PRO4 79 33 

Wales Farm Stream WFS7 100 33 
a 

Tier 3 strains with 100% specificity (detection limits not determined) and excellent 

plaque clarity, but detected lower plaque counts (<1.0 x 10
4
) than Tier 4 strains 
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For MST purposes it is particularly important that the host strains do not detect phages 

from both human and non-human sources. Further testing revealed that fifteen host strains 

were present in animal faeces and municipal wastewater samples, even though they had 

previously been restricted to either human or non-human sources. This ruled them out from 

any further analysis. At this stage, fourteen potential host strains (just over 48%) were 

found to be highly specific to a particular source, or source group. The results for all 

fourteen host strains specific to either cattle, pig, human or mixed non-human animal faecal 

sources are presented in Table 6.4. Notably, seven strains appeared to be 100% specific to a 

single source category.  

 

The mean specificity and sensitivity of the host strains isolated during the study was 84% 

and 45%, respectively (Table 6.3). Higher specificity (>70%), associated with lower 

sensitivity (<33%), was evident in over 50% of the tier 4 strains. Strain WFS7 isolated from 

surface waters downstream of a livestock farm (Wales Farm, Plumpton, UK) at which 

numerous animals are reared, including a large dairy herd (200+ head of animals), was 

100% specific to cattle faecal samples. However, the sensitivity of strain WFS7 was only 

33%, and, interestingly, appeared to be restricted to samples originating from the herd 

present on Wales Farm. A similar result was observed for phages infecting strain NRO24, 

which was found in all pig faeces (100%) from Wales Farm, but again was not detected in 

pig faeces from neighbouring farms, resulting in a low overall sensitivity of 20%. Phages 

infecting these host strains therefore appear not only to be restricted to cattle or pig sources, 

but to specific cattle or pig herds. This observation suggests the potential importance of diet 

and of geographical variations in the distribution of certain Enterococcus host strains and 

phages associated with them.  
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Table 6.4 Samples positive for phages from different origins detected using fourteen potential Enterococcus host strains
a 

Host 

strain 

ID. 

No. of positive samples/ No. of samples tested
 

Cattle  Chicken  

Ducks 

and 

geese  

Goat  Horse  Pig  Rabbit  Seagull  Sheep  
Raw 

MW
b
 

Final 

MW
b
  

CR1 6/18  0/6  3/6 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 

CR6 6/18  0/6 0/3 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 

CR7 4/18  0/6 3/6 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 

CR15 6/18  0/6 3/3 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 

CR16 6/18  0/6 0/3 0/3 0/3 2/6 0/3 0/3 0/6 0/6 0/3 

CR17 6/18  0/6 0/3 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 

CR70 6/9 0/6 3/3 0/3 0/3 9/9 0/3 0/3 0/6 0/6 0/3 

MW42 0/15  0/6 0/3 0/3 0/3 0/12 0/3 0/3 0/6 7/18 3/12 

MW47 0/15  0/6 0/3 0/3 0/3 0/12 0/3 0/3 0/6 18/18 3/12 

NRO8 0/15  0/6 0/3 0/3 0/3 0/12 0/3 0/3 0/6 3/18 0/3 

NRO24 0/15  0/6 0/3 0/3 0/3 3/15 0/3 0/3 0/6 0/6 0/3 

NRO30 6/18  0/6 3/6 0/3 0/3 3/6 0/3 0/3 0/6 0/6 0/3 

NRO39 6/18  4/6 3/6 0/3 0/3 3/6 0/3 0/3 0/6 0/6 0/3 

WFS7 6/18 0/6 0/3 0/3 0/3 0/6 0/3 0/3 0/6 0/6 0/3 
a 

Host strains were tested with faecal samples comprised of pooled faecal material from at least twenty individuals (collected from eight 

farms) and wastewater samples from seven wastewater treatment works all located within South East England   
b
MW= Municipal wastewater 
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Human-specific host strain MW47 demonstrated a much higher sensitivity, detecting 

phages in all raw municipal wastewater samples (100%) tested from six WWTW, one of 

which has a population equivalent of only 258. However, MW47 was only detected in 1/4 

(25%) of the treated wastewaters tested, suggesting possible removal or die-off of phages 

during treatment. Certain host strains such as strain CR70, whilst demonstrating lower 

levels of phage specificity (Table 6.3), demonstrated sensitivity levels much higher than 

those of more specific hosts. Strain CR70 was found almost exclusively in cattle and pig 

samples (90% specificity), had a sensitivity of 83%, and as such could be a useful indicator 

of non-human faecal contamination. 

 

Figure 6.1 shows specificity plotted against sensitivity for all twenty-nine tier 4 (and 

selected tier 3) enterococcal host strains. Spearman’s correlation coefficient, a non-

parametric statistical test was used to assess the relationship between specificity and 

sensitivity of the host strains, as the data were not normally distributed, even after log 

transformation. Results show a strong negative relationship between sensitivity and 

specificity (Rs= -0.531, p <0.01). As specificity increased, the sensitivities of the hosts also 

tended to decrease. Ideally, the specificity and sensitivity of a host for phage lysis would be 

100% in each case, but in reality a compromise between the two needs to be achieved.  For 

instance, there may be situations where specificity can be sacrificed in favour of increased 

sensitivity, and vice versa.  
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Figure 6.1 Scatter plot showing the relationship between specificity and sensitivity for 

twenty-nine candidate enterococcal host strains 

 

 

6.3 Origin of host strains 

As shown in Table 6.1, potentially useful enterococcal hosts were isolated from five 

samples originating from a range of sources. In order to analyse variations in host 

specificity and sensitivity, all enterococcal hosts were classified as being members of one 

of four source groups (1. pooled cattle faeces, 2. municipal wastewater, 3. cattle and pig 

run-off or 4. faecally impacted surface waters). Figures 6.2 and 6.3 show the initial 

specificity and phage numbers respectively, detected by the host strains in each source 

group. 
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Figure 6.2 Host strain specificity (%) in four source groups (1. pooled cattle faeces, 2. 

municipal wastewater, 3. cattle and pig run-off, or 4. surface waters). Data points deemed 

to be outliers are numbered and indicated by a circle 

 

 

 
Figure 6.3 Mean phage numbers (log10) detected by host strains in four source groups (1. 

pooled cattle faeces, 2. municipal wastewater, 3. cattle and pig faecal run-off or 4. surface 

waters). Data points deemed to be outliers are numbered and indicated by a circle 
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The Kruskal-Wallis test suggested that specificity did not vary significantly between host 

strains isolated from the different source groups (p>0.05), though statistically significant 

variations in the number of phages detected in each source group were apparent (p<0.01).  

Post hoc Mann Whitney tests revealed that numbers of phages capable of infecting host 

strains isolated from cattle faeces were significantly lower compared with numbers of 

phage infecting host strains from the other source groups (p<0.008). Phage numbers 

detected by enterococcal hosts isolated from wastewater and surface waters did not vary 

greatly from one another, but significantly higher numbers of phage were detected by host 

strains isolated from cattle and pig faecal run-off (p<0.008).  

 

6.4 Identification of enterococcal host strains 

The fourteen potential host strains demonstrating specificity to a single faecal source or 

source group, were identified to species level using both API 20 Strep identification strips 

and the biochemical key (Table 6.5) described by Manero and Blanch (1999). 

 

Human-specific host strains NRO8 and MW42 were both identified as being members of 

the species E. faecalis, and MW47 as being E. faecium. This was in accordance with 

previous studies that have found E. faecalis and E. faecium to be the most abundant 

Enterococcus species in human faeces and wastewaters (Ruoff et al., 1990; Manero et al., 

2002; Gelsomino et al., 2003). Pig-specific host strain (NRO24) was also identified as E. 

faecium. Very few studies have focused on the flora of swine. Results from Devriese et al. 

(1987) found that the Enterococcus species most commonly isolated from pig faeces were 

E. faecalis and E. faecium. E. faecium was however detected in lower numbers. All cattle-

specific host strains were identified as E. mundtii, E. casseliflavus or E. gallinarum. E. 
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casseliflavus and E. gallinarum are commonly isolated from environmental samples, but it 

has been suggested that these species could be incorporated into the microbiota of the 

digestive tract following ingestion by grazing ruminants and that their presence could 

therefore be related to diet (Layton et al., 2010). The species classification of the host 

strains CR1 and NRO39 differed depending on which of the two identification methods 

were used. Host strains CR1 and NRO39 were identified as being members of the species 

E. casseliflavus and E. gallinarum respectively, by API 20 Strep, whereas the simplified 

biochemical key of Manero and Blanch (1999)
 
identified the hosts as being members of the 

species E. mundtii and E. faecium, respectively. All other classifications by both methods 

were in agreement, however API 20 Strep failed to provide identification for three isolates, 

all of which were identified as E. gallinarum by the biochemical key. As there were 

discrepancies between the two methods, DNA based characterisation should also be 

completed on the host strains in the future to ensure identifications are accurate.   

 

Table 6.5 Identification of Enterococcus hosts strains with API 20 Strep and a biochemical 

key 

Host origin  ID. 
API 20 Strep 

Identification 

Biochemical Key 

Identification 

Cattle run-off CR1 E. casseliflavus E. mundtii 

Cattle run-off CR6 CNI
a 

E. gallinarum 

Cattle run-off CR7 E. casseliflavus E. casseliflavus 

Cattle run-off CR15 E. casseliflavus E. casseliflavus 

Cattle run-off CR16 CNI
a 

E. gallinarum 

Cattle run-off CR17 CNI
a 

E. gallinarum 

Cattle run-off CR70 E. gallinarum  E. gallinarum 

Municipal wastewater  MW42 E. faecalis  E. faecalis  

Municipal wastewater  MW47 E. faecium  E. faecium  

Newhaven (River Ouse)  NRO8 E. faecalis  E. faecalis  

Newhaven (River Ouse)  NRO24 E. faecium  E. faecium  

Newhaven (River Ouse)  NRO30 E. casseliflavus E. casseliflavus 

Newhaven (River Ouse)  NRO39 E. gallinarum  E. faecium 

Wales Farm Stream WFS7 E. gallinarum  E. gallinarum 
a
 CNI = API 20 Strep could not identify  



 

108 

   

Chapter Seven Results: Phage isolation, 

characterisation and survival 

A potential limitation of phage-based MST techniques, particularly those using somatic or 

F-specific coliphage, has been the differential survival of the various phages capable of 

infecting the host strain (discussed in detail in Chapter Two). Phages with different 

morphologies have been shown to differ with respect to their abundance and survival in the 

environment, which may hinder the interpretation of results in MST studies (Muniesa et al., 

1999; Muniesa et al., 2009). An effective MST marker should demonstrate consistent 

responses to environmental stressors (Diston et al., 2012). Homogeneous groups of phages 

are more likely to demonstrate consistent ecological behaviour and survival in the 

environment (Queralt et al., 2003). It was beyond the scope of this research to investigate 

the diversity and inactivation of phages infecting all fourteen potential host strains isolated 

during this study. However, the diversity of phages infecting one of the most promising 

Enterococcus host strains, namely MW47 (specific to human faeces), was further 

investigated.   

 

7.1 Phage isolation 

In total, twenty-two single distinct plaques were picked and purified from double agar-

layers of host strain MW47 infected with phages from raw municipal wastewater obtained 

from a wastewater treatment works with a population equivalent of 37,327 (Scaynes Hill, 

UK). All plaques were successfully propagated to a high titre (at least 10
8
 PFU/ml) in 

accordance with the plate propagation method described in Chapter Three. To determine 

the titre, phage lysates were tested in duplicate using spot test assays. Twelve of the picked 



 

109 

   

phage required only one round of plate propagation to achieve the necessary titre, whilst 

seven required two rounds, and phages MW47-4, -10 and -19 required three rounds of 

propagation. The final 22 phage cultures had titres of between 5.0 x 10
8
 and 1.1 x 10

10
 

PFU/ml (Figure 7.1).  

 

Table 7.1 Titres and plaque size of MW47 phages   

Phage ID 

(MW47-) 

MW47 (E. faecium) 

PFU/ml 

Plaque size range (mm) 

(n=10) 

Mean plaque 

size (mm) (n=10) 

1 1.1 x 10
10

 0.7-1.8 1.13 

2 4.5 x 10
9
 0.5-1.8 1.06 

3 7.3 x 10
9
 0.9-1.8 1.37 

4 5.0 x 10
8
 0.3-0.8 0.55 

5 1.1 x 10
10

 0.5-1.6 1.00 

6 4.6 x 10
9
 0.9-1.3 1.04 

7 9.0 x 10
8
 1.0-2.3 1.74 

8 8.6 x 10
9
 0.9-2.0 1.39 

9 5.7 x 10
9
 0.2-0.6 0.37 

10 2.1 x 10
9
 0.6-0.8 0.70 

11 2.5 x 10
9
 0.9-1.3 1.13 

12 5.6 x 10
8
 0.8-1.4 1.12 

13 3.4 x 10
9
 0.9-1.9 1.18 

14 7.1 x 10
9
 0.9-2.0 1.43 

15 8.6 x 10
8
 0.1-0.3 0.18 

16 1.3 x 10
9
 1.1-1.6 1.28 

17 4.1 x 10
9
 0.7-0.9 0.81 

18 4.7 x 10
9
 1.0-1.6 1.35 

19 7.3 x 10
8
 0.2-0.5 0.36 

20 6.9 x 10
8
 0.8-1.8 1.41 

21 3.7 x 10
9
 0.7-1.9 1.38 

22 8.0 x 10
8
 0.9-1.2 1.01 

 

 

 

 

During phage isolation and propagation it was evident that different phage produced 

plaques of varying size. Plaque sizes appeared to vary not only between the different plates, 

but also within certain plates infected with a single phage isolate. Figure 7.1 shows 

examples of the diversity of plaque sizes observed. Phages MW47-4, -9, -10, -15 and -19, 
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produced particularly small ‘pin-hole’ sized plaques. Although these plaques were small, 

they were still clear and readable. MW47-15 produced the smallest plaques with a mean 

size of 0.18 mm (n=10) and MW47-7 produced the largest plaques with a mean size of 1.74 

mm (n=10). A number of the phage isolates producing larger plaques (>1 mm diameter), 

also exhibited a halo formation around the plaque, where secondary lysis had occurred 

(displayed by phage isolate MW47-22 in Figure 7.1).   

 

 

Figure 7.1 Examples of the plaque size diversity produced by MW47 phages. MW47-15 

phage with almost complete lysis producing uniform ‘pin-hole’ sized plaques (top left), 

MW47-5 phage producing varied plaque sizes ranging from 0.5 to 1.6 mm (top right), 

MW47-22 phage displaying halo formation (bottom left), and MW47-7 phage producing 

larger plaques ranging from 1.0 to 2.3 mm (bottom right)  
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7.2 Phage characterisation  

In order to determine the morphological diversity of phages capable of infecting host strain 

MW47, all 22 high titre phage cultures were viewed using electron microscopy (TEM). 

Staining with uranyl acetate produced both negatively (appearing white with a dark 

background) and positively (deep black) stained phage particles, as shown in Figure 7.2.  

 

 

Figure 7.2 Negatively (left) and positively stained (right) siphovirus phage (MW47-1) with 

icosahedral capsid morphology  

 

The large majority of the phage particles were positively stained. Positive staining is the 

result of the strong affinity of uranyl acetates for double-stranded DNA (dsDNA). 

Positively stained capsids can be up to 30% smaller than negatively stained capsids 

(Ackermann, 2009). Measurements may therefore be subject to inaccuracies. Negative and 

positive staining on the same grid was only observed for one phage (MW47-1; Figure 7.2). 

The negatively stained capsid diameter of phage MW47-1 was 10 nm larger than the mean 

diameter of all positively stained capsids. As the majority of phages were positively 

stained, measurements would prove unreliable and were therefore not taken. However 

major morphological characteristics could be observed from the TEM phage micrographs 
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and are shown in Table 7.2. TEM phage micrographs of the three distinct phage 

morphologies observed are shown in Figures 7.2-7.4.    

    

Table 7.2 Morphology of phages isolated from host strain MW47 

 

 

The TEM data revealed all phages to have helical tails and thus to belong to the order 

Caudovirales. As described in Chapter Two, the Caudovirales order is divided into three 

families (Myoviridae, Siphoviridae and Podoviridae) all of which are dsDNA phages. Of 

the 20 phages viewed by TEM, 18 (90%) had simple non-contractile tails, placing them in 

the Siphoviridae family (Figures 7.2 to 7.3). Two phages (10%), MW47-10 and -15, 

exhibited tails with a contractile sheath (Figure 7.4). This tail structure identified the phage 

as belonging to the Myoviridae family. 

 

Phage ID  

(MW47-) 
Capsid morphology Tail morphology Family 

1 Icosahedral Straight/slightly curved Siphoviridae  

2 Elongated icosahedral Slightly curved/ curved Siphoviridae  

3 Icosahedral Slightly curved Siphoviridae  

5 Elongated icosahedral Curved Siphoviridae  

6 Icosahedral Straight/slightly curved/ wavy Siphoviridae 

7 Elongated icosahedral Slightly curved/ curved Siphoviridae  

8 Elongated icosahedral Straight/ wavy Siphoviridae  

9 Elongated icosahedral Straight Siphoviridae  

10 Icosahedral Straight/slightly curved Myoviridae  

11 Icosahedral Slightly curved Siphoviridae  

12 Icosahedral Curved Siphoviridae  

13 Icosahedral Curved/ wavy Siphoviridae  

14 Icosahedral Straight/ curved Siphoviridae  

15 Icosahedral Straight  Myoviridae  

16 Elongated icosahedral Straight/ curled Siphoviridae  

17 Icosahedral Slightly curved Siphoviridae  

18 Icosahedral Straight Siphoviridae  

20 Icosahedral Slightly curved Siphoviridae  

21 Icosahedral Slightly curved/ curved/ wavy Siphoviridae  

22 Icosahedral Straight/slightly curved Siphoviridae  
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Figure 7.3 Micrograph of a positively stained siphovirus (MW47-5) with elongated 

icosahedral capsid morphology (bar=100 nm).  

 

 

Figure 7.4 Micrograph of a positively stained myovirus (MW47-15) with an icosahedral 

capsid and contracted tail sheath (bar=100 nm).  
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Within the 18 recognised Siphoviridae phages, two distinctive capsid morphologies were 

apparent. Twelve of the phage had icosahedral capsids (Figures 7.2), and six possessed 

elongated icosahedral capsids (Figure 7.3). Both recognised Myoviridae phages had 

icosahedral capsids which appeared to be much larger than the capsids observed for 

Siphoviridae phages. Tail shapes observed included straight, slightly curved, curved, wavy, 

and curled. Tail fibres were only observed in one micrograph of phage MW47-6 (Figure 

7.5).  

 

Figure 7.5 Micrograph of a positively stained siphovirus (MW47-6) with straight tail and 

visible tail fibres (bar=100 nm) 

 

7.3 Host range 

The host ranges of MW47 phages, determined using 11 Enterococcus type strains, an E.coli 

host strain (WG5) and a Bacteroides host strain (GB124), are shown in Table 7.3. No 

phages were capable of infecting the E.coli host strain (WG5) or the Bacteroides host strain 

(GB124). Fifteen of the phage isolates were unable to infect any other Enterococcus host 

type strains. Interestingly, no phages of MW47 (identified as E. faecium) were able to 
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infect the E. faecium type strain (DSM 20477). These results are interesting in that they 

provide evidence to suggest that phages capable of infecting and lysing certain 

Enterococcus host strains have very narrow host ranges.  

 

Phages MW47-9, -10 and -20 displayed broader host ranges. Phages MW47-9 and -10 were 

also capable of infecting the E. faecalis type strain (DSM 20478), and MW47-20 was able 

to infect E. asini (DSM 11492), but the phage numbers detected were low (1.0 x 10
3
 

PFU/ml). Phages MW47-8 and -15 displayed the broadest host ranges and were able to 

infect type strains E. faecalis and E. asini. Although these five phages exhibited broader 

host ranges, the number of phages detected on the alternative Enterococcus host strains 

were significantly lower than were detected on host strain MW47 (Wilcoxon signed ranks 

test, P<0.05).  

 

Phages MW47-8, -9, -10, -15, and -20, represent a morphologically diverse group, 

including phage from the families Siphoviridae and Myoviridae with both icosahedral and 

elongated icosahedral capsids (Section 7.2). These results indicate variation in host ranges, 

which may be linked to the diversity of phage morphology. E. faecalis is commonly found 

in human faeces and in raw wastewater. E. asini however is reported to be found 

exclusively in donkey faeces (de Vaux et al., 1998). In southern England, E. asini is less 

likely to be encountered in inland surface waters and it is therefore probable that the 

primary host of the phage is E. faecium.  
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     Table 7.3 Host ranges of phages capable of infecting host strain MW47 

Phage ID. 

(MW47-) 

MW47 (E. faecium) 

PFU/ml 

Enterococcus type strains (DSM No.) 

asini 

(20681) 

casseliflavus 

(20680) 

durans 

(20633) 

faecalis 

(20478) 

faecium 

(20477)   

gallinarum 

(24841) 

1 1.1 x 10
10

 N
a 

N N N N N 

2 4.5 x 10
9
 N N N N N N 

3 7.3 x 10
9
 N N N N N N 

5 1.1 x 10
10

 N N N N N N 

6 4.6 x 10
9
 N N N N N N 

7 9.0 x 10
8
 N N N N N N 

8 8.6 x 10
9
 6.1 x 10

7
 N N 5.4 x 10

6
 N N 

9 5.7 x 10
9
 N N N 1.1 x 10

7
 N N 

10 2.1 x 10
9
 N N N 1.7 x 10

6
 N N 

11 2.5 x 10
9
 N N N N N N 

12 5.6 x 10
8
 N N N N N N 

13 3.4 x 10
9
 N N N N N N 

14 7.1 x 10
9
 N N N N N N 

15 8.6 x 10
8
 4.7 x 10

8
 N N 3.7 x 10

8
 N N 

16 1.3 x 10
9
 N N N N N N 

17 4.1 x 10
9
 N N N N N N 

18 4.7 x 10
9
 N N N N N N 

20 6.9 x 10
8
 1.0 x 10

3
 N N N N N 

21 3.7 x 10
9
 N N N N N N 

22 8.0 x 10
8
 N N N N N N 

                         a
N= Phage lysis not detected; DSM= Deutsche Sammlung von Mikroorganismen 
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           Table 7.3 (cont.) Host ranges of phages capable of infecting host strain MW47 

Phage ID. 

(MW47-) 

Enterococcus type strains (DSM No.) WG5 

(somatic 

coliphage) 

GB124 
hirae 

(20160) 

mundti 

(4838)  

pseudoavium 

(5632) 

saccharolyticus 

(20726) 

sulfureus 

(6905) 

1 N
a
 N N N N N N 

2 N N N N N N N 

3 N N N N N N N 

5 N N N N N N N 

6 N N N N N N N 

7 N N N N N N N 

8 N N N N N N N 

9 N N N N N N N 

10 N N N N N N N 

11 N N N N N N N 

12 N N N N N N N 

13 N N N N N N N 

14 N N N N N N N 

15 N N N N N N N 

16 N N N N N N N 

17 N N N N N N N 

18 N N N N N N N 

20 N N N N N N N 

21 N N N N N N N 

22 N N N N N N N 
                  a

N= Phage lysis not detected; DSM= Deutsche Sammlung von Mikroorganismen 
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7.4 Phage survival  

The results demonstrated that phages isolated from MW47 have diverse plaque size, 

morphology and host ranges. Previous investigations have shown that the inactivation 

characteristics of phages appear to vary with respect to phage morphology (Muniesa et al., 

1999; Muniesa et al., 2009). It was considered beyond the scope of this research to 

investigate the inactivation of all 22 MW47 phage. However, as an initial investigation, in-

vitro inactivation experiments were conducted on a subset of three phages that showed the 

greatest morphological diversity. The aim of this investigation was to determine whether 

these phages exhibited varying inactivation rates in fresh water and sea water. Two phages 

of the Siphoviridae family, one with an icosahedral capsid (MW47-1; Figure 7.2) and one 

with an elongated icosahedral capsid (MW47-5; Figure 7.3), were selected for investigation 

alongside one phage of the Myoviridae family (MW47-15; Figure 7.4). The chemo-physical 

composition of the fresh and sea waters used in these experiments are shown in Table 7.4. 

Inactivation experiments were conducted at 4 
o
C in the dark in order to factor out the 

impact of elevated temperatures and solar radiation on phage survival.  

Table 7.4 Chemo-physical properties of surface waters at the time of sampling  

Water 

type 

Temperature 

(
o
C) 

Turbidity 

(NTU) 
pH DO (%) 

Salinity 

(ppt) 

Fresh 11.0 47.9 8.4 88.9 0.51 

Sea   8.3 14.2 8.2 71.6 14.80 

The results of the inactivation experiments for phages MW47-1, -5, and -15 in fresh and sea 

waters are shown in Figures 7.6 and 7.7. Inactivation rate coefficients (kD) in log units per 

day, derived by linear regression, and the time taken to achieve a 90% reduction in PFU 

concentrations (T90), calculated by dividing In (0.1)/ kD (Noble et al., 2004; Santiago-

Rodríguez et al., 2010) are shown in Table 7.5. 
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Figure 7.6 Inactivation of phages MW47-1, -5, and -15 in fresh water at 4 

o
C in the dark. 

Error bars represent the standard error of duplicate samples 

 

 
Figure 7.7 Inactivation of phages MW47-1, -5, and -15 in sea water

1
at 4 

o
C in the dark. 

Error bars represent the standard error of duplicate samples 
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Table 7.5 Inactivation rate coefficients (kD) in log units per day and predictions of time 

taken to reach a 90% reduction in phage concentration (T90 values) 

Phage ID 

Marine Waters (Newhaven) Fresh Waters (Spatham Lane) 

Inactivation rate 

coefficient at 4
o
C (S.E./ n) 

T90 

(days) 

Inactivation rate 

coefficient at 4
o
C (S.E. / n) 

T90 

(days) 

MW47-1 0.107 (0.021/ 6) 21.5 0.056 (0.002/ 6) 41.1 

MW47-5 0.124 (0.024/ 6) 18.6 0.059 (0.004/ 6) 39.0 

MW47-15 0.324 (0.097/ 4) 7.1 0.099 (0.002/ 6) 23.3 

 

The inactivation rate coefficients of both siphovirus (MW47-1 and -5) were similar for 

fresh water (Table 7.5). After 28 days in fresh water, MW47-1 and MW47-5 concentrations 

had both reduced by 1.5 log10. In comparison, the myovirus MW47-15 demonstrated more 

rapid inactivation and after 28 days in fresh water, experienced a decrease of 2.6 log10. The 

paired t-test revealed that survival of all three phages was significantly greater in fresh 

waters compared with sea waters (P>0.05). Most notably, all three phage experienced a 

considerable reduction in sea water after one week. T90 predictions for MW47-1 and -5 

suggested a 90% reduction of PFU densities would take approximately 20 additional days 

in fresh water. Whilst MW47-5 was predicted to have 90% reduction in PFU concentrations 

after a further 16 days in fresh water. After 28 days in sea waters MW47-1 and -5 

concentrations had decreased by 2.4 log10 and 2.9 log10. Again, MW47-15 appeared less 

persistent, with an inactivation rate coefficient of 0.324 log10 per day. After day 14, MW47-

15 fell below detection limits.  

 

Although there were apparent differences between the inactivation of Siphoviridae and 

Myoviridae phages (MW47-1, -5 and -15), statistical analysis revealed that variations 

between the inactivation of the three phage, were not significant (ANOVA, sea water p= 
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0.989; fresh water p= 0.650). Differences in inactivation of the two phage families were 

also insignificant (independent t-test, sea water p=0.922; fresh water p=0.346). The limited 

data available for myovirus in this pilot experiment, particularly in sea water where levels 

dropped below detection limits, undoubtedly had an effect on the significance of variance. 

This pilot study therefore highlights the need for further in-depth investigations into the 

survival of the different phage morphologies capable of infecting host strain MW47.   
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Chapter Eight: Discussion, conclusions and 

future work 

8.1 Discussion 

This research programme was designed with the aim of evaluating the suitability and 

effectiveness of bacteriophages (phages) infecting host strains of Enterococcus species as a 

low-cost tool for MST. In this chapter, the methods and protocols presented in earlier 

chapters are evaluated critically and recommendations are presented both for future 

research and for practical application of the methods as they currently stand. This chapter 

also discusses how the results reported in the three preceding chapters influence the 

suitability of phages infecting host strains of Enterococcus species as a tool for MST. This 

research programme has provided a protocol for the isolation of Enterococcus spp. host 

strains suitable for MST and is the first study to assess the ability of phages infecting 

enterococcal host strains to detect both human and non-human sources of faecal pollution. 

Additionally this study has provided important information on the diversity and survival of 

these phages.  

 

8.1.1 Protocol evaluation  

The double agar-layer assay for phage detection on Enterococcus host strains used in this 

study provided clearly visible plaques. The assay proved to be rapid, with all Enterococcus 

host strains reaching the desired optical density (from frozen culture) within 1.5-3 h, and 

plaques becoming visible within 4h of incubation. These incubation times are comparable 

with those currently required for facultatively anaerobic host strains (e.g. the E. coli host of 

somatic coliphage) and are considerably shorter than those required by strict anaerobes, 

such as Bacteroides host strains (Ebdon et al., 2007; Santiago-Rodríguez et al., 2010). It 
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was previously reported by Bonilla et al. (2010) that, for a human-specific E. faecalis 

strain, plaques were not visible to the human eye without the addition of sodium azide 

(NaN3) and that optimal plaque formation was evident with a calcium chloride (CaCl2) 

concentration of 2.6 mg/ml. However, in this study good plaque clarity was observed with 

the large majority of host strains isolated without the addition of either NaN3 or CaCl2. It is 

therefore advantageous to isolate host strains that do not require the addition of NaN3 in 

particular, as this compound is hazardous to human health and as such, requires the use of 

specialist safety equipment. 

 

The application of the simplified tiered screening approach (Purnell et al., 2011) improved 

the isolation efficiency of new enterococcal host strains and provided a useful protocol to 

support the isolation of future phage hosts. The approach effectively identified host strains 

that exhibited rapid growth and high specificity to a single faecal source (or source group). 

Initial screening with four key reference samples, representing the dominant faecal sources 

in the study area (e.g., human, cattle, pig and sheep faeces), enabled large numbers of 

enterococcal isolates to be screened. Using this approach, at least one potential host strain 

was isolated for every sample analysed (approximately one host strain for every 40 isolates 

analysed), with the exception of faecal samples from cattle. This is higher than the rates of 

successful isolation reported in previous studies involving the isolation of Bacteroides hosts 

for MST (Payan et al., 2005; Gómez-Doñate et al., 2011). Although the geographical 

stability of the enterococcal host strains isolated in this study was not fully determined, 

other bacterial host strains used in phage-based MST techniques have failed to demonstrate 

geographical stability (Tartera et al., 1989; Puig et al., 1999; Payan et al., 2005). However, 

the rapid and successful approach to host strain isolation presented here lends itself well to 
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implementation in different geographical settings. This would therefore help to ensure that 

appropriate hosts are used in specific regions.   

 

8.1.2 Cost evaluation of the approach 

The primary focus of the emerging field of MST has been the development of methods that 

demonstrate high specificity and sensitivity. This had led to the development of 

sophisticated molecular MST techniques. These techniques often require specialist 

equipment and skills, and their routine application may be limited in many less-

economically developed countries (LEDC) because of the relatively high costs associated 

with their development and implementation. Cost analysis of the isolation and screening 

stages used throughout this study (Appendix 1) suggested that four or more host strains 

could be isolated for between £600 and £910 (US $949-1440). This is considerably lower 

than the cost of developing molecular MST techniques, especially where the development 

of a library of isolates from known sources is required (Malakoff, 2002). This cost estimate 

also compares favourably with phage-based techniques using Bacteroides host strains 

(Payan et al., 2005).  

 

Culture-based phage MST techniques, such as the one featured here, are relatively simple 

to perform, do not require specialist expertise (e.g., anaerobic facilities) and can therefore 

be performed in laboratories equipped with basic microbiological apparatus. A high 

proportion of the costs associated with the isolation and screening of potential host strains 

was related to labour. The average hourly rate for a laboratory technician in the UK 

(calculated as £9.00 an hour) is substantially higher then would be expected in LEDC. In 

the UK, labour expenses would amount to over 50% of the total cost. The overall cost of 
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the method may therefore be further reduced in LEDC. These findings support those from 

other previously reported phage-based MST techniques, suggesting that they may be 

applicable in countries with limited financial resources (Ebdon et al., 2007; Nnane et al., 

2011). 

 

8.1.3 Performance of Enterococcus host strains 

Specificity (the probability that a sample that is not from a source is correctly identified as 

not originating from that source), sensitivity (the probability that a sample from a source 

will be correctly identified as originating from that source), and phage detection levels were 

the three performance parameters used in this study to assess the potential of Enterococcus 

host strains for MST application. It was considered important to assess the method against 

standard criteria, so that comparisons with other available MST methods could be made.  

 

Enterococcus host strains demonstrated a broad range of specificity and sensitivity levels. 

The range of specificity values displayed by host strains isolated in this study (0-100%) is 

similar to those reported for other phage-based culture methods (Ebdon et al., 2007; 

Vijayavel et al., 2010; Gómez-Doñate et al., 2011; Wicki et al., 2011). A small proportion 

of the host strains tested were highly specific (100%) to a particular faecal source (or 

source group). However, results showed a strong negative relationship between host strain 

specificity and sensitivity. Consequently, higher specificity was often associated with lower 

sensitivity. Indeed, low sensitivity appears to be a major limitation of the Enterococcus host 

strains isolated within this study. Although the final fourteen host strains produced very 

few false positive results, false negative results were relatively common. Low sensitivity 

was particularly evident with cattle-specific host strains, with many of these strains 
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appearing to be specific to a single herd or group of animals. This observation may be the 

result of differences between the breeds and diets of cattle from different farms, as both 

factors have been shown to affect the intestinal microbial composition of cattle (Laugalis et 

al., 2007; Durso et al., 2010; Pitta et al., 2010).  

 

These results highlight potential geographical instabilities among certain Enterococcus host 

strains, particularly those associated with livestock sources. Whilst specificity to a single 

herd, or group of animals may not be desirable for MST purposes, the high level of 

specificity of phages witnessed in this study, suggests that Enterococcus hosts are 

sufficiently specific to have a potential role as MST tools. Host strains with lower 

sensitivity (<70%) may have limited use as MST markers. However, some non-human, 

animal-specific strains displayed lower specificity, but higher sensitivity. Strains with 

higher sensitivity (such as CR70) may prove more useful for MST applications in surface 

waters than more ‘specific’ strains (such as WFS7). Currently, the use of one marker alone 

may not be sensitive enough. Ideally, a ‘toolbox’ approach to the detection of human and 

non-human sources, utilising several strains (with a range of specificities and sensitivities) 

in parallel, may be advisable for future MST studies, both in terms of improved sensitivity 

and specificity, and on the grounds of cost. This research also provides further evidence 

that the guts of humans and ruminants appear to harbour distinct and diverse microbial 

communities. However, further metagenomic analysis is required in order to understand 

fully the role of bacteriophages in the development and function of these communities. 
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8.1.4 Host strain origin 

Host strains were isolated from five faecal sources (pooled cattle faeces, cattle run-off, pig 

run-off, municipal wastewater and surface waters impacted by non-human and human 

faecal contamination). Traditionally, either individual faecal material or wastewater (for 

human-specific strains) samples have been used to isolate new host strains suitable for 

MST. Using fresh faecal samples increases the chances of finding host strains with high 

specificity to a source. However, results from this study demonstrated that, although some 

host strains isolated from pooled faecal samples and wastewater had high degrees of host 

specificity, they generally detected lower phage numbers (e.g. 1.0 x 10
2
 PFU/100ml to 3.4 

x 10
3
 PFU/100ml) when compared with host strains isolated from run-off and surface water 

sources.  

 

Therefore the results reported in Chapter Six (section 6.3) suggest that when isolating 

potential enterococcal host strains for phage-based MST applications, it is better to isolate 

agricultural hosts directly from liquid farm run-off, rather than from fresh pooled stools 

from individual animals. In fact, only one host strain isolated from individually pooled 

cattle faeces detected any phage in reference samples. Host strains isolated from run-off 

displayed similar ranges of host specificity to those isolated from faecal and wastewater 

samples, but detected higher numbers of phage. Isolation of enterococcal hosts directly 

from impacted surface waters also led to the discovery of strains useful for MST 

application, without negatively impacting host specificity. This may be due to the selection 

of more ‘dominant’, ‘environmentally tolerant’ phages and enterococcal hosts.  
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8.1.5 Host strain identification 

The identification of host strains was undertaken in order to determine whether certain 

Enterococcus species exhibiting high specificity were more frequently associated with 

particular faecal sources. Both API 20 Strep strips (BioMérieux, UK) and the biochemical 

key developed by Manero and Blanch (1999) were used to identify Enterococcus host 

strains. However, some discrepancies between the two methods were observed. Of the 

fourteen host strains identified, the two methods were in agreement in only nine cases. The 

biochemical key appeared to be more effective than API 20 Strep strips in that it was able 

to identify all host strains, whereas API 20 Strep failed to identify three of the host strains. 

Cattle-specific host strains were most commonly mis-identified. The results of this research 

suggest that for future identification of enterococcal host strains the biochemical key would 

be more effective than API 20 strips. Commercially available API 20 Strep strips were not 

able to identify a broad enough group of species. The biochemical key did perform well, 

but a combination of phenotypic and molecular identification protocols may prove more 

reliable for future studies.  

 

It is notable that both methods were in agreement when identifying host strains with 

specificity to human faeces. Human-specific host strains were all identified as either E. 

faecium or E. faecalis. These findings are in accordance with those reported in previous 

studies focussing on human faeces and wastewater (Ruoff et al., 1990; Manero et al., 2002; 

Gelsomino et al., 2003). A pig-specific host strain was also found to be E. faecium, by both 

identification tests. The most common species encountered in the intestines of farm animals 

are E. faecalis, E. faecium, E. hirae and E. durans (Devriese et al., 1987; Devriese et al., 

1992[a]; Devriese et al., 1994). Interestingly, all non-human or cattle- specific host strains 
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(excluding pig-specific host strain NRO24) were identified as E. gallinarum, E. 

casseliflavus or E. mundtii. Research suggests that these species are not the most abundant 

species found in the faeces of agricultural livestock animals, and cattle in particular 

(Devriese et al., 1992; Jackson et al., 2010). Enterococcus species, E. casseliflavus and E. 

mundtii (yellow pigmented enterococci) are generally associated with plant material (Ulrich 

and Müller, 1998; Müller et al., 2001).  It has been suggested that species commonly 

associated with environmental samples, such as E. casseliflavus could be incorporated into 

the microbiota of the digestive tract following ingestion by grazing ruminants and that their 

presence could therefore be related to diet (Layton et al., 2010). The identification of plant-

associated enterococci from animal faecal sources therefore suggests that the presence of 

these species in environmental samples should not be attributed solely to non-faecal 

sources.  

 

The tiered screening approach preferentially selected host strains with higher specificity to 

source(s). Although not the most abundant species found in livestock animals, E. 

gallinarum, E. casseliflavus or E. mundtii may offer host strains with higher specificity to 

non-human ruminant faecal sources. Therefore, in future studies it may be advantageous to 

target particular enterococcal species, such as E. faecalis for human sources and E. 

gallinarum for non-human sources, when isolating future strains for MST application.  

 

8.1.6 Implications of phage homogeneity for MST 

Phages infecting host strains used for MST should ideally belong to morphologically 

homogeneous groups, sharing similar survival characteristics (see Chapter Two). Although 

it was considered beyond the scope of this study to evaluate the homogeneity of phages 
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infecting all the potential MST host strains isolated, twenty phages capable of infecting one 

strain (MW47) were further analysed for their morphology and host range homogeneity. 

 

MW47 phages isolated in this study displayed a range of morphologies. From TEM 

micrographs it was visually evident that the phages belonged to two distinct families within 

the order Caudovirales. The majority of the phages belonged to the Siphoviridae family, 

having long simple non-contractile tails. Two phages were also identified as belonging to 

the Myoviridae family, having tails that are contractile and consisting of a neck, a 

contractile sheath, and a central tube. These distributions are consistent with previous 

studies of Enterococcus phage that demonstrated Siphoviridae to be the most commonly 

isolated family, followed by phages of the Myoviridae family (Ackermann, 2007).  

 

These Enterococcus phages also displayed ‘within-family’ variation. Icosahedral and 

elongated icosahedral capsids were observed, as well as straight, curved and curled tail 

morphologies. Host range investigations also highlighted some differences between the 22 

phage. Although, most phages appeared to possess very narrow host ranges, phages 

MW47-8, -9, -10, -15, and -20 (including both myoviruses) were also capable of infecting 

either an E. asini type strain (DSM 20681), an E. faecalis type strain (DSM 20478), or both 

strains.  

 

The results of the morphology and host range investigations show that a heterogeneous 

group of phage are able to infect MW47. Although the morphology of only a limited 

number of phages was determined in this study, initial findings suggest that phages 

infecting this enterococcal host strain are morphologically more heterogeneous than phages 
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infecting Bacteroides host strains (Queralt et al., 2003). These results therefore prompted 

further investigations into the inactivation of phage of different morphologies capable of 

infecting host strain MW47, because differential inactivation of phage may hinder the 

interpretation of results (Muniesa et al., 2009) and limit its suitability as an MST tool.  

All phages identified were tailed, containing dsDNA. Phages viewed by TEM were largely 

positively stained because uranyl acetate has a strong affinity for dsDNA. Positively stained 

phage particles often have shrunken capsids. Measurements of positively stained phage 

particles should therefore not be used in comparison with phage from other studies. When 

determining enterococcal phage morphology in future research it may be advisable to use 

an alternative stain such as phosphotungstate (Ackermann, 2009). Other sources of error 

when using uranyl acetate include swollen tails and the production of false envelopes.  

 

8.1.7  Phage inactivation   

An investigation into the inactivation of three morphologically different phages (MW47-1, 

MW47-5 and MW47-15) was conducted in order to determine whether the phages shared 

similar survival characteristics in fresh water and sea water. Two Siphoviridae phages (one 

with an icosahedral and one with an elongated icosahedral capsid), and one Myoviridae 

phage, were selected for inactivation experiments as they represented the three most 

distinctive morphologies observed in the TEM micrographs. A major concern relating to 

the use of bacteriophage infecting facultatively anaerobic host strains such as E. coli has 

been their potential for replication in the environment. Throughout the inactivation 

experiment there was no evidence of replication, supporting recent findings that suggest 

that replication in the environment has a negligible impact on the numbers of bacteriophage 

detected (Jofre, 2009).  
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In this study, the survival of all three phages was greater in fresh water compared with sea 

water. These results contradict findings from similar studies using phage capable of 

infecting Enterococcus and E. coli host strains. Santiago-Rodríguez et al. (2010) 

determined the inactivation of a group of siphovirus (capable of infecting an E. faecalis 

host strain) in sea water and fresh water. Their results showed that the phage were able to 

survive for longer periods in sea water (13 days) compared with fresh water (6-8 days). The 

greater survival in sea water was attributed to the presence of high concentrations of 

inorganic salts that may have increased phage absorption. Although the experimental 

design of this study was not intended to elucidate potential drivers of inactivation, it is 

unlikely that higher salinity was the determining factor causing faster inactivation of 

MW47 phages in sea water. Survival studies have previously demonstrated that inactivation 

of phage is largely unrelated to salinity levels (Berry and Noton, 1975; Borrego and 

Romero, 1985).  More recent research conducted by Noble et al. (2004) also showed no 

apparent differences between the inactivation of F+ specific coliphage in fresh water and 

sea water. However, it was notable that all three phages experienced considerable 

reductions after one week in sea water. Inactivation appears to be the result of a complex 

blend of factors including the association of phage with bacteria and solids, presence of 

organic matter, temperature, pH level, the ionic environment, metabolic activity of other 

micro-organisms, hydrostatic pressure, and solar radiation (Grabow, 2001). More advanced 

phage survival experiments, in which potential variables are independently investigated, 

would be required to reach more in-depth conclusions. However, it was notable that the 

fresh water sample used in inactivation experiments had a higher level of turbidity than the 

sea water, which may have also influenced phage survival.  
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The main purpose of the investigation was to determine whether differences in survival 

times existed between the three morphologically different phages tested. In previous 

studies, phages of the Siphoviridae family have demonstrated greater resistance to 

inactivation than other phage families, including Myoviridae (Muniesa et al., 1999; Duran 

et al., 2003). The results of the study suggested that differences in inactivation between the 

three phages did not vary significantly. Inactivation rates of both siphoviruses were very 

similar. However, although no clear statistical link between morphology and inactivation 

times could be established, MW47- 15, a member of the Myoviridae family, did show more 

rapid inactivation in both fresh water and sea water than the two siphovirus. These results 

suggest that survival times of the different phage are similar and therefore that differential 

inactivation appeared not to be an issue in this instance. However, conclusions from this 

preliminary work should be interpreted with caution. The greater inactivation rate observed 

for the myovirus (MW47-15) indicates that further research should be conducted into the 

inactivation of different phage families infecting enterococcal host strains. A larger data set 

would provide more conclusive evidence of any potential differences in survival 

characteristics.  

 

8.2 Conclusions and recommendations for future work  

The findings of this study are significant in that they offer an insight into host-phage 

interactions, specificity, sensitivity, and suitability of phages infecting different 

Enterococcus strains for MST application. They therefore offer new knowledge on the 

ecology of the interactions between enteric bacteria and their phages in the natural 

environment. More specifically they support the development of the emerging science of 
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MST. The principal conclusions and outputs of this programme of research can be 

summarised as follows: 

1. The high specificity of enterococcal hosts isolated in this study demonstrates that 

phages infecting Enterococcus spp. possess narrow host ranges, similar to those 

reported for anaerobes such as Bacteroides spp.  

2. The demonstrated strong negative relationship between the specificity and 

sensitivity of the host strains isolated in this study suggests that a compromise 

between specificity and sensitivity may provide the best approach to isolating 

host strains that are most useful for MST applications in impacted surface waters. 

3. From the fourteen tier 4 host strains showing potential for MST, the human-

specific host strain MW47 and the non-human animal-specific host strain CR70 

were the most promising candidates for future MST application. These two host 

strains could be used in conjunction as part of an MST toolbox to detect human 

from non-human animal faecal contamination.   

4. Human specific Enterococcus host strains were identified as E. faecalis or E. 

faecium, whilst predominantly animal-specific host strains were identified as E. 

casseliflavus, E. mundtii or E. gallinarum. When isolating future host strains it 

may be advantageous to target these species. 

5. A phage inactivation investigation demonstrated that the survival of three 

morphological different phages was not significantly different. However, the 

results did indicate that the myovirus (MW47-15) was inactivated more rapidly 

in fresh water and sea water compared with the two siphoviruses.  



 

135 

   

In addition to these principal outputs an effective protocol for the isolation of new 

enterococcal host strains suitable for MST has been presented here, which may be 

effectively used by others to isolate bacterial hosts for phage lysis work in other parts of the 

world. The non-molecular culture-based laboratory protocol (utilising existing ISO phage 

methods) is low-cost, simple and rapid. Rapid visualisation of plaques (4 h) suggests that 

this protocol may allow same day results. Whilst the focus of this research programme was 

to isolate host strains with high specificity to faecal sources, markers of general faecal 

pollution are vital for determining the overall level of faecal contamination in a water body 

and for quantifying source contributions. There were many host strains in this study that 

were not investigated further on the basis of their low specificity. Future research should 

evaluate the potential of host strains with low specificity (determined in the screening stage 

of this approach) as general faecal markers.  

 

In order for a novel MST method to be applied with confidence in regulatory applications, 

it should satisfy a larger group of performance criteria than were evaluated in this research 

programme. These criteria should include the host distribution (within host sources), 

temporal stability, geographical stability, limits of detection, and the survival of the marker 

in the environment, relative to faecal indicator organisms and pathogens (Field and 

Samadpour, 2007; Santo Domingo et al., 2007). Future research should therefore focus on 

determining the performance of Enterococcus host strains against all these performance 

criteria.  

 

The results of Chapter Seven indicate that host strain MW47 can be infected by a 

morphologically diverse group of phages. As the literature suggests that a broad range of 
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phage families have been shown to infect Enterococcus host strains (Chapter Two), the 

homogeneity of phage infecting all host strains with potential for MST application should 

be assessed. Furthermore, the data presented in Chapter Seven suggest that further research 

is required to determine whether phages with different morphologies (particularly those 

from different families), survive for different periods of time in the environment. This 

should be determined by in situ inactivation experiments, which are impacted by a wide 

variety of natural stressors, including solar radiation and temperature. Further work should 

also include the inactivation of these phages by wastewater treatment processes. If the 

morphological homogeneity of phages infecting enterococcal host strains is varied, host 

strains infected by homogeneous groups of phages should be preferentially selected. 

 

If and when these questions are satisfactorily answered, phage lysis of Enterococcus spp. 

may well offer an important tool to support global efforts to reduce the burden of human 

waterborne disease transmission.  
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Appendices 

Appendix 1 - Cost analysis of the approach  

Table A1 Estimated duration of presumptive Enterococcus isolation (based on 

approximately 100 isolates) 

Procedure  Duration (h) 

Preparation of sample (including dilution series) 0.5 

Membrane filtration of samples onto M-Enterococcus agar plates 0.5 

Incubation of M-Enterococcus agar plates 48 

Transfer of membrane filters onto BEA plates 0.5 

Incubation of BEA plates 4 

Picking and streaking of colonies onto M-Enterococcus agar 2 

Incubation of M-Enterococcus agar plates 48 

Gram stains and observation under a light microscope 3 

Catalase tests 1.5 

Sub-culturing of isolates into TSB 1.5 

Incubation of isolates in TSB 18 

Mixing with 50% glycerol, transferring isolates into cryovials 3 

Total duration (including incubation time) 130.5 

Labour (total duration-incubation time) 12.5 

 

Table A2 Duration of double agar-layer assays (based on screening of approximately 100 

isolates) 

Procedure Duration (h) 

Reference sample preparation (dilution, centrifugation, filtration) 1.5 

Thawing of host strains, followed by sub-culturing into fresh TSB 1 

Incubation of host strain in TSB 2.5-3.5 

Melting of TSAss and distribution into test tubes 2 

Double agar-layer assays 7 

Incubation of double agar-layer assays 18 

Plaque enumeration 2 

Total duration (including incubation time) 34-35 

Labour (total duration-incubation time) 13.5 
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Table A3 Estimated costs of consumables for host strain isolation (based on approximately 

100 isolates) 

Consumables (manufacturer) Cost £ (UK) Cost/100 isolates 

£ (UK) Bile aesculin agar (Oxoid) 0.20/plate 2.00 

Cryobox (Nalgene) 6.07/box 18.21 

Cryovials (Nalgene) 0.20/vial 40.00  

Glass slides (Fisher) 0.03/slide 3.00 

Glycerol (Fisher) 4.19/litre 0.84  

Gram stain kit (Pro-Lab Diagnostics) 40.95/250ml   16.38 

Hydrogen peroxide (Fisher) 8.56/litre 0.02 

M- Enterococcus agar (Difco) 0.14/plate 4.90 

Nitrocellulose membrane filters (0.45µm)  (Nalgene) 0.46/filter 9.20 

Petri-dishes 90mm (Fisher) 0.06/plate 2.70 

Pipette tips (Fisher) 0.02/tip 2.40 

Ringers solution (¼ strength )(Oxoid) 0.16/litre 0.24 

Sampling containers (Fisher) 0.20/container 0.40 

Sterile swabs (Fisher) 0.10/swab 0.20 

Tryptone soya broth (Oxoid) 1.90/litre 0.95 

Total consumable cost: 101.44 

Total cost including labour  in the UK(12.5 x £9.00): 213.94 

Total cost including labour in Malawi (12.5 x £3.00): 138.94 
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Table A4 Estimated costs of consumables for double agar-layer phage enumeration assays 

(based on the screening of approximately 100 isolates) 

Consumables (Manufacturer) Cost £ (UK) Cost/100 isolates £ 

(UK) Agar bacteriological (Oxoid) 0.14/gram 1.12 

Centrifuge tubes (50ml) (Fisher) 0.08/tube 0.64 

Petri-dishes 90mm (Fisher) 0.06/plate 24.00 

Pipette tips (Fisher) 0.02/tip 4.80 

Ringers solution (¼ strength)(Oxoid) 0.16/litre 0.08 

Sterile disposable syringes (Becton Dickinson) 0.06/syringe 0.24 

Syringe filter units (0.22µm) (Millipore) 0.31/filter  24.80 

Sterile disposable test tubes (Sterilin)   0.10/tube 40.00 

Tryptone soya agar (Oxoid) 0.05/plate 20.00 

Tryptone soya broth (Oxoid) 1.90/litre 3.80 

Total consumable cost: 119.48 

Total cost including labour (13.5 x £9.00): 240.98 

Total cost including labour in Malawi (13.5 x £3.00): 159.98 

 

 

 


