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Fast Convergence for Consensus in Dynamic
Networks

T-H. Hubert Chan and Li Ning

The University of Hong Kong

Abstract We study the convergence time required to achieve consen-
sus in dynamic networks. In each time step, a node’s value is updated
to some weighted average of its neighbors’ and its old values. We study
the case when the underlying network is dynamic, and investigate dif-
ferent averaging models. Both our analysis and experiments show that
dynamic networks exhibit fast convergence behavior, even under very
mild connectivity assumptions.

1 Introduction

Natural group behavior is exhibited in many dynamic systems. Typically, each
individual or node in the set V has some number in R, which can represent one’s
opinion. In every time step, an individual observes the opinions of a subset of
other individuals and updates one’s opinions accordingly. It is observed that in
many such systems[17, 18, 6], the values of all nodes converge to the same value
(or opinions of individuals reach consensus) after a small number of iterations,
even though each node only interacts with a small number of other nodes in each
time step.

The weighted averaging model [7], used by DeGroot to model consensus of
opinions, has been widely studied to explain convergent behavior in such net-
works. The value vt[i] of an individual at time step t is updated by taking some
weighted average of all individuals’ values: vt+1[i] :=

∑
j pt[i, j] · vt[j], where

each pt[i, j] is non-negative and
∑
j pt[i, j] = 1. Typically, for each i, there is

only a small number of j’s such that pt[i, j] is non-zero; those correspond to the
individuals whose values can be observed by i. The interactions of individuals
in a time step can be represented by a network Gt = (V,Et), where an edge
{i, j} ∈ Et means the individuals can observe each other’s values at time t.
Besides its simplicity, the weighted averaging model has applications in parallel
computation [1], control theory [9, 3, 2, 8, 5, 12] and ad hoc networks [11].

In this paper, we study what weighting strategies and what kind of networks
can enable fast convergence to achieve consensus. In particular, for different
weighting strategies and network properties, we analyze the number of time steps
that is sufficient for all nodes’ values to be close to one another. The uniform
averaging model is the case when given a network Gt, an individual updates its
value to the average of its neighbors’ and its old values. We consider the case
when the underlying network topology is dynamic, i.e. the networks Gt’s change



over time. To keep our analysis as general as possible, we do not specify how
the networks Gt’s evolve (which may or may not depend on the nodes’ values);
we only assume general structural properties of the networks such as degree
distribution and connectivity.

Related Work. The special case of the uniform averaging model with time-
invariant network topology is well-understood [7]. Using the theory of stochastic
matrices and spectral graph theory, it is known that the convergence time is
related to the eigenvalue gap [10] of the transition matrix P involved. If the
underlying network is time-invariant and connected, Olshevsky and Tsitsiklis [16]
showed that the convergence time for the uniform averaging model is O(n3).

Relatively little is known about the convergence time when the underlying
network is dynamic. Assuming some special structure in the network in each
time step, Cao et. al [3] showed that the convergence time is nO(n). Olshevsky
and Tsitsiklis [16] also considered weak connectivity assumptions: in the given
sequence, the union of any k consecutive networks is connected. In this case, they
showed that the convergence time under the uniform averaging model is O(knkn)
and a lower bound of Ω(n)k. Using a “load balancing” algorithm, they can
achieve O(n3) convergence time. They also showed a convergence time of O(n3)
for the uniform averaging model with the fixed degree assumption [15]. With
the same weak connectivity assumption, Nedić et. al [14] showed convergence

time of O(kn
2

α ), for the special case where the transition matrices are doubly
stochastic and α > 0 is a a lower bound on the non-zero entries.

Vicsek et. al [19] used the weighted averaging model to study interaction
between particles, which influence one another’s velocities. Two particles can
influence each other if their distance is close enough. The system reaches a
convergent state when all particles are traveling in nearly the same direction.
Jadbabaie et. al [9] gave a theoretical explanation to such convergent behavior.
Recently, Chazelle [4] considered a discrete version of the model and showed that
the convergence time is O(2 � n).

Other interaction models have also been studied. In [2], directed networks
and asynchronous updates were considered. In [8, 5, 12], convergence under non-
linear update rules were studied.

Our Contribution and Results. In this paper, we give a quantitative anal-
ysis between the convergence time and the connectivity of the networks in the
given sequence. If convergent behavior is observed at all in real systems, then
the number of time steps taken certainly cannot be O(nn) or even O(2 � n).
Typically, the networks concerned are well-connected and convergence time of
O(log n) is observed.

For static network, this can be easily explained by the theory of stochastic
matrices and spectral graph theory. The update process in each time step corre-
sponds to multiplication by a stochastic matrix P . Although P is in general not
symmetric (and hence the eigenvectors are not mutually orthogonal), for all pos-
itive integers t, the powers P t all have the same eigenvectors, and any eigenvalue
gap in P will be magnified in P t. However, if the underlying network is dynamic,
then the corresponding transition matrices will not have the same eigenvectors



anymore (apart from the all one’s vector), and hence the above argument does
not work.

In Section 3, we overcome this technical hurdle by choosing the weights care-
fully such that in the transformed space the eigenvectors are mutually orthogo-
nal. Assuming that each node has limited degree variation in the given network
sequence, and each network is well-connected (as measured by conductance), we
can obtain an eigenvalue gap in the transition matrix in each time step. Com-
bining these techniques, we show that convergence time is O(log n). If we just
assume that each network is well-connected (without the assumption on lim-
ited degree variation), we have O(n) convergence time. As far as we know, the
previous best known convergence time under any weighted averaging model for
dynamic connected networks is O(n3) [14].

Under the uniform averaging model, we analyze in Section 4 the conditions
on the given network sequence such that fast convergence can be obtained. As-
suming that each network is degree bounded and for some integer k, the union
of every k consecutive networks is a vertex expander, we show that the conver-
gence time is polynomial by using the expansion property directly. Furthermore,
our techniques can be extended to the probabilistic case where the connectivity
condition for each union of k networks only needs to hold with some positive
probability.

On the other hand, our simulations in Section 5 show that for well-connected
graphs such as Gn,p, the convergence time under the uniform averaging model
grows logarithmically with the network size, suggesting that there is a lot of
room for improvement. It would be an interesting open problem to determine
the most general conditions on the networks under which the uniform averaging
model has fast convergence time.

2 Preliminary

Suppose there is a set V of n individuals and each one of them holds an opinion
which can be represented by a number from R. An opinion configuration at some
time t is an n-dimensional vector from Rn. We denote the configuration at time
t by vt, and the opinion of individual i by vt[i].

At each time step, the individuals form a network (in this document we use
the terms “network” or “undirected graph” interchangeably)Gt = (V (Gt), E(Gt)),
in which the nodes represent the individuals and an edge between two nodes
means they can potentially communicate their opinions to each other. We as-
sume all Gt’s have the same set of nodes, i.e. V (Gt) = V for all t. Moreover, we
assume that the sequence {Gt} of networks is generated by some process that
is, in general, independent of the individuals’ opinions vt’s.

We use the maximum difference between two individual’s numbers to measure
how close a configuration reaches consensus.

Definition 1 (τ-Measure). Given a configuration vector v ∈ Rn, the τ -measure
of v is τ(v) = maxi,j |v[i]− v[j]|.



We say that the vector v achieves consensus when τ(v) = 0; and for ε > 0,
the vector v achieves ε-consensus when τ(v) ≤ ε.

We next describe the models we use to analyze the convergent behavior for
dynamic systems.

2.1 Convergence Model for Dynamic Networks

Given a sequence {Gt : t ≥ 0} of networks and some initial configuration v0 ∈ Rn,
we describe the update rule for each time step. At time step t, the nodes are
connected by the network Gt; we denote the degree of node i by dt[i]. Moreover,
each node i has some positive integral weight wt[i] ≥ dt[i]+1, which indicates how
resistant the individual is to others’ opinions, with a higher weight indicating
higher resistance. The update rule for each node i at time t is given by the
following equation.

vt+1[i] = (1− dt[i]

wt[i]
) · vt[i] +

1

wt[i]

∑
j:{i,j}∈E(Gt)

vt[j]. (1)

Matrix Notation. The update rule can be expressed succinctly using matrix
notation. We treat wt, vt, and dt as n× 1 column vectors. Given a network Gt,
recall its Laplacian Lt is defined as the n × n matrix such that Lt[i, j] is dt[i]
when i = j, −1 when {i, j} ∈ E(Gt), and 0 otherwise.

Given a square matrix A, we denote its trace by tr(A), i.e., the sum of its
diagonal entries. Given a vector w ∈ Rn, we use Diag(w) to denote the diagonal
matrix such that Diag(w)[i, i] = w[i]. Given a weight vector wt ∈ Rn, let Wt =
Diag(wt) and the transition matrix Pt = In −W−1t Lt, where In is the n × n
identity matrix. Then, equation (1) can be rewritten as:

vt+1 = Ptvt. (2)

Special Cases. We describe some special cases for the weights wt.

• Static Weight Model. In this case, there is some fixed weight vector w ∈
Rn such that for all time steps t, wt = w. Observe that in this case, we
need to restrict the networks such that for all t and all nodes i, the degree
dt[i] ≤ w[i]− 1. To ensure that each node is still influenced by its neighbors,
we normally also assume w[i] = O(n) for all t.

• Uniform Averaging Model. In this case, for each time step t and each
node i, wt[i] = dt[i] + 1. Observe that in this case, the new opinion of a node
is simply the average of the sum of its and its neighbors’ opinions. Hence,
equation (1) reduces to vt+1[i] = 1

dt[i]+1 (vt[i] +
∑
j:{i,j}∈E(Gt)

vt[j]).

Convergence Time. Given some initial configuration v0 ∈ Rn, and some con-
vergence process, for ε > 0, the convergence time to achieve ε-consensus is the
minimum T such that for all t ≥ T , τ(vt) ≤ ε.
Union Network. We do not always require each network Gt to be connected.
We can still prove convergence results as long as the union of the networks over
a certain period of time is well-connected. Formally, suppose I is a set of time



indices for the collection of networks {Gt = (V,Et) : t ∈ I}. Then, the union
network is defined as ∪t∈IGt := (V,∪t∈IEt).

2.2 Stochastic Matrices

We mention some useful results about stochastic matrices. Recall that an n× n
matrixM is row stochastic (or simply stochastic) if all its entries are non-negative
and the entries of each row sum to 1. Observe that the transition matrix Pt in (2)
is stochastic. Recall that the product of two stochastic matrices is still stochastic.
We define two measures for matrices, which describe how different the rows of a
matrix are.

Definition 2 (τ1- and τ2-Measures). Given a matrix P , the τ1-measure of
P is defined as τ1(P ) = 1

2 maxi,j{
∑
k |P [i, k]− P [j, k]|}; the τ2-measure of P is

defined as τ2(P ) = maxi,j{(
∑
k |P [i, k]− P [j, k]|2)

1
2 }.

Observe that for a column vector v, τ(v) = 2τ1(v) = τ2(v).
Fact 1 states an important relationship between the τ2-measure of the prod-

uct of two matrices and product of the measures of the corresponding matrices.
Its proof is given in [4, 13]. Fact 2 relates the τ1-measure of a stochastic matrix
with its smallest entry.

Fact 1 For any stochastic matrix A and any matrix B, whose dimensions are
compatible with A such that AB is well-defined, we have τ2(AB) ≤ τ1(A)τ2(B).

Observe that any stochastic matrix P has the property that τ1(P ) ≤ 1.
Hence, it follows that for all t, τ(vt+1) = τ2(Ptvt) ≤ τ(vt).

Fact 2 Suppose P is a stochastic matrix such that all its entries are at least
some number α > 0. Then, τ1(P ) ≤ 1− nα.

3 Static Weight Model: Limited Degree Variation and
Well-connected Dynamic Networks

In this section, we show that fast convergence for the static weight model is
achieved if in the given sequence {Gt} of networks, each Gt is well-connected,
and for each node i, the degree dt[i] does not vary too much with respect to t. In
particular, we explore a quantitative relationship between the convergence time
and the connectivity of the given networks.

The concept conductance can be used to measure how connected a graph is.

Definition 3 (Conductance). Given a network G = (V,E), and a subset S ∈
V , the edge border set of S is defined as ∂(S) = {{u, v} ∈ E|u ∈ S, v ∈ S =

V \ S}. The conductance of G is defined as Ψ(G) = sup{ϕ > 0| ∂(S)

min{d(S),d(S)} ≥
ϕ,∀S ⊂ V }, where d(S) =

∑
i∈S d[i].



Given any stochastic matrix P , we sort and label its eigenvalues in the de-
scending order of the eigenvalues’ magnitude, i.e., |λ0(P )| ≥ |λ1(P )| ≥ · · · ≥
|λn−1(P )|, where λ0(P ) = 1. The following lemma, which is an extension of the
Cheeger’s Inequality, relates the spectral properties of a transition matrix P and
the conductance of the underlying network. We defer its proof to the full version.

Lemma 1 (Conductance Implies Eigenvalue Gap). Suppose G is a net-
work with conductance Ψ , and w ∈ Zn is a positive weight vector such that for
each i, its degree d[i] satisfies 2d[i] ≤ w[i] ≤ K ·d[i]. Define the transition matrix
P := In − W−1L, where W = Diag(w) and L is the Laplacian of G. Then,

|λ1(P )| ≤ 1− η, where η = Ψ2

2K .

Theorem 1 (Static Weight Model). Given a positive weight vector w ∈ Zn,
and a sequence {Gt : t ≥ 0} of networks, let the transition matrix Pt :=
In − W−1Lt, where W = Diag(w) and Lt is the Laplacian of Gt. Suppose
there is some 0 < η < 1 such that for all t, |λ1(Pt)| ≤ 1 − η. Then, for any
initial configuration vector v0, the convergence time to achieve ε-consensus is

O( 1
η log ‖W

1
2 v0‖2
ε ), which is O( 1

η log n‖v0‖2
ε ), if for each i, w[i] = O(n). For the

special case when all nodes i have the same w[i], the convergence time can be

improved to O( 1
η log ‖v0‖2ε ).

Proof. Let λ := 1 − η. Suppose P := In −W−1L is the transition matrix cor-
responding to some network with Laplacian L such that |λ1(P )| ≤ λ. Consider

M := W
1
2PW−

1
2 and observe that M is symmetric and has exactly the same

eigenvalues as P . In particular, M has eigenvalue 1 with the corresponding eigen-
vector u0 = tr(W )−

1
2W

1
2 1, where 1 is the all one’s vector. Moreover, since the

eigenvectors of a symmetric matrix are mutually orthogonal, we have for each
vector z that is orthogonal to u0, the vector Mz is still orthogonal to u0 and
||Mz||2 ≤ λ||z||2. For each t, we define Mt := W

1
2PtW

− 1
2 .

Given an initial configuration vector v0, we write W
1
2 v0 = x+ y, where x is

parallel to u0 and y is orthogonal to u0. According to our convergence model,
we have

vt = Pt−1 · · ·P0v0 = W−
1
2Mt−1 · · ·M0W

1
2 v0 = W−

1
2x+W−

1
2Mt−1 · · ·M0y.

We next observe that all entries of W−
1
2x are identical, and hence τ(vt) =

τ(W−
1
2Mt−1 · · ·M0y), which is at most 2||W− 1

2Mt−1 · · ·M0y||2, because for any
vector v, τ(v) ≤ 2||v||2.

Observing that W−
1
2 is a diagonal matrix such that each entry is at most

1, we have ||W− 1
2Mt−1 · · ·M0y||2 ≤ ||Mt−1 · · ·M0y||2 ≤ λt||y||2 ≤ λt||W 1

2 v0||2,
where the last inequality holds because x and y are orthogonal, and the penul-
timate inequality holds because for each 0 ≤ k ≤ t, the vector Mk−1 · · ·M0y
remains orthogonal to u0, and hence is spanned by eigenvectors (of each Mi)
whose eigenvalues have absolute values at most λ.

Hence,we have τ(vt) ≤ 2λt‖W 1
2 v0‖2, which is at most ε, for t = Ω( 1

η log ‖W
1
2 v0‖2
ε ),

where η = 1− λ.



Finally, observing that for the special case when for all i, w[i] = ω is the

same, we have W = ωIn. Hence, in the above argument the W
1
2 and W−

1
2

cancel with each other, and we can conclude instead that τ(vt) ≤ 2λt‖v0‖2, and

so the convergence time becomes O( 1
η log ‖v0‖2ε ). ut

Hence, from Lemma 1 and Theorem 1, we have the following corollary.

Corollary 1 (Logarithmic Convergence Time for Limited Degree Vari-
ation). Given a positive weight vector w ∈ Zn, and a sequence {Gt : t ≥ 0} of
networks, let the transition matrix Pt := In −W−1Lt, where W = Diag(w) and
Lt is the Laplacian of Gt. Suppose there is some Ψ > 0 and some K > 0, such
that for all t, Gt has conductance at least Ψ and for each node i, its degree dt[i]
satisfies 2dt[i] ≤ w[i] ≤ Kdt[i]. Then, for any initial configuration vector v0,

the convergence time to achieve ε-consensus is O( KΨ2 log n‖v0‖2
ε ), if for each i,

w[i] = O(n).

For the special case when w[i] = 2n for all nodes i, we have the following
corollary, also using Lemma 1 and the identical weight case in Theorem 1.

Corollary 2 (Linear Convergence Time). Given a sequence {Gt : t ≥ 0},
suppose that there is some Ψ > 0 such that for all t, Gt has conductance at least
Ψ . We set the weight vector w ∈ Zn such that for all i, w[i] = 2n, and consider
the transition matrix Pt := In −W−1Lt as before. Then, given ε > 0 and initial
configuration vector v0 ∈ Rn, the convergence time to achieve ε-consensus is

O( n
Ψ2 log ‖v0‖2ε ).

4 Analysis of the Uniform Averaging Model

In this section, we analyze the convergence time for the uniform averaging model.
Given a network Gt, we consider the weight vector wt such that wt[i] = dt[i] +
1, the degree of node i plus 1. The transition matrix is given by Pt = In −
Diag(wt)

−1Lt, where Lt is the Laplacian of Gt.
We also assume that each network in the sequence {Gt} has degree bounded

by some d, i.e., for all t and all i, dt[i] ≤ d. However, we only need weak connectiv-
ity assumptions on the given sequence of networks. We do not even require each
network to be connected. All we need is that there is some integer k such that
the union of the networks in every k consecutive time steps is well-connected.
Although we only prove convergence time polynomial in n, experiments in Sec-
tion 5 suggest that the convergence time for the uniform averaging model is
O(log n) for well-connected networks.

4.1 Weakly Connected Networks

Given a network, the standard notion of vertex expansion can measure its con-
nectivity.



Definition 4 (Vertex Expansion). Given a network (undirected graph) G =
(V,E) and a subset S ⊆ V , the vertex border set of S is defined as δ(S) = {v ∈
V (G) \ V (S)|∃u ∈ S, s.t.{u, v} ∈ E}. The vertex expansion of G is defined as

Φ(G) = sup{φ > 0| δ(S)|S| ≥ φ, ∀S ⊂ G, |S| ≤
|V |
2 }.

Definition 5 (Union Vertex Expansion). Given a sequence {Gt : t ≥ 0}
of networks, and an integer k ≥ 1, we say the sequence has k-union vertex
expansion at least φ if for any t ≥ 0, Φ(∪t+k−1j=t Gj) ≥ φ.

The main result of this section is given in the following theorem, which is a
direct consequence of Lemmas 2 and 3

Theorem 2 (Convergence Time for Union Vertex Expanders). Suppose
the network sequence {Gt} with bounded degree d has k-union vertex expansion at
least φ > 0. Then, given an initial vector v0 ∈ Rn and ε > 0, the convergence time

to achieve ε-consensus under the uniform averaging model is nO( kφ log d) log τ(v0)
ε .

We introduce the idea of hitting diameter of a network sequence, which in-
tuitively measures the number of time steps required for any person’s opinion to
have some influence over everyone else’s.

Definition 6 (µ-Hitting Diameter). Given a network sequence G = {Gt :
t ≥ 0}, let Pt be the transition matrix associated with Gt under the uniform
averaging model. Let 0 < µ < 1

n . The µ-hitting diameter of the sequence, denoted
by HDiamµ(G), is at most T , if for every t ≥ 0, every entry of the product
Pt+T−1Pt+T−2 · · ·Pt is at least µ.

Lemma 2 (Hitting Diameter and Convergence Time). Given a sequence
G of networks with HDiamµ(G) ≤ T , an initial configuration v0 ∈ Rn and ε > 0,

the convergence time to achieve ε-consensus is O( Tnµ log τ(v0)
ε ).

Proof. By Definition 6 and Fact 2, we have for all t ≥ 0, τ1(
∏t
j=t+T−1 Pj) ≤

1−nµ ≤ exp(−nµ), where we have used the inequality 1 + x ≤ ex for all real x.
Therefore, by Fact 1 described in the preliminary τ2(vt) ≤ exp(−nµb tT c) ·

τ(v0), which is at most ε, when t ≥ T
nµ log τ(v0)

ε . ut

Next, we show how to use this lemma to derive the convergence time for a
specified class of networks.

Lemma 3 (Hitting Diameter for Union Vertex Expanders). Suppose a
network sequence G = {Gt : t ≥ 0} has bounded degree d and k-union vertex

expansion at least φ. Then, for µ = ( 1
d+1 )O( k logn

φ ), HDiamµ(G) = O(k logn
φ ).

Proof. We show that for T = O(k logn
φ ) and µ = ( 1

d+1 )T , HDiamµ(G) ≤ T .
Hence, it suffices to show that for any t ≥ T − 1, every entry of the product
PTt := PtPt−1 · · ·Pt−T+1 is at least µ.

For 1 ≤ i ≤ j, we use the notation Pt,k[i..j] to denote the product



Pt−(i−1)kPt−(i−1)k−1 · · ·Pt−jk+1. Observe that if T is a multiple of k, then

PTt = Pt,k[1..Tk ].
Observe that for each t, the transition matrix Pt obtained from Gt through

the uniform averaging model has the following properties.
• For each i, Pt[i, i] = 1

dt[i]+1 .

• For i 6= j, Pt[i, j] > 0 iff {i, j} ∈ Gt.
• Since Gt has bounded degree d, every non-zero entry of Pt is at least 1

d+1 .
Observe that we can view a matrix P as a directed graph G(P ), where

(u, v) ∈ G(P ) iff P [u, v] > 0. Hence, G(Pt) is a directed version of Gt with
self-loop at every node added.

Given square matrices A1, A2, . . . , Al, observe that the (u, v)-th entry of the
product A1A2 . . . Al is non-zero iff node v can be reached from node u in exactly
l steps such that for every 1 ≤ i ≤ l, only an edge from G(Ai) can be used in
step i.

Hence, it follows that for every i,G(Pt,k[i]) is a directed version of ∪t−ik+1
r=t−(i−1)kGr

with self-loops added, which from the hypothesis has vertex expansion at least
φ.

Fix some nodes u and v. It follows from the vertex expansion property that
there are at least (1 + φ) nodes w such that the (u,w)-th entry of Pt,k[1] is
non-zero. Repeating this argument T0 := dlog1+φ

n
2 e times, it follows there are

more than n
2 nodes w such that the (u,w)-th entry of Pt,k[1..T0] is non-zero.

By a reverse argument, it follows that there are more than n
2 nodes w such

that the (w, v)-th entry of Pt,k[T0 + 1, 2T0] is non-zero. Hence, by taking T =

2T0k = O(k logn
φ ), we have shown that the (u, v)-th entry of the product PTt =

Pt,k[1..Tk ] is non-zero. Observe that PTt is a product of T matrices, each of whose
non-zero entry is at least 1

d+1 . Hence, we conclude that every entry of PTt is at

least µ := ( 1
d+1 )T , as required. ut

The connectivity of a network can also be measured by its eigenvalue gap,
whose relationship with vertex expansion is given by the following lemma, which
is a variation of the Cheeger’s Inequality. We defer its proof to the full version.

Lemma 4 (Eigenvalue Gap Implies Vertex Expansion). For a network
G with bounded degree d, define the weight vector w ∈ Zn by w[i] = d[i] + 1 for
each i. Let P := In −W−1L, where W = Diag(w) and L is the Laplacian of G.
Suppose there exists 0 < η < 1, such that |λ1(P )| ≤ 1− η. Then, Φ(G) = Ω(ηd ).

Combining Lemma 4 and Theorem 2 gives the following corollary.

Corollary 3 (Convergence Time for Networks with Eigenvalue Gap).
Given a network sequence {Gt} with bounded degree d, define the weight vector
wt ∈ Zn by wt[i] = dt[i] + 1 for each i. Let P := In − W−1t L, where Wt =
Diag(wt) and Lt is the Laplacian of Gt. Suppose there exists 0 < η < 1, such
that |λ1(P )| ≤ 1 − η. Then, given an initial vector v0 ∈ Rn and ε > 0, the
convergence time to achieve ε-consensus under the uniform averaging model is

nO( dη log d) log τ(v0)
ε .



4.2 Random Networks

Our analysis for union networks can be easily extended for random networks.
Specifically, we only require that the union vertex expansion property holds with
some positive probability. Hence, our results also hold for random graphs with
expansion property, such as Gn,p.

Definition 7 (Union Vertex Expansion with Probability ξ). Given a se-
quence {Gt : t ≥ 0} of networks, and an integer k ≥ 1, we say the sequence
has k-union vertex expansion at least φ with probability ξ > 0, if for any t ≥ 0,
Φ(∪t+k−1r=t Gr) ≥ φ holds with probability at least ξ > 0; moreover, the events
involving different t’s are independent, as long as the underlying Gr’s involved
are different.

Theorem 3. Suppose a network sequence {Gt} has bounded degree d and there
exist φ > 0 and ξ > 0, such that the sequence has k-union vertex expansion at
least φ with probability ξ. Then, given an initial vector v0 ∈ Rn and ε > 0, with

all but negligible probability exp(−nΘ( k log d
φξ )), the convergence time to achieve

ε-consensus is nO( k log d
φξ ) log τ(v0)

ε .

Proof. The theorem is obtained by proving probabilistic versions of Lemmas 3
and 2. We first argue that for T = O(k logn

ξφ ), for every t ≥ T−1, with probability

at least 1
2 , every entry of the product PTt := PtPt−1 · · ·Pt−T+1 is at least µ :=

( 1
d+1 )T .

Consider a block of networks from the sequence of size k. By the hypothesis,
the union graph over k networks has vertex expansion at least φ with probability
at least ξ. From the proof of Lemma 3, we need l := O( logn

φ ) such blocks in order
to argue that every entry of the corresponding product of transition matrices
is non-zero. Hence, by Chernoff Bound, if we have 2l

ξ such blocks, then with

probability at least 1 − e−Θ(l) ≥ 1
2 , at least l blocks will have the expansion

property. Since each block contains k networks, it follows that the 2l
ξ blocks

contain T = 2l
ξ · k = O(k logn

ξφ ) networks, as required.

Let P (T ) denote the product of a block of T transition matrices derived
from the given sequence. We have just proved that with probability at least 1

2 ,

each entry in P (T ) is at least µ. Hence, from Fact 2, we can conclude that with
probability at least 1

2 , τ1(P (T )) ≤ 1− nµ ≤ e−nµ.

Finally, if we are given an initial configuration vector v0 and ε > 0, the
τ2-measure of the configuration vector after multiplying by M such blocks of
matrices (each block is a product coming from T transition matrices and each
entry of the product is at least µ) is at most τ(v0) · e−Mnµ, which is at most ε

for M = Ω( 1
nµ log τ(v0)

ε ).

Hence, using Chernoff Bound again, with probability at least 1− e−Θ(M) ≥
1− exp(−nΘ( k log d

φξ )), given 4M blocks of size T transition matrices, at least M
such blocks will have a product such that every entry is at least µ.



Therefore, we conclude with all but negligible probability exp(−nΘ( k log d
φξ )),

the convergence time to achieve ε-consensus is O(MT ) = nO( k log d
φξ ) log τ(v0)

ε . ut

5 Experiments

In this section, we design experiments to simulate the behavior of our conver-
gence models. In each simulation, we choose ε = 0.001 and record the average
convergence time to achieve ε-consensus. We observe in each case how the con-
vergence time varies with n, the size of the network.

(1) Gn,p under the Uniform Averaging Model. At time t, the network Gt
is sampled independently from Gn,p, where p = d

n (d = 5, 10, 20). The result is
in Figure 1.
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Fig. 1: Gn,p : p = d
n

under the Uniform
Averaging Model

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

n: size of networks

c
o
n
v
e
rg

e
n
c
e
 s

te
p
s

 

 

k=1

k=2

k=5

1.8 log(n)

Fig. 2: k-Union Gn,p (with p = 10
n

) under
the Uniform Averaging Model.

(2) k-Union Gn,p under the Uniform Averaging Model. We fix p = 10
n and

use the Gn,p as the union network over k consecutive time steps. In particular,
we sample a Gn,p graph as before and divide the edge set (randomly) into k
different sets (k = 1, 2, 5), each of which forms the edge set of a network in one
time step. The result is in Figure 2.

In all the experiments, we see that the convergence time grows logarithmically
with the size of the networks. As a visual aid, the circles in each graph give a
reference for logarithmic growth.
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