

CONTROLLING SCHEDULE

DURATION DURING SOFTWARE

PROJECT EXECUTION

ZANA AHMEDSHAREEF

A thesis submitted in partial fulfilment of

the requirements of the University of

Brighton for the degree of Doctor of

Philosophy

July 2015

ii

Abstract

This thesis describes a method of identifying the influences on schedule delays in

projects that develop large software systems. Controlling schedule duration is a

fundamental aspect of managing projects because of the financial losses associated with

late projects. While challenges with controlling software projects have been

investigated, there still seemed to be more to be learned about the interplay of a range of

factors during project execution and that affect project duration when developing and

integrating software systems within enterprise architecture environment.

This research investigated the activities involved in controlling schedule duration in

projects at a global software company that developed large software systems for its

client, using globally distributed teams located in the United Kingdom and India. The

projects used a version of the Iterative and Incremental Development method within a

Component-based model. The empirical data used in the research came from past

project performance reports, comprising both text and numeric data, created by and for

project participants, purely for internal use.

The research adopted a mixed method approach to enquiry, employing a method which

had two distinct but integrated research phases. A quantitative analysis of numeric data

collected from three projects identified the points where schedule delays occurred in the

constituent phases of the projects. These phases which most contributed to project delay

were then subject to greater in-depth examination. Qualitative analysis of textual data

collected from the six project phases contributing most to project delay identified

relevant categories of project phenomena using Grounded theory techniques. These

were used to develop explanatory models inspired by Actor-network theory of the

interaction among project actors during project execution.

The key research findings included firstly uncovering of a greater degree of interaction

and interdependency among the project actors, which illuminated more complexity

besetting the development process, than expected. Secondly, the actual project phases

and activities were less self-contained and more susceptible to interactions with their

iii

surrounding context. The project was influenced by emergent constraints that were not

explicit in the project plans; such as the need for project activities to wait for services

provided by other project actors (often, external parties to the project), the existence of

resource clashes and conflicts in priorities, and competing service requests from a range

of different projects. Thirdly, there was an assumption that the project control system

had a project manager with direct control over the project resources/actors whose

contribution was essential to the successful completion of the project. In this

environment, day-to-day control was in fact devolved to phase managers who depended

on actors outside their control such as those involved in other phases of the project, or

parties outside the project with concerns relating to the project, such as those concerned

with the overall architectural integrity of the broader programme of work within which

these projects were located.

iv

Contents

Contents ... iv

List of tables .. x

List of figures .. xii

List of equations ... xiv

List of abbreviations .. xv

Acknowledgements .. xviii

Declaration ... xix

1 Introduction .. 1

1.1 Statement of the problem ... 1

1.2 Scope of the investigation .. 3

1.3 Structure of the thesis ... 5

1.4 Previously published work ... 6

2 Controlling software projects... 8

2.1 Introduction .. 8

2.2 Schedule control mechanisms .. 9

2.2.1 Critical path method .. 11

2.2.2 Gantt chart ... 12

2.2.3 Earned value analysis .. 13

2.2.4 Progress report .. 17

2.3 Factors influencing project duration ... 18

2.3.1 Project failure .. 18

2.3.2 Schedule delay .. 23

2.3.3 Large software systems ... 27

2.3.4 Global software development ... 30

v

2.3.5 Project risk management ... 34

2.4 Interaction within the development environment ... 35

2.4.1 Complexity of interaction in software projects ... 36

2.4.2 Waterfall model ... 37

2.4.3 Iterative and Incremental development ... 37

2.4.4 Component-based model ... 39

2.4.5 Lean software development .. 42

2.4.6 Critical chain method .. 43

2.5 Summary .. 44

3 A background to ABC ... 48

3.1 Introduction .. 48

3.2 Software delivery model .. 48

3.2.1 Enterprise development architecture ... 49

3.2.2 Global software development at ABC .. 55

3.2.3 Iterative and incremental development at ABC .. 59

3.3 Managing project execution ... 64

3.3.1 Functional Design ... 65

3.3.2 FD/TD Transition .. 66

3.3.3 Technical Design ... 68

3.3.4 Code .. 69

3.3.5 Assembly Test Plan and Preparation... 71

3.3.6 Assembly Test Execution .. 72

3.3.7 Integration Test ... 73

3.3.8 Defect management ... 74

3.3.9 Technical Environment ... 74

3.3.10 Fix management .. 76

3.3.11 Change Control ... 77

vi

3.4 Reporting project performance at ABC .. 85

3.4.1 Textual explanation ... 86

3.4.2 Event tracking ... 87

3.4.3 Numeric performance indicators ... 88

3.4.4 Graph ... 88

3.5 The position of ABC’s work practices ... 88

4 An appropriate research strategy ... 91

4.1 Introduction .. 91

4.2 Methods of project management research .. 91

4.2.1 Mixed methods in software project management research 98

4.3 Methodology .. 101

4.4 Design ... 103

4.4.1 Quantitative design.. 108

4.4.2 Case selection design .. 108

4.4.3 Qualitative design.. 110

4.4.4 Design of developing explanation ... 111

4.5 Rationale ... 112

5 Quantitative approach .. 117

5.1 Introduction .. 117

5.2 Project characteristics ... 117

5.2.1 Context of the three Projects ... 117

5.2.2 Similarities and differences among the three projects 118

5.2.3 Dependency among the three projects during project execution 123

5.3 Research process .. 125

5.3.1 Sampling strategy .. 127

5.3.2 The data collected ... 127

5.3.3 Techniques used: Schedule metrics .. 129

vii

5.3.3.1 Project schedule delay ... 132

5.3.3.2 The behaviour of schedule delay ... 135

5.3.3.3 Phase schedule change ... 137

5.3.3.4 The behaviour of schedule change... 140

5.3.3.5 Phase schedule accuracy .. 150

5.3.3.6 The behaviour of schedule accuracy .. 155

5.4 Summary .. 157

6 Case selection .. 158

6.1 Introduction .. 158

6.2 Selection process .. 158

6.2.1 The research progress thus far... 158

6.2.2 Next steps .. 159

6.3 Case study approach ... 160

6.3.1 Case study design .. 161

6.3.2 Undertaking case study ... 161

6.4 Grounded theory ... 162

6.4.1 The usefulness of Grounded theory to this case study 162

6.4.2 The application of Grounded theory in this case study 165

6.5 Actor-network theory ... 167

6.5.1 The usefulness of Actor-network theory to this case study 167

6.5.2 The application of Actor-network theory in this case study 170

6.6 Case characteristics .. 173

6.6.1 Context of the six cases ... 173

6.6.2 Similarities and differences among the six cases 176

6.6.3 Position of the six cases within Test execution architecture 178

6.7 Summary .. 180

7 Qualitative approach .. 181

viii

7.1 Introduction .. 181

7.2 Approach .. 181

7.2.1 Sampling strategy .. 181

7.2.2 The information collected ... 184

7.2.3 Techniques used: Grounded theory ... 184

7.3 Case P1-IT (Inc4) findings ... 184

7.3.1 Case P1-IT (Inc4) textual data .. 184

7.3.2 Case P1-IT (Inc4) analysis procedure ... 186

7.3.2.1 Codes ... 187

7.3.2.2 Sub-categories .. 191

7.3.2.3 Categories .. 196

7.3.2.4 Theoretical sampling and saturation .. 197

7.4 Narrative schema .. 201

7.4.1 Notation of the narrative schema .. 201

7.4.2 Product development narrative schema .. 206

7.4.3 Product line development narrative schema ... 209

7.4.4 Others narrative schema .. 212

7.4.5 A conclusion on the narrative schema .. 214

7.5 Summary .. 216

8 Explanation development .. 217

8.1 Introduction .. 217

8.2 The fit between the current research and ANT .. 217

8.3 An explanatory model of schedule delay ... 228

8.4 A reflection on the research journey .. 236

8.4.1 The descriptive results... 238

8.4.2 The interpretive findings ... 239

8.4.3 The explanation development ... 240

ix

8.4.4 Generalizability ... 241

8.4.4.1 Internal generalizability ... 242

8.4.4.2 External generalizability .. 243

9 Conclusion ... 247

9.1 Introduction .. 247

9.2 Answering the research questions .. 247

9.3 Conclusions from the research ... 250

9.3.1 Underlying assumptions .. 250

9.3.2 Consequences of assumptions ... 251

9.3.3 Testing ... 253

9.4 Implications for research and practice .. 254

9.4.1 Implications for practice ... 254

9.4.2 Implications for research ... 255

9.5 Future work .. 256

Appendix A: Qualitative approach data .. 258

A1. Code hierarchy structure ... 258

A2. Relationships among the sub-categories .. 277

A3. Textual information of the cases .. 282

A4. Analytic memos .. 297

A4.1 Memo: Schedule ... 297

A4.2 Memo: Activity delay ... 297

A4.3 Memo: Phase delay ... 298

A.4.4 Memo: Duration compression.. 298

A4.5 Memo: Duration extension ... 298

Bibliography .. 300

x

List of tables

Table 2.1 Factors causing software project failure ... 22

Table 2.2 Factors influencing schedule delay in software projects 26

Table 2.3 Factors exacerbated in LSS projects ... 29

Table 2.4 Factors exacerbated in GSD projects .. 33

Table 2.5 Studies into project risk management ... 34

Table 3.1 Constituents of the development environment.. 53

Table 3.2 System architecture message routing .. 54

Table 3.3 Definition of people within PD ... 58

Table 3.4 ABC project phases ... 63

Table 3.5 Type and source of change.. 80

Table 3.6 ABC development functions ... 82

Table 3.7 ABC development products .. 84

Table 4.1 Traditional methods of software project management research 93

Table 4.2 Useful methods of software project management research 95

Table 4.3 Mixed methods approach in project management research 100

Table 4.4 Reasons for mixing research methods - example.. 103

Table 4.5 Mixed method designs .. 105

Table 4.6 Research design acronyms .. 106

Table 5.1 Phase acronym .. 119

Table 5.2 Differences among the three projects.. 121

Table 5.3 Similarities among the three projects .. 122

Table 5.4 Base variables ... 127

Table 5.5 Project 1 schedule data .. 128

Table 5.6 Project 2 schedule data .. 128

Table 5.7 Project 3 schedule data .. 129

Table 5.8 Summary of schedule metrics ... 131

Table 5.9 Project schedule delay variables ... 133

Table 5.10 Project 1 schedule delay metrics ... 134

Table 5.11 Project 2 schedule delay metrics ... 135

xi

Table 5.12 Project 3 schedule delay metrics ... 135

Table 5.13 Project 1 behaviour of schedule change .. 145

Table 5.14 Project 2 behaviour of schedule change .. 147

Table 5.15 Project 3 behaviour of schedule change .. 149

Table 5.16 Phase schedule accuracy variables .. 153

Table 5.17 Project 1 phase schedule accuracy .. 153

Table 5.18 Project 2 phase schedule accuracy .. 154

Table 5.19 Project 3 phase schedule accuracy .. 155

Table 6.1 Schedule delay from QUAN results.. 159

Table 6.2 Phases selected for QUAL analysis .. 160

Table 6.3 Grounded theory in software project management research 164

Table 6.4 Actor-network theory in software project management research 169

Table 6.5 Case to phase to project mapping ... 174

Table 6.6 Differences among the six cases ... 177

Table 6.7 Similarities among the six cases ... 177

Table 7.1 Theoretical sampling of the case study ... 183

Table 7.2 Case P1-IT (Inc4) Textual information ... 185

Table 7.3 P1-IT (Inc4) Codes.. 191

Table 7.4 P1-IT (Inc4) Sub-categories .. 195

Table 7.5 P1-IT (Inc4) Categories .. 197

Table 7.6 Category saturation in P1-IT (Inc4) .. 198

Table 7.7 Theoretical saturation across the six cases .. 199

Table 7.8 Notation of the narrative schema .. 204

Table 7.9 Groups of project participants ... 206

Table 7.10 People information to support the narrative schema 215

Table 7.11 Product information to support the narrative schema 215

Table 8.1 Application of ANT concepts to GT categories.. 222

Table A.1 Code hierarchy structure .. 277

Table A.2 Relationships among the sub-categories .. 281

Table A.3 Case P1-IT-Ex-Au (Inc1) Textual information .. 285

Table A.4 Case P1-IT-Ex-no-Au (Inc1) Textual information 285

Table A.5 Case P2-IT-PP Textual information ... 288

Table A.6 Case P2-IT-Ex Textual information ... 290

Table A.7 Case P3-DBT (Inc6) Textual information.. 296

xii

List of figures

Figure 1.1 Project elements ... 3

Figure 2.1 Project monitoring and control process ... 10

Figure 2.2 Earned schedule ... 16

Figure 3.1 Logical architecture of the development environment 50

Figure 3.2 ABC global software development .. 55

Figure 3.3 UK/India overlapping work hours ... 56

Figure 3.4 ABC’s version of Iterative and Incremental Development 59

Figure 3.5 ABC’s Project composition ... 60

Figure 3.6 ABC delivery model .. 64

Figure 3.7 Functional Design event sequence... 66

Figure 3.8 FD/TD Transition event sequence ... 67

Figure 3.9 Technical Design event sequence .. 68

Figure 3.10 Code event sequence ... 69

Figure 3.11 AT Plan and Preparation event sequence .. 71

Figure 3.12 Assembly Test Execution event sequence ... 72

Figure 3.13 Technical environment event sequence ... 75

Figure 3.14 Fix Management event sequence ... 76

Figure 3.15 Change Control event sequence... 78

Figure 3.16 Project performance report in ABC - example .. 86

Figure 4.1 Research design ... 107

Figure 5.1 Dependency among the three projects ... 124

Figure 5.2 Approach to QUAN analysis ... 126

Figure 5.3 Project 1 Gantt chart .. 138

Figure 5.4 Project 2 Gantt chart .. 139

Figure 5.5 Project 3 Gantt chart .. 140

Figure 6.1 Position of the six cases within Test execution architecture 179

Figure 7.1 Coding procedure .. 186

Figure 7.2 Coding P1-IT (Inc4) textual data for N_01 ... 187

Figure 7.3 Coding P1-IT (Inc4) textual data for N_02 ... 188

Figure 7.4 Product Development narrative schema .. 208

xiii

Figure 7.5 Product Line Development narrative schema .. 211

Figure 7.6 Others narrative schema .. 213

Figure 8.1 Software development process .. 223

Figure 8.2 ABC’s software engineering method .. 226

Figure 8.3 ANT model of schedule delay ... 230

Figure A.1 Code hierarchy structure in NVivo ... 259

Figure A.2 Textual information in NVivo .. 283

xiv

List of equations

Equation 5.1 Start variance ... 132

Equation 5.2 Finish variance ... 132

Equation 5.3 Duration variance... 132

Equation 5.4 Project schedule delay ... 132

Equation 5.5 MRE ... 150

Equation 5.6 BRE ... 152

Equation 5.7 Scheduled duration .. 152

Equation 5.8 Actual duration .. 152

Equation 5.9 Phase schedule accuracy .. 152

xv

List of abbreviations

The following abbreviations were used repeatedly in this thesis. Other abbreviations

used rarely are not listed here; they exist in the text and are explained where they are

first introduced.

ABC The company that provided research data

AD Actual duration

AN Activity network

ANT Actor-network theory

APM Association for Project Management

AT Assembly Test

BAC Budget at completion

BM Build manager

CASE Computer aided software engineering

CBD Component-based development

CCB Change control board

CCM Critical chain method

CLT Client

CONS Consumer

CPDM Cross project deliver managers

CPM Critical path method

CR Change request

DBT Design, Build, and Test

DM Design manager

DSDM Dynamic system development model

DV Duration variance

ES Earned schedule

ESB Enterprise service bus

ESBM Enterprise service bus manager

ESER Empirical software engineering research

EV Earned value

xvi

EVA Earned value analysis

FD Functional design

FD/TD Transition Functional design to Technical design transition

FF Finish-to-finish

FS Finish-to-start

FV Finish variance

GSD Global software development

GT Grounded theory

GTM Grounded theory method

HLD High level design

IBM International business machine company

IID Iterative and incremental development

IT Integration Test

LSD Lean software development

LSS Large software systems

MMR Mixed method research

MRE Magnitude of relative error

OPP Obligatory passage point

PC Percentage complete

PD Product development

PhD Doctor of philosophy

PLD Product line development

PM Project manager

PMI Project management institute

PS Peer supplier

PSA Phase schedule accuracy

PSC Phase schedule change

PSD Phase schedule delay

PV Planned value

QUAL Qualitative

QUAN Quantitative

RAG Red-amber-green

RQ Research question

xvii

SAM Solution architecture manager

SD Scheduled duration

SF Start-to-finish

SOA Service oriented architecture

SoS System of systems

SPI Schedule performance index

SS Start-to-start

STV Start variance

SV Schedule variance

TAM Technical architecture manager

TD Technical design

TDM Test data manager

TEM Technical environment manager

TM Test manager

TS Tester

UK United Kingdom

UT Unit Test

xviii

Acknowledgements

I am indebted to my supervisors Doctor Bob Hughes - for his sustained effort, valuable

recommendations, and intellectual challenge; and Professor Miltos Petridis - for his

continuous support and invaluable guidance throughout the duration of my research.

I would like to express my sincere thanks to two of the ABC Directors (who for reasons

of confidentiality must unfortunately remain anonymous) for making the project data

available to the research. Their eagerness to improve the work practices in ABC has

contributed to enriching this research.

I am very grateful to Doctor Roslyn Cameron for her numerous and invaluable guidance

on mixed methods research and methods of project management research.

I also would like to thank the Doctoral College staff at the University of Brighton for

their continuous support throughout my research.

I would like to express my immense gratitude to my dear wife Gona who always gave

me time and support despite the heavy work burdens and family demands she was under

herself throughout the duration of my research.

Thanks to my son Darya for his understanding of the pressure I was under and giving

me the space and time to carry on with the works of this thesis; to my daughter Dlara,

thanks for being my companion during the final two years of my research; and to the

newly arrived, my daughter Lanya, for bringing us joy at the final months of completing

this dissertation.

I am indebted to my highly regarded father (Ahmed Sharif) and dear mother (Suhaila

Abdulkarim) for being the source of inspiration, encouragement, and making life easier

for me.

xix

Declaration

I declare that the research contained in this thesis, unless otherwise formally indicated

within the text, is the original work of the author. The thesis has not been previously

submitted to this or any other university for a degree, and does not incorporate any

material already submitted for a degree.

Zana Ahmedshareef

July 2015

xx

Dedicated to…

my father Ahmad Sharif & mother Suhaila Abdulkarim,

my beloved wife Gona,

and my dear children Darya, Dlara, and Lanya

Introduction Chapter 1

Controlling schedule duration during software project execution 1

1 Introduction

1.1 Statement of the problem

In an increasingly competitive business environment, controlling schedule duration in

software projects is crucial in ‘time and materials’ contracts, since schedule delay by the

producer increases the cost incurred by the acquirer. The difficulty of such control

(Ebert, 2007; Deephouse et al. 1996) increases when developing and integrating large

software systems (Patanakul, 2014) within an enterprise architecture environment

(Petersen et al. 2014), and through globally distributed teams (Moløkken-Østvold &

Jørgensen, 2005; Damian & Lanubile, 2004; Herbsleb & Moitra, 2001). Such projects

have an increased risk of failure (Verner et al. 2014; Verner et al. 2012a, 2012b).

The challenges of managing software projects have been investigated by many. It will

be seen in this thesis that existing studies can be differentiated by the degree to which

they (i) focus on separate areas (topics) of project management in isolation rather than

holistically (ii) address the external rather than internal factors influencing project

success (iii) are empirically based (iv) base their findings on quantitative rather than

qualitative analysis. For example, recent work investigating causes of software project

failure (Lehtinen et al. 2014) identifies external factors but do not look at the internal

factors within the projects that show how problems evolve from one week to the next

during the project. A literature review by McLeod & MacDonell (2011) of research over

a 10 year period (1996-2006) indicates focus of empirical studies on individual, rather

than interrelationship and interaction among, factors influencing project outcome.

Previous work which did focus on examining project schedule behaviour (Rainer, 1999)

produced very useful insights, but concluded that it was unable to determine definite

causes that explain schedule delay (page: 150). Therefore, there seems still more to be

learned about the internal factors that influence schedule duration leading to schedule

delay.

A focus on controlling schedule duration during project execution should recognise that

the problems are more complex than can be explained by studying schedule behaviour

Introduction Chapter 1

Controlling schedule duration during software project execution 2

alone, as project managers are confronted with interdependent problems and dynamic

situations that interact with each other (Ackoff 1979, page: 99), and projects in practice

can operate in a complex, uncertain and unstable environment (Schön, 1983, page: 18).

The practice of software project management is no different (Kitchenham, 1987). In

such environments, delivering software projects where meeting deadlines is critical

meet with particular difficulties. Hence, the research and practice bodies of knowledge

need to match that complexity if they are to provide practical solutions to the challenges

facing such projects. One way to overcome the perceived ‘split between industry

practice and academic research’ (Jacobson et al. 2012), is to develop knowledge of use

to practice (Basili et al. 1986; Sjøberg et al. 2007; Basili et al. 2006).

Boehm (1981 page: 607) said long ago that ‘Often, software projects have had effective

macro-level planning and control capabilities, but have come to grief because of a lack

of visibility into project dynamics at the micro level’. Boehm also noted that ‘Software

project status assessment and control would be a fairly straightforward process if

everything on the project progressed according to plan. However, particularly on large

projects, a great many deviations from the original plan are all happening at the same

time’ (ibid, page: 612). Furthermore, others commented ‘A major defect in much of the

research to date has been its inability to integrate our knowledge of the micro

components such as project management, programming, and testing for driving

implications about the behavior of the organization in which the micro components are

embedded’ (Abdel-Hamid & Madnick 1991, page: 7).

Therefore, the problem can be summarised as:

The need to have better understanding of the project behaviours that influence software

project progress; in particular, the interactions that emerge among project actors

during project execution and the way they influence controlling schedule duration and

leading to schedule delay; when developing and integrating large software systems

within enterprise architecture environment through globally distributed teams. For this

understanding to be useful, however, it needs to draw from empirical data utilising both

the quantitative and qualitative aspects of the domain whilst investigating the

interdependent areas of the project.

Introduction Chapter 1

Controlling schedule duration during software project execution 3

It was within this context that the research about to be described was undertaken.

1.2 Scope of the investigation

Controlling software project schedule does not happen in isolation, but within a

complex environment where many elements interact and influence one another while

the project progresses through its lifecycle. Figure 1.1, based on materials from APM

(2006); Cadle & Yeates (2008); PMI (2008); Chrissis et al. (2011), shows the project

control element within the overall project undertaking.

manage

control

use

set

project

management

plan

deliver

product/service

People Tools Techniques

Implementati

on

Project management

Closure

Resources

Schedule Budget Scope

Constraints

Project sponsorship

Quality
Initiation ExecutionPlanning Closure

DefinitionConcept

Project lifecycle

Project management process

Risk

Management

areas

Change

Communicat

ion

Procurement

Project control

Figure 1.1 Project elements

During the project lifecycle, the project sponsors set constraints (schedule, budget,

scope, quality) for the project to operate within; the project management attempts to

control these constraints while using project resources (people, tools, and techniques) to

deliver project deliverables. In so doing, the project management follows a process

(initiation, planning, execution, closure) employing project control mechanisms, while

Introduction Chapter 1

Controlling schedule duration during software project execution 4

simultaneously managing other areas of the project (risk, change, communication, and

procurement).

This investigation focuses on controlling schedule during project execution which takes

place at the implementation stage of the project lifecycle (see the elements marked with

dotted line in Figure 1.1). Thus, while carrying out the activities (execution)

implementing the project management plan, the project manager attempts to control

project. The project schedule encompasses estimate of the project duration and the times

when activities and events are planned to occur, based on the logical dependencies

among the activities and estimated duration of each activity.

Given this context, the questions to which answers were sought included:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

In this research, the term ‘mechanisms’ include the creation of progress reports and

holding progress meetings; and the term ‘project actors’ refers equally to the human and

nonhuman elements (constituent parts) of the project.

To answer the research questions, the literature related to controlling software projects

was examined. However, existing studies did not seem to provide a complete

explanation of the empirical data from a technology consulting firm, named ABC for

anonymity, which competes on the global software development services industry. This

justified a closer investigation of ABC projects. The research analysed the schedule

Introduction Chapter 1

Controlling schedule duration during software project execution 5

performance reports - which were created by and for project participants - of the

Design, Build, and Test stages of three completed projects. This revealed that the Test

phase of these projects was particularly problematic. The study then analysed in more

depth six Test phases across the three projects to identify the influencing factors on

schedule delay across the six Test phases.

1.3 Structure of the thesis

The reminder of the thesis is organised as follows.

Chapter 2 surveys the relevant literature that relates to the research questions. It

examines schedule control mechanisms (RQ1), factors influencing project duration

(RQ2), and interaction within the development environment (RQ3). The chapter then

locates the position of the investigation described in this dissertation within existing

work.

Chapter 3 provides the context of the case company (ABC) who provided the empirical

data; describing their software delivery model and approach to managing and

controlling project execution. The chapter describes the contents of the project

performance reports, which were used as source data of this research, and positions the

ABC’s work processed in the context of current accepted good practice.

Chapter 4 describes the research methodology of this programme of study and presents

the research design which consists of four phases, the details of which are presented in

the four subsequent chapters in more depth (Quantitative approach, Case selection,

Qualitative approach, and Explanation development). Chapter 4 then locates the

methodological position of this research within existing work.

Chapter 5 defines the research methods adopted for the quantitative approach, and

analyses the numeric data collected from the project performance reports of three

projects using schedule-related metrics in order to develop answers to RQ1. One project

is used to illustrate the quantitative approach, followed by an analysis of two further

projects.

Introduction Chapter 1

Controlling schedule duration during software project execution 6

Chapter 6 examines the extent to which the quantitative analysis was able to develop

answers to RQ1, concluding that the numeric data of the project performance reports did

not support identifying the causes of schedule delay. Therefore, a case study research

was designed for in-depth examination of the textual data for selected six cases in order

to develop answers to RQ2 and RQ3 in the subsequent two chapters.

Chapter 7 defines the research methods adopted for the qualitative approach, and

analyses the textual data collected from the project performance reports of six cases

(Test phases) using Grounded theory techniques to develop categories of project

phenomena present during project execution, in order to answer RQ2. The analytical

approach used in one case is explained in detail to illustrate the qualitative approach,

followed by the findings of a further five cases.

Chapter 8 describes the consolidations of explanatory models of schedule delay based

on analyses of the interaction among project actors using Actor-network theory

concepts in order to develop answers to RQ3. The thesis then reflects on the research

journey as a whole.

Chapter 9 summarises the general conclusions of this thesis.

Finally, Appendix A provides the empirical data investigated in this research, where

identifiable information has been anonymised for confidentiality, as well as results of

the remaining analyses that were not presented in Chapters 7.

1.4 Previously published work

During the course of this research, a number of ideas were developed into academic

outputs - papers and presentations, which were validated by the academic peer review

process and accepted for publication, material from which has been incorporated in this

thesis:

Ahmedshareef, Z. (2013a). An Empirical Examination of the Internal Dynamics of

Introduction Chapter 1

Controlling schedule duration during software project execution 7

Software Project Management: a Mixed Methods Approach. Paper presented at

the UK Academy for Information Systems, 8th Annual PhD Consortium,

University of Oxford, UK.

Ahmedshareef, Z. (2013b). An Empirical Examination of the Internal Dynamics of

Software Project Management: a Mixed Methods Approach. Research Poster

Competition 2013. Brighton, UK: University of Brighton.

Ahmedshareef, Z. (2013c). The Dynamics of Software Project Management. Paper

presented at the Faculty of Science and Engineering Doctoral College Research

Student Conference, Brighton, UK.

Ahmedshareef, Z. (2014). The Dynamics of Controlling Schedule Duration in Software

Projects. Paper presented at the Faculty of Science and Engineering Doctoral

College Research Student Conference, Brighton, UK.

Ahmedshareef, Z., Hughes, R., & Petridis, M. (2014a). Applying Actor-Network Theory

to Software Project Management Research. Paper presented at the 13th

European Conference on Research Methodology for Business and Management

Studies, London.

Ahmedshareef, Z., Hughes, R., & Petridis, M. (2014b). Exposing the Influencing

Factors on Software Project Delay with Actor-Network Theory. The Electronic

Journal of Business Research Methods, 12(2), 132-146.

Ahmedshareef, Z., Petridis, M., & Hughes, R. (2013). Empirical Examination of

Internal Dynamics of Software Project Management: Mixed Methods Approach.

Paper presented at the 12th European Conference on Research Methodology for

Business and Management Studies, Portugal.

Ahmedshareef, Z., Petridis, M., & Hughes, R. T. (2014). The Affordances of Mixed

Method in Software Project Management Research. International Journal of

Multiple Research Approaches, 8(2), 198–217.

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 8

2 Controlling software projects

In general, controlling software projects can be seen as the ability to minimise surprises,

minimise deviations, and early signalling of these deviations during project execution,

which require (i) managing the project so that performance stays at or above some

reasonable and accepted standard (ii) making sure that original expectations are not

allowed to exceed what’s possible for a project performing at that standard (DeMarco

1982, page: 5). Therefore, attempting to maintain a project’s progress on schedule,

during execution, can be seen as a way of controlling its duration.

2.1 Introduction

This chapter examines relevant literature that relates to the research questions (RQs),

and organises what was found, under three headings corresponding to the RQs:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

Section 2.2 ‘Schedule control mechanisms’ examines relevant literature on the Critical

path method, Gantt charts, Earned value analysis, and Progress reports in relation to

RQ1.

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

Section 2.3 ‘Factors influencing project duration’ examines relevant literature on

project failure, schedule delay, large software systems, global software development,

and project risk management in relation to RQ2.

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 9

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

Section 2.4 ‘Interaction within the development environment’ examines relevant

literature on complexity of interaction in software projects, and interactions within the

primary development models: waterfall, iterative and incremental development,

component-based model, lean software development and critical chain method in

relation to RQ3.

The chapter concludes with locating the position of this investigation within existing

work.

2.2 Schedule control mechanisms

This section summarises the literature reviewed related to RQ1:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

A distinction is sometimes drawn between project monitoring and project control with

project monitoring referring to collecting project data and measuring progress and

project control referring to selecting and taking corrective action/s to bring the project

back on schedule - see Figure 2.1, which is based on material from Cadle & Yeates

(2008), Hughes & Cotterell (2009), and PMI (2008).

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 10

Start
Evaluate

progress

Deviation

from

schedule?

Control

deviation

Yes

No

Measure

progress

Schedule

execution

complete?

No

Yes

End

Create / update

schedule

Original

objectives

achievable?

No

Yes

Baseline

schedule

Figure 2.1 Project monitoring and control process

A project control cycle needs the creation of a project schedule (Figure 2.1). A project

planner would use something like the waterfall model of development phases to help

them identify the tasks in a software engineering project. The activity network (AN)

could then be created (see section 2.2.1), which could be produced by typing in activity

details, estimated durations, and activity dependencies into something like MS Project.

A basic Gantt chart (see section 2.2.2) can then be generated and this would be used to

allocate resources to activities. Some start dates may have to be delayed because of

resource clashes, but this is recorded on the Gantt chart, not the AN. The schedule can

then be ‘baselined’ to allow comparison of the actual progress against the targets on the

baseline schedule. A baseline schedule is a version of the project schedule, accepted and

approved by the project management team (PMI 2008, page: 159), which is used as a

reference point from which performance measurements can be made (Kerzner, 20013,

page: 567).

Then, the project manager (PM) may use Earned value analysis (see section 2.2.3) to

measure progress (Figure 2.1) where the PM has to collect data from team leaders and

convert it into form that higher management can understand. Appropriate measurement

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 11

of progress can be an indicator of the degree of control on project schedule (DeMarco

1982, page: 3).

Project progress can then be evaluated (Figure 2.1) at progress review meetings where

project progress is reported on (see section 2.2.4). Where deviations are identified,

corrective actions are considered and the most appropriate actions are implemented to

bring progress back on schedule (i.e. controlling schedule duration). These could

include: reducing the duration of activities on the critical path, relaxing the precedence

rules (Hughes & Cotterell, 2009), overlapping activities (Lockyer & Gordon, 2005),

reducing scope or quality, bringing more experienced staff onto critical activities

(Lockyer & Gordon, 2005), and using overtime or increasing staff (Cadle & Yeates,

2008). Monitoring progress may continue until project completion.

Exerting control over one aspect of project constraint may affect others. The project

triple constraints (iron triangle) of time, cost, scope/quality are well known in the

traditional project management literature, where, for example, reducing schedule might

increase the cost in employing additional staff (Cadle & Yeates 2008, page: 209).

Moreover, controlling project execution may become more difficult for management

when the overlapping of activities increases, because the number and direction of

interactions among these activities become more complex (Lockyer & Gordon, 2005).

2.2.1 Critical path method

Activity networks (AN) enable the identification of activity dependencies by depicting

activities as nodes and the dependencies among them as links showing the precedence

of some activities over the others (Lockyer & Gordon, 2005; Burke, 2013). The Critical

path method (CPM) enables the identification of the activities of an AN that affect the

project completion date; this then, allows the project manager to focus on these

activities during project execution to ensure their progress is maintained on schedule

and to have contingency plans in place should they slip (Kelley & Walker, 1959;

Hughes & Cotterell, 2009; Cadle & Yeates, 2008; Lockyer & Gordon, 2005).

The CPM has been criticised for requiring ongoing re-calculation of the project duration

due to the changing of the path during project execution, as a result of change in the

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 12

duration of the non-critical activities, particularly with complex projects that exhibit

multiple interactions and overlapping activities (Schonberger, 1981) - though computer

software can do this if used. In addition, as the CPM does not take into account resource

availability to carry out these activates, the critical path can potentially change during

project execution as resource availability fluctuates (Hughes & Cotterell, 2009; Kerzner,

2013).

Whilst it can be argued that the CPM can be used as a schedule control mechanism to

bring the deviated critical activities back on schedule, it is more of a planning tool.

CPM can show where one activity delay can create delays in other, dependent, activities

but was not designed primarily to identify the causes of schedule delay.

2.2.2 Gantt chart

The Gantt chart, developed by Henry Gantt in the 1910s, organises project activities on

a calendar showing when each activity starts and finishes. It can model the logical

dependencies among the activities (like an AN), but also documents management

decisions about when staff and other resources will be committed to the project

(Lockyer & Gordon, 2005; Cadle & Yeates, 2008; Burke, 2013).

The Gantt chart is seen as a simple method of activity scheduling, easy to develop and

update for small or medium size projects, and can show progress status (Hughes &

Cotterell, 2009; Boehm, 1981; Burke, 2013; Lockyer & Gordon, 2005). However, the

Gantt chart does not readily identify which of the activities might be critical to meeting

project end date (though a Gantt chat can automatically be converted to a CPM through

tools such as MS project).

Similar to CPM, the Gantt chart is more of a planning tool and was not designed

primarily to identify the causes of schedule delay. However, it can be used as a control

mechanism as it shows where an activity took longer than planned or its start was

delayed (or both), and where there have been resource clashes.

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 13

2.2.3 Earned value analysis

Earned value analysis (EVA) is a management approach used to monitor project

execution. It integrates measures of the scope, schedule and cost for a particular unit of

work as a basis for comparing actual progress and cost performance against a baseline

plan (Fleming & Koppelman, 2010; Budd & Budd, 2010).

Started as cost/schedule control system criteria (C/SCSC) by the U.S. Department of

Defence in the 1960s (Kwak & Anbari, 2011), the EVA measures can be used as early

warning signals to assess the performance of the project’s schedule and cost against the

planned targets during project execution. This information may then be used by

management to devise corrective action/s to bring the performance back on track

(Vandevoorde & Vanhoucke, 2006; Fleming & Koppelman, 1998). The EVA

measurement was created to track cost performance, and although it offers some

schedule performance metrics, they calculate schedule performance in cost units

(described below).

The EVA has a set of base measures for cost which include: Planned Value (PV),

Earned Value (EV), and Budget at Completion (BAC). PV is analogous to an agreed

price for a unit of work to be completed, and when the work has actually been

completed, the amount of PV is said to have been earned and becomes EV (Fleming &

Koppelman, 2010; PMI, 2008; Burke, 2013). Among the different conventions used in

assigning EV to completed work is 0/100 where EV is assigned value of 0% until the

task is 100% complete (Anbari, 2003; Fleming & Koppelman, 2010) - other variations

can be found in Boehm (1981, page: 613) and Kerzner (2013). BAC is the overall

estimated project cost, that is, the total PV for the project (PMI, 2008; Fleming &

Koppelman, 2010; Budd & Budd, 2010).

Schedule performance indicators, derived from the base measures above, include

Schedule variance (SV) and Schedule performance index (SPI) that are relevant to this

research. The SV is used to measure the amount of work actually done (EV) against the

amount that was planned to be done (PV) at a particular point in time (in units of cost),

SV = EV – PV. Thus, a positive SV value indicates more work was done compared to

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 14

the amount planned; a negative SV indicates less work was done compared to the

amount planned; and an SV value of 0 means the amount of work done was the same as

the amount that was planned to be done.

The SPI is used to assess the state of the project schedule to establish the actual rate of

progress against the planned rate of progress (in units of cost); i.e. what had actually

been achieved against what was planned to have been achieved, by calculating the ratio

of EV to PV (SPI = EV divided by PV) for a particular point in time. An SPI value

greater than 1 means that the rate of progress is ahead than the rate that was planned; an

SPI less than 1 indicates that the rate of progress is behind the rate that was planned;

hence an SPI of 1 indicates that the project is progressing at the rate that was planned

(PMI, 2008; Chrissis et al. 2011).

For example, if it was planned to do £3,000 worth of work (PV) in the first month of the

project, and at the end of the month the actual work done (EV) was worth £1,500; then

the SV = 1,500 – 3,000 = – 1,500 which means that the project did not earn as much as

it planned to earn; it was behind its first month’s target by £1,500 worth of work. The

SPI = (1,500/3,000) = 0.5; meaning that the project did not earn at the rate it planned by

the end of the moth; the rate of doing actual work was half than the rate that was

planned; hence it is progressing slower than was planned.

Other performance indicators include the percentage complete (PC) measure, expressed

as a percentage value, is an estimate of the amount of work that has been completed

relative to the overall estimated project cost (PMI, 2008), that is EV divided by BAC

(Budget at Completion). Using the same example above, if the overall estimated cost of

the project was £10,000 then PC = (1,500/10,000) is 15% by end of the first month.

Using the SV and SPI indicators described above to measure schedule performance has

been criticised from various respects:

 At the end of the project/phase the SV always becomes 0 and the SPI always

becomes 1 (Lipke, 2003; Henderson, 2007): this has two implication (i) it indicates

that the amount of work done was according to plan and the rate of progress was

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 15

according to plan respectively even if these figures were behind plan prior to the

project completion (ii) it indicates that the project was completed according to plan

even if the project end date was extended; that is, the values of SV and SPI will

remain 0 and 1 respectively, as at the time of when the project ended, throughout

the extension period of the schedule (Vandevoorde & Vanhoucke, 2006).

 In the case where a project is underperforming during its execution, the SV and SPI

measures might accurately reflect the situation during the early and middle stages

of its execution, however, they both show performance improvement/recovery

towards the end of the project (Lipke, 2003) contrary to what might actually be

happening, hence providing an unreliable measure of project performance at the

latest stages of the project, which may be the most crucial to meet project end date

(Vandevoorde & Vanhoucke, 2006).

 The measures do not distinguish between the impact of critical and non-critical

activities on schedule delay; allocating significance to all activities equally (Leach,

1999). For example, it is possible for the EVA measures to be favourable because a

lot of non-critical tasks are ahead of schedule while some critical ones are behind

and will impact schedule duration. This masks the significance/weight of the

critical activities that are deviated from the non-critical ones, and thus the project

manager would not know which activity they ought to focus on first to correct

deviation from the schedule.

 The measurements do not recognise project phases or key milestones as significant

events, as they are based on project level data (Bower, 2007). Bower (2007)

proposed Phase earned value analysis (PEVA) instead of EVA. The key difference

between EVA and PEVA is that one measures cost at project level and the other

duration at phase level.

 Less importantly, the dual meaning of the measures and naming confusion could be

sources for misperception. An SV = 0 or SPI = 1 measure taken during the progress

of work activities mean that progress is according to plan; however, taken at the

end of the phase/project means that the activity is complete (Vandevoorde &

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 16

Vanhoucke, 2006). The ‘schedule’ word in the SV and SPI names although imply

time measurements; they actually measure cost of the actuals against the targets

planned at particular points in time of the project schedule (Vandevoorde &

Vanhoucke, 2006; Henderson, 2007).

The above limitations of the SV and SPI indicators illustrate that they are unreliable for

identifying the amount of schedule delay. An extension metric to EVA has been

proposed called ‘Earned schedule’ (Lipke, 2003), which defines the SV and SPI in units

of time rather than units of cost (as with the EVA measures).

The Earned schedule (ES) is the time/duration at which the amount of EV accumulated

should have been earned (Henderson, 2006); it attempts to fix the EVA issues by

calculating SV and SPI differently, and calls them SV(t) and SPI(t) respectively to

differentiate them from the original measures obtained from EVA - (t) standing for time.

Thus, SV(t) = ES – AT and SPI(t) = ES / AT; where ES is calculated by determining the

time increment of PV in which the EV should have occurred; this can be achieved by

tracing the EV curve as a horizontal line at a certain point in time, i.e. at the AT (actual

time - the actual time duration from the beginning of the project to the time of assessing

progress, for example 7 weeks), backward or forward to the PV curve, and then from

this point a vertical line is drawn downwards onto the x-axis (the time) to ascertain the

earned portion of the schedule (Lipke, 2003), the ES then is the duration from the

beginning of the project until this point in time - see Figure 2.2 (adapted from

Vandevoorde & Vanhoucke, 2006).

Actual time

PV

EV

Earned schedule

(ES)
SV(t)

Cost (£)

S
V

Figure 2.2 Earned schedule

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 17

A positive SV(t) value or an SPI(t) greater than 1 indicate being ahead of schedule (in

time units), whilst a negative SV(t) value or an SPI (t) less than 1 indicate being behind

schedule, and an SV(t) value of 0 or an SPI(t) value of 1 indicate being on schedule.

The above indicates that the ES approach may have overcome the shortcomings of EVA

through measuring the SV and SPI in units of time rather than cost (Vandevoorde &

Vanhoucke, 2006; Lipke at al. 2009; Henderson 2003, 2006; Kwak & Anbari, 2011).

However, ES have criticised for being ‘unnecessarily complex’ (Bower & Finegan

2009, page: 441). Bower (2007), in his PhD thesis, criticises the ES for exhibiting

similar shortcomings to the EVA measure, for example in the ES’s lack of consideration

of critical path activities, and unreliability in calculating the ES for the month partially

completed when the EV and PV are measured monthly (pages: 64-68). Therefore, it

would appear that further empirical research to test the strength and practical

implications of the ES approach is needed.

Another metric used to measure time deviation is Finish variance (FV), which is the

amount of time between the baseline (i.e. the original planned) finish date of an activity

and its current finish date (Corporation, 2012). (FV = Finish - Baseline Finish). A

negative FV indicates that the task finished earlier than planned; a positive FV indicates

a late task (but not that more effort was spent, as the activity may have started late); an

FV of zero means that the task finished exactly when planned. Other metrics can be

found in Anbari (2003) and Hughes & Cotterell (2009).

2.2.4 Progress report

Project performance can be evaluated at progress review meetings using the information

derived in the previous section. Progress reporting is one of the mechanisms used to

control schedule duration, where the position of the project can be quantified (e.g.

through EVA) and textual explanations may be provided (e.g. through RAG status) to

support the numeric measures (Burke, 2013).

The Red/Amber/Green (RAG) status report, sometimes called traffic-light, reporting is

used to ascertain the likelihood of meeting the planned target dates. A Green flag

indicates that work progress ‘is according to plan’, an Amber flag indicates that work

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 18

progress is ‘not according to plan, but recoverable’, and Red flag indicates that work

progress is ‘not according to plan, but recoverable only with difficulty’ (Hughes &

Cotterell, 2009; Kerzner, 2013). The RAG report though may indicate obstacles to

progress, it can be seen as a subjective judgment of the current status of progress, and so

might hide critical issues if the wrong flag/light is waved by the reporter at a particular

performance meeting.

2.3 Factors influencing project duration

This section summarises the literature reviewed related to RQ2:

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

The reviewed literature on factors influencing software project outcome include relevant

studies that address generic factors influencing project failure (see section 2.3.1) as well

as factors specifically influencing schedule delay (section 2.3.2). RQ2 follows on from

RQ1, and with its opening ‘in such an environment’ it refers to projects developing

large software systems through globally distributed teams (see RQ1); therefore, relevant

studies that examine developing large software systems (section 2.3.3) or in a globally

distributed environment (section 2.3.4) were also reviewed for factors influencing

schedule duration. Finally, relevant studies investigating project risk management

(section 2.3.5) were examined for their potential in identifying the factors influencing

project outcome. It may be noted that, the professional bodies of knowledge such as

PMI (2008), APM (2006), CMMI (Chrissis et al. 2011), or PRINCE2 (OGC, 2009)

were not examined in detail here because they offer generic frameworks that cannot be

used effectively to look for specifics factors influencing schedule duration.

2.3.1 Project failure

Considering the outcome of a software project as success or failure appears to be

relative to the perspective of the project participant and their role in the project

(McLeod & MacDonell, 2011). Example empirical studies suggest that developers

(Procaccino et al. 2006) and project managers (Procaccino & Verner, 2006) see project

Controlling software projects Chapter 2

Controlling schedule duration during software project execution 19

success from personal and project related perspectives. At the personal level, project

success was seen in delivering quality product, having a sense of achievement, and

having been provided with enough independence. At the project level, success was seen

in the final system to be working as intended, having met customer requirements, and

the project was delivered when needed by the customer (not necessarily on-schedule).

Thus, the conventional criteria of meeting project schedule, cost, scope/quality may

reflect only the organisational or project performance perspective - see for example

(Lehtinen et al. 2014).

Therefore, rather than an agreed upon concept, project outcome may be better viewed

against the complex interaction of the project participants’ perspectives (McLeod &

MacDonell, 2011). A successful project in the eyes of the software provider may be

seen as failure by the acquirer. As this research investigated particular problems of

schedule delay, it focussed on project failure as not meeting schedule targets. Table 2.1

lists some (for illustration rather than comprehensiveness) of the common factors

reported in the reviewed literature as causing failure in software projects. The factors

put forward by the studies reviewed in this section present very usefully the different

factors influencing project failure, and can be useful indicators generally (Verner et al.

2008), but then may be less specific to what influences schedule duration.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 20

Factor Description Studies

1 Project goal Project objectives are undefined, unclear,

unmeasured, or unrealistic

McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Tarawneh et al.

(2008); Ebert (2007); Charette (2005)

2 Estimates Estimates are inaccurate, unreliable, or

inflated

Cerpa & Verner (2009); Lehtinen et al. (2014); Verner et al. (2008);

Tarawneh et al. (2008); Nelson (2007); Charette (2005); Verner et al. (1999);

Brooks (1995)

3 Requirements Requirements are undefined or unclear; or

the final system fails to meet customer/user

requirements

Lehtinen et al. (2014); McLeod & MacDonell (2011); Pertersen et al. (2014)

Nasir & Sahibuddin (2011); Verner et al. (2008); Ebert (2007); Procaccino &

Verner (2006); Procaccino et al. (2006); Charette (2005); Boehm & Ross

(1989)

4 Schedule Project schedule or delivery date is

unrealistic, milestones are unmeasurable, or

aggressive schedule with overlapping phases

McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Cerpa & Verner

(2009); Lehtinen et al. (2014); Verner et al. (1999); Tarawneh et al. (2008);

Verner et al. (2008); Nelson (2007); Sauer et al. (2007); Brooks (1995);

Abdel-Hamid & Madnick (1991); Boehm & Ross (1989)

5 Reporting project

status

Progress reports are inaccurate, out-of-date,

or overoptimistic

Lehtinen et al. (2014); Nasir & Sahibuddin (2011); Charette (2005); Brooks

(1995)

6 Project risk Project risks are unmanaged, uncontrolled,

or unassessed

Cerpa & Verner (2009); Nasir & Sahibuddin (2011); Nelson (2007); Verner

et al. (2008); Ebert (2007); Charette (2005); Verner et al. (1999)

7 Communication Lack of, ineffective, or excess Lehtinen et al. (2014); McLeod & MacDonell (2011); Nasir & Sahibuddin

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 21

Factor Description Studies

communication (2011); Charette (2005); Brooks (1995)

8 Technology Missing or insufficient tools during project

execution, introducing new technology in

the middle of the project, or project team

unfamiliar with the technology

Lehtinen et al. (2014); Lu et al. (2010); McLeod & MacDonell (2011); Nasir

& Sahibuddin (2011); Charette (2005);

9 Change control Ineffective management and monitoring of

change, or no change control system in place

Nasir & Sahibuddin (2011); Cerpa & Verner (2009); McLeod & MacDonell

(2011); Verner et al. (1999)

10 Scope Inappropriate, unachievable, or large scope;

or scope changes during project execution

McLeod & MacDonell (2011); Cerpa & Verner (2009); Tarawneh et al.

(2008)

11 Staffing Inadequate or unmotivated project staff,

staff added late to the project, or large

number of staff (big team)

Lehtinen et al. (2014); Cerpa & Verner (2009); McLeod & MacDonell

(2011); Nasir & Sahibuddin (2011); Procaccino et al. (2006); Verner et al.

(1999); Abdel-Hamid & Madnick (1991); Boehm & Ross (1989); Brooks

(1995)

12 Customer Lack of involvement from customer; the

customer has unrealistic expectations, is

unavailable, or is unsatisfied

Lu et al. (2011); McLeod & MacDonell (2011); Lehtinen et al. (2014); Cerpa

& Verner (2009); Nelson (2007); Procaccino & Verner (2006); Procaccino et

al. (2006); Verner et al. (1999); DeMarco (1982)

13 Project

characteristics

The project is large, complex, or has a long

duration

McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Charette (2005);

Brooks (1995)

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 22

Factor Description Studies

14 Development

process

The development method is inadequate,

ineffective, or non-standard

Tarawneh et al. (2008); McLeod & MacDonell (2011); Nasir & Sahibuddin

(2011); Lehtinen et al. (2014); Lu et al. (2010); Charette (2005); Cerpa &

Verner (2009); Verner et al. (1999); Boehm & Ross (1989); Brooks (1995)

15 Project

management

Inadequate or insufficient planning,

inadequate project monitoring and control,

irregular project meetings, informal project

management methods/techniques/quality

controls, or inexperienced project manager

Lehtinen et al. (2014); Nasir & Sahibuddin (2011); Ebert (2007); Lu et al.

(2010); Charette (2005); McLeod & MacDonell (2011); Verner et al. (1999)

16 Product The final system does not work as intended Procaccino & Verner (2006); Procaccino et al. (2006)

Table 2.1 Factors causing software project failure

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 23

2.3.2 Schedule delay

Schedule delay refers to completing a project or project phase later than was originally

planned. The reviewed literature on project schedule delay suggests that various factors

can influence schedule delay (see Table 2.2). These studies tend to attempt an

understanding of the external factors influencing schedule duration, usually relying on

the project participants’ recall of these factors (Deephouse et al. 1996). Studies that

attempt such understanding through an in-depth analysis of, for example written records

(Deephouse et al. 1996), might provide a different/internal view of how progress or

schedule duration is controlled. For example, Phan et al. (1995) found that the reasons

for schedule delay include factors such as: customer and management changes,

technical complexities, unrealistic project plans, staffing problems, inability to detect

problems early, insufficient project planning, underestimated project scope, and

insufficient contingency planning. While this is illuminating, it does not seem to offer

insight into how the potential influence of some of these factors can combine with

others to cause schedule delay.

Detailed studies into project schedule behaviour include Rainer’s PhD thesis (Rainer,

1999), where an in-depth case study was conducted into two projects at IBM. The

research tested previous hypotheses on ‘waiting’ in software project schedules,

investigated the change in actual time usage in both project and phase levels, and

investigated the relationship between these two levels and their relationship to schedule

behaviour. Rainer compared the workload, capability, planned schedule, and events of

two projects in order to understand the relationship among these factors and changes in

the schedule. The study suggests that these factors influence on one another and the

project schedule, but concluded that the research was unable to determine definite

causes that explained schedule delay (page: 150). The projects studied were collocated

and developed small to medium size software systems. Future studies that investigate

the execution of projects that develop large software systems in globally distributed

environments might yield a different perspective on schedule delay.

Earlier work by Goldratt (1997) on Critical chain - see also section 2.4.6, which

transferred ideas from organisational production lines where the different stages of

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 24

manufacture depend on the components developed by earlier ones, sheds light on

several factors that may be impacting slippage; for example (i) multitasking through

increasing lead time (page, 126) (ii) task interdependencies through individual task

delays accumulating to eventually cause project delay (page, 128) (iii) progress

measurements’ deficiencies in differentiating the critical from non-critical tasks thereby

masking the critical path from the project manager’s attention (page, 73).

Organisations can adopt various approaches to understand the causes of project

slippage. Some of these approaches can be employed during a project so that remedial

action can be taken, for example; as part of software process improvement (Allison,

2005; 2010) or adapting a projects’ practices to meet industry standards such the one

illustrated by Bass et al. (2013)’s study where an organisation tailored their Agile

practices to meet CMMI level 5 requirements; another example is ABC projects, the

company provided the research data (presented in Chapter 3) applying CMMI levels 3

and 5 process areas (at different sites) to their practices. Other approaches take place

after a project has been completed for organisational learning, such as; project post

implementation reviews used to record organisational/project specific knowledge after

project completion in order to be developed internally for later projects (Doll et al.

2003); or root cause analysis technique/causal analysis and resolution process area of

CMMI (Chrissis et al. 2011) used to detect and analyse the causes of problems

(Lehtinen et al. 2014).

Table 2.2 lists some of the factors associated with schedule delay (rather than project

failure in general) in software projects reported in the reviewed literature (for

illustration rather than comprehensiveness). These include both those based on surveys

and interviews; those conducted by large companies in different countries/cultures and

those of small or medium companies in one country; both building custom and

packaged software; and a range of project durations. Once again, these studies appear to

list individual/isolated factors rather than the interaction among them and the way this

may influence schedule duration.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 25

Factors Studies

1 Changing requirements, or less time spent upfront to

understand requirements

Patanakul (2014); McLeod & MacDonell (2011); Nasir & Sahibuddin (2011);

Moløkken-Østvold & Jørgensen (2005); Blackburn et al. (1996)

2 Interdependency between software components McLeod & MacDonell (2011); Blackburn et al. (1996)

3 Long repeated rework cycles Rainer (1999); Blackburn et al. (1996)

4 Sequential (not overlapping) development stages Rainer (1999); Blackburn et al. (1996)

5 Integration of software components Lehtinen et al. (2014); McLeod & MacDonell (2011); Blackburn et al. (1996)

6 Large team size McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Sauer et al. (2007);

Moløkken-Østvold & Jørgensen (2005); Brooks (1995); Blackburn et al. (1996)

7 Reduced information flow among development teams McLeod & MacDonell (2011); Blackburn et al. (1996)

8 Minimum reuse of existing software components Blackburn et al. (1996)

9 Less experienced workforce McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Carmel (1995)

10 Lack of concurrent activity and concurrent information flow Moløkken-Østvold & Jørgensen (2005); Blackburn et al. (1996)

11 Reduced monitoring and control: e.g. slippage one day at a

time, masking true progress status (the 90% syndrome), or

fuzzy milestones.

McLeod & MacDonell (2011); Lehtinen et al. (2014); Deephouse et al. (1996);

Brooks (1995); Boehm (1981)

12 Unrealistic schedule Lehtinen et al. (2014); Nasir & Sahibuddin (2011); Deephouse et al. (1996)

13 External factors (such as starting late or lack of funding) DeMarco (2011); McLeod & MacDonell; (2011) Patanakul (2014); Rainer (1999);

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 26

Factors Studies

Jenkins et al. (1984)

14 Increased volume of coordination and communication Patanakul (2014); McLeod & MacDonell (2011); Brooks (1995); Nasir &

Sahibuddin (2011); Deephouse et al. (1996)

15 Improper planning McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Nelson (2007)

16 Inappropriate/ineffective methods and techniques McLeod & MacDonell (2011); Lehtinen et al. (2014); Nasir & Sahibuddin (2011)

Table 2.2 Factors influencing schedule delay in software projects

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 27

2.3.3 Large software systems

RQ2 sought to identify the influencing factors on schedule duration, including, in

projects developing large software systems (LSS). The reviewed literature on projects

developing LSS identifies specific factors (see Table 2.3) being exacerbated in LSS

projects due to size. These studies used approaches such as surveys, case studies, and

interviews on collocated projects; studies into developing LSS in a distributed project

environment would complement their findings.

Projects developing LSS have been characterised as being uncertain, complex,

involving large number of partners, and typically commissioned by governments and

delivered by private firms (Patanakul, 2014). Large software systems can be

distinguished by needing more than one management level to coordinate the

development effort, multiple teams developing parts of the software, and taking more

than six months of development period or 500,000 Lines of Code (Zmud, 1980;

Sommerville, 2011). An LSS can be developed within an enterprise architecture

environment (see section 2.4.4) where multiple subsystems are developed, each can

operate independently, but are all subordinated to the central/enterprise system

(Petersen et al. 2014).

Relevant past research include Petersen et al. (2014)’s case study into obstacles to

progress in LSS projects and its effect on delay at Ericsson AB. The study examined the

development of a system of systems (SoS) comprising 9 complex systems, that uses

Iterative and Incremental Development (IID) with Agile practices. SoS is a set of

independent systems incorporated into a larger system to deliver specific capabilities.

Petersen et al. (2014)’s study examined the SoS view (i.e. integration of the systems)

and the system view (i.e. individual system development and delivery) looking for

common causes that obstruct the flow of the development process. The study identified

factors obstructing progress relating to the following areas: architecture and technical

dependencies, defects in project artefacts, requirements definition and management,

overhead in updating and aligning release plans, and generic factors applicable to the

overall development process such as being overloaded with work.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 28

Factor Description Source

1 Complexity of

interdependency

and interaction

The interdependency and interaction required among: the large number of

people, the stages of the development process, the integrated development

environment (e.g. CASE tools - computer aided software engineering), or

the many parts of different systems that form the LSS (architecture

dependencies) may increase uncertainty of delivering LSS projects on

schedule. As will be seen in the course of this thesis (Chapter 7) that

problems with interdependency and interaction among project elements

can influence schedule duration

Patanakul (2014); Petersen et al. (2014); Nelson

(2007); McLeod & MacDonell (2011); Hustad &

Lange (2014); Zmud (1980); Jones (1995); Curtis et

al. (1988); Belady & Lehman (1976); Kitchenham

(1987); Malcolm (1990); McDermid (1990); Yeo

(2002); Brooks (1995); Shermer et al. (1981); Rook

(1986)

2 Requirements The complexity of developing LSS may make it challenging to define

clear, concise, and complete requirements upfront, which results in

unanticipated changes during the development process

Patanakul (2014); Petersen et al. (2014); Nelson

(2007); Zmud (1980); Yeo (2002); Jones (1995);

Curtis et al. (1988); Rook (1986)

3 Change Change in technology can influence design and architecture, change in

environment can influence requirements, and change in the development

team can influence development schedule

Petersen et al. (2014); Patanakul (2014); McLeod &

MacDonell (2011); Zmud (1980); Royce, (1970);

Kitchenham (1987); Bauer & Brichall (1978); Rook

(1986)

4 Development

model

Using only one approach, e.g. the IID model, to develop LSS may create

development challenges since different teams develop different parts of

the system causing instability of the system architecture. A combination

Sommerville (2011); Nelson (2007); Yeo (2002);

McLeod & MacDonell (2011); Boehm (1988); Zmud

(1980)

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 29

Factor Description Source

of different models may be used to develop parts of the system depending

on the degree of uncertainty of the requirements

Table 2.3 Factors exacerbated in LSS projects

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 30

2.3.4 Global software development

RQ2 sought to identify the influencing factors on schedule duration, including, in

projects developing software in globally distributed environments. The reviewed

literature (see Table 2.4) on Global software development (GSD) suggests that, certain

factors can be intensified in GSD projects due to complexity in coordination and control

(Conchúir et al. 2009), and increased risk (Verner et al. 2014). Although Hossain et al.

(2009) argues that using some of the Agile practices may reduce coordination

difficulties exhibited on GSD projects; devising practical solutions to GSD problems is

still evolving (Šmite et al., 2010; Damian & Morita, 2006); and more empirical studies

are needed (Verner et al. 2012b ; Silva et al. 2010) to determine the factors influencing

project duration.

GSD refers to developing software through teams that are located in multiple sites, with

multicultural backgrounds, and distributed globally (Herbsleb & Moitra, 2001; Verner

et al. 2014). In this model, distributed teams collaborate to develop parts of the

software, coordinate the development activities (i.e. manage dependencies among

project tasks), and communicate extensively to progress daily project work (Herbsleb,

2007; Malone & Crowston, 1994).

It has been argued that GSD can enable organisations to: use specialised workforce

(Damian & Lanubile, 2004; Verner et al. 2014), reduce development cost (Damian &

Lanubile, 2004; Carmel & Agarwal, 2001; Nidiffer & Dolan, 2005; Verner et al. 2014),

increase speed of delivery through time zone difference in ‘round-the-clock’

development (Herbsleb & Moitra, 2001; Verner et al. 2014), and gain proximity to the

market (Herbsleb & Moitra, 2001; Damian & Lanubile, 2004). However, Conchúir et

al. (2009) have found that these benefits may not be fully realised. Verner et al. (2014)

rightly noted that ‘Organizations frequently consider offshore systems development in

the belief that projects can be completed at lower cost. While prices quoted by offshore

vendors may be very appealing additional risks must be considered when considering

offshore systems development. These risks have associated costs and typically result in

additional indirect costs which add to the total payment required for the delivered

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 31

system. However, such costs are seldom considered by companies at the outset of a

project, yet may become painfully apparent once the project is under way’ (page: 55).

Relevant past research include Herbsleb et al. (2001)’s modelling of the extent of

schedule delay in multisite development (UK, Germany, India) of software at Lucent

Technologies. The researchers used data from the project’s change management system

(used to register request for new, and change existing, functionality; and fixing defects)

to measure actual duration of project tasks, and used survey data (including

communication patterns and coordination activities); to compare same-site work to

cross-site work. The researchers found that work distributed across sites took longer to

complete compared to same-site work; and that the factors influencing the delay can be

indirect, such as: the size of the change required, the number of software components

affected by the change, and the number of people involved in carrying out the change.

They also found that, the latter to be the differentiating factor because of the challenges

in coordination and communication across sites.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 32

Factor Description Source

1 Coordination Activities distributed among people who are located at different sites

take longer to perform and complete due to difficulty in managing

uncertainties caused by interdependent tasks

Herbsleb & Moitra (2001); Mockus & Herbsleb (2001);

Herbsleb (2007); Kommeren & Parviainen (2007);

Nidiffer & Dolan (2005); Damian & Lanubile (2004);

Ebert & Neve (2001); Carmel & Agarwal (2001);

Verner et al. (2014); Herbsleb & Mockus (2003);

Herbsleb et al. (2001); Ramasubbu & Balan (2007);

Conchúir et al. (2009); Piri & Niinimäki (2011)

2 Communication Lack of effective communication among project teams at distance

may increase duration of performing project activities due to

restricted information flow across sites, indirect interaction, and lack

of contextual information

Herbsleb & Moitra (2001); Herbsleb & Mockus (2003);

Herbsleb et al. (2005); Kommeren & Parviainen

(2007); Nidiffer & Dolan (2005); Mockus & Herbsleb

(2001); Ebert & Neve (2001); Herbsleb & Grinter

(1999); Damian & Lanubile (2004); Carmel & Agarwal

(2001); Verner et al. (2014); Herbsleb et al. (2001)

3 System

integration

Unavailability of the software parts built by various teams,

breakdown of the technical environment facilitating the integration,

or integration activities taking place at various sites

Herbsleb & Grinter (1999); Battin et al. (2001);

Kommeren & Parviainen, 2007); Ebert & Neve (2001);

Nguyen et al. (2008)

4 Project

monitoring and

Management and tracking of project activities at distance might

become difficult, especially when tasks are split between sites and

Herbsleb et al. (2005); Kommeren & Parviainen

(2007); Damian & Lanubile (2004); Verner et al.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 33

Factor Description Source

control dependency and coordination are not accompanied by sufficient

communication, or different project plans are created at different sites

(2014); Carmel & Agarwal (2001); Holmstrom et al.

(2006)

5 Cost increase Project progress appears to be less efficient; in a study of Phillips’ 10

year experience with a dozen of GSD projects (Kommeren &

Parviainen, 2007) it was found that, up to 50% of the development

effort was spent on overhead (such as extra project management and

team coordination) and communication. Thus, the GSD for Phillips

was in practice two to three times more costly compared to collocated

development. This finding supports Verner et al. (2014)’s insight,

quoted above, that GSD projects may turn out to be more costly than

originally thought

Kommeren & Parviainen (2007); Conchúir et al. (2009)

6 Time-zone

differences

Time-zone differences across the distributed sites could create delays

in response time, and difficulties arise in transitioning phase products

across sites effectively. As will be seen in the course of this thesis

(Chapter 3) that reduced overlapping time across the sites delays

completing project activities

Conchúir et al. (2009)

Table 2.4 Factors exacerbated in GSD projects

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 34

2.3.5 Project risk management

The reviewed literature on project risk management (see Table 2.5) suggests that project

risk can affect project outcome (Tate & Verner, 1990). Project risk might be defined as

any event that constrains achieving project objectives, and can be managed through a

process of: devising an approach to manage risks, identifying risks, assessing the risks’

likelihood of occurrence and impact, devising a mitigation strategy, and controlling the

risk throughout the development lifecycle (Burke 2013, page: 328; Cadle & Yeates

2008, page: 260). The reviewed studies into project risk management (Table 2.5) can be

classified according to the purpose of the study.

Purpose Studies

1 Identify sources of uncertainty or risk

factors on projects

Shahzad & Al-Mudimigh (2010);

Shahzad et al. (2009); Zhou et. al

(2008); Boehm & Ross (1989)

2 Measuring and controlling project risk

and risk management strategies

Bannerman (2008); Taylor (2006);

Jiang et al. (2002)

3 Evaluation of risk identification methods Bakker et. al (2010); Feng et. al

(2009); Williams et. al (2004a);

Williams et. al (2004b)

4 Develop risk management frameworks,

tools, or techniques

Alberts & Dorofee (2010); Dhlamini

et al. (2009); Fan & Yu (2004); Rabbi

& Mannan (2008); Carr et al. (1993)

5 Prioritisation of project risks Sun (2009)

Table 2.5 Studies into project risk management

Whilst these studies put forth useful ideas about project uncertainties, they seem less

helpful in providing practical solutions to the challenges facing day to day project

management. For example, Bakker et al. (2010) peer reviewed risk management

literature from 1997 - 2009 and concluded that risk management is not being conducted

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 35

in practice as it has been proposed in research, so ‘less is known about what actually

happens inside the risk management process’ (page: 500). Taylor (2006) also argues

that there is a mismatch between the prescriptions of managing risk in the literature -

those of the Project Management Institute (PMI) - as opposed to the actual practice of

experienced project managers. Furthermore, recent systematic literature reviews on risk

mitigation in global software development (Verner et al. 2014) found that empirical

support for the risks identified in the reviewed studies was moderate to low, and that

risk mitigation advice was also limited.

Finally, while Carmel (1995) suggested that risk management (as opposed to risk) has

no effect on schedule duration, Tate & Verner (1990) demonstrated that the ongoing

management of risk and embedding risk mitigation strategies within the development

process (e.g. the selection of a development model, approach to data structure,

development tools, or mix of staffing) can reduce the risks of not meeting schedule,

requirements, staff, and user-acceptance targets.

2.4 Interaction within the development environment

This section summarises the literature reviewed related to RQ3:

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

Software project execution is concerned with controlling a schedule of the technical

tasks associated with developing the software; that is, the software development process

(Rook, 1986; Kitchenham, 1987). Interaction among the process elements (constituent

parts), however, can affect project outcome (Yamamoto et al. 2009; Nandhakumar,

1996). These elements could be human and nonhuman (Clegg et al. 1997), mutually

influencing one another (Akkermans & Helden, 2002), in a complex network of

interrelationships (Butler & Fitzgerald, 1999), within an enterprise development

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 36

environment (Petersen et al. 2014); where factors internal and external to the project are

interdependent (Scott & Vessey, 2002).

Therefore, examining the interaction among the process elements of software

engineering models may indicate how they influence schedule delay (Kim & Pan, 2006;

Butler & Fitzgerald, 1999). The complexity of such interactions is examined first

(section 2.4.1), followed by examination of how the interactions may operate within the

primary development models: waterfall (section 2.4.2), iterative and incremental

development (section 2.4.3), component-based model (section 2.4.4), lean software

development (section 2.4.5), and critical chain method (section 2.4.6).

2.4.1 Complexity of interaction in software projects

Software complexity has been defined as the interrelationship between the components

that make up software in terms of: the number and variety of components, the number

and variety of interactions, the number and variety of interdependencies, and the rate of

change of the system (Schneberger & McLean, 2003).

The preceding definition can be extended to the managing of the software project as a

whole to include human and nonhuman project elements (constituent parts) and any

other element participate in delivering the project. Hence, complexity of software

project management can refer to ‘the interrelationship between the project elements in

terms of: the number and variety of project elements (human and nonhuman), the

number and variety of interactions among project elements (that exert constraining or

empowering influences), the number and variety of interdependencies (that exert direct

or indirect influences), and the rate of change of the project situation/context’.

The reviewed empirical studies suggests that complexity can affect schedule duration

(Carmel, 1995), or project failure (Chua & Verner, 2005), and that not only causal

correlation between the factors, but also interrelationship between them can affect

project outcome, and that different factors can vary in their strength of influence at

different times (Nandhakumar 1996, page: 70).

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 37

2.4.2 Waterfall model

RQ3 sought examining the interactions that develop during project execution to

understand the influencing factors on schedule delay. The Waterfall model (Royce,

1970), one of the primary development models, is known for its development phases

following one another with the earlier phases feeding/flowing into the later ones, like a

waterfall. This approach facilitates interaction among project phases/activities through

(i) stage-gating, where project products are approved before moving to the subsequent

phase (ii) complete definition of requirements before design commences (Pressman,

2005).

Thus, the interaction among the elements of the process can be seen as sequential,

which make the model appropriate for projects that develop large software systems

where the user requirements are well defined, understood, and less prone to change

during the development process (Pressman, 2005). However, this sequential interaction

may introduce delays due to waiting on obtaining the necessary approvals (stage-gating)

before work can start in subsequent phases.

2.4.3 Iterative and Incremental development

Another primary development model is the iterative and incremental development (IID)

emerged in the 1950s (Larman & Basili, 2003) promising to allow changes to the

system design during the development process. Incremental development involves

going through all the Design, Build, and Test stages of developing a subsystem or set of

components, obtaining user feedback, and then going through the next increment and

incorporating the feedback (Sommerville, 2011; Gilb, 1985). Iteration usually means

creating different versions of the same software. Incremental in itself should not involve

changes to existing functionality: in practice it does as later increments often require

changes be made to earlier ones so that they inter-operate correctly; for example, the

development team may change requirements and design at any time, leading to a

mismatch between what is being worked on in each increment (Cockburn, 2008). This

indicates increasing interaction among the development phases and various increments.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 38

Since its inception, various implementations of the IID model have emerged such as (i)

the Evolutionary delivery (Gilb, 1988; Gilb, 1985), where the product is partitioned into

small delivery chunks encompassing the whole lifecycle stages (ii) the Phased

development, that partitions the development process into larger chunks (Graham,

1992), more like small Waterfalls (iii) the Incremental Build and Test, where the

software product is sliced at the build and test stages only to code and test the slices

incrementally, whilst retaining the full product in the requirements and design stages

(Graham, 1992). Thus, interaction among the process elements of an IID approach can

be seen as sequential and/or parallel (Moløkken-Østvold & Jørgensen, 2005), this

indicates increasing complexity in such projects as they require more management

control and monitoring (Redmill, 1992; Graham, 1992).

This increased interaction, though considered appropriate for large scale software

projects, was criticised for the time and effort taken for medium and small size projects

(Sommerville, 2011; DeMarco & Boehm, 2002). Thus, a variation of the IID model,

Agile, emerged in the 1990s favouring self-containing work activities, which attempts

to limit the interaction of the development team with the outside world; for example

through (i) embedding the client representative into the development team (ii) lessening

the constraints prescribed by the standard process models (iii) focusing on the current

design without accommodating future architectural changes. A variant of Agile, DSDM

Atern (Dynamic System Development Method) claims to exercise control of project

progress through ‘time-boxing’ i.e. focus on delivering on time by reducing scope if

necessary (Stapleton, 1997). However, limiting the interaction of the internal project

elements with the external surroundings cannot guarantee: the full-time availability of

the client within the development team (Sommerville 2011, page: 60; Boehm 2002,

page: 66), the effective representation of different views of all stakeholders

(Sommerville 2011, page: 60; Boehm 2002, page: 66; Cadle & Yeates 2008, page: 80),

or to overcome interaction challenges when developing software in a globally

distributed environment (Sommerville 2011, page: 60; Cadle & Yeates 2008, page: 80;

Boehm 2002, page: 67).

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 39

The numerous interactions among the project elements in an IID model increases the

complexity of the system being developed, which may introduce delay in the project

progress not immediately apparent, because the delay can be caused indirectly and by

multiple factors:

 The execution of more than one increment in parallel was not a feature of the

original IID and thus is not essential, but it does occur, and can be treated as a

variant of IID (Moløkken-Østvold & Jørgensen, 2005). In this case, user feedback

from one increment may not be incorporated in the subsequent increments.

 The developing software in the IID model can change frequently, so updating

project deliverables takes additional time leading to project delays (Sommerville,

2011).

 Coordinating project activities, among teams working in different stages, becomes

more difficult (Graham, 1992: Redmill, 1992), particularly when developing large

software systems through globally distributed teams (Sommerville, 2011), due to

communication problems where there are many interdependent tasks and changes

in the software (Herbsleb, 2007).

2.4.4 Component-based model

The interaction among the project actors (the quest of RQ3) in the CBD model is

different compared to the preceding two models. The component-based development

(CBD) reuses existing software components rather than developing the whole software

from scratch. The process model involves defining, developing, and integrating loosely

coupled components to build the software systems. The CBD can be characterised as

typically utilising independent components with specified interfaces, standards that

facilitate the integration of components, middleware that handles component

communication, and a development process which supports this (Sommerville, 2011;

Cadle & Yeates, 2008; Pressman, 2005). These software components may be located on

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 40

different computer machines and communicate through specified protocols (Distributed

components). Some of these components (called Services) may operate independently

of the platform they were developed for: thus a Service oriented system is a type of

CBD (Summerville 2011, page: 455). In a Service oriented architecture (SOA),

software components are stand-alone services, can execute on geographically

distributed computers, and provide information, computer resources, and/or data access

services to other components on request (Summerville 2011, page: 509).

A SOA system (Hustad & Lange, 2014) can be developed though a software product

line approach; which is a set of applications with common application architecture and

shared components, with each application specialised to reflect different requirements,

and can be reused to develop new applications. The new application may require

building new components, adapting some of the existing components, and/or

configuring existing components to meet the new requirements (Sommerville, 2011;

Greenfield & Short, 2003; Ebert & Neve, 2001). The new (SOA) application can be

developed by the product development team, whilst the common application

architecture and shared components are developed and/or modified by the product line

development team. It is possible for the common application architecture and shared

components to be developed using an enterprise architecture framework, which is a

generic structure (i.e. set of descriptions, methods, common vocabulary, and reference

models) that embed application domain knowledge (at organisation level) that can be

extended to create more specific subsystems (Winter & Fischer, 2006; Urbaczewski &

Mrdalj, 2006; Sommerville, 2011).

Thus, interaction among the process elements, in the CBD model, can be seen as a

request/response form of interaction, with the service provider accommodating requests

from multiple service requesters; and where a product line development approach is

used and which is based on an enterprise architecture environment, more and complex

interactions are expected (Hustad & Lange, 2014) between the various teams and

various systems and subsystems. These may introduce delay in the project progress, due

to:

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 41

 Increased complexity in coordination, communication, and control due to multiple

systems being developed and integrated, particularly in a globally distributed

environment (Petersen et al. 2014; Hustad & Lange, 2014).

 The need to develop adapters (code that facilitate integration between new and

existing components/subsystems) which may arise as additional work during the

Build stage (Sommerville, 2011).

 Multiple suppliers developing parts of the software (individual subsystems), where

they may want to modify the shared components simultaneously when integrating

their software within the enterprise system (Sommerville, 2011).

 Potential challenges with integrating the components that are sourced from outside

organisations, certification, or requirements trade-off (Sommerville, 2011).

 Management control may be reduced due to some of the subsystems being

developed by teams outside the immediate control of the project manager of the

product development team.

Recent relevant research include Hustad & Lange (2014)’s case study into a SOA

development within enterprise architecture environment in five projects at a large

Norwegian government organisation, in which four of the projects ran in parallel and

the fifth oversaw the integration and communication among the four projects. This was

a large and complex project involving multiple stakeholders across different locations

within Norway and aiming to create a common integration platform for the large

number of existing legacy systems and offer shared services to its stakeholder

organisations, using Agile practices. The researchers used interview for data collection

and allowed emergence of themes to make sense of what was happening on the projects

including development of visual models. The researchers found several factors that

increased the complexity of the projects studies, such as: coordination and

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 42

communication challenges with running the projects in parallel, difficulty in project

management and development method, and challenges with internal and external

competencies.

2.4.5 Lean software development

A more recent development approach, Lean software development (LSD), indicates yet

another type of interaction among the project actors compared to the conventional

models described thus far. The LSD is the application of Toyota’s product development

practices to software development process, which focuses on optimising the flow of

work items during project execution, increasing efficiency, and reducing waste

(Poppendieck, 2007). The LSD combines specific techniques, such as reducing waste

(e.g. unclear requirements or defects) with the IID model (Ikonen et al. 2010). The LSD

is similar to the production line approach to development (section 2.4.4) in focusing on

continuous flow of work.

The LSD uses a visual board (or Kanban) to track progress of developing software

components through the project phases; i.e. as the component is designed, then moved

to build, then to test, and one can check that a component is not sitting somewhere and

not picked up by the next phase (Middleton & Joyce, 2012; Ikonen et al. 2011). The

interaction between the phases is managed through the Queue and WIP mechanisms,

which indicate the amount of work waiting to be processed by the phase, and the

amount of work the phase is processing at the time, respectively. Thus, the interaction

among project elements in a LSD model can be seen as a regulating/dynamic one;

where the downstream phase only takes up work from the queue if it can process them

simultaneously to the ones being processed. This approach appears to bring to fore

factors obstructing progress, which may help in decreasing delay in the project progress

as it occurs.

Reviewed empirical studies applying the Lean Kanban approach in a software

engineering context indicate improvement in the delivery time (Staats et al. 2011), due

to the process being under the development team’s control rather than being influenced

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 43

by upstream or downstream phases or third parties (Middleton & Joyce 2012, page: 25).

As Kanban was not designed with software engineering projects in mind (Janes & Succi

2009), further academic research is needed to ascertain the practicality of the approach

in the field; in particular, its suitability to projects: developing LSS (Pernstål et al.

2013), executed in a GSD environment, or in a supplier-acquirer relationship since Lean

does not seem to work well with targets, milestones, and Gantt charts (Middleton &

Joyce, 2012).

2.4.6 Critical chain method

Another development approach is the Critical chain method (CCM), developed by

Goldratt (1997), which applies certain techniques to a development model, such as:

providing realistic estimate of task duration, focusing of the resource on one task at a

time instead of multitasking, and inserting time buffers at specified points in the

schedule to absorb slippage (Kerzner, 2013) - the latter two features appear to be similar

to the Lean Kanban approach described earlier. The CCM is also similar to the

production line approach to development (section 2.4.4) in its emphasis on continuous

flow of development work.

The CCM uses one estimate of duration and one estimate of contingency/additional

time, which can be a percentage of the overall critical chain tasks, to allocate buffers

prior to critical activities and just before the end of the project end date, which account

for the uncertainties associated with duration estimates (Kerzner, 2013). Thus, the

interactions among process elements, in CCM, can be seen as an adjusting one; since

the usage of the buffer means schedule overrun, which may indicate problems

obstructing progress, and help in decreasing delay in the project progress.

In the reviewed literature, the CCM has been praised for improving control on schedule

duration through embedding resource dependencies, unchanging critical path, and

embedding uncertainties of activity duration into schedule buffers (Leach, 1999)

compared to the time dependency view of critical path method (Herroelen et al. 2002).

Whilst, others have criticised the hype surrounding the CCM for it being merely an

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 44

integration of existing project management principles rather than a revolutionary

approach (Raz et al. 2003; Trietsch, 2005); other researchers argued that fundamental

differences exist between the CCM and critical path method (Lechler at al. 2005).

However, interim findings from an empirical study (Stratton, 2009) concluded that the

CCM’s weaknesses that were identified by the previous critics (above) did not appear as

significant in the case study results.

2.5 Summary

Organisations can take various approaches to understand the causes of project slippage

(section 2.3.2). Academics too have undertaken many studies to investigate factors

affecting project outcome (as summarised in Tables 2.1, 2.2, 2.3, 2.4, and the factors

listed in section 2.4.4). Key factors suggested by these studies relate to: project goal,

estimates, requirements, schedule, reporting project status, project risk, communication,

technology, change control, scope, staffing, customer, project characteristics,

development process, project management, product, interdependency, interaction,

coordination, component/system integration, time-zone difference, team size,

management control, and multiple suppliers. Despite these insights, software projects

are still delivered late and short of their objectives (McLeod & MacDonell, 2011;

Winter et al. 2006; Nasir & Sahibuddin, 2011) and researches such as Rainer (1999) and

Phan et al. (1995) concluded that it was difficult to confirm individual (Rainer 1999,

page: 150) or combined (Phan et al. 1995, page: 279) causes that explained schedule

delay.

Broadly, two observations can be drawn: first on the findings of the studies reviewed in

this chapter; second on the methods used to reach the findings.

Firstly, the studies reviewed in this chapter suggest that projects are complex social

entities with lots of different interacting components which could go wrong, so

identifying a single common cause of failure from the literature is difficult.

Furthermore, projects themselves are becoming more complicated as bigger and more

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 45

technologies/teams are integrated; for example, Hoegl & Weinkauf (2005) observed

inherent complexity in managing task interdependencies in multi-team projects that may

affect project slippage, through shifting of the responsibility from the teams themselves

during the concept phase of the project, to project/programme management during

project execution. Although Hoegl & Weinkauf (2005)’s research was conducted in the

automotive industry and mainly using questionnaires; their findings should be closely

attended to by the software engineering industry for its valuable insights. Perhaps,

considering the management of projects developing complex system of systems, such as

the one studied by Petersen et al. (2014) (section 2.3.3) within the project environment

studied by Hoegl & Weinkauf (2005) would illuminate the picture. Such situation

would increase the complexity and interaction that need extra coordination among the

project elements, and identifying one factor as causing schedule delay would be

misleading for it simplifying (abstracting) what might actually be happening on the

ground.

Although the example studies above, including Petersen et al. (2014), do not identify

the precise mechanisms by which coordination is carried out (or not), and does not

specifically look into the complexity inherent in managing projects, the research

presented in this dissertation does look at these. It will be seen in chapters 7 and 8 of

this dissertation that task interdependencies and weak coordination actually contribute

to schedule delay, and that the use of Actor-network theory (Chapter 8) to identify

project actors, the relationships among them, and the interactions influencing schedule

delay is a way of getting to grips with the complexities of project execution. This is

consistent with and supported by the studies alluded to in the preceding paragraphs.

Secondly, the research methods used by the studies reviewed in this chapter (sections

2.3 and 2.4) employed conventional approaches to project management research -

surveys, interviews or case studies (see Table 4.1 in Chapter 4). Although these

approaches have contributed widely to our understanding of both the internal factors in

managing projects, such as planning or control and the external factors, such as human

or organisational aspects; some researchers (e.g. Winter et al. 2006; Sankaran et al.

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 46

2013; Clegg, 2013; Söderlund, 2004; Cicmil et al. 2006; Morris, 2002) have argued that

the project management literature (including the authoritative PMI Body of Knowledge)

appear to have been unable to address the complexity of what actually happens in

practice.

The complexity of project management field was emphasised by Winter et al. (2006,

page: 641) ‘By far the clearest pattern to emerge from all the practitioner inputs to the

Network is the sheer complexity of projects and programmes across all sectors and at all

levels, encompassing all manner of aspects including the multiplicity of stakeholders,

and the different agenda, theories, practices and discourses operating at different levels

within different interested groups, in the ever-changing flux of events’. In addition,

Clegg (2013) noted ‘Project managers may not realize it but the most important aspects

of what they manage are meanings, interpretations, and politic of projects and not

merely the technical aspects’ (page: 18). Therefore, academic research should focus

more on project complexity in order to obtain a better understanding of the project and

project management field, which suggests that, different research approaches, beyond

the conventional ones, may be needed to enhance our understanding and address the

complexity inherent in project management research; Muller et al. (2013) argued that ‘if

we always do what we always did then we should not be surprised that we always find

what we always found’ (page: 24).

The preceding argument suggests that there is no one simple reason for schedule delay;

researchers need to attend to the complexity inherent in managing projects in order to

better understand the influencing factors on schedule delay; ‘the interactions and

interdependencies that tend to characterize our management systems will similarly

characterize the problems that beset such systems’ and that ‘no one thing seems to cause

difficulty, but the accumulation of simultaneous and interacting factors’ (Abdel-Hamid

& Madnick 1991, page: 8). Therefore, we need to:

1. Study empirical data of real projects - this is because schedule delay can be caused

by activities and events beyond the immediate control of the project, and that these

 Controlling software projects Chapter 2

Controlling schedule duration during software project execution 47

events may only emerge as a result of the interactions, internally as well as with the

external environment to the project, at play during project execution that cannot be

easily foreseen beforehand - the subject of Chapter 3 (A background to ABC).

2. Use different research approaches to the conventional ones used in project

management research (Winter et al. 2006), one which integrates various

perspectives of the project and examines controlling schedule duration within the

context of the interactions that emerge among project actors during actual project

execution; an approach that mixes different methods to bring out the multiple facets

of project execution - the subject of Chapter 4 (An appropriate research strategy).

A background to ABC Chapter 3

Controlling schedule duration during software project execution 48

3 A background to ABC

3.1 Introduction

Chapter 2 expressed the need to draw from empirical data in order to have better

understanding of controlling schedule duration during software project execution and

the way it influences schedule delay.

This chapter describes the context of the projects at ABC - a fictional name for a real

organisation - that provided the data for investigating the causes of schedule delay in

these projects. This will help to position the ABC organisation’s work processes within

the ranges of development practices recognised by both knowledgeable practitioners

and researchers, and that were the main subject of Chapter 2 on the existing literature.

When conducting empirical research in software engineering, scholars have called for

the provision of sufficient contextual information to ensure that the particularities of the

studied area are taken into consideration by other researchers and practitioners

(Kitchenham et al. 2002); and have emphasised that empirical studies in software

engineering should support ‘the advancement of the software engineering field through

an iterative learning process’ (Basili et al. 1986, page: 733). This chapter, therefore,

provides a detailed description of ABC’s work processes to equip the reader with the

necessary context needed to put the subsequent analyses in perspective. The chapter

describes the ABC’s software delivery model, how project execution was managed, and

reporting of project performance.

3.2 Software delivery model

ABC is a multinational management consulting, technology services, and outsourcing

company. It is one of the world's largest consulting firms and is a Fortune Global 500

company. The company has more than 300,000 employees, serving clients in more than

200 cities in more than 50 countries. ABC’s client base include more than three-quarters

of the Fortune Global 500. The company manages software development projects

through globally distributed teams, largely to lower development cost and win contracts,

A background to ABC Chapter 3

Controlling schedule duration during software project execution 49

and both develops custom solutions and configures package applications for its clients.

The projects investigated in this research developed and integrated large software

systems within an enterprise architecture environment on a ‘time and materials’ contract

to a public organisation in the United Kingdom (UK) using development teams in the

UK and India. The UK part of ABC is accredited the CMMI for Development

(Capability Maturity Model Integration - see Chrissis et al. 2011) level 3, whilst the

India part achieved level 5.

3.2.1 Enterprise development architecture

The architecture of the development environment is now described to illustrate how the

various parts of the enterprise system fit together - see Figure 3.1. As will be noted,

development of enterprise systems brings in technologies and constraints that

‘traditional’ development does not have to deal with, and that issues arising from such

projects that influence schedule delay would add to our academic knowledge.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 50

Consumer layer

S
o
ft

w
ar

e
d
ev

el
o
p
m

en
t

(D
es

ig
n
,
B

u
il

d
,
an

d
 T

es
t)

Process middleware layer

Service middleware layer

Legacy layer

C
o
m

p
o
n
en

t
ca

ta
lo

g
u
e

to
o
l

S
y
st

em
 d

ev
el

o
p
m

en
t

(o
p
er

at
io

n
,
se

cu
ri

ty
,
an

d
 g

o
v
er

n
an

ce
)

Consumer

system 1

Consumer

system 2

Consumer

system n

Legacy

system 1

Legacy

system 2

Legacy

system n

A
u
th

en
ti

ca
ti

o
n
 t

o
o
l

1

2
3

. . .

4

5

Service components

Process components

6

7
8

Legacy components

9

Consumer components

. . .

Figure 3.1 Logical architecture of the development environment

The projects studied in this research developed the Service and Process software

components indicated in Figure 3.1. This is very much like the Service oriented

architecture model described earlier, which sits on the existing enterprise architecture

environment of the Client, exhibiting increased complexity of interaction among the

software components/layers - see section 2.4.4 (Chapter 2).

See Table 3.1 for description of the constituents of the development environment, and

Table 3.2 for description of the steps of message routing through the enterprise system

architecture.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 51

System component Description

Consumer layer Consuming applications and systems that initiate calls to the rest of the system architecture

Process middleware layer Performs multiple business operations within a single business process function; enabling orchestration of Service

components within the Service middleware layer. For example, it can provide business rules or reuse of the process

across Consumers

Service middleware layer Mediates the invocation of legacy components within the legacy layer, and process components within the process

middleware layer. The legacy components generally store and access data in a way that is different from the presentation

requirements of the modern consumer components; and thus, the service components provide the formatting of data

structures that match the consumer requests with legacy responses through (i) validation to ensure that the inbound and

outbound messages conform to an agreed format (ii) transformation to change the format and structure of the passing

messages to accommodate the presentation format of the Legacy and Consumer systems (iii) routing to specify the

correct path of the message to pass through from the consumer to the legacy system/s

Legacy layer Legacy systems are typically master databases that provide data access to service components through a set of legacy

components

Authentication tool Enforces security policy on request messages coming from the consumer to the service and process components. It also

provides validation of message for integrity. This is an off-the-shelf application provided by an external vendor.

It is configured to operate within the development environment and the service and process components need to build

interfaces to be able to interact with the authentication tool. Although this tool was not a project deliverable, it was newly

introduced as part of the programme which the ABC projects needed to interact with, and which had to be configured by

the Product Line Development team (see section 3.3). Thus, the Authentication tool was managed by the Technical

A background to ABC Chapter 3

Controlling schedule duration during software project execution 52

System component Description

environment function (see section 3.3.9)

Component catalogue tool At development time, this is used for registering service and process components and configuring meta data. At runtime

it is also used as repository for dynamic lookup of component endpoints managed by the repository. This is an off-the-

shelf product provided by an external vendor, it is configured to operate within the development environment and the

service and process components need to build interfaces to be able to interact with the Component catalogue tool.

Although this tool was not a project deliverable, it was newly introduced as part of the programme which the ABC

projects needed to interact with, and which had to be configured by the Product Line Development team (see section 3.3).

Thus, the Component catalogue tool was managed by the Technical environment (see section 3.3.9)

Consumer components Software components hosted on the consumer layer. The consumer components are developed by projects managed by

ABC, but which are not in scope for analysis in this research

Service components Software components hosted on the service middleware layer. These components are developed by ABC project teams

Process components Software components hosted on the process middleware layer. These components are developed by ABC project teams

that are different from the ABC teams that develop the service components

Legacy components Software components hosted on the Legacy layer. The Legacy components are developed by the peer supplier, a

company equivalent to ABC that develop parts of the overall software for the client and whose components must work

with the components developed by ABC for the client in order for the enterprise system to function correctly

System development

(Operation, security,

governance)

Comprising the operations, security, and governance aspects of developing the overall system. Operations is concerned

with how to operate the overall architecture such as log monitoring and error handling; Security is concerned with setting

and enforcing security policy; and governance is concerned with governing the architecture layers and the components

A background to ABC Chapter 3

Controlling schedule duration during software project execution 53

System component Description

within them, such as managing versioning and lifecycle of the components

Software development

(Design, Build, Test)

Comprised the Design, Build, and Test stages for each of the architecture layers, which adopted a product line model. In

this approach the consuming projects define their data access requirements to the product line, which comprised (i)

Development architecture governance (Technical architecture, Solution architecture, and Technical environment) to

decide whether to reuse or manufacture new component (ii) Legacy product line to build/upgrade Legacy components

(iii) Service and process product lines to build/upgrade the middleware components (iv) the components then are handed

over to the consuming project

Double headed arrows

(Enterprise service bus)

Represent the Enterprise service bus transferring messages between various systems. Enterprise service bus is a software

medium (middleware) used to transport messages and data among various software applications that need to send/receive

information from other software applications within the Client’s enterprise wide system; and which is managed by ABC

Table 3.1 Constituents of the development environment

Step Description

1 In order for the consumer component, hosted on the consumer layer, to invoke the process component, hosted on the process middleware layer,

it first connects with the authentication tool which enforces security policy for the process component

2 The authentication tool invokes the component catalogue tool to retrieve end point details (i.e. the address) for the process component hosted

on the process middleware layer

3 The authentication tool then invokes the corresponding process component hosted on the process middleware layer

A background to ABC Chapter 3

Controlling schedule duration during software project execution 54

Step Description

4 The process component invokes the component catalogue tool to retrieve end point details for the service component hosted on the service

middleware layer

5 The process component invokes the service component hosted on the service middleware layer

6 The service component invokes the component catalogue tool to retrieve end point details for the corresponding authentication tool instance

responsible for enforcing security policy for the legacy component hosted on the legacy layer

7 The service component invokes the Authentication tool instance responsible for enforcing security policy for the legacy component hosted on

the legacy layer

8 The authentication tool invokes the component catalogue tool to retrieve the end point details for the legacy component hosted on the legacy

layer

9 The authentication tool invokes the legacy component hosted on the legacy layer

Table 3.2 System architecture message routing

A background to ABC Chapter 3

Controlling schedule duration during software project execution 55

3.2.2 Global software development at ABC

This section describes the global software delivery model adopted by ABC’s Product

Development team (described in section 3.3), and the interactions taking place during

project execution to exchange various project products. The product development (PD)

team were located at the UK client site, UK ABC development site, and India ABC

development site - see Figure 3.2. Earlier, section 2.3.4 (Chapter 2) outlined the key

challenges in global software development, and ABC’s situation is no different.

ABC development site

(India)

Test

manager

Build

manager

Test

manager

Build

manager

Project

manager

(development)

Project

manager

(client-facing)

Project

manager

(development)

Design

manager

Client site

(UK)

ABC development site

(UK)

Performance

report

Performance

report

Performance

report

Functional

design

Software

Functional

knowledge

Code defect

Design defect

Performance

report

Performance

report

Performance

report

Performance

report

Performance

report

Key

People

Product

Figure 3.2 ABC global software development

Coordination of work activities took place within a location and across locations.

Within a location, the Design, Build, and Test (DBT) managers managed dependency

among project activities with their corresponding teams and with the Project manager at

that location. Across locations, the Build and Test managers of a location coordinated

work dependencies with their corresponding peer in the other location, and with the

Design manager when needed. Recall from chapter 2 (section 2.3.4) that coordination at

A background to ABC Chapter 3

Controlling schedule duration during software project execution 56

distance become challenging in such environment, particularly when overlapping work

hours among the sites is limited. The time difference between UK and India was five

and half hours (9:00 in the UK is 14:30 in India), which made the overlapping work

hours limited to only three and half hours - see shaded area in Figure 3.3.

Figure 3.3 UK/India overlapping work hours

Communication among the team members located at the same site was mainly carried

out face-to-face. Communication between the teams located in the UK was carried out

using email, instant messaging, and teleconferencing. Communication among the teams

across countries was carried out using email, instant messaging, teleconferencing, and

video conferencing. There was some travelling between the countries for limited periods

of time to develop rapport among the teams. However, section 2.3.4 (Chapter 2) noted

communication challenges in globally distributed teams; and this is no different in

ABC.

Control of project progress was carried out through weekly tracking of project activities

among the Project managers and the DBT managers across locations, as is detailed in

section 3.4 in this chapter, using teleconferencing. Controlling the consistency of

project artefacts across ABC sites were maintained through using standard

configuration management tools such as (IBM’s Clear Case), while controlling

dependency and the alignment of project artefacts across projects and suppliers were

maintained through regular sharing of these artefacts across the projects (detailed in

section 5.2.3 - Chapter 5).

It may be noted in Figure 3.2 that, each of the DBT teams operate as one team but

distributed across different locations; for example, the functional design transitioned

from the Design manager to the UK Build manager in Figure 3.2 was also transitioned

to the India Build manager simultaneously over video conferencing. Similarly, the

software transitioned from the UK Build manager to the UK Test manager also involves

the India Build and Test managers - the diagram shows only one transaction to maintain

simplicity. Table 3.3 provides definition of the people within the PD team that was

shown in Figure 3.2.

India 09:00 10:00 11:00 12:00 13:00 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00

UK 09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 14:00 15:00 16:00 17:00 18:00

A background to ABC Chapter 3

Controlling schedule duration during software project execution 57

People Description Location

Project manager

(client-facing)

Manages the overall project (works for ABC) and oversees the client relationship. Captures high level

system requirements and manages the Design manager

Client site (UK)

Project manager

(development)

Manage the overall software development process, overseeing the UK and India Build and Test

managers to develop software. Both the UK and India development Project managers work for ABC

and report performance of work progress to the client-facing Project manager. In practice, the UK Project

manager develops the project plan and is responsible for the day to day project execution and managing

the Build and Test managers (in both UK and India). In contrast, the India Project manager provides input

to and agrees/disagrees with the project plan, and only intervenes in project execution when needed; for

example, when the India Build and Test managers need management support at non-working UK time

(e.g. the middle of the UK night)

ABC development

site (UK)

ABC development

site (India)

Design manager Manages the Functional Design phase; producing detailed Functional designs, through their team, to be

transitioned to the Build manager for coding. The Design manager also provides Functional knowledge of

the designs to the Test manager. The Design manager reports performance of work progress to the client-

facing Project manager

Client site (UK)

Build managers Manage coding of the Functional designs into software components, through their team, to be delivered to

the Test manager for testing. The Build manager also registers Design defects for the Design manager to

resolve. Whilst the UK Build manager is largely focused on the management aspects of delivery such as

tracking work progress, performance reports, and communication with Client, their India counterpart

manages development work on the ground with the Build team. The Build managers, report performance

ABC development

site (UK)

ABC development

site (India)

A background to ABC Chapter 3

Controlling schedule duration during software project execution 58

People Description Location

of work progress to the development Project manager

Test managers Manages the Test phase and is responsible for producing Test products, and testing the code through their

team. The Test manager also registers Code defects to be resolved by the Build manager. Whilst the UK

Test manager is largely focused on the management aspects of delivery such as tracking work progress,

performance reports, and communication with Client, their India counterpart manages Test activities on

the ground with the Test team. The Test managers report performance of work progress to the

development Project manager.

ABC development

site (UK)

ABC development

site (India)

Table 3.3 Definition of people within PD

A background to ABC Chapter 3

Controlling schedule duration during software project execution 59

3.2.3 Iterative and incremental development at ABC

ABC employed a customised version of the Iterative and Incremental Development

method (IID), where a project consisted of multiple increments - an increment

represents one development cycle comprising the Design, Build, and Test (DBT) stages,

which deliver a portion of the software functionality - see Figure 3.4.

Key

Design

Test

Build

Design

Test

Build

Design

Test

Build

P
ro

ject ex
ecu

tio
n

Project progress

Software

released

to users

Increment 1

Increment 2

Increment 3

Increment n

Design

Test

Build

Figure 3.4 ABC’s version of Iterative and Incremental Development

The vertical arrow ‘Project execution’ shows the increment cycle, where workflow

moves across phases; from design to build to test. The horizontal arrow ‘Project

progress’ shows workflow moving to the next increment of functionality within a

particular phase; for example, following completion of design work in increment 1; the

team started to design increment 2 of the functionality and so on. The same principle

applied to the build and test phases.

A problem controlling this version of IID (i.e. semi-parallel execution of increments) is

that at any one time, the functional project teams will be working on several increments

of the same project, which may influence the commitment each phase may be expected

to have. For example, the Test stage in increment 1 may require fixes of the code

developed by the Build stage in Increment 1, however, at the time of executing the Test

stage in Increment 1 (see the solid vertical line cutting through the phases), the Build

resources are working on building Increment 2 of the functionality and the Design

resources on designing Increment 3 (their respective primary focus) which may lead to

misalignment of objectives due to resource clashes that are physical constraints.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 60

Another problem controlling this version of IID is the management of change required

on multiple versions of a component in multiple increments so that they inter-operate

correctly; for example, a change request implemented on component a in increment 1

has to be replicated to the component in increment 2; similarly, changes in component b

in increment 2 need to be replicated on the component in increment 1. A project in ABC

comprises the Design, Build, and Test stages. Each stage comprises phases - see Figure

3.5.

Event

Functional

Design

phase

FD/TD

Transition

phase

Technical

Design

phase

Code

phase

Assembly

Test

phase

Integration

Test

phase

Project (Increment)

Events

Phase

Planned

finish date

Integration

Test

phase

Actual

finish date

Design Build Test

Figure 3.5 ABC’s Project composition

Figure 3.5 shows that an increment encompasses the following phases: FD, FD/TD

Transition, TD, Code, AT, and IT (Table 3.4 describes the phases). A phase contains

events, each of which has two attributes: ‘Planned occurrence date’ and ‘Actual

occurrence date’. An event is synonymous to a flag/status to mark the completion of an

activity or phase in contrast to milestone, which usually refers to the end of phases

where there is higher level management scrutiny to see if the products of the phase are

acceptable and to authorise work to start on the next phase.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 61

Phase Phase

acronym

Description Number

of people

Planned

duration (weeks)

Location

Functional

Design

FD Involves documenting detailed designs of how the future software

would be required to operate in an FD document. This was

produced by the ABC’s Design team with considerable input from

the Client. In addition to functional knowledge, the Client had some

technical expertise in the existing systems

3-6 4 Client site (UK)

FD/TD

Transition

FD/TD

Transition

The FD team (UK) handed over the FD document to the TD team

(India), which involved walking through the FD document to ensure

that the TD team are clear of the design statements made in the FD

documents

 1 ABC development

site (UK);

ABC development

site (India)

Technical

Design

TD The functional designs within the FD documents were converted to

technical designs within TD documents

3-5 2 ABC development

site (India)

Code Code Involved coding the application components, including the

necessary interfaces required to interoperate with various enterprise

system components. Code also involved Unit Test (or Component

Test) which verified whether the developed code matched the TD

document. UT involves testing the service and process components

(see Figure 3.1 in section 3.2) within their corresponding layers.

Stub components which replicated the behaviour of the

12-16 4 ABC development

site (India)

A background to ABC Chapter 3

Controlling schedule duration during software project execution 62

Phase Phase

acronym

Description Number

of people

Planned

duration (weeks)

Location

Authentication and Component catalogue tools took the place of the

actual tools

Assembly

Test

AT AT was managed in two distinct phases (i) AT Plan and Preparation

(ii) AT Execution where actual verification of the developed

software was carried out. AT is similar to UT in that, it involves

testing the service and process components (see Figure 3.1 in

section 3.2) within their corresponding layers against stub

components that replicate the behaviour of the Authentication and

Component catalogue tools. However, AT also tests the Service and

Process components with the Legacy components developed by the

Peer supplier

4-5 Plan and

preparation 4

Execution 4

ABC development

site (India)

Integration

Test

IT IT means testing the developed components across application

layers and across suppliers to ascertain the workability of the overall

enterprise system. IT was managed in two distinct phases (i) IT Plan

and Preparation (ii) IT Execution where actual verification of the

developed software was carried out. IT is similar to AT in that it

involves testing the service and process components (see Figure 3.1

in section 3.2) with the Legacy components developed by the Peer

6-8 Plan and

preparation 4

Execution 4

ABC development

site (India)

A background to ABC Chapter 3

Controlling schedule duration during software project execution 63

Phase Phase

acronym

Description Number

of people

Planned

duration (weeks)

Location

supplier. However, IT differs from AT in that, it also tests the

Service and Process components with the real Authentication and

Component catalogue tools rather than stubs

Table 3.4 ABC project phases

A background to ABC Chapter 3

Controlling schedule duration during software project execution 64

3.3 Managing project execution

ABC projects adopted a Component-based development approach (see section 2.4.4 -

Chapter 2). The projects investigated by this research developed enterprise middleware

systems rather than conventional applications, which adds a lot of complexity to the

development effort (Hustad & Lange, 2014) since it requires interaction and embedding

with existing products and an increased number of stakeholders as was seen in Figure

3.1 (section 3.2.1). In this model, three spheres can be distinguished - Client, Peer

supplier, and ABC - within each of which are further sub-processes - see Figure 3.6.

Acquisition

Product Line

Development

Product

Development

ABC

Product

Development

Peer

supplier

Client

software

product

requirements

product

requirements

software

common

application

architecture

software

integration

shared

components

Figure 3.6 ABC delivery model

The Client’s Acquisition process provided product requirements to the Peer supplier and

ABC. The Peer supplier’s Product Development process supplied software to the Client

and liaised with ABC to ensure product integration since they both delivered parts of

the overall system. The ABC’s Product Development (PD) process supplied software to

the Client, utilising the ABC’s common application architecture and shared

components, which was built by the Product Line Development process (PLD). The

PLD developed reusable components and managed the enterprise software system.

A detailed view of the ABC development activities is presented in sections 3.3.1 - 3.3.7

(the inner workings of PD), sections 3.3.9 and 3.3.11 (the workings of PLD), and

A background to ABC Chapter 3

Controlling schedule duration during software project execution 65

sections 3.3.8 and 3.3.10 (the interaction among PD and PLD). These process models

represent the underlying physical system and show the interaction among various

project participants during project execution. This context was drawn from the contents

of the project performance reports, which were the source of the research data used to

track progress of phase execution (see section 3.4).

Recall from section 3.2.1 that, two types of software were developed; service

components and process components. The service components are all custom

components specifically developed to meet the client’s needs; while some of the process

components are custom and others are modifications of package software (Summerville,

2011, pages: 6-7) obtained from external providers. The development process of both

the service and process components took the incremental approach described earlier in

Figure 3.4 (section 3.2.3). The configuration of the package software involved

performing gap analysis of the offered functionality by the package product against the

client needs prior to project execution and configuring the features of the package

software to enable integration with existing systems.

The preceding section (Table 3.4) introduced the phases; the following sub-sections get

into the details of the events occur during the execution of the phases. For description of

the functions and products appear in these sub-sections, see Tables 3.6 and 3.7

respectively at the end.

As will be seen throughout these sub-sections that, each phase was dependent on the

products produced, and/or services provided, by other phases or functions external to

the PD, in order to carry out and progress the activities comprising the phase. The

complexity of such interactions and interdependencies were noted in Chapter 2 (sections

2.4.1, 2.4.3, 2.3.3, and 2.3.4), and the ability to see the physical details at the level

provided here gives a clearer idea of what is going on, which helps in putting the

analyses we conducted in the subsequent chapters into the context presented here.

3.3.1 Functional Design

The key events occur in producing FD document is shown in Figure 3.7.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 66

Functional Design

A
B

C
 F

u
n
ct

io
n
al

 D
es

ig
n
 (

F
D

)
C

li
en

t

HLD submitted

HLD read

FD drafted

FD peer

reviewed

FD issued for

workshop

Joint workshop

conducted

FD updated

FD issued for

review

FD issued for

sign-off

Review

comments

provided

FD reviewed

FD updated

FD

 signed-off

Is FD as

expected?
No Yes

FD base-lined

Start

End

No

Defect

management

Yes

Functional

Design

environment

working?

Environment

defect registered

Figure 3.7 Functional Design event sequence

At the start of the phase the FD team, under the leadership of the Design Manager, read

the HLD (High Level Design) and the Design environment is checked for workability;

if it is not working, an Environment defect is registered on the Defect management

system (see section 3.3.8), otherwise, the FD documents are drafted, peer reviewed and

issued for Client review prior to the joint workshop (face-to-face) to discuss and agree

the details of the design. Following the workshop, the FD document is updated to reflect

the requirements captured in the workshop and issued for Client review. The Client

feedbacks are incorporated and the FD issued for sign-off. If the designs do not reflect

the Clients requirements at this stage, appropriate changes are made upon feedback, and

the FD is reissued for sign-off. This cycle continues until the FD is to the satisfaction of

the Client, in which case it is signed-off and base-lined. Changes on the designs after

this point would have to be made according to the Change Control procedure (section

3.3.11). The Design manager reported progress of work activities (performance report)

weekly to the Project manager.

3.3.2 FD/TD Transition

The key events occur during the FD/TD Transition is shown in Figure 3.8.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 67

FD/TD Transition

A
B

C
 T

ec
h
n

ic
al

 D
es

ig
n
 (

T
D

)
A

B
C

 F
u

n
ct

io
n
al

 D
es

ig
n

 (
F

D
)

FD submitted

FD read

Joint transition

meeting

conducted

Clarifications

requested

Clarifications

provided

Transition

accepted

Clarification

satisfactory?

No

Yes

FD change

required?

No

FD change

requested

Yes

FD change made

Is FD as

expected?

Yes

No

End

Start

Figure 3.8 FD/TD Transition event sequence

The FD/TD Transition phase starts typically with the signed-off FD document being

submitted by the FD team (located in the UK) to the TD team (located in India), who

after reading the FD convene with the FD team in joint transition meeting, typically

over video conference facilities; walking through the FD documents to ensure that the

TD team are clear of the design statements made in the FD documents. Following the

meeting, the TD team may seek further clarifications, which would be provided. If the

clarifications are not satisfactory, the request for clarification goes around until they

meet the satisfaction of the TD team. If no further FD changes are required as a result of

these clarifications, FD transition is accepted, the decisions made are recorded in an

FD/TD Transition document, and the phase ends. All FD changes are subjected to the

Change control procedure (section 3.3.11). The Build manager reported progress of

work activities weekly to the Project manager.

Section 3.2.2 noted communication challenges across sites, which can be seen here

when the FD team attempt to explain the functional design statements (based on the

context of business functions) to the TD team (who lack that context due to lack of

A background to ABC Chapter 3

Controlling schedule duration during software project execution 68

training) through video screens, and the email follow ups to clarify specific points in

order to bring the FDs to the satisfaction of the TD team. These challenges may be

further exacerbated by the, limited, 3.5 overlapping work hours across the sites (see

Figure 3.3).

3.3.3 Technical Design

The key events occur in producing TD document is shown in Figure 3.9.

Technical Design

P
ee

r
su

p
p
li

er
A

B
C

 T
ec

h
n
ic

al
 D

es
ig

n
 (

T
D

)
C

li
en

t

No
Yes

Is TD as

expected?

TD base-lined

TD updated
TD issued for

workshop

Review TD

TD issued for

review

TD drafted

Joint workshop

conducted

TD

 signed-off

TD updated

TD peer

reviewed

TD issued for

sign off

Review

comments

provided

Initial interface

definitions

End

Start

Yes

No

Technical

Design

environment

working?

Defect

management

Environment

defect registered

Figure 3.9 Technical Design event sequence

At the start of the TD phase, the Design environment is checked for workability, if it is

not working, an Environment defect is registered on the Defect management system

(section 3.3.8); otherwise, the TD document is drafted. If a TD is drafted based on a yet-

to-be signed-off FD, rework might be required. At the time of drafting the TD the initial

interface definitions are received from Peer supplier, which will be used to align the TD

with the Peer supplier components to ensure integration across suppliers. The TD is

peer reviewed, and issued for Client review prior to the joint workshop (via video

conference), where the details are discussed and agreed upon. Technical oriented Client

A background to ABC Chapter 3

Controlling schedule duration during software project execution 69

representatives from the same Client group attended the FD workshop will be reviewing

and attending the TD workshop (no FD representatives would be present).

Following the workshop, the TD is updated and issued for review, when further

comments may be provided, and the TD is further updated and issued for sign-off. If the

TD is not to the satisfaction of the Client, for example their comment is not

incorporated accurately, the review and update cycles continue until agreement is

reached; at which point the TD is signed off and base-lined. It is possible that as a result

of this process the FD could be amended. The Build manager reported progress of work

activities weekly to the Project manager.

3.3.4 Code

The key events occur during the Code phase is shown in Figure 3.10.

Code

A
B

C
 C

o
d

e
P

ee
r

su
p

p
li

er

ESB

configuration

components

coded

Application

components

coded Reference data

components

modified

UT data

prepared

Unit Test (UT)

scripts created

UT scripts and

UT data peer

reviewed

UT passed?No

Application

code/ESB code/

Reference data

issue/Message

enhancement

issue?

Application

code issue

ESB

configuration

 issue

Reference

data issue

Yes

Final interface

definition

Application code

peer reviewed

ESB

configuration

code peer

reviewed

Message

enhancement

components

modified

Final software

changed?
NoYesWork revised

Message

 issue

Start

End

Yes

UT executed

Added to

Regression Test

suite

No

Defect

management

Environment

defect registered

Build

environment

working?

CR coded
Change

Control

UT environment

working?

Yes

No

Figure 3.10 Code event sequence

At the start of Code activities, the Build environment is checked for workability; if it is

not working, an Environment defect is registered on the Defect management system

(section 3.3.8) for the Technical environment manager to resolve, otherwise coding

activities commence.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 70

Developing application software to integrate with the existing enterprise system in

ABC, involved: (i) coding the application components (ii) coding the ESB (Enterprise

Service Bus) configuration components (iii) coding reference data components (iv)

coding message enhancement components. Coding the application components (Service

and Process) involved, converting the TD to software components. Coding the ESB

configuration components involved enabling the application components to

communicate with the ESB (see Figure 3.1 - section 3.2.1). The codes in the application

and ESB configuration components were then peer reviewed. This was followed by

modifying the enterprise reference data to include the newly required items (e.g. for a

data item with code ‘UoB’ might be decoded as ‘University of Brighton’), and

modifying the enterprise message enhancement components to include the response

messages specified by the Client (e.g. an error message automatically output from the

system might be ‘ISM09873645’ and generate an ‘enhanced message’ that the user can

understand such as ‘Name must be specified to access the individual’s record’).

Towards the end of the phase, the Peer supplier releases to the Build team their final

interface definitions to align artefacts for integration. These were compared to the initial

versions provided during the TD phase. If changes were discovered, the ABC Code was

revised to integrate the two sets of software. Otherwise, work started on Unit Test (UT)

scripts. Unit Test (or Component Test) verified whether the developed code matched the

TD document. Unit Test in ABC is part of the Code activities performed by the Build

team.

Developers then prepared UT data replicating the data in the operational environment.

UT scripts (this was recorded on the UT script document that records the test conditions

and expected/actual results) and Test data were then peer reviewed, UT environment

checked for availability, and UT scripts were executed with the stub components if the

UT environment was operational, otherwise environment defect was registered.

After successful unit testing, software components were added to the Regression Test

suite for future Regression testing. If defects were detected, the four areas of component

development were analysed to ascertain the location of the defect, and the coding cycle

was repeated. Finally, during or towards the end of the Code phase, Change requests

(CR) might arise. The request for coding a CR comes from the Change Control function

(section 3.3.11), and results in those changes to be incorporated in the current

A background to ABC Chapter 3

Controlling schedule duration during software project execution 71

development activity. The Build manager reported progress of work activities weekly to

the Project manager.

3.3.5 Assembly Test Plan and Preparation

Figure 3.11 shows the events of AT Plan and Preparation phase, where some activities

produced and obtained approval for the Test approach, and other activities arranged for

Test environment setup and Test data preparation needed for Test execution.

Assembly Test – Plan & Preparation

P
ee

r

su
p
p
li

er
T

es
t

d
at

a
A

B
C

 A
ss

em
b
ly

 T
es

t
C

li
en

t

FD read

Test scripts

written

Test approach

drafted

Test approach

reviewed

Test approach

issued for

workshop

Test approach

reviewed

Test approach

updated

Test approach

issued for review

No Yes
AT approach

 signed-off

Joint workshop

conducted

Test data

creation

requested

Test data build

requested

Test data created

and built to Test

environment

Test approach

updated

Test approach

issued for sign-

off

Is AT approach

as expected?

Review

comments

provided

AT approach

base-lined

Start

End

Test data created

built to Test

environment

No
AT environment

working?

Environment

defect registered

Defect

management

AT environment

requested

Yes

Figure 3.11 AT Plan and Preparation event sequence

The AT Test scripts were written based on the FD documents. The Test approach was

then drafted, reviewed by Project manager, and issued for Client review prior to a joint

workshop, where the content of the document was discussed in detail and agreed. The

Test approach was updated to reflect the meeting outcome, and issued for Client’s

review. The document was then updated with comments provided, and issued for sign-

off. If the document was not to the Client’s expectation, for example a Test scenario

does not accurately reflect how the system would be used to carry out business

functions, it would go through the review and update cycle until it is satisfactory, at

which point the approach was signed-off and base-lined.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 72

An AT Test environment was requested, and if it was working, requests for Test data

creation (based on the AT approach) and build to the Test environment are made.

Otherwise an environment defect was registered. The Test data manager then created

Test data and built it to the ABC Test environment, in coordination with the Technical

environment manager. The Peer supplier also created Test data and built it to their own

Test environment. Test data was typically copied from operational data, so that testing

can replicate the operational environment as closely as possible. The Test manager

reported progress of work activities weekly to the Project manager.

3.3.6 Assembly Test Execution

The key activities of the Assembly Test Execution phase are shown in Figure 3.12.

Assembly Test Execution

A
B

C
 A

ss
em

b
ly

 T
es

t

Test execution

performed

Test execution

passed?

Yes

No

Code defect

registered

Added to

Regression Test

suite

Retested

Issue analysed

for possible

functional issues

Test

environment

working?
Yes

Test scenario defect

Design defect

Design defect

registered

Defect

Management
Issue resolved?

Yes

NoStart

End

Design defect /

Test scenario

defect?

Change

Control
CR tested

No

Environment

defect registered

Defect

management
Defect

management

Test scenario

fixed

Figure 3.12 Assembly Test Execution event sequence

At the start, the AT Test environment is checked for workability, if not working, an

Environment defect is registered on the Defect management system (section 3.3.8) for

the Technical environment manager to fix; otherwise Test execution activities

commence. Test execution involves the manual running of a program - XMLSpy - that

A background to ABC Chapter 3

Controlling schedule duration during software project execution 73

runs the developed components in the right message routing order through the different

application layers (as described in Table 3.2 - section 3.2). If the test is successful, it is

added to the Regression Test suite to enable future automatic retesting. Otherwise, Code

defects are registered for the Build manager to fix (Defect Management - section 3.3.8).

Defect correction and retesting is repeated until the component passes testing.

However, if the defect was not a Code issue (i.e. the Code was implemented according

to the Technical/Functional designs), then the defect is analysed (by the Test

manager/team) for possible functional issues. For example, the Design might be flawed,

or the Test scenario might be misunderstood or vague and thus require clarification. If it

is a Test script defect, the defect is fixed and the component is retested, otherwise a

Design defect is registered for the Solution architecture manager to fix (Defect

Management - section 3.3.8). It is possible that during the AT Execution, need arises to

test coded Change requests. Changes made to requirements during testing require

change to the Design documents, change to the Code, and the changed Code to be

tested. The Test manager reported progress of work activities weekly to the Project

manager. At the end of the Test execution phase, the Test manager submitted a Test

completion report to the Client for approval.

3.3.7 Integration Test

The events that take place in the plan and preparation activities for IT are the same as

the AT Plan and Preparation phase described in section 3.3.5, the difference would be in

the type of data and functional scenarios that would be prepared for testing. Thus, with

exception of replacing the term AT in section 3.3.5 with the term IT (integration test),

there is no value in repeating the details here. Similarly, the events occur during IT

execution are the same as the ones occur in AT execution (described in section 3.3.6),

the difference would be in testing the developed code with the Authentication and

Component catalogue tools as stated in Table 3.4 (section 3.2.3) and the creation of a

daily report of test execution results sent from the Test manager to the Client detailing

the scenarios passed/failed and blockers to progress. The remainder of the process is the

same as for AT. The IT team are the same staff who carried out the AT execution. The

Test manager reported progress of work activities weekly to the Project manager. The

Test manager submitted a Test completion report to the Client at the end of the Test

phase.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 74

3.3.8 Defect management

Defect management include registering, prioritising, and resolving defects, using the

IBM’s Clear Quest tool, which can be accessed by the teams in the UK and India.

Registered defects were given priority rating (i.e. the ‘severity’ which indicates level of

urgency for resolution) within the tool; the relative priority of defects with the same

severity level was established outside the tool; an extract (spreadsheet) of active defects

is taken at the end of the day (UK time) and circulated for prioritisation on the ‘Daily

defect call’.

The daily defect call was a daily teleconference meeting took place at 9.15am UK time

(see Figure 3.3 - section 3.2.2) to consider and prioritise defect reports of code and

technical environment and design queries. Hence, this meeting is attended by the

Technical environment manager (UK), Fix manager (one in the UK, another in India),

and the Solution architecture manager (UK); and were then dealt with through the

processes described in sections 3.3.9, 3.3.10, and 3.3.11 respectively. Unresolved

defects appear on the next extract (spreadsheet) of active defects, considered at the next

Daily defect call.

Section 3.2.2 noted potential challenges in coordinating activities across sites; for

example, a test environment defect registered 9:00 India time (see Figure 3.3) which

may be obstructing execution of Test scripts, means that the Test team in India have to

wait until 14:30 (9am UK time) for the UK based Technical environment team to start

looking at the issue; i.e. more than half a working day is already lost in India at least.

3.3.9 Technical Environment

Located in the UK, the key events occur within the Technical environment function is

shown in Figure 3.13.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 75

Technical environment

A
B

C
 T

ec
h
n
ic

al
 e

n
v
ir

o
n
m

en
t

Environment

creation /

Environment

defect / Code

deployment?

Request

analysed

Start

 Technical

environment /

Development

environment ?

Environment

defect

Development

environment

creation

Design / Build /

Test?

Design

Build

Test

Technical

environment

Development

environment

Design

Build

Test

Design / Build /

Test?

Design

environment

provided

Design

environment

configured

Design

Test data

uploaded to

Build

environment Build

Build

environment is

setup

Build

environment

provided

Test

environment

provided

Test data

uploaded to Test

environment

Assembly

Test

Integration

Test

Test

environment is

setup

Defect analysed

Technical

environment

defect fixed

Design

environment

defect fixed

Build

environment

defect fixed

Test

environment

defect fixed Build

environment /

Test

environment?

Code

deployment

Build

environment

Test

environment

Fixed/new Code

deployed into

Build

environment

Fixed/new

deployed Code

into Test

environment

Connection

created to Peer

supplier Test

environment

Defect

Management

Tech. env.

defects/requests

prioritised on the

Daily Defect call

Figure 3.13 Technical environment event sequence

Three types of environment defects/requests arise from the prioritised issues on the

Daily defect call. Firstly, request for setting up a development (Design, Build, or Test)

environment. Setting up the Test environment includes building test data on the

environment and establishing connection with the Peer supplier’s test environment for

integration testing.

Secondly, request to fix environment defects which could be defects in the development

environments or defects in the Technical environment. Defects in the development

environment may need coordination with the relevant teams. For example, defects in the

Test environment may be due to inconsistency in the Test data specified by the Test

team. However, coordinating this activity may be challenging across sites (see section

3.2.2) due to the limited overlapping work hours (3.5) across sites.

Thirdly, request from the Build manager to deploy a build (code) into the Build and/or

Test environments at the end of India day (12:30 UK time - see Figure 3.3). This means

that if the build lacked certain packages needed to complete the deployment, the

Technical environment manager has to wait until next day 14:30 India time (9:00 UK)

A background to ABC Chapter 3

Controlling schedule duration during software project execution 76

to get the relevant packages and restart the Code deploy process; i.e. more than half a

day lost in India waiting for the code availability. The Technical environment manager

reported progress of work activates weekly to the PD Project manager and to the

management of the Technical environment function.

3.3.10 Fix management

Fix management refers to fixing defects arising from testing the developed Code; it is

carried out by the Fix team, who form a subset of the Build team that developed the

components and have reasonable knowledge of them - see Figure 3.14.

Fix Management

A
B

C
 B

u
il

d

Code defect
Design /

Test

 defect

Defect rejected

Code / Design /

Test defect?
Defect analysed

Code fixed

Build made of

the fixed Code

to deploy into

Test

environment

Build made of

the fixed Code

to deploy into

Build

environment

Tested/

Retested

Test passed?

No

Yes Build number

issued of the

fixed Code to be

retested by Test

team

Defect analysis

reviewed

Code defects

prioritised on the

Daily Defect call

Defect assigned

to owner

Fix

peer reviewed

Assembly

Test

Start

Technical

environment

Technical

environment

End

Integration

Test
Assembly

Test

Integration

Test

Figure 3.14 Fix Management event sequence

The prioritised code defects from the Daily defect call are analysed, and a defect is

rejected if it is not considered a code defect as the Code correctly implements the

Technical designs; i.e. treated as design or test script defects. The Client only intervenes

in this process if change in the requirements/design is needed. The analysis of the Code

defect is reviewed by the Fix manager to ensure that this is truly is a code defect, then

the defect will be fixed, peer reviewed, and a build is made of the fixed code and

deployed into the Build environment for testing, using the Code deploy tool within the

A background to ABC Chapter 3

Controlling schedule duration during software project execution 77

Technical environment function. The fixed code is then tested by the Fix team, and if it

fails, it goes through the cycle of fixing. When the code passes retest a build is made

and deployed into the Test environment using the Code deploy tool. Finally, the build

number of the fixed code is issued to the Test team to be used for actual AT or IT Test

execution. The Build manager reported progress of work activities weekly to the Project

manager.

As the fix activities are carried out in India and deploying code fix is carried out using

the Code deploy tool which is managed by the UK team, coordination challenges can be

amplified by time zone difference when the code deploy process fails to complete

successfully. For example, the India team typically deployed fixes (it was possible to

trigger the tool from India) at the end of India day (see Figure 3.3) for the code to be

ready for testing the following day. However, if the tool fails to complete the process

overnight, the India team has to wait until 14:30 the day after for the Technical

environment team to first look at the issue at 9:00 UK time; i.e. more than half a day is

lost in India - Gorton & Motwani (1996) noted that time zone differences can hinder

progress, if not managed correctly.

3.3.11 Change Control

The Solution architecture function within ABC is located in the UK and is responsible

for controlling changes to software under development during project execution. Each

project in ABC has its own dedicated Solution architecture team that manages change

control procedures and ensures the sound application architecture of the software. The

Solution architecture team take ownership of the FD documents straight after sign-off.

Changes required to the software under development, including Design defects

corrections are managed through a formal Change Control procedure - see Figure 3.15.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 78

Change Control

C
o
n
su

m
er

C
li

en
t

A
B

C
 S

o
lu

ti
o
n
 a

rc
h
it

ec
tu

re

Change request

made

Design defect

Design

 query

External CR

CR defined
Cost of the CR

estimated

CR assessed for

approval by

CCB

CR approved?

No

CR prioritised

and scheduled

for

implementation

FD updated

with CR

Yes

Change request

made

Request

analysed

Registering of

External CR

requested

 Design query /

Design defect /

External CR /

Catch-all CR?

Reviewed by

Sol. Arch

manager

Require Client

approval?
Yes No

Coding

of CR monitored

Testing of CR

monitored

Query responded

to

Design defect

analysed

Design defects/

queries

prioritised on the

Daily Defect call

Start Build
Assembly

Test

Integration

Test
End

Start

Start

Build

Integration

Test

Assembly

Test

CR

implemented?

Yes

End

No

No

Catch-all CR

submitted

Is Catch-all CR

inline with final

interface

definitions?

Catch-all CR

No

Yes

Change Requests can be initiated

throughout the project execution

lifecycle up to near the end of

Integration Test

Is Design defect

realised from

the query?

Yes

No

Converted to

Internal CR

Figure 3.15 Change Control event sequence

Change request is essentially a request for changing the software during project

execution. There are five types of change request, and sources may vary - see Table 3.5.

Design queries my result in the identification of design defects, and if they do not

require Client approval for the change, because for example the design does not

conform to the original requirements, it triggers creation of internal CR which will be

prioritised and scheduled for implementation (i.e. fixed in the relevant FD, coded, and

tested). If Client approval is required, it triggers creation of external CR, which requires

going through the formal change control board (CCB) procedure from the Client side to

authorise budget - before the CR is scheduled for implementation. A catch-all CR

submitted by the Client and which does not conform to the final interface definitions

triggers the creation of external CR because it incurs a cost.

The process of CR implementation involves agreeing with the Build and Test managers

a timeline, within the existing project schedule, to implement the changes. The Solution

architecture team update the FD documents with the changes (as owner of the base-

lined FDs), monitors/track progress of implementing the changes in the Build and Test

phases, and any delays are reported by the Solution architecture manager to the UK

A background to ABC Chapter 3

Controlling schedule duration during software project execution 79

Project manager in the weekly project performance meetings. Coordinating the effort of

coding and testing of the CRs across sites (the Solution architecture manager located in

the UK, and each of the Build and Test managers located in India) would be difficult

due to communication challenges and limited overlapping work hours as was noted in

section 3.2.2.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 80

Type of change Description Possible source

Design query Question about a design statement in the FD documents seeking clarification on the intention

or interpretation of the requirements

Build manager;

Test manager;

Solution architecture manager

Design defect Fault identified in the Functional design after the FD document was signed-off Build manager;

Test manager;

Solution architecture manager

External CR Change request initiated by the Client - external to the ABC’s Product Development team;

and/or change need to be made but which was not in the original requirements

Client

Consumer

Catch-all CR Change request from the Client capturing all the changes already made to the Design and

Build artefacts and agreed via email between the Client and ABC PD team, but which have

yet to be approved by the Change control board (CCB) due to the time it takes to go through

the CCB process. This is aimed at rebase-lining project artefacts to the latest changes

Client

Internal CR Change request that does not require Client approval, and can be implemented prior to

informing the Client of the change. This is because the change does not constitute actual

modification of the original requirements

Solution architecture manager;

Build manager;

Test manager

Table 3.5 Type and source of change

A background to ABC Chapter 3

Controlling schedule duration during software project execution 81

Function Description Representative

Assembly test As described in Table 3.4 (section 3.2.3) Test manager

Build As described in Table 3.4 (section 3.2.3) Build manager

Client Represents the Client’s information system function, who commissioned the development of the software

product

Client

Code As described in Table 3.4 (section 3.2.3) Build manager

Consumer Represents the ABC projects that develop the consumer components in Figure 3.1 (section 3.2.1) Consumer

Functional design As described in Table 3.4 (section 3.2.3) Design manager

Integration Test As described in Table 3.4 (section 3.2.3) Test manager

Peer supplier Represents the Peer supplier’s information system function, who provide software to the same Client as

the ABC company; and whose software (legacy components in Figure 3.1) must integrate with ABC's

software

Peer supplier

Solution

architecture

Represents ABC’s Solution architecture function that ensures sound application architecture and, through

change control procedures, safeguards against arbitrary changes to the developed software detrimental to

existing functionality

Solution architecture

manager

Technical design As described in Table 3.4 (section 3.2.3) Build manager

Technical

environment

Represents ABC’s Technical environment, a supporting function that creates live-like systems’

environments for various product development projects to use in their development work

Technical

environment manager

Test data Represents ABC’s Test data management function that creates test data and arranges for uploading them

on the Test environment (i.e. Test data build) for various product development projects

Test data manager

A background to ABC Chapter 3

Controlling schedule duration during software project execution 82

Table 3.6 ABC development functions

Product Description

Build environment The integrated development environment in which writing of the code is carried out

Code The code developed by the Build manager and is being tested by the Test manager and their team

Code deploy tool Custom developed software, used to automate the process of deploying the newly developed code (a Build) to the

Test environment for testing. This tool has a web interface and is used by the Build manager remotely as well as the

Technical environment manager (who originally developed and manages the tool), to perform code deploy activities

Defect The malfunction of project artefacts; e.g. Design, Code, Code deploy tool, Technical environment, or Test script

defects

Defect management system The IBM’s Clear Quest tool used for registering, prioritising, and resolving defects

Development environment A generic term referring to the Design, Build, or Test environment. The development environment is a combination

of hardware and software dedicated to a particular project that supports Design, Build, or Test activities

FD/TD Transition document A document created by the Build manager and maintained in collaboration with the Design manager to record key

transition discussions/decisions made between the FD and TD teams and any changes that was made on the FD

documents as part of completing the transition

Fix The fix of product defects; e.g. fixing the Design, Code, Code deploy tool, Technical environment, and Test script

defect

Functional design document A document describing how the functional requirements are to operate when the software is built

Functional Design A CASE (Computer-aided Software Engineering) tool used to generate the FD documents. The tool allows creation

A background to ABC Chapter 3

Controlling schedule duration during software project execution 83

Product Description

environment of TD documents from the FD documents following certain changes that need to be made by the TD team. The tool

is typically expected to be established in around two weeks, necessary emails to request such environments go out

prior to starting phase execution

HLD An input to the FD phase produced by the Client; it stands for High level design and documents the Clients’

requirements of the system to be developed

Interface definition A machine-readable description of a service component of how it can be called, what parameters it expects, and what

data structures it returns

Performance report The progress status of executing planned activities produced by a phase manager and submitted to their

management; e.g. the Design, Build, or Test activities produced by the corresponding phase manager to the Project

manager

Regression Test tool A custom developed tool used to automate the regression testing activities of the developed code, to ensure that

subsequent fixes of the code has not broken the correct parts of the code

Technical Design document A document describing how the software will be developed

Technical Design

environment

Part of the same CASE tool that was used during the FD phase (see ‘Functional Design environment’) used to create

the TD documents. The tool is expected to carry forward the FD details

Technical environment The combination of hardware and software that integrates a particular development environment with the rest of the

enterprise system with which the development effort needs to interact with during the development process, such as the

Enterprise service bus

Test approach A document produced at the beginning of the Test phase detailing what and how the testing would be carried out

A background to ABC Chapter 3

Controlling schedule duration during software project execution 84

Product Description

Test completion report A document produced at the end of the Test phase detailing what testing was carried out and what defects are carried

over to the production environment

Test data Data manufactured and used to perform testing of the developed code; the data is manipulated by the developed code to

replicate the functioning of the live/production system. This include the Test data prepared by ABC’s Test team as well

as the Test data prepared by the Peer supplier's Test team to allow for integration testing of the code developed by both

ABC and Peer supplier

Test data build The uploading of the manufactured Test data into the Test environment and executing some test scenarios to determine

the correct behaviour of the Test data (pipe-clean) prior to the actual start of the Test execution phase. This include the

Test data build by ABC’s Test team as well as the Test data build by the Peer supplier's Test team

Test environment The hardware and software on which testing of the developed code will be carried out, and any other software with

which the developed code interacts with during testing of the new and/or the fixed code. This includes UT

environment, AT environment, and IT environment

Test scripts Test conditions and expected results written to guide the Test execution activities; e.g. UT scripts, AT scripts, and IT

scripts

Table 3.7 ABC development products

A background to ABC Chapter 3

Controlling schedule duration during software project execution 85

3.4 Reporting project performance at ABC

This section describes the composition of ABC’s project performance reports, because

following the completion of the projects, these reports were used as data source for the

quantitative and qualitative analyses conducted by this research. Thus, the project

performance data were collected by and for project participants rather than specifically

for this research; and that the data were used for assessing project progress against the

plan by ABC project management, rather than for project post implementation reviews

such as the one advocated by Doll et al. (2003).

The managers of the Design, Build, and Test stages within PD (UK and India) presented

schedule performance data against baseline schedule (see section 2.2 - Chapter 2) on

their work progress at the weekly project performance meeting with project

management (UK and India); a project monitoring and control mechanism in ABC.

These meetings were held face to face at each location and through teleconferencing

connecting UK and India. Schedule performance was considered the key measure of

delivery success within the PD; and so all effort was focused on meeting schedule

targets. Figure 3.16 shows an example performance report for a phase; one of these was

produced by each of the phase managers every week.

Integration Test started Wk1 and all components blocked by defect XXXXNNNNNNNN. On Shore Test

Lead recovering from Surgery. Code Fix is required for Operating System X L Integration.

Test scenarios Planned

occurrence

date

Actual

occurrence

date

Planned

occurrence

date

Actual

occurrence

date

Planned

occurrence

date

Actual

occurrence

date

Test scenario 1 14.Feb 14.Feb 15.Feb 15.Feb 16.Feb

Test scenario 2 14.Feb 14.Feb 15.Feb 16.Feb

Test scenario 3 14.Feb 14.Feb 15.Feb 16.Feb

Components provided Components tested with Legacy

components

Components tested with

Authentication and Component

catalogue tools

Event tracking

Textual explanation

A background to ABC Chapter 3

Controlling schedule duration during software project execution 86

Figure 3.16 Project performance report in ABC - example

In this report, four elements can be distinguished:

3.4.1 Textual explanation

This part of the report contained textual narrative, a free text area for the Test manager

to explain the causes of lack of progress and highlight issues that needed higher

management support/attention. The textual information of ABC project performance

reports became the source data for the qualitative analysis in this research (see section

7.2.2 - Chapter 7).

A close reading of the textual explanation in the example report (Figure 3.16) indicates

that the writer (i.e. Test manager in this case) assumes that the readers (i.e. Project

managers) have considerable background knowledge of the projects and omits generally

known contextual information within ABC projects. For example, in the final statement

‘Code Fix is required for Operating System X L Integration’ it is not clear what role

Metric Value

EV 4

PV 6

BAC 9

SPI 0.67

PC 44.44%

Numeric performance

indicators

Graph

A background to ABC Chapter 3

Controlling schedule duration during software project execution 87

(who?) is responsible for providing the code fix. This is because, the textual information

was written for an audience of busy senior Project managers of ABC and the Client,

both extremely familiar with the contextual background of the projects since many

projects had been undertaken within the same programme for the past decade of their

relationship. Consequently, these texts used a shorthand means of conveying messages.

3.4.2 Event tracking

Event tracking was used to capture basic progress data; an event tracking sheet (see

Figure 3.16) was created by the Test manager to track planned and actual achievement

of events in the phase. For example, if the event ‘Components tested with Legacy

components’ for ‘Test scenario 1’ was planned to occur on the 15
th

 Feb (in bold), and

today is actually 15
th

 February; the Test manager would enter the value of 15
th

 Feb in

the ‘Actual occurrence date’ if the work was completed, otherwise it was left blank

indicating an uncompleted activity. The first event on the tracking sheet typically

tracked submission of project artefacts from the previous phase which this phase was

dependent on as input to carry out its activities. Figure 3.16 shows that this was the

event ‘Components provided’ by the Code phase so that they can be tested.

The focus of the project management was on tracking the actual finish date of activities;

through marking the event as achieved, rather than their start date or mid progress. An

activity was only marked as finished when it was 100% complete (see section 2.2.3 -

Chapter 2). Hence even if the activity or phase was started it would not appear as such

on the tracking sheet. It would instead be stated on the Textual part of the report that the

phase was started. Thus, the ‘Planned occurrence date’ and the ‘Actual occurrence date’

of the first event on the Event tracking sheet, and the ‘Planned occurrence date’ and the

‘Actual occurrence date’ of the last event on the sheet became the scheduled start day,

actual start day, scheduled finish day, and actual finish day of a phase, and that were

used as variables in the quantitative approach in this research (see section 5.3.2 -

Chapter 5) alongside the dependency/precedence relationships among the phases

indicated by the first event on the tracking sheet.

A background to ABC Chapter 3

Controlling schedule duration during software project execution 88

3.4.3 Numeric performance indicators

The basic progress data captured above could now be turned into performance

indicators that were more meaningful to the managers of the project. These were used

to show the rate of progress against the planned targets on a weekly basis. Of these, SPI

is relevant to this research as it described target achievement of the schedule (see

section 5.3.3 - Chapter 5). Schedule Performance Index (SPI) was used to establish

what had actually been achieved against what was planned to achieve weekly, by

calculating the ratio of EV to PV (SPI = EV divided by PV) - see section 2.2.3 (Chapter

2). The practice at ABC was for PV (planned value) to be a count of the completion

dates that should have been met on a particular day. The EV (earned value) was a count

of the completion dates that had actually been achieved. An SPI value greater than 1

meant that project progress was ahead of schedule, an SPI less than 1 indicated that

progress was behind schedule. Hence an SPI of 1 indicated that progress was on

schedule. BAC (budget at completion) is the overall estimated project cost, that is, the

total PV for the project; and PC (percentage complete) is the amount of work that has

been completed relative to the overall estimated project cost.

3.4.4 Graph

The date entries of the Event tracking sheet are converted into units, which are then

counted to generate the EV/PV graph for visual comparison. Note that ABC calculated

EV and PV differently from the conventional way (see section 2.2.3 - Chapter 2), by

using count of events rather than financial value, so they actually are event PVs and

event EVs; consequently, the SPI value calculated in the previous section would be

more accurately called ‘event SPI’; i.e. a locally-tailored SPI.

3.5 The position of ABC’s work practices

This chapter has provided context to the ABC organisation, aiming to position the

ABC’s approach to software delivery in light of the standard practices (discussed in

Chapter 2) and facilitate putting the subsequent analyses in perspective. The material in

this chapter suggests that the ABC’s methodology to control projects varies from the

standard model, and understandably for good reasons:

A background to ABC Chapter 3

Controlling schedule duration during software project execution 89

 ABC focused on events delivery in performance meetings as in this way the cost

will take care of itself (section 3.4.2).

 ABC focused on speed of delivery using a version of the iterative and incremental

development model with intensive parallel development (section 3.2.3).

 ABC used narratives to explain performance indices since the quantitative data

alone was not sufficient to guide project participants of what is happening (section

3.4.1).

Furthermore, the ABC’s management of project/phase execution (section 3.3) reveal

some notable challenges that may cause schedule delay, for example:

 In some cases, phase events appear to be highly dependent, some of which are

outside the particular phase’s control. The implication is that a small delay in one

event may trigger a chain of undesired events/delays that might require time

unaccounted for and which may delay the overall schedule. Section 3.3.3 is a case

in point, where potential rework would be required of a drafted TD document that

was based on a not yet signed-off FD (e.g. if sign-off was delayed in the first

place), because as the FD gets signed-off, the TD has to be revisited to ensure any

potential last changes is reflected in the TD.

 Some events may appear as potential bottleneck during project execution, where the

smooth flow of phase execution is disrupted; for example, the Client (section 3.3.1)

not signing-off a phase product unless it absolutely reflects their ‘version of truth’,

may delay base-lining the FD, delay starting off the FD/TD Transition, and in turn

delay in starting the TD...etc.

 The time zone differences in globally distributed teams, although perceived to work

to the advantage of the teams as providing 24 hour software development effort;

A background to ABC Chapter 3

Controlling schedule duration during software project execution 90

showed signs of actually hindering progress if not managed properly, as the

example, of the Code deploy process failing overnight, presented in section 3.3.10.

The above observations sounded interesting and a more detailed investigation was

required in order to further identify causes of schedule delay in software projects. The

next chapter puts forward the research methodology employed in this thesis to examine

ABC projects more closely.

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 91

4 An appropriate research strategy

4.1 Introduction

Chapter 3 described the software development processes at ABC and the mechanisms

ABC used to analyse their project performance data and control their projects. Chapter 2

described the mechanisms proposed in the reviewed literature on how project

performance could be analysed. This chapter now describes the methodology used in

this research to analyse the project data of ABC.

This research adopted a mixed methods research (MMR) approach to enquiry;

combining quantitative (QUAN) and qualitative (QUAL) approaches. This chapter

presents the MMR approach along with literature reviewed on methods of software

project management research. The QUAN and QUAL approaches, their analyses and

results are presented collectively in chapters 5, 7 and 8 respectively for easy reference.

The chapter starts with exploring methods of project management research in light of

our understanding of the nature of project or project management in order to devise

suitable research methodology to investigate it. This is then followed by the works of

this research programme in its research methodology and design. Finally, the

methodological position of this research is summarised.

4.2 Methods of project management research

Chapter 2 (section 2.5) argued that despite the contribution of the traditional approaches

to project management research - surveys, interviews or case studies (see Table 4.1 for

examples - which classifies some of the studies surveyed in Chapter 2 according to the

research methods used) - academic research should adopt research approaches beyond

the conventional ones in order to enhance our understanding and address the complexity

inherent in managing projects; quoting Muller et al. (2013) that ‘if we always do what

we always did then we should not be surprised that we always find what we always

found’ (page: 24).

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 92

As such, useful approaches to project management research may include: the

development of models which illuminate the complexity of projects such as the

interactions between human and nonhuman actors (Muller et al. 2013; Winter et al.

2006); develop concepts that reflect the lived experiences of practising project managers

(Cicmil et al. 2006; Winter et al. 2006; Muller et al. 2013); employ different research

approaches that examine the collective influence of the internal and external factors on

project outcome (Clegg, 2013; Muller et al. 2013; Winter et al. 2006). Table 4.2

summarises some of these approaches proposed by researchers.

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 93

Traditional methods Studies

1 Questionnaire Cerpa & Verner (2009); Tarawneh et al. (2008); Sauer et al. (2007); Procaccino & Verner (2006); Procaccino

et al. (2006); Yeo (2002); Carmel (1995)

2 Interview Pertersen et al. (2014); Tarawneh et al. (2008); Moløkken-Østvold & Jørgensen (2005); Taylor (2006);

Rainer (1999); Abdel-Hamid & Madnick (1991); Curtis et al. (1988)

3 Past documents Patanakul (2014); Rainer (1999); Ebert (2007)

4 Theme development Taylor (2006); Curtis et al. (1988)

5 Causal relationships/

frameworks

Patanakul (2014); Cerpa & Verner (2009); Lehtinen et al. (2014); Sauer et al. (2007); (Ebert, 2007); Lu et al.

(2010); Yeo (2002); Abdel-Hamid & Madnick (1991); Curtis et al. (1988); Malcolm (1990); Alberts &

Dorofee (2010); Dhlamini et al. (2009); Fan & Yu (2004); Rabbi & Mannan (2008); Marvin et al. (1993)

6 Content / numeric analysis Patanakul (2014); Cerpa & Verner (2009); Sauer et al. (2007); Ebert (2007); Rainer (1999); Tarawneh et al.

(2008); Yeo (2002)

7 Case study Patanakul (2014); Pertersen et al. (2014); Moløkken-Østvold & Jørgensen (2005); Patanakul (2014);

Lehtinen et al. (2014); Ebert (2007); Rainer (1999); Abdel-Hamid & Madnick (1991); Curtis et al. (1988);

Malcolm (1990); Ebert & Neve (2001)

8 Literature survey McLeod & MacDonell (2011); Nasir & Sahibuddin (2011); Lu et al. (2010); Bakker et. al (2010)

9 More than one method Lehtinen et al. (2014); Tarawneh et al. (2008); Rainer (1999)

10 Retrospectives Nelson (2007); Ebert (2007)

Table 4.1 Traditional methods of software project management research

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 94

Useful methods Acronym Description (source)

Actor-network

theory

ANT Used to study the influence of human and nonhuman actors, which interact to achieve some goal. ANT has been

described as ‘a useful methodology to organizational research’, and that ANT’s unique approach ‘enables it to shed

light on complex ties that so far escaped organization theory’, and ANT ‘offers significant potential in exploring how

projects are managed’ (Er et al. 2013, page: 164-165). The ANT’s approach in avoiding applying existing

classifications to the research problem can help to ensure that research findings more accurately mirror the experience

of practitioners (Er et al. 2013)

Activity theory AT Used to study human activity, where a subject (individual or group) performs activity to achieve an object (purpose).

The focus of AT is on the link (activity) between the subject and the object which could be carried out by tools; since,

the tool gives clue as to how the activity was carried out; AT has been used to study human computer interaction (Er

et al. 2013)

Action research AR An approach that helps the practitioner to generate knowledge about a social system while, at the same time,

attempting to change it (Er et al. 2013, page: 177). It can be useful in project management research where there is a

need to investigate social implications from project processes; working collaboratively to find practical solutions to

problems arising in a project; and in situations where major project changes need to be implemented (Er et al. 2013)

Grounded theory GT A set of procedures used for analysing empirical data in order to develop categories or theory of process, sequence,

and/or interaction of the area being investigated, from the participants’ perspective (Glaser & Strauss 1967, page:

114). The GT techniques can be useful in project management research to develop categories of phenomena that

emerge during project execution, and reveal the processes by which these phenomena influence project outcome

Simulation SM Defined as the ‘abstraction of reality for a purpose’ (Leigh 2013, page: 200), has been described as useful in project

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 95

Useful methods Acronym Description (source)

management research where interfering with project activities for the purpose of research impedes the normal course

of project progress (Leigh, 2013). Leigh (2013) argues that the ‘system dynamics’ approach (see next) grew out of

specific application of simulation, focusing on certain structural and conceptual features of simulation that remain the

same (page: 199). Computer simulation offers ‘the ability to experiment and the generation of insight into the

dynamic performance of complex systems’ (Williams 2005, page: 456)

System dynamics SD A set of conceptual tools that enable understanding of the structure and dynamics (i.e. interdependence, mutual

interaction, information feedback and circular causality) of complex systems (Oorschot, 2013). This approach is

thought to be useful to research multiple and interacting processes, finding correlation between possible causal

factors and performance outcomes (Oorschot, 2013; Lyneis & Ford, 2007; Robertson & Williams, 2006)

Mixed methods

research

MMR An approach to research that combines multiple methods in a single design. It can be argued that in the case where a

research program investigates complex phenomena; need arises to use research methodologies that match that

complexity in order to generate knowledge of any use. Leigh (2013) noted that ‘Operational contexts of

contemporary organisations are becoming increasingly complex, uncertain and turbulent, creating unfamiliar research

challenges for which familiar research methodologies do not offer appropriate support’ (page: 199). Furthermore, it

has been argued that ‘a complex phenomenon often needs more than one method to investigate it adequately’

(Cameron & Sankaran 2013, page: 383)

Table 4.2 Useful methods of software project management research

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 96

The research described in this dissertation used a MMR (see Table 4.2) approach

combining both quantitative (project metrics) and qualitative (see GT and ANT in Table

4.2) methods. The literature reviewed on using MMR in software project management

research is summarised in section 4.2.1 (next). The literature reviewed relating to

metrics used by project managers to control schedule, as well as the use by researchers

in empirical studies of past projects was summarised in Chapter 2. The literature

reviewed on using GT and ANT in software project management research are reserved

for sections 6.4 and 6.5 (Chapter 6) respectively. The rationale for the choice of

methods is provided in section 4.4 (research design).

This research can be seen as an example of empirical software engineering research

(ESER), the study of the application of software engineering principles in the real world

and its influence on the complex interaction of the people, processes, and technology.

ESER scholars such as Sjøberg et al. (2007) and Basili et al. (2006) encourage

researchers to use a variety of research methods and techniques, including the

combining of qualitative and quantitative approaches to enquiry that Ciolkowski &

Briand (2006) and Münch (2006) also advocate. (Leszak, 2006) addresses the need to

examine software project management issues of developing large software systems with

globally development teams from a granular level using real project data. Kitchenham,

(2006) calls for using case studies of genuine industrial software engineering projects in

order to address the issues being investigated. Empirical studies adopt both quantitative

and qualitative approaches to enquiry, though it has historically been associated with the

former (Basili et al. 2006).

Some past empirical research appeared to be particularly relevant. Lehtinen and his

colleagues’ work, published in series of papers (Lehtinen et al. 2014; Lehtinen &

Mäntylä, 2011; Lehtinen et al. 2011), investigated Agile software engineering projects

of various sizes in four medium-size software companies in Finland. The research

analysed problems including schedule delay and developed models that depict the

causes of software project failure. The multiple case study approach used root cause

analysis (RCA) to collect data. Existing categories of causes were borrowed from

literature (such as ‘process area’ or ‘cause type’), and were then combined using

Grounded theory techniques to identify further categories of interconnected causes that

crossed over process areas. These causes were analysed quantitatively to identify

feasible process improvements. The researchers acknowledged their use of RCA was

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 97

prone to the subjective judgment of case participants. The researchers attempted to

triangulate the data with interviews to confirm causes were ‘correct and accurate’. The

authors contended that the research methods used allowed them to ‘construct the story

behind the data’ and concluded that ‘more empirical research is needed to better

understand the complicated mechanisms and relationships of causes leading to software

project failures’ (page 642). Although Lehtinen and colleagues’ study does not claim to

have used a mixed method approach; it would appear to have integrated quantitative and

qualitative approaches to enquiry in order to make sense of the complexity inherent in

software projects.

Lehtinen and colleagues’ study is similar to the works presented in this thesis: both

studies investigate software development projects, combine case study research with GT

analysis, and examine causes of software project delay. The differences between the two

studies, however, can be seen in that: the Lehtinen and colleagues’ study investigated

Agile projects, developing medium size software, and in collocated team environment

in one country; whilst the work presented in this research investigated software projects

that adopted the iterative and incremental model, developing large software systems,

with globally distributed teams. Furthermore, Lehtinen and colleagues’ study used

interviews to collect textual data for their subsequent qualitative analysis, and

questionnaires to collect numeric data for their subsequent quantitative analysis.

Contrasted with this research, both the numeric and textual data were parts of the same

project performance reports that were created by and for project participants in ABC,

and that mixed method approach was used to analyse the data. Hence, this research

extends Lehtinen and colleagues’ findings by offering insight into a set of factors

influencing schedule delay in a different project context.

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 98

4.2.1 Mixed methods in software project management research

The use of mixed methods research (MMR) in empirical research is not new

(Tashakkori & Teddlie 2010, pages: 804 and 808; Creswell, 2009) and it has been used

in various disciplines, such as education, health and medicine, and management studies

(Ivankova & Kawamura 2010, page 593). The use of MMR in empirical software

engineering research is not new either: Ivankova & Kawamura (2010) noted that MMR

has been specifically referred to as early as 2002. However, earlier studies advocated

combining the QUAN and QUAL methods in empirical software engineering research

(Seaman, 1999), which is also advocated by Sjøberg et al. (2007).

In a literature survey, of studies published between the years (2000 - 2008) on the

adoption of MMR in empirical research, Ivankova & Kawamura (2010) report that the

use of MMR was beneficial and produced meaningful and credible findings. One

example was the use of MMR to analyse the activities of the users of virtual reality

application software (Feldon & Kafai, 2008). This quantified the behavioural patterns of

the study participants, and showed the frequencies and types of interactivity by the

participants, at the same time using a qualitative approach to provide the context of the

interactions (Ivankova & Kawamura 2010, page: 600).

A reason for considering the MMR to study a phenomenon could be its complexity;

necessitating the use of a wider range of methods rather than one method alone

(Ivankova & Kawamura, 2010). Managing the development of large software systems

with globally distributed teams is a complex undertaking that involves not only

technology, but people, processes, and its environments. For the researcher to make

sense of what is happening during project execution they may need to integrate many

different methods and techniques (Coleman & O’Connor, 2007; Seaman, 1999). Earlier,

this thesis (section 2.4.1- Chapter 2) noted the complexity inherent in developing

software systems due to the number and variety of project elements, interactions,

interdependencies, and the rate of change of the project context. Table 4.3 lists example

empirical studies that used MMR in software project management research. The

remainder of this chapter describe this research’s methodology and design.

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 99

Purpose of use How it was used (source)

Study the degree of adoption of project risk

management and the barriers to its use by

information technology project managers

A two phase research approach was adopted. An exploratory phase to develop an understanding

of the research problem through semi-structured interviews then coding the qualitative data and

generating categories, followed by an explanatory phase using a survey to confirm or refute the

findings (Kutsch & Hall, 2009)

Investigate coordination and communication

activities in globally distributed teams;

examining the influence of the individuals’

locus of control, i.e. an individual’s perception

of their control in a work situation in terms of

the degree to which their effort does actually

affect work outcome

Used a survey questionnaire to test the effect of locus of control on team member perception of

role conflict, followed by case study interviews to gain an understanding of the issues identified

in the survey facing individuals. The author reported that the integrative approach helped

understanding the individual’s locus of control orientation and its impact on the team member’s

motivation in a distributed work environment (Lee-Kelly, 2006)

Investigate the perceived benefits of

implementing standardised project

management (STPM) practices in improving

project performance

Combined qualitative and quantitative approaches in three phases. A qualitative phase used case

study with interviews and observations to develop categories of factors that make STPM effort

successful. This was followed by a quantitative phase that used the STPM categories to develop

hypotheses and perform hypothesis testing using a survey questionnaire; followed by interviews

to enrich and refine the findings qualitatively (Milosevic & Patanakul, 2005)

Research the impact of steering committees on

project performance and the creation of value

Used case study (to analyse the specific functions of steering committees), followed by multilevel

surveys (interviewing senior managers at organisational level and distributing questionnaire to

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 100

Purpose of use How it was used (source)

from project management capabilities project managers at project level). The authors concluded that the complex and diverse nature of

the research problem required multilevel research approach (Lechler & Cohen, 2009)

Understand how corporate strategy is

implemented via projects

Combining case study research, semi-structured interviews, and past documents (Morris &

Jamieson, 2005)

Update the APM Body of Knowledge 4
th

edition

Using structured interviews, web questionnaires, and past documents to assess the influence of

the relationship between the project manager’s leadership style and project type on project

success (Morris et al. 2006)

Develop models of how corporate strategy is

implemented through projects, and investigated

the diffusion and adoption of new product

development tools in Singapore

Combining qualitative case study (to generate hypotheses) and quantitative survey (to test

hypotheses); the researchers reported that new understanding was generated as a result of this

combination (Chai & Xin, 2006)

Table 4.3 Mixed methods approach in project management research

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 101

4.3 Methodology

This research adopted a mixed method (Creswell & Plano Clark, 2011) methodology

drawing from both the QUAN and QUAL methods of enquiry to identify the

influencing factors on schedule delay. This approach was appropriate because the

research data, consisting of project performance reports, contained both numeric data

and text. It became clear that one approach alone would not meet the needs of the

research. The early research, analysing the numeric data, enabled the identification of

the project phases with the most delays, but not the causes of delay. For example,

analysing Project 1’s numeric data showed that the Integration Test phase in increment

4 - IT (Inc4) contributed most to delaying Project 1; that is, 42 days (81% of the

project’s 52 days total delay). Analysing the textual data revealed phenomena leading to

delays during the execution of the phase; such as the large number of the defects found

and delays in their correction. This was followed by the tracing of the interactions

among the project actors (human and nonhuman) during project execution which made

apparent the influence of project actors on schedule delay. In this way, integrating the

QUAN and QUAL approaches enabled identifying the influences on schedule delay.

Several different terms describe research methods that use multiple approaches in a

single design: multimethod, multi-strategy, multiple method, mixed methodology,

mixed research, and mixed methods - see for example Creswell & Plano Clark (2011),

Tashakkori & Teddlie (1998), Teddlie & Tashakkori (2010) and Robson (2011).

Teddlie & Tashakkori (2010, page: 19) proposed the following to be a common

definition of such an approach, which was developed by Johnson et al. (2007, page:

123):

‘Mixed methods research is the type of research in which a researcher or team

of researchers combines elements of qualitative and quantitative research

approaches (e.g., use of qualitative and quantitative viewpoints, data

collection, analysis, inference techniques) for the broad purposes of breadth

and depth of understanding and corroboration’

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 102

Cameron (2013) has neatly distinguished between the variants of this approach.

According to Cameron, multiple-method designs can be categorised as either

‘Multimethod research’ or ‘Mixed methods designs’ (page: 78):

 Multimethod research is where the researcher adopts one approach to enquiry in a

single study, either Quantitative or Qualitative. Then within this approach more

than one method of data collection or analysis is used: for example; in a Qualitative

study, both interviewing participants and searching archived documents.

 Mixed methods designs mean more than one approach to enquiry is adopted in a

single study, both Quantitative and Qualitative: for example using Case study

(QUAL) and Non-Experimental statistical (QUAN) approaches in the same study.

This design has further two sub-types:

o Mixed model research - mixing of the QUAN and QUAL can occur in many or

all stages of the study (i.e. forming research questions, selecting methods, data

collection, analysis, interpretation).

o Mixed method research - mixing of the QUAN and QUAL occurs only at the

selecting methods stage of the study; where the data collection and analysis

according to both the QUAN and QUAL approaches take place in sequence or

in parallel; i.e. in the other stages of the study the QUAN and QUAL remain

separate.

This research falls under the mixed method research - i.e. last category (in its sequential

approach). There are a number of reasons for mixing research methods - see Table 4.4

for examples (adapted from Creswell & Plano Clark 2011, pages: 62-63; Venkatesh et

al. 2013).

Reason for mixing Description

1 Triangulation Seeks convergence and corroboration of results from the

different methods

2 Complementarity Seeks elaboration, enhancement, illustration, and

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 103

Reason for mixing Description

clarification of the results from one method with the results

from the other method

3 Completeness Bringing together a more comprehensive account of the area

of enquiry

4 Explanation One method is used to help explain findings generated by

the other method

5 Offset Combining the quantitative and qualitative methods to offset

the weaknesses in each of the methods and draw on the

strengths of both

Table 4.4 Reasons for mixing research methods - example

The mixed method methodology in this research was to explain the findings generated

by the quantitative approach with the one generated by the qualitative approach.

The overall approach in this research was exploratory, remaining open to any insights

the empirical data might provide rather than developing or testing hypotheses. The

decision to adopt MMR emerged (Creswell & Plano Clark 2011, page: 54) during the

course of the study, rather than at the outset. Early work revealed that adopting a QUAN

method alone provided only a partial understanding of the area; hence a QUAL strand

of enquiry was added to explain the QUAN results (due to part of the research data

being numeric and the other part textual). As will be seen, a variety of methods and

techniques were integrated in order to interpret both the QUAN and QUAL results in

light of the contextual data about ABC practices. Teddlie & Tashakkori (2010, page: 8)

recommend employing variety of methods as needed to answer research questions that

evolve as the study unfolds.

4.4 Design

Several mixed method designs have been proposed - see for example Creswell & Plano

Clark (2011), Tashakkori & Teddlie (2008), Collins (2010), Onwuegbuzie & Combs

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 104

(2010), and Creswell (2009). During research design, consideration has to be given to

(Creswell & Plano Clark 2011, page: 63-66):

(i) The order of conducting the QUAN and QUAL methods - whether sequential,

concurrent, or multiphase. The order in this research was sequential; the QUAN

method first, followed by the QUAL method.

(ii) The priority (relative importance) of the QUAN and QUAL methods for

answering the research questions - whether equal priority or one method given

more weighting during design. Both methods in this research played an equally

important role in addressing the research questions.

(iii) Integration of the methods - whether to connect one of the methods to the other,

embed one method within the other, or keep the methods independent and mix

only at conclusion. The QUAL method in this research was dependent on the

results of the QUAN method, and so they were connected.

Table 4.5 shows examples of such designs (adapted from Creswell & Plano Clark 2011,

page: 73-76). This research applied the Explanatory sequential design (#2 in Table 4.5)

for its suitability to the journey undertaken by this research. The Explanatory sequential

design started with the collection and analysis of numeric data. Results from the QUAN

analysis identified cases for the QUAL analysis of textual data to explain the QUAN

results (Creswell & Plano Clark 2011, page: 71; Creswell et al. 2008).

Design type Description Purpose of use

1 Convergent

parallel

Methods implemented in parallel:

Quantitative and qualitative data collected

concurrently, analysed separately, and

merged during interpretation

Validate and

corroborate

quantitative scales

2 Explanatory

sequential

Methods implemented sequentially:

Quantitative data collection and analysis

first (phase 1), followed by qualitative data

collection and analysis (phase 2) which

Explain quantitative

results

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 105

Design type Description Purpose of use

builds on phase 1

3 Exploratory

sequential

Methods implemented sequentially:

Qualitative data collection and analysis

first (phase 1), followed by quantitative

data collection and analysis (phase 2)

which builds on phase 1

Test or measure

qualitative exploratory

findings

4 Embedded Implementation of a mini concurrent or

mini sequential design within (before,

during, or after) a major concurrent a or

major sequential design

Preliminary

exploration before an

experimental trial

5 Transformative Framing the concurrent and/or sequential

implementations within a theoretical

framework that guide the methods

decisions

Conduct research that

identifies and

challenges social

injustice

6 Multiphase Combining the implementation of

concurrent and/or sequential designs over

multiple phases of a programme of study

Address program

objectives, such as

program development

and evaluation

Table 4.5 Mixed method designs

Figure 4.1 depicts the Explanatory sequential design of this research; the flow chart was

adapted from Creswell & Plano Clark (2011). The notation within the flow chart

elements was adapted from Cameron’s MMR notation system (Cameron, 2012).

Cameron calls for the combining of the textual notation with the flow chart to improve

the reporting of mixed methods studies and this has been done. The acronyms used in

Figure 4.1 are shown in Table 4.6. A description of the research design (Figure 4.1) and

the rationale for the choices mode are provided following Figure 4.1.

Acronym Description

DS Data source (2ndy: secondary)

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 106

Acronym Description

S-SIZE Sample size

INST Data collection instrument

VAR Variables

ANAL Analysis technique

UOA Unit of analysis

QT Quantitative

QL Qualitative

n Number

Table 4.6 Research design acronyms

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 107

Quantitative data analysis

(Descriptive)

ANAL: QT (Non-experimental; Retrospective; Longitudinal)

UOA 1: Project (n=3)

UOA 2: Phase (n=31)

Qualitative data analysis

(Interpretive)

ANAL: QL (Grounded theory techniques)

Coding: Phase (n =6)

Theoretical sampling: Phase (n =3)

Theoretical saturation

Quantitative data collection

DS: 2ndyQT

S-SIZE: Project (n=3) (Non-random/Purposive)

INST: QT (Documents)

VAR: Project schedule delay; Phase schedule change; Phase

schedule accuracy

Qualitative data collection

DS: 2ndyQL

S-SIZE: Phase (initially n=1) (Non-random/Purposive)

INST: QL (Documents)

Textual data of project progress (weekly)

Project

documents

Textual data

Numeric data

Explanation development

(Explanatory)

ANAL: Actor-network theory concepts

Explanatory model

Case selection

(Case study: Exploratory)

Multiple-case, single-unit of analysis

Case: Phase (n=6)

UOA: Phase (n=6)

S-SIZE: Phase (initially n=3), then (subsequently n=3)

select next

Case, until

theoretical

saturation

achieved

Q
u
an

ti
ta

ti
v
e

d
es

ig
n

Q
u
al

it
at

iv
e

d
es

ig
n

E
x
p
la

n
at

io
n

d
ev

el
o
p
m

en
t

d
es

ig
n

C
as

e
se

le
ct

io
n

d
es

ig
n

Figure 4.1 Research design

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 108

4.4.1 Quantitative design

This step of the research process attempted to develop answers to the first research

question:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

In order to answer RQ1, the research investigated project performance data of three

completed projects which ABC had collected and analysed to track progress during

project execution. Analysing past project documents meant that the research had no

control over the behavioural events of the projects and could not intervene (Yin, 2009).

Thus, the enquiry at this stage was descriptive; the design was non-experimental and

retrospective (studying completed projects) and longitudinal (examining phenomenon

over multiple data points in time) (Robson, 2011; Kumar, 2011; Sjøberg et al. 2007).

Non-experimental designs offer the benefit of dealing with things in their natural

settings without disturbing them. Examples of applying quantitative method in

empirical studies include Lipke et al. (2009) and Kim et al. (2003).

The focus of the analysis of the numerical data was schedule behaviour (schedule delay,

schedule change, and schedule accuracy) with the aim of learning the extent to which

the mechanisms used to control schedule duration identified the causes of delay. The

schedule metrics in the QUAN study were descriptive, and not used as statistical

techniques to confirm any hypotheses (Robson, 2011). The output of this stage was

identification of project phases most contributing to project delay. Further details of this

analysis are provided in Chapter 5.

4.4.2 Case selection design

The QUAN analysis, as will be seen in Chapter 5, revealed that small number of the

Test phases contributed most to project delay. Thus the possible reasons for delays in

these phases were of particular interest, and a case study (Eisenhardt, 1989) was

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 109

designed to examine the textual data in the project reports of the Test phases. The

analysis of the case study data would be qualitative, leading to a mixed method research

strategy (Creswell & Plano Clark 2011, page: 54) where quantitative methods (Chapter

5) and qualitative methods (here) are linked to make sense of the studied domain. The

purpose of the research at this stage was to explore the Test phases in more detail in

order to answer the remaining two research questions through qualitative analysis and

explanation:

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

The reliance on past project documents as data, which constrained the study from

exercising intervention, supported the choice of case study research. Case study design

(Yin, 2009) allows (i) examination of naturally occurring phenomena, in one or few

areas, in considerable depth and over time to gain maximum learning (ii) investigation

of causal effects of hidden processes (Hammersley & Gomm, 2000). Besides,

‘Conducting case studies is a standard method of empirical study in management and

related disciplines such as organization development and information systems (IS)

research’ (Sjøberg et al. 2007, page: 4).

Case study research is appropriate for research questions concerned with the ‘why’ and

‘how’ aspects of an empirical setting, and where the investigator has no control over the

events (Yin 2009, page: 8; Eisenhardt 1989, page: 542; Verner et al. 2009). Benbasat et

al. (1987) noted that case study research is appropriate for practice based problems

where the experience of the actors is important and the context of action is critical. Case

study research is also useful for studying information systems in their natural setting,

and for understanding the nature and complexity of the processes taking place, as

operational links can be traced over time. In studying organisations, Remenyi (2013)

suggests that, case study research should be used to investigate organisations in an

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 110

appropriate industry sector, of appropriate size, and sufficiently complex in nature to be

interesting (page: 30). Further details of this analysis are provided in Chapter 6.

4.4.3 Qualitative design

This step of the research process attempted to develop answers to the second research

question:

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

The aim of the investigation at this stage was to determine, from the textual reports,

what phenomena emerged during the execution of the Test phases that influenced

schedule duration; thus, the nature of the enquiry at this stage was interpretive;

interpreting the participants’ views of what was happening within the Test phases of the

projects being examined.

The approach to textual data analysis was that of Grounded theory (Glaser & Strauss,

1967). Corbin & Strauss (2008) noted that Grounded theory (GT) practices can be used

to construct theory, develop thick and rich descriptions, develop concepts, and pull out

themes (page 162). Urquhart asserted that GT can be (and has been) used for purposes

other than theory generation but the researcher needs to state when this is the case. This

can be to support coding (in the sense of identifying categories) or data analysis

(Urquhart, 2013). This research used GT techniques to identify categories of

phenomena that influence schedule duration. This took advantage of the rigour of GT

coding techniques compared to others like thematic analysis (Miles & Huberman, 1994;

Robson, 2011). Compared to other types of coding in qualitative research, GT codes are

not imported from pre-existing ideas in the literature, but emerge from analysing the

data. They are applied to a detailed level of data rather than large chunks of text

(Urquhart, 2013).

The research then collected textual data, from the same past project documents used in

the QUAN phase, for one case selected purposively (Kumar, 2011; Robson, 2011). The

content of this case was analysed qualitatively using GT techniques (see section 6.4 -

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 111

Chapter 6), and the emergent types of factors (i.e. ‘categories’ in GT term) that

appeared (i.e. ‘emerged’ in GT term) from the case gave rise to the selection of the next

case (using the Theoretical sampling approach of GT where the next case is selected to

develop and/or to generalise categories - see section 7.2.1 - Chapter 7). This process

continued until selecting more cases produced no more new categories of phenomena

from the ones emerged already (Corbin & Strauss, 2008, page 148). This approach

seemed appropriate because the aim was to identify the common causes across the six

cases that influence schedule duration. The output was 5 categories of phenomena

emerged from six Test phases (including the three Test phases selected in the previous

step) across the three projects, and a narrative schema. The narrative schema is a visual

representation of the analysed content of the textual data of the Test phase performance

reports, showing the relationship among the various phenomena emerged during the

Test phase execution.

Although the narrative schema answered RQ2, it had two limitations. It was a

representation of the contents of textual data in the Test performance reports, reported

by the Test manager, and thus represented a particular perspective of what was

happening. It also lacked the contextual information surrounding the Test phases of

which project participants would be aware, but which was not explicitly mentioned. To

obtain a more complete understanding of the influences on schedule delay, the

contextual information was brought in and further input from project participants were

sought. However, the resultant picture was very local to ABC (further details of this

analysis are provided in Chapter 7). Further analyses were needed to take our

understanding to higher level of abstraction, as is explained in the next section.

4.4.4 Design of developing explanation

This step of the research process attempted to develop answers to the third research

question:

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 112

As will be seen that, the narrative schema in Chapter 7 revealed that the factors directly

affecting the task completion related not just to human performance but also to

nonhuman intermediaries, such as software tools and platforms, and intermediate

products passed between human actors. This suggested that the project could be seen as

a network of actors, both human and nonhuman, each of whom can, to varying degrees,

empower or constrain others. The picture that emerged was aligned to that expected by

Actor-network theory (ANT) (Law, 2012; Callon, 2012; Latour, 2005), and therefore

the ability of ANT (see section 6.5 - Chapter 6) to illuminate what was happening

demanded attention.

The aim of the investigation at this stage was explanatory: to understand the interactions

that developed during project execution, and how they influence schedule delay. An

explanatory study was appropriate since they focus on tracing operational links over

time (Yin, 2009; Maxwell, 1992; Guba & Lincoln, 1994; Robson, 2011). This involved

applying ANT concepts to the emergent categories of phenomena from the GT analysis

in the previous research step. This then culminated in an ANT model of schedule delay;

the explanation of which can be applied to a broader range of experiences/contexts of

other researches. Further details of this analysis are provided in Chapter 8.

4.5 Rationale

The motivation of this research, as was articulated in Chapter 1, stems from the need to

have better understanding of the project behaviours that influence software project

progress. This chapter argued that we need to adopt research approaches beyond the

conventional ones in order to obtain such understanding and address the complexity

inherent in managing projects. This section discusses the practical implications of the

decisions made about the research approach.

The research obtained case study data through personal contact of the researcher that led

to two of the ABC Managing Directors to make available the projects’ reports to be

analysed by the research. An implication of this is that the decision about research

methods is going to be affected by what data is available. The researcher’s past

experience, as professional software engineering and project management consultant for

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 113

a number of years, in similar projects and organisations to the ones investigated in this

research offered practical benefits and contextual knowledge to enable interpretation of

the project data closer to reality compared to not having such knowledge. A limitation

may be seen in such situation is that the researcher may make assumptions based on

their past project experience which may not actually apply to the new situation.

However, some researchers argue that ‘Context not only ground concepts, but also

minimise the chances of distorting meaning and/or misrepresenting intent’ (Corbin &

Strauss 2008, page: 57). Furthermore, others (see for example Coleman & O’Connor,

2007; Fitzgerald, 1998; Anderson, 2006) have argued that having the knowledge of the

cultural insider - i.e. having prior expertise and practical knowledge of the domain

enables better understanding of the data and the quality of the knowledge created. Still,

the author of this dissertation diligently sought maintaining a degree of impartiality and

distance throughout the research process.

The key research data were records of past project progress reports produced by and for

the project team purely for internal use rather than being specifically collected for this

research. The research analysed the contents of these weekly archival documents. The

value of this approach is in part that it provides access to the details of day to day

execution of the projects as perceived by project team and thus it gives insights that

other approaches such as observation and participant interviews (see for example

Lehtinen et al. 2014) do not provide; for e.g. comprehensiveness, avoidance of

retrospective reconstruction of history. The focus on analysing source documents allows

a more rigorous, more objective picture to emerge (Deephouse et al. 1996) compared to

interviews which would be prone to the subjective judgment of case participants.

Limitations of this approach - common to most content analysis - are that the research is

constrained by the scope of the project reports, and the need for additional, contextual,

information in order to understand content produced purely for internal communication.

In common with other approaches using historical records it may be difficult to go back

and clarify certain aspects of the data. This is where a researcher’s personal knowledge

about a domain is useful. Much of this data about organisational structures and process

flows (Chapter 3) are factual (and were clarified by the project team); e.g. software tools

deployed and these were used to provide context to the Test phases to obtain a more

complete picture of what was happening.

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 114

Researchers have proposed various ways in evaluating mixed methods research (see for

example Mingers, 2001; O’Cathain et al. 2008; Creswell & Plano Clark, 2011;

O’Cathain, 2010; Tashakkori & Teddlie, 2008; Onwuegbuzie & Johnson, 2006).

However, Venkatesh et al. (2013) offer a useful guideline for conducting mixed

methods research in IS, and is used in this research to evaluate the approach adopted.

According to Venkatesh et al. (2013), researchers should consider the following factors

when conducting a mixed methods study - each of these factors is followed by what was

actually done in this research separated by a hyphen (-) for contrast:

 The appropriateness of a mixed methods approach to the research questions,

objectives and context - the general appropriateness of mixed methods in this

research was established earlier in the chapter as a necessity; the research data was

a mix of numeric and text, and using only one method of enquiry (i.e. quantitative

or qualitative) did not support answering the research questions and would have

provided a partial view of what was happening. Furthermore, the context of the

investigated domain was complex requiring analysis of different data types

(numeric and text) in order to make sense of what was happening and obtain a

fuller view of the influencing factors on schedule delay.

 Development of meta-inferences (i.e. theoretical statements, narratives, or a story

inferred from an integration of findings from quantitative and qualitative strands of

mixed methods research) - this research developed an explanatory model (Chapter

8) which is essentially a meta-inference drawn from an integration of the

quantitative results (Chapter 5) and qualitative findings (Chapter 7). According to

the ‘meta-inference analysis path’ suggested by Venkatesh et al. (2013, page: 39),

the path in this research was: quantitative findings > qualitative findings >

metainferences.

The choice of Grounded theory (GT) techniques to analyse the textual data instead

of a literature informed case study, given prior work, stems from the need of the

research to make sense of what is happing in the project reports, i.e. grounded in the

data, rather than what existing frameworks might inform a priori. Chapter 2 (section

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 115

2.5) argued that existing work do not address complexity inherent in real projects,

and that it does not provide neat explanations of the causes of project failure and so

a literature informed analysis would yield the same findings. One value of GT is

that there are different levels of analysis - and each one can be valuable in its own

way. At particularly the higher levels there is degree of subjectivity, but the reader

can be reasonably sure that the concepts can be linked back to the data - hence the

‘grounded’.

The choice of Actor-network theory (ANT) to develop explanation of schedule

delay instead of other social theories, such as Structuration theory or

Sociomateriality, was driven by the nature of the outcome of the textual analysis of

the project progress reports (Chapter 7); i.e. the narrative schema. The narrative

schema revealed various types of actors (human and nonhuman), their relationships,

and the interactions among them influencing schedule duration. This composition

meant that a suitable decision had to be made as to the most appropriate approach

to make sense of what was in hand. Although the three approaches can be seen

similar, there are some minor differences. For example, considerations of using

Structuration theory (Giddens, 1984) for making sense of the narrative schema

would have underrepresented the influence of technology on schedule delay

(Allison 2004: page, 74; Allison & Merali, 2007), because technology theory is

underdeveloped in Structuration theory (Greenhalgh & Stones 2010, page: 1287)

and is not within the Giddens’ sphere of interest (Leonardi 2011, page: 150);

however, in the narrative schema humans and nonhumans appear equally

influencing schedule duration. The potential use of Sociomateriality to understand

the narrative schema would have meant that consideration of human intention be

accounted for in the analysis; although Sociomateriality recognises the influence of

material as well as human, it distinguishes between them as the latter involves the

intention of doing something (Leonardi, 2013); however, the narrative schema,

representing what was reported in the project progress reports, surfaced factors

relating to obstacles to progress rather than human intentions of how to go about

removing them; the latter although discussed in the weekly status meetings it was

not reported. Therefore, ANT appeared more suitable to make sense of the narrative

schema given its approach of not distinguishing between human and nonhuman

An appropriate research strategy Chapter 4

Controlling schedule duration during software project execution 116

during analysis in order to makes sense of what might actually be happening rather

than framing them within existing concepts. Besides, the attempts made by

researchers to combine Strong structuration theory - the application of Giddens’

theory to empirical situations, and Actor-network theory illustrates this need in

order to obtain a fuller understanding of a studied domain - see for example

Greenhalgh & Stones (2010).

 Assessment of the quality of meta-inferences presented in Chapter 8, which

involve:

o Addressing validation of the quantitative strand and potential threats and

remedies - see Chapter 8: section 8.4.1.

o Addressing validation of the qualitative strand and potential threats and

remedies - see Chapter 8: section 8.4.2; the narrative schema developed in

Chapter 7 was validated with the project team to ensure appropriate reflection

of their perception of the events that took place - i.e. ‘member checking’ as

contended by Maxwell (1992).

o Addressing validation of meta-inference(s) and potential threats and remedies -

see Chapter 8: section 8.4.3.

Addressing validation from a research design point of view - see Chapter 8: section

8.4.3.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 117

5 Quantitative approach

5.1 Introduction

This chapter describes the data collection and analysis of the quantitative (QUAN)

approach and presents its findings. These are the first and second steps in the research

process outlined in Chapter 4: Figure 4.1 and section 4.4.1. The chapter attempted to

answer the first research question:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

To do so, the characteristics of the three ABC projects investigated (Project 1, 2, and 3)

are presented first, followed by a description of the QUAN analysis. This includes the

illustration of the approach through the analysis of the data for Project 1, followed by

the results of analysing the remaining projects. Finally, the works in this chapter is

summarised.

5.2 Project characteristics

This section provides the context to the three projects investigated, identifies their

similarities and differences, and describes their dependency during project execution.

5.2.1 Context of the three Projects

All three projects were carried out at about the same time, within a range of two years -

after 2010, for the same client. The ABC programme management, senior managers,

and managers were very familiar with the application domain and had an established

relationship of 10 years standing with the client providing software development and

system integration services.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 118

Project 1

This developed the service middleware layer shown in Figure 3.1 (Chapter 3). This

software existed between two layers, one which requested services of the application,

and another called to carry out services. Although, ABC had a long relationship with the

client through many software development and integration programmes, Project 1 was

the first release of a newly started programme; and the Designers, Developers, and

Testers lacked the application domain expertise and experience of handling the

relationship with this particular Client.

Project 2

Project 2 followed on from Project 1; building on the foundational service components

developed in Project 1, it added new services and amended others already developed

(but not yet released) in Project 1. The two projects were run by the same Project

manager, phase managers, and team members. It was hoped Project 2 would benefit

from the experience, relevant contextual knowledge and technical skills gained in

Project 1. It was reasonable to expect speedier delivery and a better quality product.

However, this was not always the case.

Project 2 started in the middle of Project 1, so development teams were for a time

working on the two projects simultaneously. As will be seen, the parallel working

resulting from (possibly) aggressive task compression, added a range of conflicting

resource constraints.

Project 3

Project 3 developed the process middleware layer shown in Figure 3.1 (Chapter 3).

Some software components were custom developed, others configured from a package

application. Some Project 3 components depended on the components/services

developed by Projects 1 and 2. Project 3 had a different project manager, phase

managers, but all experienced in the technology and familiar with the client from other

projects.

5.2.2 Similarities and differences among the three projects

Table 5.1 shows the acronyms used for various project phases in this chapter, followed

by Tables 5.2 and 5.3 describing the similarities and difference among the three projects

respectively.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 119

Acronym Phase name

FD Functional design

FD/TD Transition Functional design to technical design transition

TD Technical design

Code Programming

AT Assembly test

IT Integration test

DBT Design, Build, and Test

Table 5.1 Phase acronym

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 120

Characteristic Project 1 Project 2 Project 3

1 Project composition (in phases) FD; FD/TD Transition; TD; Code;

AT; IT

FD; FD/TD Transition; TD;

Code; AT; IT

TD; Code; AT; IT

2 Level of reporting progress performance Phase: e.g. IT Phase Increment: e.g. DBT

3 Progress tracking Phase Phase Increment

4 Nature of functionality New New and modified New and modified

5 Platform Service middleware Service middleware Process middleware

6 Delivery method Custom development Custom development Custom and package

development

7 Delivery duration (weeks)

(months - approx.)

35

(9)

38

(9.5)

21

(5)

8 User of the project’s deliverables Client and the Consumer layer

shown in Figure 3.1 (Chapter 3)

Client and the Consumer

layer shown in Figure 3.1

(Chapter 3)

Projects 1 & 2, and the

Consumer layer shown in

Figure 3.1 (Chapter 3)

9 Research focus

(project phase)

IT- Execution - with

Authentication Tool (Inc1)

IT - Execution - without

Authentication Tool (Inc1);

Integration Test - Plan &

Preparation;

Integration Test - Execution

DBT (Inc6)

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 121

Characteristic Project 1 Project 2 Project 3

IT (Inc4)

10 Size of DBT team (number of people) -

approx.

15 25 8

11 Size of management team (number of

people - approx.); i.e. Project managers

and Design, Build, and Test managers

5 7 3

Table 5.2 Differences among the three projects

Characteristic Comments

1 Management team (Project

manager and phase managers)

Projects 1 and 2 had the same management team

Project 3 had a different management team from Projects 1 and 2

2 Project setup Projects 1 and 2 were different releases of the same project; they are called as such for easier distinction in

this research. Projects 1, 2 and 3 belonged to the same programme; and had 4, 1, and 8 increments

respectively

3 Organisation All three projects were carried out within the same organisational unit in ABC, delivering application

systems to the same external Client

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 122

Characteristic Comments

4 Project execution chronology Project 2 started in the middle of, and overlapped with, Project 1. Project 3 was executed at the same time

as both projects 1 and 2

5 Integration dependency Project 2 and 3 were dependent on Project 1 for functional integration of the products

6 Delivery method All projects used the ABC’s proprietary delivery method

7 Delivery model All projects employed onshore (UK)/offshore (India) delivery model where the Design was done onshore;

Build and Test were largely done offshore with onshore Build and Test management

8 Supporting functions All projects drew from shared/same supporting functions in ABC. These functions were the various teams

within the Product Line Development process described in section 3.3 (Chapter 3)

9 Relationship among the

projects

Project 2 was the next release of Project 1; developing the Service middleware layer of the application

architecture. Project 3 was developing/amending a different layer from Projects 1 and 2; the Process

middleware layer

10 Frequency of project

performance report

All projects reported progress on weekly basis

11 Type of product All projects were delivering large software system within an enterprise architecture environment

12 Driver of delivery duration Project end date driven - imposed by client

Table 5.3 Similarities among the three projects

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 123

5.2.3 Dependency among the three projects during project execution

The three projects developed parts of an integrated product (as described in section

3.2.1 - Chapter 3,); they scheduled specific milestones to align their developed artefacts

during project execution for easy integration afterwards. This involved

submitting/releasing at agreed times project artefacts produced by the projects that

contribute to the integrated end product - see Figure 5.1 (dotted lines) for the key events

taking place.

The Client submitted the system requirements to the Peer supplier and ABC (Projects 1

& 2) teams who carried out their Design, Build, and Test activities. Figure 5.1 shows

ABC project 1 and project 2 within one area for easy reading; however they were

separate projects as described in Tables 5.2 and 5.3. The Peer supplier released their

initial interface definitions for their software to ABC (Projects 1 & 2) at the end of their

Design stage, and their final interface definitions after their Test phase. The ABC

Projects 1 & 2 aligned their project artefacts, under development, with the received Peer

supplier artefacts.

The ABC Projects 1 & 2 released a number of artefacts, at the end of their project

phases, to ABC Project 3 (which were received at specific points in ABC Project 3

phases as indicated by the position of the arrows in Figure 5.1) including: their FD at

the end of the FD/TD Transition phase; their TD and initial interface definitions at the

end of the TD phase; their updated FD, TD, and interface definitions at the end of each

of the Code and Assembly Test phases, and their final FD, TD, and interface definitions

at the end of the Integration Test phase. The ABC Project 3 aligned their project

artefacts, under development, with the received ABC Projects 1 & 2 artefacts.

The complexity of interdependency among the three projects can be seen in the

dependency of a project on the preceding project for delivering of the needed artefacts

in the agreed times. For example, delays in the Peer supplier provision of the initial or

final interface definitions would affect progress of work activities in Projects 1 & 2,

which in turn affect the progress of Project 3 activities. The chain of delays may have

constrained project progress.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 124

A
B

C
 P

ro
d

u
ct

D
ev

el
o

p
m

en
t

–

P
ro

je
ct

 3

A
B

C
 P

ro
d

u
ct

 D
ev

el
o

p
m

en
t

–
 P

ro
je

ct
s

1
 &

 2
P

ee
r

su
p

p
li

er
C

li
en

t

Initial interface

definitions

Final interface

definitions

FD

TD and initial

interface

definitions

Updated FD,

TD, and

interface

definitions
Updated FD,

TD, and

interface

definitions

Final FD,

TD, and

interface

definitions

Requirements

submitted

Build

carried out

Code

carried out

FD/TD

Transition

carried out

Assembly Test

carried out

End

Test

carried out

Code

carried out

Test

carried out

Technical

Design

carried out

Integration Test

carried out

Technical

Design

carried out

Start

Functional

Design

carried out

Design

carried out

Figure 5.1 Dependency among the three projects

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 125

5.3 Research process

This section describes the QUAN analysis, using the Project 1 data to illustrate the

approach. Note that the key ‘Research data’ in Figure 5.2 refers to the management

information collected by project participants for tracking project progress in ABC,

rather than data specifically being collected for this research.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 126

Project

schedule

delay metric

Scheduled

start day

Actual

start day

Scheduled

finish day

Actual

finish day

Start variance

Finish variance

Phase

schedule

accuracy

metric

Duration variance

Scheduled

duration

Actual

duration

Phase schedule

accuracy

Key

Research

product

Calculation /

processing
flowResearch

data

Gantt chart

Phase

schedule

change

Gantt chart

Precedence

relationships

Figure 5.2 Approach to QUAN analysis

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 127

5.3.1 Sampling strategy

The approach to sampling for the QUAN analysis was non-random/purposive (Kumar,

2011; Robson, 2011). The choice of the three projects investigated was primarily based

on the availability of the data, and time constraints, but they were also perceived as

being representative of ABC developments.

5.3.2 The data collected

This research examined ABC’s project management information, used for tracking the

performance of their projects, rather than collecting data especially for this research.

The QUAN approach extracted the project phases’ planned and actual start and end

dates and precedence relationships from the weekly project performance reports

(described in section 3.4 - Chapter 3). Five base variables were created to hold these

values - see Table 5.4.

Base variable Definition Source data (Event

tracking sheet section 3.4)

Scheduled start

day

The day number which the

project/phase was scheduled to start

‘Planned occurrence date’

of the first event of the

phase

Actual start

day

The day number which the

project/phase actually started

‘Actual occurrence date’ of

the first event of the phase

Scheduled

finish day

The day number which the

project/phase was scheduled to finish

‘Planned occurrence date’

of the last event of the phase

Actual finish

day

The day number which the

project/phase actually finished

‘Actual occurrence date’ of

the last event of the phase

Precedence

relationships

The type of the dependency

relationships of the phase

First event of the phase

Table 5.4 Base variables

The collected data items were entered into a spreadsheet (Microsoft Excel) used for

subsequent analysis. Having checked for correct transcription, they were used to

calculate the schedule metrics described in the next section. Tables 5.5, 5.6, and 5.7

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 128

show the schedule data for Project 1, 2, and 3 respectively. It may be noted that a start

day of 0 means that the project started at the end of day 0 (i.e. the start of day 1).

Table 5.5 Project 1 schedule data

Table 5.6 Project 2 schedule data

Project 1 Phases Scheduled

start day

Actual

start day

Scheduled

finish day

Actual

finish day

1 FD (Inc1) 0 0 20 44

2 FD (Inc2) 49 49 60 63

3 FD (Inc3) 74 86 95 98

4 FD/TD Transition (Inc1) 21 21 34 39

5 FD/TD Transition (Inc2) 60 60 65 70

6 TD (Inc1) 35 35 60 60

7 TD (Inc2) 70 70 78 77

8 Code (Inc1 & Inc2) 36 37 90 109

9 FD/TD Transition+TD+Code (Inc3) 98 118 132 144

10 TD and Code (Inc4) 165 165 172 178

11 AT - Plan & Preparation (Inc1) 27 35 90 90

12 AT - Execution (Inc1) 91 91 118 125

13 IT- Execution - with Authentication Tool (Inc1) 119 126 144 166

14 IT - Execution - without Authentication Tool (Inc1) 142 142 151 166

15 IT (Inc4) 168 178 189 241

Project 2 Phases Scheduled

start day

Actual

start day

Scheduled

finish day

Actual

finish day

1 FD 0 0 55 56

2 FD/TD Transition 55 55 65 65

3 TD 67 67 107 107

4 Build 106 105 135 146

5 Assembly Test - Plan & Preparation 103 103 130 186

6 Assembly Test - Execution 138 138 165 209

7 Integration Test - Plan & Preparation 137 137 165 253

8 Integration Test - Execution 165 209 214 268

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 129

Table 5.7 Project 3 schedule data

It may be noted that, in Project 3 progress was tracked at the level of increments rather

than phases and increments. These increments all followed the same ABC DBT

lifecycle model used in the previous 2 projects.

5.3.3 Techniques used: Schedule metrics

The QUAN analysis measured three attributes of schedule: delay, change, and accuracy

(Kitchenham et al. 1995). The schedule metrics: Project schedule delay, Phase schedule

change, and Phase schedule accuracy each measured an attribute of the project schedule

at the project and phase levels of analysis. This was based on the composition of a

project within the Product Development in ABC where a project comprised multiple

phases as was described in Figure 3.5 (section 3.2.3 - Chapter 3). Table 5.8 summarises

the schedule metrics, described in more depth in the next section.

It is worth noting that the research had also investigated the project schedule at event

level, examining the trend of achieving weekly event targets within project phases. This

involved producing trend charts of SPI (Schedule performance index), the values of

which were originally calculated by ABC to track progress of their projects, to compare

achieving event targets against the planned targets. This was motivated by the fact that

SPI was used by ABC as the key measure for monitoring and controlling schedule

progress - though it was a locally-tailored SPI (see section 3.4.4 - Chapter 3). However,

proceeding further with this line of enquiry was unfruitful due to: the limitations of SPI

Project 3

Increments

Scheduled

start day

Actual

start day

Scheduled

finish day

Actual

finish day

1 DBT (Inc1) 0 0 112 105

2 DBT (Inc2) 0 0 112 119

3 DBT (Inc3) 81 109 116 146

4 DBT (Inc4) 108 119 136 146

5 DBT (Inc5) 136 147 185 174

6 DBT (Inc6) 31 34 66 112

7 DBT (Inc7) 108 108 136 167

8 DBT (Inc8) 136 147 185 187

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 130

in providing accurate measure of schedule progress (see section 2.2.3 - Chapter 2); the

SPI indicating phase completed, and not phase completed on time (i.e. phases having

1.0 SPI at end but overrun on duration recorded); and time constraints.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 131

Entity Attribute Definition of attribute Unit of

measurement

Schedule metric

(acronym)

Technique Unit of

analysis

Description of unit

of analysis

Schedule Delay The degree of mismatch

between the scheduled

duration of a project

from its actual duration

Count of number

of days

Project schedule

delay (PSD)

Calculate Project

schedule delay

metric to measure

extent of delay

Project A software project

encompassing all

the phases within it

as a whole

Schedule Change The degree of mismatch

between the precedence

relationships of a phase

from its actual

relationships

Precedence

relationship type

Phase schedule

change (PSC)

Develop Gantt

chart that shows

planned and actual

schedule with their

precedence

relationships

Phase A phase within the

software project -

this is a subset of

the Project level of

analysis

Schedule Accuracy The degree of mismatch

between the estimates of

the duration of a phase

from its actual duration

Percentage value

(days) which the

duration was over

or under

estimated

Phase schedule

accuracy (PSA)

Use the

conventional

measure Magnitude

of relative error

(MRE)

Phase A phase within the

software project -

this is a subset of

the Project level of

analysis

Table 5.8 Summary of schedule metrics

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 132

5.3.3.1 Project schedule delay

This metric measured the extent of delay in the project schedule.

The Project schedule delay (PSD) metric used four derived variables (below) to

calculate schedule delay. These variables were based on the first four base variables

described in Table 5.4. Definitions of the derived variables are provided in Table 5.9.

The PSD metric used Microsoft Excel to calculate and present the tabular data:

Start variance = actual start day – scheduled start day (Equation 5.1)

Finish variance = actual finish day – scheduled finish day (Equation 5.2)

Duration variance = Finish variance – Start variance (Equation 5.3)

Project schedule delay = Finish variance of the last phase in the project (Equation 5.4)

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 133

Derived variable Acronym Definition

Start variance STV The number of days which the actual start day of a phase/project differs from its scheduled start day. A

positive value of STV indicates that the phase was started later than scheduled; a negative value indicates that

the phase was started earlier than scheduled; and an STV value of zero indicates that the phase was started as

scheduled

Finish variance FV The number of days which the actual finish day of a phase/project differs from its scheduled finish day. A

positive value of FV indicates that the phase was finished later than scheduled; a negative value of FV

indicates that the phase was finished earlier than scheduled; and an FV value of zero indicates that the phase

was finished as scheduled

Duration variance DV The number of days which the actual duration of a phase/project differs from its scheduled duration. A positive

value of DV indicates that the phase’s actual duration was longer than its scheduled duration; a negative value

indicates that the phase’s actual duration was shorter than its scheduled duration; and a DV value of zero

indicates that the phase’s actual duration was the same as its scheduled duration

Project schedule

delay

PSD The number of days which a project schedule was delayed. PSD is equal to the FV of the last phase in the

project (i.e. the phase with the latest actual finish day). A positive value of PSD indicates that the project was

delivered late; a negative value of PSD indicates that the project was delivered early; and PSD value of zero

indicates that the project was delivered on schedule

Table 5.9 Project schedule delay variables

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 134

The project schedule delay (equations 5.1 - 5.3 above) was calculate for each phase of

Project 1, 2, and 3 to give the number of days each phase contributed to the overall

delay of the project. The results of these calculations can be seen in Tables 5.10, 5.11,

and 5.12 for Project 1, 2, and 3 respectively.

Table 5.10 Project 1 schedule delay metrics

The overall project schedule delay, in this case 52 days, is equal to the finish variance of

the last phase in the project, (IT Inc4, the Increment 4 Integration Test). This is the

difference between when the last activity was scheduled to finish and when it actually

finished. The table shows that the phase with the largest delay was also the Integration

Test phase (#15) which was 10 days late starting and then contributed a further 42 days

of delay.

Project 1 Phases Start variance

(Actual start

day - Scheduled

start day)

Finish variance

(Actual finish

day - Scheduled

finish day)

Duration

variance

(Finish variance

- Start variance)

1 FD (Inc1) 0 24 24

2 FD (Inc2) 0 3 3

3 FD (Inc3) 12 3 -9

4 FD/TD Transition (Inc1) 0 5 5

5 FD/TD Transition (Inc2) 0 5 5

6 TD (Inc1) 0 0 0

7 TD (Inc2) 0 -1 -1

8 Code (Inc1 & Inc2) 1 19 18

9 FD/TD Transition+TD+Code (Inc3) 20 12 -8

10 TD and Code (Inc4) 0 6 6

11 AT - Plan & Preparation (Inc1) 8 0 -8

12 AT - Execution (Inc1) 0 7 7

13 IT- Execution - with Authentication Tool (Inc1) 7 22 15

14 IT - Execution - without Authentication Tool (Inc1) 0 15 15

15 IT (Inc4) 10 52 42

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 135

Table 5.11 Project 2 schedule delay metrics

Table 5.12 Project 3 schedule delay metrics

5.3.3.2 The behaviour of schedule delay

 Project 1 was late by 52 days; i.e. 27% of the original schedule (190 days). This

compares with the average 20% schedule delay that Sauer et al. (2007) found in a

survey of 412 UK based IT projects.

Project 2 Phases Start variance

(Actual start day

- Scheduled

start day)

Finish variance

(Actual finish

day - Scheduled

finish day)

Duration

variance

(Finish variance

- Start variance)

1 FD 0 1 1

2 FD/TD Transition 0 0 0

3 TD 0 0 0

4 Build -1 11 12

5 Assembly Test - Plan & Preparation 0 56 56

6 Assembly Test - Execution 0 44 44

7 Integration Test - Plan & Preparation 0 88 88

8 Integration Test - Execution 44 54 10

Project 3

Increments

Start variance

(Actual start day -

Scheduled start

day)

Finish variance

(Actual finish day

- Scheduled finish

day)

Duration

variance

(Finish variance -

Start variance)

1 DBT (Inc1) 0 -7 -7

2 DBT (Inc2) 0 7 7

3 DBT (Inc3) 28 30 2

4 DBT (Inc4) 11 10 -1

5 DBT (Inc5) 11 -11 -22

6 DBT (Inc6) 3 46 43

7 DBT (Inc7) 0 31 31

8 DBT (Inc8) 11 2 -9

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 136

 As noted about the largest contribution to delay in Project 1 was phase #15 - IT

(Inc4). This suggests that particular attention needs to be given to this phase

obstructing progress.

 The second largest contributor to delay in Project 1 was the first phase #1

Functional Design (Increment 1). By overlapping activities and actually finishing

some phases in less than the scheduled durations (see negative duration variances in

Table 5.10), the initial delay of 24 days was reduced to just 10 by start of phase

#15.

 Project 2 was late by 54 days i.e. 25% of the original schedule (214 days). This

compares to 27% for Project 1, when the greater domain and technical expertise

might have been expected after Project 1. This also compares with Rainer’s PhD

thesis, investigating two IBM projects and finding that both projects finished later

than scheduled (Rainer 1999, page: 128, 2010, 2011).

 The largest delaying phase in Project 2 was phase #7 (Integration Test - Plan &

Preparation). Integration Test phase once again became the point in the project

when most delay was experienced (see second bullet point). However, in this case it

was the plan and preparation phase, in contrast to the Integration Test execution

phase in Project 1. The former is concerned with preparing and planning for the

subsequent Integration Test execution phase #8 in Project 2.

 Although the last phase #8 in Project 2 was late by 10 days, the accumulation of

lateness in the preceding phases meant that phase #8 started with a variance of 44

days later than scheduled, leading to overall project delay of 54 days in total. It was

possible for Phase #8 catch up some of the delay of 88 days incurred by phase #7

by overlapping the execution of the two phases, rather than carrying them out one

after the other.

 Project 3 was late by 2 days; i.e. 1% of the original schedule (185 days). This

project was pretty well on schedule compared to Projects 1 and 2 with 27% and

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 137

25% delays respectively. This is compared with Sauer et al. (2007)’ findings that

the risk (probability) of not achieving scheduled targets decreases for shorter

projects (though this does not mean that shorter projects exhibit less percentage

delay); Project 3 duration was shorter than Project 1, which in turn was shorter than

Project 2. One reason for Project 3’s better schedule performance may be that

subsequent increments were planned to start as soon as the preceding increments

start (see Figure 5.5 - next section).

 The increment with the biggest over-run in Project 3 was phase #6 - DBT (Inc6),

but did not actually delay the project because it was not on the critical path - no

other increment was dependent on it (see Figure 5.5 - next section).

 Although the last phase #8 in Project 3 started with a variance of 11 days from the

accumulation of lateness in the preceding phases, it finished 9 days earlier than

scheduled, leading to the overall project delay of only 2 days.

5.3.3.3 Phase schedule change

This metric examined the change of precedence relationships of project phases.

The Phase schedule change (PSC) metric used Gantt charts (PMI, 2008), widely used

for project scheduling and control, to enable visual examination of the changes in the

precedence relationships among project phases. Gantt charts enabled the comparison of

planned and actual phase relationships on one diagram. The research produced a Gantt

chart for each of the three projects, using Microsoft Project, based on the five base

variables described in Table 5.4.

Activity dependencies (precedence relationships) in a project schedule may be one of

four types (Lockyer & Gordon, 2005):

 Finish-to-start (FS), the succeeding activity may not start until the preceding

activity has finished.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 138

 Start-to-start (SS), the succeeding activity may not start until the preceding activity

has started.

 Start-to-finish (SF), the succeeding activity may not finish until the preceding

activity has started.

 Finish-to-finish (FF), the succeeding activity may not finish until the preceding

activity has finished.

The Gantt chart for Project 1, 2, and 3 are shown in Figures 5.3, 5.4, and 5.5

respectively.

Figure 5.3 Project 1 Gantt chart

Figure 5.3 shows the planned schedule prior to execution and the actual schedule post

execution. An arrow flowing down represents precedence/dependency of the succeeding

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 139

phase on the preceding one. Earlier in this section it was noted that, activity precedence

can be of type Finish-to-Start, where the subsequent phase should only start when the

preceding phase was completed. However, these precedence rules tend to be ignored in

practice during project execution and activities/phases overlap due to time constraints,

this may influence schedule duration since it potentially involves rework of the

activities that were overlapped by the succeeding activity.

Figure 5.4 Project 2 Gantt chart

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 140

Figure 5.5 Project 3 Gantt chart

5.3.3.4 The behaviour of schedule change

The Project 1 Gantt chart (Figure 5.3) indicates that some of the Finish-to-Start (FS)

constraints were ignored during project execution; that is, phases planned to be executed

sequentially overlapped during execution - see #4, #11 and #12 in Table 5.13. This is

compared with Rainer (1999) where the Design, Build, and Test phases of the IBM

projects, although planned to occur sequentially (i.e. FS relationship), actually

overlapped during execution (page: 128). The practice of overlapping phases appears to

have introduced rework (see #4 in Table 5.13). Furthermore, the schedule behaviour of

the critical phases (i.e. #1, #2, #3, #9, #10, and #15) indicate that their dependency on

one another partly contributed to the overall delay of the project (see phase #15). The

majority of the delay was contributed by the phase #15. Thus, it would be of interest to

examine the textual reports of phase #15 closely to understand the causes of delay. This

was done in Chapter 7.

The Project 2 Gantt chart (Figure 5.4) shows that some of the FS constraints in Project 2

have been ignored during project execution - see phases #6, #7, #8 in Table 5.14. The

critical phases (#4, #5, #6, #7, and #8) all finished late. These were mainly due to

dependency on external factors (Peer supplier), quality of the code produced (due to

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 141

resource shortages), and transferring outstanding work (due to delay from Peer supplier)

to succeeding phases. Thus, the data does not suggest that delay in these phases were

due to their overlapping behaviour, it was rather the dependency on external actors and

quality of the work in previous phases that caused the delay in the project. Although the

textual information does not report how much rework was undertaken as a result of the

overlaps, it is not unreasonable to assume some reworking to have taken place given the

large number of defects discovered (see #8 in Table 5.14). The most contributing phase

to project delay (#7) was affected by its predecessor, and it affected the succeeding

phase too, so it would be of interest to examine its textual information in-depth to

understand what might have happened - which was done in Chapter 7.

The Project 3 Gantt chart (Figure 5.5) shows that the precedence relationships among

all the increments were of type Start-to-Start (SS). Table 5.15 shows that most of the

increments finished late, but because the SS relationships, work started in the

succeeding increments without waiting for the predecessor to finish, and that the delays

did not affect the final increment. The delay in the final increment (i.e. project delay)

was due to unclear change requests. Table 5.15 shows several issues facing phase #6

(the most delayed increment); and it would of interest to examine the textual reports

closely to understand what may have caused the delay - which is done in Chapter 7.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 142

Project 1 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

1 FD (Inc1) 0 24 24 This phase finished later than scheduled due to lack of client

input, fluctuating scope, and undefined requirements during

phase execution.

2 FD (Inc2) 1 FS 0 3 3 Finished later than scheduled; however, it did not overlap with its

predecessor (see Figure 5.3). The cause of delay was lack of

requirements definition.

3 FD (Inc3) 2 FS 12 3 -9 Finished later than scheduled; however, it did not overlap with its

predecessor (Figure 5.3). The phase finished late due to

unconfirmed scope.

4 FD/TD Transition

(Inc1)

1 FS 0 5 5 Overlapped with its predecessor. The textual reports of this phase

indicate the need to rework the transitioned, but not yet signed-

off, FDs; i.e. due to this overlap, which explains the 5 day delay

in finishing the phase. It is also reported that this phase’s

progress is delayed due to competing priorities within the FD

team resulting in delay in making FD updates as requested by the

TD team.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 143

Project 1 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

5 FD/TD Transition

(Inc2)

2 SS 0 5 5 Although it started as soon as its predecessor started, it still

finished late, because the FD team delayed making changes

requested by the TD team.

6 TD (Inc1) 4 FS 0 0 0 Overlapped with its predecessor. The TDs will almost certainly

need to be reworked when the FDs are finally transitioned.

However, the TD (Inc1) finished on schedule; hence, any rework

may have been carried out through working overtime.

7 TD (Inc2) 5 FS 0 -1 -1

8 Code (Inc1 & Inc2) 6 SS, 7 FF 1 19 18 The dependencies of this phase on its predecessors were such

that a TD can be coded as soon as it was completed; i.e. without

waiting for all the TDs to complete. However, the phase

completed late due to resource constraints and Technical

environment issues.

9 FD/TD

Transition+TD+Code

(Inc3)

3 FS 20 12 -8 Finished later than scheduled; however, it did not overlap with its

predecessor (see Figure 5.3). Unfortunately, no progress reports

exist for this phase to be examined.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 144

Project 1 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

10 TD and Code (Inc4) 9 FS 0 6 6 Finished later than scheduled; however, it did not overlap with its

predecessor (see Figure 5.3). The textual reports indicate that the

Unit test environment was unavailable to test the developed

codes until the last week of executing the phase, which caused

the delay.

11 AT - Plan &

Preparation (Inc1)

1 FS 8 0 -8 Overlapped with its predecessor; however, delay in starting the

phase was due to unexpected resource absence.

12 AT - Execution (Inc1) 11 FS, 8 FS 0 7 7 Overlapped with its predecessor #8, and finished later than

scheduled due to delays in providing the code in #8 as well as

Test environment issues. The phase finished with 21% of the

scenarios being transitioned to #13 due to being blocked by

issues (the reports do not specify what these issues were).

13 IT- Execution - with

Authentication Tool

(Inc1)

12 FS 7 22 15 Started later, not because of its predecessor (#12) finishing late

but because of delay in providing Test environment by the

Technical environment manager.

14 IT - Execution - 13 SS 0 15 15 Finished late because of Technical environment unavailability.

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 145

Project 1 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

without

Authentication Tool

(Inc1)

15 IT (Inc4) 10 SS 10 52 42 Started late due to Test environment unavailability and delay

providing code from #10 due to Unit test delays in #10. Thus, the

precedence relationship contributed partly to the delay in starting

this phase, because #10 was unable to provide early code for

testing in this phase (it had it is own problems - see #10). The

phase finished considerably late (52 days), the majority of the

delay in this phase was due to its own problems; unavailability of

integration test environment and discovery of code defects, as

reported in the textual reports.

Table 5.13 Project 1 behaviour of schedule change

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 146

Project 2 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

1 FD 0 1 1

2 FD/TD Transition 1 FS 0 0 0

3 TD 2 FS 0 0 0

4 Build 3 SS -1 11 12 Despite starting ahead of schedule, this phase still finished late;

mainly due to resource shortage, but also due to schedule not

being baselined and Code deploy tool issues.

5 Assembly Test -

Plan & Preparation

1 FS 0 56 56 Finished considerably late mainly due to dependency on the Peer

supplier to carry out their Test data build. The phase closed

transferring all test scenarios, which data cannot not be prepared

for them (due to Peer supplier delay in Test data build), to phase

(#7).

6 Assembly Test -

Execution

5 FS, 4 FS 0 44 44 Overlapped with both of its predecessors (#5 and #4). The phase

inherited the delay from phase #5 related to providing Peer

supplier Test data build. The phase also identified large number

(40) of code defects (phase #4), some of which were Peer supplier

code defects. The phase closed transferring a number of the

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 147

Project 2 Phases Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

outstanding defects to phase (#8).

7 Integration Test -

Plan & Preparation

5 FS 0 88 88 Overlapped, and ran in parallel for some time, with its predecessor

(#5). Finished significantly late mainly due to inheriting delays

from phase #5; i.e. the Peer supplier’s Test data build, which was

resolved by the end of the phase.

8 Integration Test -

Execution

7 FS, 6 FS 44 54 10 Overlapped with #7. Finished considerably late due to inheriting

several outstanding code defects from #6 delaying its progress,

and suffered from delays in Peer supplier integration Test data

build. The phase also identified large number of code defects (94),

as well as receiving a number of change requests during phase

execution.

Table 5.14 Project 2 behaviour of schedule change

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 148

Project 3

Increments

Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

1 DBT (Inc1) 0 -7 -7

2 DBT (Inc2) 0 7 7

3 DBT (Inc3) 2 SS, 1SS 28 30 2 Started late due to resource constraints (who were working on both the

predecessor increments), and which #2 was delayed. Scope increased during

execution and weekend work was carried out to recover. The phase still finished

late; however, it did not affect the project end date because no later increment

was dependent on it.

4 DBT (Inc4) 1 SS 11 10 -1 Started and late due to resource constraints, but recovered due to weekend

work. Finished late due to technical challenges in developing one of the

components.

5 DBT (Inc5) 4 SS 11 -11 -22 Started late due to resource constrains. Finished earlier because some of the

change requests turned out not impacting this increment.

6 DBT (Inc6) 2 SS 3 46 43 Finished late due to numerous issues: Technical environment issues, Unit test

delays, which in turn caused by Technical environment issues, Build

environment unavailability, and Design gaps. However, phase delay did not

affect the project end date because no other increment was dependent on it

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 149

Project 3

Increments

Predecessor

and type of

dependency

Start

variance

Finish

variance

Duration

variance

Schedule change behaviour

7 DBT (Inc7) 4 SS 0 31 31 Finished late due to resource constraints, technical challenges in developing

some components, and Technical environment issues; however, the delay did

not affect the project end date because it was not on the critical path

8 DBT (Inc8) 5 SS 11 2 -9 Started and finished late due to unclear change requests, which required

clarification, being put forward to the increment.

Table 5.15 Project 3 behaviour of schedule change

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 150

5.3.3.5 Phase schedule accuracy

This metric measured the degree to which estimate of the duration of a phase differed

from its actual duration.

The Phase schedule accuracy (PSA) metric employed the conventional Magnitude of

Relative Error (MRE) measure (Conte et al. 1986). MRE, originally a measurement of

estimate accuracy, is usually used in research to evaluate the degree of inaccuracy in an

estimate of effort. MRE is used in this research to determine the extent to which the

duration estimate of a phase schedule differs from actual duration, which might indicate

presence of unforeseen factors delaying execution, or in rarer cases accelerating it. As

MRE detects poor estimates that are both over and under estimates, a large MRE does

not necessarily mean an activity has been delayed. The low MRE indicates low

uncertainty (i.e. more accuracy) in the estimate (Stensrud et al. 2002; Hughes, 2000).

MRE measures only the accuracy of a single task. Therefore, researchers more usually

use MMRE, which is the average of the MRE, for a range of task estimates. MMRE

often measures the effectiveness of an estimating method.

MRE is measured by calculating the difference between the estimate and the actual, of

the aspect being measured (e.g. duration), and divide the result by the actual:

MRE = absolute (actual – estimated) / actual (Equation 5.5)

For example, if a project phase was scheduled to complete in 100 days (estimate), and

after completion it turned out that it took 150 days to complete (actual), i.e. it took 50

days more than was estimated (underestimate) then:

MRE = absolute (150 – 100) / 150 = 0.3

This indicates that the estimate was wrong by 30%. Thus, MRE can be used to

determine the error in estimating the duration of phase schedule, by calculating the

difference between the ‘scheduled duration’ - which is effectively an estimate of the

duration, and ‘actual duration’, and divide the result by the ‘actual duration’ giving an

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 151

absolute value, which represents the degree of inaccuracy in estimating the duration of

the phase schedule.

A limitation of MRE reported is that, it does not treat underestimates and overestimates

equally (Moløkken-Østvold & Jørgensen, 2005). Thus, extending the example above, if

the actual duration turned out to be 50 days; i.e. it took 50 days less than was estimated

(overestimate), then MRE = absolute (50 – 100) / 50 = 1; indicating that the estimate

was wrong by 100%.

The implication is that, whilst in the case where the number of days underestimated is

same as the number of days overestimated; one might expect the MRE to be the same;

the above example shows that an underestimate by 50 days is not being treated equally

with an overestimate by 50 days (i.e. MRE is 0.3 in the former, and 1 in the latter).

Whilst, this inequality in treating underestimates and overestimates has been reported as

shortcoming of MRE in the reviewed literature in this section, it appears to be a

strength. Since, whilst numerically it is acceptable to expect equal treatment of

underestimates with overestimates, in reality the underestimate should be treated more

seriously (i.e. MRE should read higher) given that a supplier might be unable to fulfil an

underestimated contract (Hughes, 2000). Yet, it can be argued that if the estimate was

used as the basis of a bid for work, an overestimate could mean that a contract could be

lost unnecessarily - which would be serious too. The limitation of MRE is then appear

to be in showing a more favourable MRE for the underestimate (0.3) compared to the

overestimate (1.0) in the example above; i.e. the underestimate is being treated less

seriously.

As a result of the above perceived shortcoming of MRE, an alternative measure have

been proposed, called Balanced relative error (BRE) (Miyazaki et al.1991), which is

intended to compensate for the MRE’s perceived shortcoming above by balancing out

the overestimates with underestimates (Moløkken-Østvold & Jørgensen, 2005).

However, as can be seen below that the BRE’s behaviour, in relation to treating

overestimates and underestimates differently, is no different from MRE:

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 152

BRE = absolute (actual – estimated) / min (actual, estimated) (Equation 5.6)

Thus, for the underestimate example above BRE = (150 – 100)/ 100 = 0.5

And, for the overestimate example above BRE = (50 – 100)/ 50 = 1.0

Thus, it can be said that using MRE to measure the extent of uncertainty in estimating a

single task can produce more reliable measurement, than using it to compare

underestimates with overestimates. This research used the MRE for individual project

phases in order to identify the phases which are most difficult to estimate duration for,

which may indicate causes of schedule delay.

The PSA metric used three derived variables (below), based on the first four base

variables in Table 5.4. Definitions of the derived variables are provided in Table 5.16:

Scheduled duration = scheduled finish day – scheduled start day (Equation 5.7)

Actual duration = actual finish day – actual start day (Equation 5.8)

PSA = absolute (actual duration – scheduled duration) / actual duration (Equation 5.9)

Derived variable Acronym Definition

Scheduled duration SD The number of days which a phase/project was

planned to expend from start to finish. SD is

expected to be a positive value, since the scheduled

finish day should always be later than the scheduled

start day of a phase/project

Actual duration AD The number of days which a phase/project actually

expended from start to finish. AD is expected to be a

positive value, since the actual finish day should

always be later than the actual start day of a

phase/project

Phase schedule PSA The percentage value which the duration estimate of

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 153

Derived variable Acronym Definition

accuracy a phase schedule was wrong; this indicates the extent

to which the duration of the phase schedule was

under-estimated or over-estimated

Table 5.16 Phase schedule accuracy variables

The Scheduled duration and Actual duration variables above relate to duration rather

than effort; for example, if there is only one developer working on each activity, then

the duration and effort would be more or less the same.

To measure the schedule accuracy for each phase in the three projects, the phase’s

scheduled and actual durations were calculated first (see equations 5.7 and 5.8). The

Phase schedule accuracy measure was then calculated using conventional MRE measure

(see equation 5.9). The results are shown in Tables 5.17, 5.18, and 5.19 for Project 1, 2,

and 3 respectively. Note that this treats errors in over-estimating duration on the same

basis as under-estimating.

Table 5.17 Project 1 phase schedule accuracy

Project 1 Phases Scheduled duration

(Scheduled finish

day - Scheduled

start day)

Actual duration

(Actual finish day -

Actual start day)

Phase schedule accuracy

(PSA = absolute (Actual

duration - Scheduled

duration) / Actual duration)

1 FD (Inc1) 20 44 0.55

2 FD (Inc2) 11 14 0.21

3 FD (Inc3) 21 12 0.75

4 FD/TD Transition (Inc1) 13 18 0.28

5 FD/TD Transition (Inc2) 5 10 0.50

6 TD (Inc1) 25 25 0.00

7 TD (Inc2) 8 7 0.14

8 Code (Inc1 & Inc2) 54 72 0.25

9 FD/TD Transition+TD+Code (Inc3) 34 26 0.31

10 TD and Code (Inc4) 7 13 0.46

11 AT - Plan & Preparation (Inc1) 63 55 0.15

12 AT - Execution (Inc1) 27 34 0.21

13 IT- Execution - with Authentication Tool 25 40 0.38

14 IT - Execution - without Authentication 9 24 0.63

15 IT (Inc4) 21 63 0.67

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 154

Table 5.17 shows that, the duration estimate of phase #15 was the largest percentage

under-estimation. Note that, the duration estimate for phase #3 FD (Inc3) was the

largest over-estimation. This estimate was based on a provisional scope which was then

cut by the client, shortening the duration and allowing the phase to start later than

scheduled. The textual data of the progress reports indicates unconfirmed scope of this

phase during execution:

FD (Inc3): N_01: 'Scope confirmation session held on Wk1 (delayed from two

weeks back due to stakeholder availability). Design work will

commence from Wk1. No onward impact from scope delays to Inc3

plan. Inc3 TD/Code on track to commence Wk3 – subject to scope

confirmation. Code resources due to onboard ready for Wk3.'

It may be noted that Wk1 in the above narrative is relative to the start of FD (Inc3),

which is equivalent to week 12 on the overall project timeline (see Figure 5.3).

Similarly, Wk3 in the narrative means Wk15 on the Gantt chart.

Table 5.18 Project 2 phase schedule accuracy

Project 2 Phases Scheduled duration

(Scheduled finish

day - Scheduled

start day)

Actual duration

(Actual finish day

- Actual start

day)

Phase schedule accuracy

(PSA = absolute (Actual

duration - Scheduled

duration) / Actual duration)

1 FD 55 56 0.02

2 FD/TD Transition 10 10 0.00

3 TD 40 40 0.00

4 Build 29 41 0.29

5 Assembly Test - Plan & Preparation 27 83 0.67

6 Assembly Test - Execution 27 71 0.62

7 Integration Test - Plan & Preparation 28 116 0.76

8 Integration Test - Execution 49 59 0.17

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 155

Table 5.19 Project 3 phase schedule accuracy

5.3.3.6 The behaviour of schedule accuracy

 Project 1 phase schedule accuracy (Table 5.17) shows that the second highest

under-estimating error of the schedule duration was that of another Integration Test

phase #14: IT Execution - without Authentication Tool (Inc1). This phase was split

from the phase before it, phase #13, during phase execution, in order to simplify

testing - i.e. the duration estimate for phase #14 was produced during project

execution, not before it. Table 3.1 (sections 3.2.1 - Chapter 3) noted that the

Authentication tool was managed by the PLD team. In order to distinguish between

defects relating to the Authentication tool which were the responsibility of the

Technical environment manager (part of the PLD team), and the defects in the

developed code (including interfaces between the developed software and the tool)

which were fixed by the Build manager, the Test execution phase was split into two

streams of activities running in parallel. Phase #13 tested the integration of the

developed components with the Authentication tool, whilst phase #14 tested the

integration of the developed components in isolation from the Authentication tool.

 Table 5.17 shows wide variations in the change of duration estimates for the FD

phases. FD is particularly vulnerable to scope changes and other external factors.

Project 3

Increments

Scheduled duration

(Scheduled finish

day - Scheduled

start day)

Actual duration

(Actual finish

day - Actual

start day)

Phase schedule accuracy

(PSA = absolute (Actual

duration - Scheduled

duration) / Actual duration)

1 DBT (Inc1) 112 105 0.07

2 DBT (Inc2) 112 119 0.06

3 DBT (Inc3) 35 37 0.05

4 DBT (Inc4) 28 27 0.04

5 DBT (Inc5) 49 27 0.81

6 DBT (Inc6) 35 78 0.55

7 DBT (Inc7) 28 59 0.53

8 DBT (Inc8) 49 40 0.23

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 156

 Project 2 phase schedule accuracy (Table 5.18) shows that, the phase which its

duration estimate was exceeded most was phase #7 (Integration Test - Plan &

Preparation).

 The duration estimates of the Test plan and preparation phases in Project 2: i.e.

phase #7 (Integration Test - Plan & Preparation) and phase #5 (Assembly Test -

Plan & Preparation) are less accurate than their Test execution counterpart phases:

i.e. phase #8 (Integration Test - Execution) and phase #6 (Assembly Test -

Execution). The project performance reports show that the delay in phase #7 was

largely due to external factors to the project team: the Peer supplier delayed

providing Test data for several weeks. Performance reports also spoke of external

factors causing delay in phase #5, which was the Technical environment manager

delay in building Test data into the Assembly Test environment. These indicate

who was responsible but not why they were late.

 Project 3 phase schedule accuracy (Table 5.19) shows that the duration estimate of

increment #5 - DBT (Inc5) was the most over-estimate, with the increment

delivered 22 days earlier than scheduled. Under-estimates are more damaging to

schedules than over-estimates so the inaccurate estimate for increment #6 - DBT

(Inc6) which was 43 days late - was of more concern.

 The preceding results show that the Test phases contributed most to project delay.

This is not surprising since the study by Lehtinen et al. (2014) (see section 4.2 -

Chapter 4) found that the most common causes of delay in the studied projects

occur in the Design, Build, and Test phases; with the Test phase containing the

highest number of causes leading to project delay. They also found that only 2.5%

of the overall 648 causes were related to tools. Rainer’s investigation of two IBM

projects found that the Design, Build, and Test phases for both projects were

completed later than scheduled, (Rainer 1999, page: 128, 2010, 2011). Finally,

Nelson (2007) conducted 99 retrospectives in 74 organisations involving 502

participants in projects that developed large, medium, and small and size projects.

The study found that 54% of the projects suffered from poor estimation/and or

scheduling, and that when projects got behind schedule, Testing was one of the first

Quantitative approach Chapter 5

Controlling schedule duration during software project execution 157

areas that got cut by eliminating Test planning and performing minimal Testing.

The extent of delay in the projects or their phases was not studied in Nelson

(2007)’s investigation.

5.4 Summary

The thesis in this chapter set out to answer the first research question:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

The QUAN approach revealed many empirical insights regarding project schedule

behaviour at project and phase units of project work. The findings informed the research

that Projects 1, 2, and 3 were delayed by 27%, 25%, and 1% respectively. The research

also showed that the phases contributing most to project delay were the Test phases: IT

(Inc4) in Project 1 (42 days), Integration Test - Plan & Preparation in Project 2 (88

days), and DBT (Inc6) in Project 3 (43 days).

ABC’s project control was focused on delivering on schedule, and its use of a locally-

tailored SPI measurement did not provide reliable management information to enable

appropriate control. Furthermore, the approach to project execution in overlapping

phases and the parallel incremental approach, intended to minimise overall project

delay, appear to have contributed to increasing the delay. These findings add to what is

already known in software project management field.

Nevertheless, the mechanisms used to control schedule duration although successfully

identified problematic points in the projects (the Test phases) which obstruct progress;

needed the support of the textual data of the progress reports in order to enable

identifying the causes of schedule delay (the quest of RQ1). This begs questions like:

‘what’ might be influencing schedule duration across the Test phases, and ‘how’ these

influences cause schedule delay? Chapter 6 reports on the approach taken to select

specific Test phases for further in-depth examination.

Case selection Chapter 6

Controlling schedule duration during software project execution 158

6 Case selection

6.1 Introduction

This chapter describes the selection of specific cases from the QUAN approach for

further in-depth examination using the QUAL approach; the third step in the research

process outlined in Chapter 4: Figure 4.1 and section 4.4.2.

This chapter first assesses the extent to which the QUAN results were able to answer the

first research question, followed by an outline of the next steps needed to develop

answers to the remaining two research questions. The case study approach is then

presented, followed by literature review of the two approaches adopted for analysing

case study data: Grounded theory and Actor-network theory and how they were applied

in this study. The characteristics of the phases that were selected for further in-depth

examination are then presented. The actual examination of these cases/phases, however,

is carried out in Chapters 7 and 8. Finally, the works in this chapter is summarised.

6.2 Selection process

6.2.1 The research progress thus far

The QUAN approach attempted to answer the first question of the research:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

Chapter 5 identified a particular phase in each of the three projects examined that was

the major contributor to schedule delay in the project - see Table 6.1.

Case selection Chapter 6

Controlling schedule duration during software project execution 159

Project Original

schedule

duration (days)

Project

schedule

delay (days)

Test phase most

contributing to project

delay

Phase

schedule

delay (days)

1 190 52 IT (Inc4) 42

2 214 54 Integration Test - Plan &

Preparation

88

3 185 2 DBT (Inc6) 43

Table 6.1 Schedule delay from QUAN results

However, this quantitative analysis did not identify why things went wrong in the first

place (a major part of the quest of RQ1).

6.2.2 Next steps

The research now focused more on understanding why the schedules of the three test

phases identified above were delayed; leading to the other two research questions:

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

In order to develop answers to RQ2 and RQ3, a case study design was deemed

appropriate (see section 6.3) for examining the three test phases in Table 6.1 in more

depth. However, to assess how representative the influences on schedule duration in the

three phases were of three projects as a whole, it was decided to sample a few more

phases. The selection of the additional phases was guided by the theoretical sampling

strategy of the Grounded Theory method (section 7.2.1 - Chapter 7), and led to the

analysis of the three phases shown in the last column of Table 6.2.

Project Test phase identified

from QUAN results

Test phase added from Theoretical sampling of

Grounded theory method

1 IT (Inc4) IT- Execution - with Authentication Tool (Inc1)

Case selection Chapter 6

Controlling schedule duration during software project execution 160

Project Test phase identified

from QUAN results

Test phase added from Theoretical sampling of

Grounded theory method

IT - Execution - without Authentication Tool

(Inc1)

2 Integration Test - Plan

& Preparation

Integration Test - Execution

3 DBT (Inc6)

Table 6.2 Phases selected for QUAL analysis

Thus the textual data of the progress reports of six Test phases were subjected to a more

detailed, qualitative, examination.

6.3 Case study approach

A case study is an in depth examination of real-life situations within their context,

which may or may not involve researcher intervention in the situation/context. It has

been described as an empirical enquiry that investigates a phenomenon when the

boundaries of the phenomenon and its context are not clearly evident at the outset of the

research, and that it focuses on understanding the dynamics present within single

settings (Yin 2009, page: 18; Eisenhardt 1989, page: 534; Benbasat et al. 1987, page:

370). In these situations, case study research may offer greater understanding of the

domain investigated (Verner et al. 2009).

It has been argued that case study research can be used equally for QUAN, QUAL, and

mixed QUAN/QUAL approaches to enquiry (Yin, 2009; Eisenhardt, 1989). Case study

research can be embedded within a larger mixed method approach (Yin 2009, pages 24

and 63; Eisenhardt, 1989, page: 538) which could contain both QUAN and QUAL

analyses, and the QUAL strand adopts a case study research approach to analyse and

interpret the findings. This could be because the questions for the case study only

surfaced after analysis of the QUAN data. The selection of cases might come from those

analysed quantitatively and examine them in greater depth (Yin 2009, page: 174; Gomm

et al. 2007, page: 107; Hammersley et al. 2007, page: 237). The research carried out

here was a case study within one organisation, ABC. The case study approach was

Case selection Chapter 6

Controlling schedule duration during software project execution 161

embedded within a larger mixed method approach and was used to guide the QUAL

part of the analysis.

Case study research can adopt a theoretical proposition at the outset (Yin, 2009;

Eisenhardt, 1989), or take an exploratory approach to enquiry (Yin, 2009; Benbasat et

al. 1987). Our research was of an exploratory nature and remained open to what

emerged from the empirical data. In exploratory case studies, Verner et al. (2009) noted

that ‘it is important to use industrially-based cases as the context from which a theory or

artifact may emerge’ (page: 313).

6.3.1 Case study design

According to Yin (2009), case study research can be designed for a single case, such as

a single organisation, or multiple cases, such as a number of organisations. Within

either of these designs, further focus can be given to a single unit of analysis (such as

one project within an organisation) or multiple units of analysis (e.g. several projects

within the same organisation) (Yin 2009, page: 46).

A case can be an individual, an event, an entity, a project phase, a project, or an

organisation (Yin, 2009). What defines a case and any further units of analysis is the

purpose of the research (Yin, 2009; Benbasat et al. 1987; Remenyi, 2013). Recall from

section 6.2.2 that, following the QUAN results the research became interested in

understanding why the schedules of the Test phases were delayed. As such, this

research defined phase as the case to be studied. This means that, answers to the RQ2

and RQ3 were sought in a total of six cases (phases) each with single unit of analysis

(the phase). This makes this study a multiple case design with single unit of analysis

(Verner et al. 2009).

6.3.2 Undertaking case study

It has been suggested that, when sampling for multiple-case research, replication logic

could be used to analyse the data and direct the selection of cases (Yin 2009, page: 54);

i.e. after analysing the first case in a study, subsequent cases are investigated for either

similar or contrasting concepts that have emerged in the first case. This approach is very

similar to the theoretical sampling strategy of the Grounded theory (GT) method - see

also Eisenhardt (1989), where the investigator follows a particular strategy to select

Case selection Chapter 6

Controlling schedule duration during software project execution 162

subsequent cases to develop and/or generalise the concepts that have emerged from the

first case.

There appear to be no ideal number of cases to be considered as sufficient in multiple-

case study research. For example, Yin (2009) suggested 2 or more cases depending on

when the investigator believes that the findings support their hypothesis relative to rival

explanations. Eisenhardt (1989) suggested 4-10 cases if the objective was to generate

theory based in the case study. The number of cases studied in this research was based

on the theoretical saturation concept of GT and after analysing 6 cases the emergent

categories appeared to have been saturated (see Chapter 7 - section 7.3.2.4).

Although standard approaches have been proposed for the analysis of case study data -

see for example Yin (2009) and Eisenhardt (1989), it is possible for researchers to adopt

alternative approaches (Yin 2009, page: 136) more suited to the research context. This

research used GT techniques to categorise the phenomena influencing schedule duration

during the Test phase execution (see section 6.4). Both within-case and across-case

analyses were performed on the cases presented in Table 6.2. The result of this analysis

was drawn into a GT model, a ‘narrative schema’ showing the relationship among the

emergent phenomena. The research then applied Actor-network theory (ANT) concepts

(see section 6.5) to the emergent GT categories, and developed an explanatory model to

make sense of how interactions among project actors influence schedule delay.

6.4 Grounded theory

6.4.1 The usefulness of Grounded theory to this case study

Grounded theory practices have gained particular interest in empirical software

engineering research in recent years - see for example Coleman & O’Connor (2007),

Balaji et al. (2006), Montoni & Rocha (2010), Rose et al. (2007), and Hoda (2010). GT

has also been adapted to the circumstances of the information systems (IS) research.

Urquhart (2007) noted that ‘IS researchers commonly use grounded theory to generate

concepts as opposed to generating theory’ (page: 346). Adapting GT practices has been

supported by Grounded theory scholars in the IS field because of the particular

characteristics of the IS field involving interaction between technology and people

(Urquhart, 2007). Table 6.3 shows example GT studies in software project management

research.

 Case selection Chapter 6

Controlling schedule duration during software project execution 163

Area of research Purpose of application (source)

Software project

management

Develop conceptual model of the key technological factors affecting success in globally distributed software projects

(Qureshi et al. 2004)

Develop categories of best practices used by software project managers to deliver successful projects (Georgieva & Allan,

2008)

Develop theoretical model of competences expected from software project managers in order to deliver successful projects

(Rose et al. 2007)

Information systems

Develop theoretical frameworks through generating descriptive and explanatory theory of adopting CASE (computer aided

software engineering) tools in organisations over time (Orlikowski, 1993)

Develop concepts from the literature of software development methodologies and turning them into questions for

interviewing participants on projects developing large software systems (Hansen & Kautz, 2005)

Software engineering

Develop theoretical framework that explains when and why software process improvement is undertaken by software

companies (Coleman & O’Connor, 2007)

Develop theory of how software project teams operate during the development process in projects that use mixed

development methods (Scrum and Waterfall) or selected practices of a particular method (Adolph et al. 2012)

Combining GT with

other methods

Identify key factors influencing team operation in globally distributed teams through combining GT and Case study

research (Casey & Richardson, 2006)

 Case selection Chapter 6

Controlling schedule duration during software project execution 164

Area of research Purpose of application (source)

Investigate the impact of variables on the outcome of a newly introduced process in software engineering (PhD thesis),

using GT techniques to refine concepts that were borrowed from the literature and form hypotheses, and then test the

hypotheses using the traditional methods of empirical studies (Carver & Basili, 2003)

Add rigour and reliability to theory formulation in Action research, integrating some of the GT techniques to Action

research (Baskerville & Pries-Heje, 1999).

Table 6.3 Grounded theory in software project management research

 Case selection Chapter 6

Controlling schedule duration during software project execution 165

Past relevant research by Patanakul (2014) investigated the management of 14 large-

scale information systems projects in the public sector (in the UK, US, and Australia) to

identify common problems leading to poor project performance and causes of these

problems. A case study research approach was adopted using content analysis on past

project reports (publicly available government audit reports of these projects). The

researcher developed codes (themes) of the problems identified, then grouped these into

categories, and in some cases developed diagrams to represent the causal relationships

that impacted project performance. A cross-case analysis was then conducted

investigating common problems and their causes. The author highlighted the limitation

of the approach as the limited generalizability of the findings given the small sampling

(14 cases), and the potential subjectivity of the reports since they contain the auditors’

interpretation of the events at the time of auditing. Patanakul (2014)’s study is similar to

this research: (i) in its investigation of large-scale IT projects in the public sector (ii) its

purpose to identify causes of project problems that influence project performance, and

doing so across cases (iii) its approach to using case study. Although Patanakul (2014)’s

study does not claim to have used Grounded theory techniques, the approach taken in

starting with no existing frameworks and coding the data in the project reports indicates

some form of category development very similar to the GT approach.

6.4.2 The application of Grounded theory in this case study

Earlier in this thesis (section 4.4.3 - Chapter 4), the rationale for using GT techniques

was put forward. This section now describes how GT was applied to analyse the six

cases in practice; however, the analysis work is reserved for Chapter 7.

The GT approach is a set of procedures used for analysing empirical data in order to

develop categories (i.e. put into groups of different types) or theories of process,

sequence, and/or interaction within the area being investigated, from the participants’

perspective (Glaser & Strauss 1967, page: 114). The GT approach enabled this research

to categorise phenomena that emerge during the Test phase execution. The coding

process in GT involves making sense of the perceptions that the participants hold

(Urquhart, 2013; Guba & Lincoln, 1994) by attaching meaning to them. In the current

research this could be perceptions of the events during the Test phase execution of the

three projects being examined and which are recorded on the performance reports.

 Case selection Chapter 6

Controlling schedule duration during software project execution 166

The term GT has been used to refer both to the process of doing GT analysis and to the

product of the analysis; i.e. the theory grounded in the data. Bryant (2002) calls the

former Grounded theory method (GTM).

The GTM has been developed and clarified over time: there is no unified body of

literature as various implementations differ in their approach and the steps of coding

and analysis - see Urquhart (2013), Charmaz (2006), Holton (2007), and Corbin &

Strauss (2008). The preliminary work of this research applied Charmaz (2006, page:

9)’s implementation of GTM, which advocates coding the ‘actions’ undertaken by

participants in order to develop categories of processes; for example, ‘setting schedule

target’ is an action taken by the Test manager. The textual data in one phase was coded

in this research in this way, and a set of useful categories emerged reflecting the ‘action’

perspective of what was happening during project execution. However, Locke (2001,

pages: 41- 42) criticises GT coding procedure for focusing on processes/action over

time, and overlooking the structural units of the investigated domain. This research

aimed at developing explanatory models that are representative of phenomena present

across multiple projects; therefore, the analysis procedure took into consideration the

structural elements (constituent parts) present in the data such as ‘performance report’

or ‘product defect’ in addition to the process/action took place during project execution.

Urquhart (2013)’s implementation of GT, which captures structure as well as

process/action was adopted. This is based on Glaser in ‘coding the data every way

possible’ (Glaser, 1978: page 56).

The GT analysis can be distinguished from other types of qualitative analysis in four

areas (i) its requirements that preconceived ideas should not influence the development

of the emergent categories (ii) theory building is the main purpose of the study (iii) the

‘constant comparative method’ is used to analyse the research data (iv) the ‘theoretical

sampling’ procedure is used to sample data for analysis (Urquhart et al. 2010, page:

359). The QUAL approach in Chapter 7 employed all above; using GT to create models

which are effectively theories based on textual content of the Test phase progress

reports. However, this was not a model in the sense that in its current state it could be

generalised (see section 4.4.3 - Chapter 4). Hence, further analyses, based on Actor-

network theory, were conducted in Chapter 8 to produce a more complete and

generalizable model.

 Case selection Chapter 6

Controlling schedule duration during software project execution 167

Reviewing literature prior to the study and/or acquiring contextual knowledge have

been advised against by some (Glaser & Strauss 1967 page: 37; Holton, 2007). Others

see this as useful when formulating the research problem (Urquhart, 2013), providing

direction during analysis and theoretical sampling (Corbin & Strauss, 2008), and

making sense of what might be happening in the text (Charmaz 2006; Coleman &

O’Connor, 2007). Yet others see challenges in balancing the emergence of categories

from the data and preconceived ideas about the concepts (Kelle, 2007). This research

reviewed the literature prior to the study to define the research questions, then allowed

categories to emerge from the empirical data, followed by a further literature review to

relate the emergent categories with the existing body of knowledge. Walsham (1995)

put it succinctly: ‘It is possible to access existing knowledge of theory in a particular

subject domain without being trapped in the view that it represents final truth in that

area’ (page: 77).

6.5 Actor-network theory

6.5.1 The usefulness of Actor-network theory to this case study

Actor-network theory (ANT) has been used in the computer sciences’ research in

various ways and for different purposes (Walsham, 1997; McLean & Hassard, 2004) -

see Table 6.4 for examples. ANT draws attention to the role of technology in

organisational management research which may have previously attracted disparate

attention by researchers. Orlikowski (2009) usefully categorised management research

into studies that (i) recognise the social as having the primary influence on organisations

(ii) recognise the technology as having the primary influence (iii) position technology as

a product of social interaction (i.e. technology’s role can be seen only when used by

humans). Orlikowski criticises these approaches for their separation of human from

nonhuman components, an ‘ontology of separateness’, and calls for a ‘relational

ontology’ where neither human nor technology is privileged or treated as separate. On

the latter, Orlikowski calls for the use of Actor-network theory or Sociomateriality in

management research, since ‘contemporary forms of technology and organizing are

increasingly understood to be multiple, fluid, temporary, interconnected, and dispersed’

(page: 15). Sociomateriality distinguishes between the influences exerted by human

(human agency) and the influences exerted by nonhuman (material agency) with respect

to intention; while Actor-network theory treats human and nonhuman influences equally

(Leonardi, 2011).

 Case selection Chapter 6

Controlling schedule duration during software project execution 168

Area of research Purpose of application (source)

Project

management

Understand the process of constructing the project network of building the Skye road bridge in Scotland, where during project

execution new actor-networks emerged and influenced schedule duration and caused project failure (Sage et al. 2011)

Interpret the accounts of experienced project managers on how they use project management techniques within uncertain

project environments (Blackburn, 2002)

Theory development in the baggage handling information system project in Denver international airport, examining ANT’s

utility for information systems research (Mahring et al. 2004)

Building software systems in the NHS, examining the stabilisation/failure of project networks (Bloomfield et al. 1997)

Information

systems

Analyse the development and usage of Geographical Information Systems in India, using ANT to understand the processes of

actor-network construction and stabilisation (Walsham & Sahay, 1999)

Explain the causes of deviation from project plan when developing an Enterprise Resource Planning system, using the ANT

notion of ‘tokens’ (Latour, 1987) to interpret the findings (Elbanna, 2008)

Analyse the activities of defining system specifications in the NHS to develop resource management information systems

(Bloomfield et al. 1992)

Analyse the success or failure of the development of information technology project in rural communities (Andrade &

Urquhart, 2010)

Analyse the implementation of the London Ambulance Service’s computer system (McGrath, 2002)

Combining ANT

with other

Combine ANT with Complexity theory (i.e. the number of different types of components, the number of types of links, and the

speed of change of the system) and Reflexivity theory (i.e. the actions taken to stabilise a system can lead to unexpected results

 Case selection Chapter 6

Controlling schedule duration during software project execution 169

Area of research Purpose of application (source)

methods through emergence of side effects that generate new actions) to understand the complex dynamics inherent in implementing

software projects and the way it destabilises the project leading to project failure (Hanseth et al. 2006)

Combine ANT with the Event-based approach (critical events that challenge the execution path of a project) to understand the

interaction among various actors during the development of radiology system in hospitals (Cho et al. 2008)

Combine ANT with the Diffusion theory (the spread and acceptance of an idea/practice) to understand the interaction among

various actors when evaluating projects in an organisation (Nijland, 2004) for allocating resources/budget.

Combine ANT with the strong structuration theory (empirical application of examining structure and agents in its situated

environment) to understand the interaction among various actors in developing large information technology systems in the

UK’s NHS (Greenhalgh & Stones, 2010)

Combine Actor-network theory with Grounded theory to explain the learning process during decision making under uncertain

and complex situations - PhD thesis (Lopes, 2010)

Combine ANT with the Escalation theory (pouring resources into failing projects in an attempt to save the project, which might

have the opposite effect) to make sense of the causes of the project failure (Mahring et al. 2004)

Table 6.4 Actor-network theory in software project management research

Case selection Chapter 6

Controlling schedule duration during software project execution 170

Past relevant research (PhD thesis) by Lopes (2010) on learning during decision-making

under uncertainty and complexity integrated GT with ANT to explain the learning

process during decision making. Lopes (2010) used Grounded theory as a research

method to categorise data, then mapped them to ANT concepts to explain how decisions

are made. Lopes followed Charmaz’s (2006) approach when constructing the GT

categories and developed three models: conceptual framework, process framework, and

behavioural framework. The first emerged from the GT analysis leading to a handful of

categories and relationships. As some of the emerged categories were nonhuman, Lopes

utilised ANT concepts of inscription, translation, and punctualisation (explained later in

Chapter 8 in this thesis) to explain the relationships between the human and nonhuman

categories in the process of learning during decision making. This led to the second

framework reflecting the decision-making process. The third model then emerged from

connecting the conceptual framework to the process framework, and illustrated the

behaviour the decision-maker exhibits when making decisions under uncertain and

complex situations. Lopes (2010) used ANT concepts to ‘enhance and elaborate’ on the

categories emerged from the GT analysis, and to make ‘deeper understanding’ of the

GT categories to explore ‘nonhuman relationships’ in the process of making decisions

(page: 52). Lopes’ (2010) work is similar to this research in applying ANT concepts to

GT categories to make sense of a particular situation, and explain the relationship

between human and nonhuman elements.

6.5.2 The application of Actor-network theory in this case study

The thesis in section 4.4.4 (Chapter 4) presented the rationale for using ANT techniques

to develop explanations of schedule delay. This section now presents how ANT was

applied; the development of the explanation is addressed in Chapter 8.

ANT is an approach used for describing how things actually are in the area being

examined rather than viewing them within existing perspectives (Latour, 2004a) - this

should make it compatible with GT which follows this principle too. An ANT study

describes the flow of action and interaction between the entities in a project, which can

be human or nonhuman (Law, 2012; Callon, 2012; Latour, 2005; Latour, 2004a). As a

school of thought, ANT stems from the interdisciplinary field of science and technology

studies, which studies the relationships between science, technology, and society in

practice (Bijker & Pinch, 2012). ANT can be distinguished from other methods by its (i)

approach to analysis with an open-mind as to what influences (e.g. human, nonhuman,

Case selection Chapter 6

Controlling schedule duration during software project execution 171

or association) may emerge from the empirical data rather than assuming certain

influences, usually human ones, will be the key drivers (ii) use of the same vocabulary

to describing the interactions of the human and nonhuman in the analysis (Callon,

1986).

The complexity inherent in managing industrial software development projects, as was

noted in Chapter 2, requires closer attention to the interdependencies among the

constituent parts of the project, and the way they influence one another (Kitchenham,

1987; Abdel-Hamid & Madnick, 1991; Hughes, 2012; Law 2012). The suitability of

ANT for studying the complexity of project behaviour comes from the way it makes the

researcher pay closer attention to the influences exerted by project participants, both

human and nonhuman, during project setup and/or project execution (Law 2012, page:

107; Law, 1991). This is achieved through examining: the activities carried out by

project participants/actors (Latour, 1999), the problems present, the actions taken to

solve the problems (Callon, 2012), and the success or failure of the project as a result

(Walsham, 1997; Akrich et al. 2002). Law (2012) noted that, ANT aims ‘to discover the

pattern of forces as these revealed in the collisions that occur between different types of

elements’ (page: 108). As will be seen in the course of this study that, ANT enabled (i)

a focus on both human and nonhuman elements of a project (ii) interpretation of the

interactions through which these elements attempt to control schedule duration and the

way this influences schedule delay.

ANT can be used in research as an analytical technique (McLean & Hassard, 2004;

Winner, 1993) where ANT concepts are applied to the research findings to explain what

might be happening in the investigated area. For example, ANT concepts were applied

to Grounded Theory categories in this research to make sense of the influences on

schedule delay (further examples were provided in section 6.5.1). The outcome of using

ANT in this way can be explanatory models (McLean & Hassard, 2004; Dankert, 2011)

as was the case in this study modelling the interactions among the actors in the network.

This could be a graphical representation of a network comprising sequences of points

and lines (Callon 2012 page: 90), that illuminate why the project network fails to setup

or operate successfully (Walsham, 1997; Law & Callon, 1992; Latour, 1996; Callon &

Law, 1989; Latour, 2004a; Latour, 2004b; Dankert, 2009a; Dankert, 2009b).

Case selection Chapter 6

Controlling schedule duration during software project execution 172

ANT can also be used as a research method (Walsham, 1997; Dankert, 2011), where the

researcher describes the associations of the actors in the project network (Law 1991,

page: 11; Callon, 1991, page: 154; Walsham 1997, page: 469) - almost reported ANT

research results in a description. The outcome of this approach to using ANT can be

(McLean & Hassard, 2004; Dankert, 2011) a narrative of how project networks are

setup or operate (Latour, 1999; Walsham, 1997; Andrade & Urquhart, 2010).

Like other approaches, the way ANT research has been done, have been criticised:

 Social structure: i.e. for lack of distinction between the three aspects of the world:

the real, the actual, and the empirical; Mingers & Willcocks (2014, page: 53)

elaborate that the real are enduring structures and mechanisms that have particular

tendencies and powers generating causal effects in the world. These structures

interact with each other and generate actual events that do/and do not occur. Some

of these events are observed and experienced, and have the potential to become

empirical. The authors contend that ANT analyses only focus on the empirical,

which is similar to criticisms raised by other researchers that ANT studies focus on

analysing the local (micro) processes of the area being examined, and it fail to

consider the wider contextual environment (macro structures) and the way they

influence the local (Walsham, 1997; McLean & Hassard, 2004). However, ANT

analyses describe what emerges from the studied domain rather than prior

separation of the context from the content (Latour, 2005, 2004a, 1999, 1991;

Monteiro, 2001) and so it is possible for the context to emerge from an ANT

analysis if it is present in the data; for example, the works of this research illustrates

the influences of the wider context of the studied projects (i.e. the programme) on

the delay of projects’ schedules.

 Focus and scope of the analysis: i.e. ANT studies focus on selected actor/s in the

analysis and lack advice on where to draw the boundary of the network (McLean &

Hassard, 2004; Winner, 1993; Star, 1991). However, the research questions and the

objective of the investigation should guide the researcher in selecting any actor as a

focal actor to start off the analysis, and as to the likely boundary of the network to

extend the analysis to (Monteiro, 2001; Law, 1991; Latour, 2004a) as was done in

this research where the focus was on the Test manager and the boundary of the

Case selection Chapter 6

Controlling schedule duration during software project execution 173

analysis included the contextual environment to the projects, such as Technical

environment function.

 Symmetry: i.e. treating humans and nonhumans equally (Mingers & Willcocks,

2014; Harbers, 1995; McLean & Hassard, 2004; Walsham, 1997; Monteiro, 2004).

On this point, it can be said that ANT does not discount the fact that humans have

intentions whilst nonhumans do not; however, the equality view is used during the

analysis in order to allow for emergence of what is actually happening in the data

rather than enforcing prior assumptions (Latour, 2005; Walsham, 1997; Monteiro,

2001). For example, in this research it was useful to remain open to what might be

influencing schedule delay during analysis in order to see that products affect one

another, through defect, without human intervention, and which eventually cause

schedule delay.

Despite the criticisms above, Winner (1993) praises ANT for ‘its promise to deliver a

veritable gold mine of those most highly valued of academic treasures: case studies…its

conceptual rigour, its concern for specifics, and its attempt to provide empirical models

of technological change that better reveal the actual course of events’ (page: 366-368).

6.6 Case characteristics

The following sections provide detailed contextual information on the six cases studied

in-depth (Verner et al. 2009), present their similarities and differences, and the

dependency among the cases during Test phase execution.

6.6.1 Context of the six cases

A Case is essentially a phase of the software project; since the names of some of the

examined Test phases were long, a mnemonic acronym was used for easy reference; for

example, rather than the phase ‘Integration Test Execution - with Authentication tool

(Inc1)’ it was referred to as Case P1-IT-Ex-Au (Inc1). The convention followed was

that of ‘<project identifier> - <phase identifier> - <increment identifier>’; for example,

P1 indicates Project 1; IT-Ex-Au indicates Integration Test Execution with

Authentication tool; and (Inc1) indicates increment 1.

Case selection Chapter 6

Controlling schedule duration during software project execution 174

Furthermore, since the six Test phases were subjected to in-depth examination

employing a Case study research approach; a phase was treated as a case that was

studied in detail. Table 6.5 maps the cases, phases, and the projects they belong to.

Project Phase Scheduled

duration (days)

Duration

variance (days)

Case

1 IT- Execution - with

Authentication Tool

(Inc1)

25 15 P1-IT-Ex-Au

(Inc1)

1 IT - Execution -

without

Authentication Tool

(Inc1)

9 15 P1-IT-Ex-no-

Au (Inc1)

1 IT (Inc4) 21 42 P1-IT (Inc4)

2 Integration Test -

Plan & Preparation

28 88 P2-IT-PP

2 Integration Test -

Execution

49 10 P2-IT-Ex

3 DBT (Inc6) 35 43 P3-DBT

(Inc6)

Table 6.5 Case to phase to project mapping

IT- Execution - with Authentication Tool (Inc1)

P1-IT-Ex-Au (Inc1) was the first execution phase of Integration Test in Project 1. It

involved testing the integration of the application layers described in Chapter 3 (section

3.3.7). As well as testing the developed software components it included the retesting of

code with errors. Recall from section 5.3.3.6 (Chapter 5) that this phase was split into

two separate, concurrent, phases due to delays caused by uncertainty about the source of

defects requiring rework. One phase tested the functionality without the Authentication

tool (a security subcomponent from an external supplier) - see immediately below - and

the other with the external component. It may be argued that, it would be logical to test

the developed component without the Authentication tool first rather than the opposite.

Case selection Chapter 6

Controlling schedule duration during software project execution 175

IT - Execution - without Authentication Tool (Inc1)

P1-IT-Ex-no-Au (Inc1) was concerned with testing the integration of developed

components without Authentication tool in Project 1. The phase had its separate Test

execution work stream, separate progress reporting, and separate performance measures

tracking its progress. The purpose of this separation was to isolate causes of failing Test

scenarios; i.e. to ascertain whether each one was caused by the introduction of the

Authentication tool or the developed components were faulty and required fix.

IT (Inc4)

P1-IT (Inc4) was the last execution phase of Integration Test in Project 1. It was a

subsequent Test execution phase to the preceding two cases, and so carried out with all

the domain knowledge experiences gained from executing P1-IT-Ex-Au (Inc1) and P1-

IT-Ex-no-Au (Inc1). The phase included testing the developed components with the

Authentication tool, since the challenges faced initially in setting up the tool and

developing appropriate interfaces were now seen as overcome. Nonetheless, section

5.3.3.2 (Chapter 5) showed that P1-IT (Inc4) was the most contributing to the delay of

Project 1.

Integration Test - Plan & Preparation

P2-IT-PP was the planning and preparation phase of Integration Test in Project 2, a

subsequent release of the application build in Project 1. Again, this case inherited all the

experiences and knowledge learned from the previous project and Test execution

phases, and the Test activities were carried out by the same Test manager and Test

team.

The Test planning and preparation phase developed a plan that included the

functionality to be tested, a schedule, details of components , and a specification of the

test data that to be used during subsequent test execution (Sommerville, 2011). Since

the plan and preparation were for an Integration Test phase (as opposite to Assembly

Test phase), it required coordination with the Peer supplier, in order to test the

integration of ABC and Peer supplier components. This involved coordinating data

Case selection Chapter 6

Controlling schedule duration during software project execution 176

preparation between ABC and Peer supplier to ensure data consistency during Test

execution.

Integration Test - Execution

P2-IT-Ex was the execution phase of the Integration Test in Project 2, and followed P2-

IT-PP above. The Test plan and data preparation developed above were implemented to

check the functionality in the software components. Again, this case inherited all the

experiences and knowledge learned from Project 1 and previous Test execution phases.

DBT (Inc6)

P3-DBT (Inc6) was a combination of the Design, Build and Test (DBT) phases in

Project 3, unlike the preceding cases which only comprised the Test phase. Project 3

was run by a Project manager, phase managers, and project team that were completely

different from Projects 1 and 2. In addition to Integration Test, P3-DBT (Inc6) included

Assembly Test activities too. Assembly Test excluded testing the developed

components with the real Authentication or Component catalogue tools.

6.6.2 Similarities and differences among the six cases

Tables 6.6 and 6.7 summarise the similarities and differences among the six cases.

Case selection Chapter 6

Controlling schedule duration during software project execution 177

Characteristic P1-IT-Ex-Au

(Inc1)

P1-IT-Ex-no-

Au (Inc1)

P1-IT (Inc4) P2-IT-PP P2-IT-Ex P3-DBT (Inc6)

Phase type Integration

Test Execution

Integration

Test Execution

Integration

Test Execution

Integration Test

Plan & Preparation

Integration

Test Execution

Design, Build, Assembly

Test, and Integration Test

Testing performed with

the Authentication tool

Yes No Yes Not applicable Yes No in Assembly Test; Yes

in Integration Test

Delivery duration

(in weeks)

7 3 11 18 16 8

Located within project Project 1 Project 1 Project 1 Project 2 Project 2 Project 3

Test progress tracking Event Event Event Event Event Increment

Table 6.6 Differences among the six cases

Characteristic Comments

Phase execution

chronology

P1-IT-Ex-Au (Inc1), P1-IT-Ex-no-Au (Inc1), P1-IT (Inc4), P2-IT-PP, and P2-IT-Ex were executed in sequence. P3-DBT (Inc6)

was executed in parallel with the above cases

Phase type All cases were Test phases only, with exception of P3-DBT (Inc6) which comprised Test phase in addition to Design and Build

Project team P1-IT-Ex-Au (Inc1), P1-IT-Ex-no-Au (Inc1), P1-IT (Inc4), P2-IT-PP, and P2-IT-Ex were run by the same project team. P3-DBT

(Inc6) was run by a different project team

Table 6.7 Similarities among the six cases

Case selection Chapter 6

Controlling schedule duration during software project execution 178

6.6.3 Position of the six cases within Test execution architecture

Figure 6.1 shows the position of the six cases within the overall Test execution

architecture.

The ABC’s Test environments hold the Test data and Code to be tested. Uploading the

Test data and Code was done through the Technical environment. Projects 1, 2, and 3

arranged for the Test data to be uploaded onto the Test environment. Test execution

involved the manual running of a program - XMLSpy - that runs the developed

components in the right message routing order through the different application layers

described in Table 3.2 (section 3.2 - Chapter 3). When a defect was discovered during

the Test execution; the defect was registered by the Test manager, fixed by the

designated Build manager, and the fixed code was deployed to the particular Test

environment using the Code deploy tool. The Build manager used the Code deploy tool

to make a build and deploy to the Test environment; the Code deploy tool used the

Technical environment to deploy Code to the Test environment automatically.

On the other side of the common network was the Peer supplier uploading their Test

data and Code to their Test environment. The Peer supplier’s Technical environment,

located at a different physical location, was connected to the ABC’s Technical

environment to enable the integration test execution messages pass through both

systems. A test message is an executable file (combination of Test data and Code)

created by the tester, and which represents a functional scenario typically performed by

the user, to perform test execution.

If ABC’s Code and Test data were according to the expected requirements, the Test

message will pass through the Technical environment of ABC to the Technical

environment of the Peer supplier in order to reach the Peer supplier’s Test environment,

provided that the connection works as expected. If the Peer supplier’s Code and Test

data were according to the expected requirements, the test messages will reach the

Mainframe and the resultant message will return back to the Test execution interface

using the same path but in reverse order.

Case selection Chapter 6

Controlling schedule duration during software project execution 179

T
es

t
en

vi
ro

nm
en

t

T
es

t
ex

ec
ut

io
n

in
te

rf
ac

e

T
ec

hn
ic

al
 e

nv
ir

on
m

en
t

(A
B

C
)

T
ec

hn
ic

al
 e

nv
ir

on
m

en
t

(P
ee

r

su
pp

li
er

)

T
es

t
en

vi
ro

nm
en

t
(P

ee
r

su
pp

li
er

)

M
ai

nf
ra

m
e

Test manager

executes Test

scenario

System

provides Test

result

C
od

e
de

pl
oy

 t
oo

l

Build manager for

Projects 1 and 2 makes

a build and deploys to

the Test environment

dedicated to projects 1

and 2

Peer supplier

uploads Test

data and Code

Code deploy tool uses

the Technical

environment to deploy

new/fixed Code onto

both Test environments

Projects 1 and 2 arrange for

uploading Test data using

the Technical environment

Projects 3 arranges for

uploading Test data using

the Technical environment

Build manager for Project 3

makes a build and deploys

to the Test environment

dedicated to project 3

T
es

t
en

vi
ro

nm
en

t

T
es

t
ex

ec
ut

io
n

in
te

rf
ac

e

Test manager

executes Test

scenario

System

provides Test

result

Common

network

The following cases carried out on this environment:

P1-IT-Ex-Au (Inc1)

P1-IT-Ex-no-Au (Inc1)

P1-IT (Inc4)

P2-IT-PP

P2-IT-Ex

Case P3-DBT (Inc6)

carried out on this

environment

Figure 6.1 Position of the six cases within Test execution architecture

Case selection Chapter 6

Controlling schedule duration during software project execution 180

6.7 Summary

This chapter described the process of selecting three Test phases from the QUAN

results for in-depth examination in the QUAL analysis. The chapter also outlined the

rationale and approach for sampling for an additional three Test phases. Thus, a total of

six Test phases (cases) were selected, for their textual data of the progress reports, to be

analysed (see Table 6.2).

The chapter also outlined the Case study approach adopted for the QUAL analysis to

enable developing answers to the second and third research questions, using the

Grounded theory and Actor-network theory techniques to analyse the textual data of the

six cases. The application of GT and ANT will be described in Chapters 7 and 8

respectively. The chapter ended with a detailed description of the characteristics of the

six cases.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 181

7 Qualitative approach

7.1 Introduction

This chapter describes the collection and analysis of the qualitative (QUAL) data and

presents its findings. These are the fourth and fifth steps in the research process outlined

in Chapter 4: Figure 4.1 and section 4.4.3. The chapter attempts to answer the second

research question

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

In order to develop answers to RQ2, the thesis needed to scrutinise the textual data in

the Test phases’ progress reports, categorise all the different types of phenomena that

are present during the Test phases’ execution, and make sense of their influence on

schedule duration. To do so in a systematic way, however, an established approach was

needed; and that was the Grounded theory (GT) method.

The chapter firstly describes the approach adopted in the QUAL analysis. The approach

is illustrated through an analysis of case P1-IT (Inc4) data and the results of the process,

i.e. categories of phenomena present during phase execution, are shown. The emergent

phenomena across the six cases are then produced. A narrative schema depicts the

content of the text in these cases is developed and analysed. Finally, the works in this

chapter is summarised.

7.2 Approach

7.2.1 Sampling strategy

The QUAL approach adopted the theoretical sampling strategy of GT (Glaser & Strauss

1967, page: 58). Section 6.2.2 (Chapter 6) argued for sampling a few more cases in

addition to the three Test phases most delayed in the three projects in order to

strengthen the development of the emergent categories (i.e. types of phenomena) and

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 182

achieve representativeness across the three projects; and that the Theoretical sampling

technique of GT method was employed to select the additional cases.

Theoretical sampling can be used to develop (i.e. enlarge/build) categories and/or to

generalise categories (Glaser & Strauss 1967, page: 58).

Developing categories involves sampling similar cases to the one already analysed. If

the data is similar, it results in the accumulation of similar data that make up a given

category (i.e. enlargement of the category). If the data is dissimilar, it results in

differentiation among the emergent categories (i.e. development of new categories to

the ones already emerged). For example, if the category ‘people’ represents ‘test

manager’ in case 1 (a Test phase). Analysing case 2 (another Test phase) results in the

emergence of ‘test manager’ again, this develops the category people. If analysing case

2 also results in the emergence of ‘performance report’ this results in a new category

‘product’.

Generalising categories involves sampling different cases to the one already analysed.

If the data is similar, it results in the accumulation of varied data that make up a given

category (i.e. generalisation of the category). If the data is dissimilar, it increases the

applicability of the theory being generated (i.e. generalisation across the cases). For

example, if the category ‘people’ represents ‘test manager’ in case 1 (a Test phase).

Analysing case 3 (a Build phase) results in the emergence of ‘build manager’, this

generalises the category people across the two cases. If analysing case 3 also results in

the emergence of ‘code’, this increases the applicability of the emergent theory across

the cases.

Table 7.1 shows the theoretical sampling approach in this case study. Section 7.3.2.4

illustrates how this was done in practice.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 183

Order of

selection

Project Case Sampling approach Phase type Rationale

1 1 P1-IT (Inc4) Purposeful Integration Test Execution Contributed most to project delay

2 1 P1-IT-Ex-Au (Inc1) Theoretical sampling

of GT

Integration Test Execution To develop the emergent categories thus far

3 1 P1-IT-Ex-no-Au (Inc1) Theoretical sampling

of GT

Integration Test Execution To develop the emergent categories thus far

4 2 P2-IT-PP Purposeful Integration Test Plan and

preparation

Contributed most to project delay; but which

also increases the generalisation of the

emergent categories thus far

5 2 P2-IT-Ex Theoretical sampling

of GT

Integration Test Execution To develop the emergent categories thus far;

and to increase the generalisation of the

emergent categories thus far

6 3 P3-DBT (Inc6) Purposeful Design, Build, and Test Contributed most to project delay; but which

also increases the generalisation of the

emergent categories thus far, and increases

the applicability of the emergent theory

Table 7.1 Theoretical sampling of the case study

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 184

7.2.2 The information collected

Textual information from weekly project progress reports was extracted (section 3.4.1 -

Chapter 3). The unit of analysis for this qualitative study was project phase. Section 6.6

(Chapter 6) described the characteristics of the six phases selected.

The QUAL data analysis used software NVivo to manage the data during analysis.

Identifiable information was made anonymous prior to entering into NVivo, and

missing performance reports for particular weeks were marked as [No performance

report]. Appendix A (Figure A.2) provides example screenshot of the textual data in

NVivo.

7.2.3 Techniques used: Grounded theory

The thesis introduced earlier (section 4.4.3 - Chapter 4; section 6.4.2 - Chapter 6) the

use of GT to analyse the textual data of the six cases; i.e. to categorise all the different

types of factors that appeared during the Test phases’ execution and their influence on

schedule duration. The next section of this chapter now illustrates the QUAL approach

through application of the analysis procedure to case P1-IT (Inc4), followed by the

findings across the six cases.

7.3 Case P1-IT (Inc4) findings

7.3.1 Case P1-IT (Inc4) textual data

Table 7.2 shows the textual data of the weekly progress reports for P1-IT (Inc4) phase.

The progress report was written by the Test manager for the Project manager and was

discussed in the weekly status meetings attended by all other phase managers in

addition to the Project manager. The narratives in Table 7.2 (first column) represent the

individual weeks when progress was reported.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 185

Narrative # Textual information

N_01 Integration Test complete for Inc3. Inc4 execution not started due to X+ environment setup delays – expected start date Wk1. Inc4 X+

environment not yet available for execution due to XXX connectivity issues and L code has not been deployed.

N_02 Integration Test complete for Inc3. Inc4 execution not started due to P1 XXN environment setup and Unit Test delays – expected start date Wk2.

N_03 Integration Test complete for Inc3. Inc4 execution started late (Wk2). So far 12/17 components ran clean, 13 new Defects have been raised. Inc4

execution started late due to P1 XXN environment setup and Unit Test delays.

N_04 Integration Test complete for Inc3. Inc4 execution started 1.5 weeks late (Wk2). Inc4 execution extended to end of Wk4 package window

(Wk5). Environmental issues have significantly hindered progress.

N_05 Integration Test complete for Inc3. Inc4 execution started 1.5 weeks late (Wk2). Inc4 execution extended to end of Wk4 package window

(Wk5). Environmental issues have significantly hindered progress.

N_06 Inc4 execution extended to Wk6. Environmental issues have significantly hindered progress and continue to prevent closure of Inc4.

N_07 One Third-party defect remains with component X. Third-party reports this is a live issue and a fix is not going to be provided as this has never

been seen in live. A Change Request is being raised by Business design to change the L behaviour in this area which will be scheduled into a

future release. Awaiting confirmation from Business Design that Inc4 can be closed with this issue open as live volumes of temporary

component X are very low, and from Consumer to confirm they are happy to close Inc4 with this open.

N_08 Awaiting sign off of P1_R1 Integration Test Completion Report.

N_09 Awaiting sign off of P1_R1 Integration Test Completion Report.

N_10 Awaiting sign off of P1_R1 Integration Test Completion Report.

N_11 P1_R1 Integration Test Completion Report signed off. Completed.

Table 7.2 Case P1-IT (Inc4) Textual information

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 186

7.3.2 Case P1-IT (Inc4) analysis procedure

The overall procedure for coding the textual data is shown in Figure 7.1, which started

with coding the textual data for case P1-IT (Inc4).

Start

Textual data of

initial week

progress report

Key

Initial

increment

Subsequent

increment

progress

analysis

ProductProcess

Decision Terminator

Label segments

of text

Codes

More

progress

reports of

the same

case?

Yes

No

Compare data and code

(data with data;

data with code)

Group sub-

categories

Group codes

Sub-categories

Categories

Compare code and sub-category

(code with code;

code with sub-category)

Compare sub-category and category

(sub-category with sub-category;

sub-category with category;

category with category)

Categories

saturated?
No

Yes

End

Write memo

Sample

subsequent case

Textual data of

subsequent week

progress report

Textual data of

initial week

progress report

Repeat coding

procedure within

same case

Repeat coding

procedure

across cases

Figure 7.1 Coding procedure

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 187

As Figure 7.1 shows that, GT analysis in this research involved: developing codes, sub-

categories and categories; constant comparison; writing memos; and theoretical

sampling (all explained below). These practices were applied in an iterative and

incremental approach where the work moved through these stages a number of times in

order to arrive to the emergent categories (Locke, 2001; Orlikowski, 1993).

7.3.2.1 Codes

Coding the textual data of P1-IT (Inc4) progress reports involved assigning meaning to

actions, structural units, and the relationships between them; in order to account for

what was perceived to be happening within segments of text (Urquhart, 2013; Locke,

2001; Corbin & Strauss, 2008; Charmaz, 2006; Holton, 2007). For example, the textual

data in the first week report (see Table 7.2, N_01) was coded as shown below:

Affirming phase

finish

Integration Test complete for Inc3. Inc4

execution not started due to X+ environment

setup delays – expected start date Wk1. Inc4

X+ environment not yet available for

execution due to XXX connectivity issues

and L code has not been deployed.

Activity delay

due to delay in

providing Test

environment

Awaiting Test

environment

Explaining

missing schedule

target

Lacking control

over progress due

to delay in

providing Test

environment

Awaiting Code
Delay in

providing Code

Delay in

providing Test

environment due

to Code deploy

tool defect

Delay in

providing Test

environment due

to Technical

environment

defect

Code

Figure 7.2 Coding P1-IT (Inc4) textual data for N_01

Figure 7.2 shows that during coding (also called Open coding) a statement can be coded

more than once - coding the data every way possible (Holton, 2007). For example, the

statement ‘Inc4 execution not started due to X+ environment setup delays – expected

start date Wk1’ was coded as ‘Activity delay due to delay in providing Test

environment’ as well as ‘Lacking control over progress due to delay in providing Test

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 188

environment’ because it represents both situations. The difference between these two

codes may appear to be rather subtle; however, they differ in meaning; one conveys a

delaying obstruction, the other the condition of being delayed. That is, they relate to the

same event (delay in providing Test environment), but to different event outcomes

(activity delay, and lacking control over progress).

As Figure 7.1 showed that the subsequent week’s textual data was then coded, see

Figure 7.3:

Affirming phase

finish

Integration Test complete for Inc3. Inc4

execution not started due to P1 XXN

environment setup and Unit Test delays –

expected start date Wk2.

Activity delay

due to delay in

providing Test

environment

Awaiting Code
Delay in

providing Code

Setting schedule

target

Awaiting Test

environment
Activity delay

due to delay in

providing Code

Figure 7.3 Coding P1-IT (Inc4) textual data for N_02

Figure 7.3 shows that coding the subsequent progress report for the same case is done

with the existing codes in mind (see process ‘Compare data and code’). The text

segments of the subsequent week are compared with those of the previous week and

with the codes that were analysed in that week. A check is made to see if the new

week’s text can be labelled under existing codes or whether new codes are needed. This

is called ‘constant comparative method’ in GT.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 189

In this research, constant comparison was used to compare data segments belonging to a

code, codes within a sub-category, and sub-categories within a category to check that

similar items are grouped together (within code comparison). Constant comparison was

also used to compare new instances of data with existing codes, sub-categories, and

categories (Kelle, 2007; Locke, 2001; Urquhart, 2013; Charmaz, 2006). For example,

the following text from N_02 was compared with the text in N_01:

N_02: Inc4 execution not started due to P1 XXN environment setup and

Unit Test delays

N_01: Inc4 execution not started due to X+ environment setup delays

Both pieces of text indicate delays in starting the phase. However, N_02 states the delay

was caused by the lack of code (a unit test is done as the last coding activity before

integration testing) as well as a test environment, whilst N_01 only mentions the test

environment. N_02 text was coded under an existing code for N_01, ‘Activity delay due

to delay in providing Test environment’; and also under a new code ‘Activity delay due

to delay in providing code’ - see Figure 7.3. The code ‘Activity delay due to delay in

providing Test environment’ is now generalised across both narratives.

The above is an example of ‘memo writing’ in GT analysis, where the researcher writes

their thoughts about and interpretations of the objects, events, and actions taking place

during constant comparison of data items; and the identification of relationships

between sub-categories and how the overall framework might fit together (Locke, 2001;

Corbin & Strauss, 2008). Figure 7.1 shows that analytic memos being written to make

sense of the text, and helping in refining the meaning of the emerged categories - more

example memos are provided in Appendix A4.

Applying the above procedures on the remaining textual reports of P1-IT (Inc4) resulted

in the Codes listed in Table 7.3. For description of these codes see Appendix A1. Once

again, similarity may be noted between some of the codes in Table 7.3, yet each code

conveys a different meaning. For example, the codes #5, 10, and 21 may appear similar,

but each denotes a different step in the event sequence taking place with regards to

fixing code defect by Peer supplier. Code #5 captures the waiting condition of the Test

manager on the Peer supplier to fix the Code. Code #10 encapsulates the delay

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 190

condition created by the Peer supplier to fix the Code. Code #21 describes the status of

progress of the Test phase, which is now delayed to meet its activity targets because of

the delay by Peer supplier; i.e. the same event can have different impacts on different

entities.

Code

1 Awaiting Client decision on Scope change

2 Awaiting Consumer decision on Scope change

3 Awaiting decision on Test completion report

4 Awaiting Code defect fix

5 Awaiting Code defect fix from Peer supplier

6 Awaiting Technical environment defect fix from Technical environment manager

7 Awaiting Code

8 Awaiting Test environment

9 Delay in deciding on Test completion report

10 Delay in fixing Peer supplier Code defect

11 Delay in providing Code

12 Delay in providing Test environment due to Code deploy tool defect

13 Delay in providing Test environment due to Technical environment defect

14 Client

15 Consumer

16 Peer Supplier

17 Code

18 Code defect

19 Technical environment defect

20 Test completion report

21 Activity delay due to delay in fixing Peer supplier Code defect

22 Activity delay due to delay in providing Code

23 Activity delay due to delay in providing Test environment

24 Activity delay due to Technical environment defect

25 Duration extension due to Technical environment defect

26 Lacking control over progress due to delay in approving Test completion report

27 Lacking control over progress due to delay in providing Test environment

28 Phase delay due to delay in deciding on Test completion report

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 191

Code

29 Phase delay due to Technical environment defect

30 Affirming phase finish

31 Explaining missing schedule target

32 Quantifying progress

33 Setting schedule target

34 Started late

35 Started late due to Delay in providing Code

36 Started late due to delay in providing Test environment

37 Started late due to Technical environment defect

38 Scope cut due to Client Change request

39 Scope move due to Peer supplier Code defect

Table 7.3 P1-IT (Inc4) Codes

7.3.2.2 Sub-categories

The next step was to group Codes that represent similar themes in Table 7.3 into higher

level of abstraction to form sub-categories. The act of grouping lower level codes that

represent similar themes into to higher level codes is called ‘developing categories’ in

GT, which is achieved through the constant comparative method.

A sub-category in GT can be one of two types: selective or theoretical (Urquhart, 2013).

Selective sub-categories represent the elements (constituent parts) of the project.

Theoretical sub-categories express a relationship between the Selective sub-categories

(Holton, 2007; Urquhart, 2013). In the example given in the previous section about

codes #5, 10, and 21 (see paragraph preceding Table 7.3); the Test manager, Peer

supplier, and Activity delay can be seen as selective sub-categories, the Test manager is

associated with the Peer supplier through waiting on defect fix (theoretical sub-

category) of the code, and the Peer supplier is associated with Activity delay through

delaying fix of the defect (theoretical sub-category).

‘Compare code and sub-category’ in Figure 7.1 is exemplified by the process of

comparing the various codes in Table 7.3 against one another for similarities and

differences to ascertain whether they should be different codes or whether they are

better combined. Similarly, when sub-categories are formed, the codes are compared to

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 192

determine whether they should be grouped under a particular sub-category. Codes under

a sub-category share similar characteristics; at the same time exhibit some variations

(Urquhart 2013, page: 9). For example, although the first eight codes in Table 7.3

represent ‘waiting’, they represent different aspects of waiting. Whilst codes #1, 2, and

3 represent waiting on decision, codes #4, 5, and 6 represent waiting on defect fix, and

codes #7 and 8 represent waiting on a product.

Applying the same approach on the remaining codes in Table 7.3 resulted in the sub-

categories shown in Table 7.4. For description of these sub-categories see Appendix A1.

For a list of the selective sub-categories that are linked by the theoretical sub-categories

see Appendix A2.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 193

Code Sub-category Sub-category Type

1 Awaiting Client decision on Scope change

Awaiting decision Theoretical code 2 Awaiting Consumer decision on Scope change

3 Awaiting decision on Test completion report

4 Awaiting Code defect fix

Awaiting defect fix Theoretical code 5 Awaiting Code defect fix from Peer supplier

6 Awaiting Technical environment defect fix from Technical environment manager

7 Awaiting Code
Awaiting product Theoretical code

8 Awaiting Test environment

9 Delay in deciding on Test completion report Delay in deciding Theoretical code

10 Delay in fixing Peer supplier Code defect Delay in fixing defect Theoretical code

11 Delay in providing Code

Delay in providing product Theoretical code 12 Delay in providing Test environment due to Code deploy tool defect

13 Delay in providing Test environment due to Technical environment defect

14 Client Client Selective code

15 Consumer Consumer Selective code

16 Peer Supplier Peer Supplier Selective code

17 Code Code Theoretical code

18 Code defect Defect Theoretical code

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 194

Code Sub-category Sub-category Type

19 Technical environment defect

20 Test completion report Test completion report Theoretical code

21 Activity delay due to delay in fixing Peer supplier Code defect

Activity delay Selective code
22 Activity delay due to delay in providing Code

23 Activity delay due to delay in providing Test environment

24 Activity delay due to Technical environment defect

25 Duration extension due to Technical environment defect Duration extension Selective code

26 Lacking control over progress due to delay in approving Test completion report
Lacking control over progress Theoretical code

27 Lacking control over progress due to delay in providing Test environment

28 Phase delay due to delay in deciding on Test completion report
Phase delay Selective code

29 Phase delay due to Technical environment defect

30 Affirming phase finish

Reporting progress status Theoretical code
31 Explaining missing schedule target

32 Quantifying progress

33 Setting schedule target

34 Started late

Start variance Selective code 35 Started late due to Delay in providing Code

36 Started late due to delay in providing Test environment

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 195

Code Sub-category Sub-category Type

37 Started late due to Technical environment defect

38 Scope cut due to Client Change request
Scope change Theoretical code

39 Scope move due to Peer supplier Code defect

Table 7.4 P1-IT (Inc4) Sub-categories

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 196

7.3.2.3 Categories

Developing categories consists of grouping the sub-categories in Table 7.4 that

represent similar themes into categories. The way codes are grouped into sub-categories

and sub-categories into higher level categories can be driven by how best to answer the

research questions in the programme of study (Urquhart, 2013; Locke, 2001).

The process ‘Compare sub-category and category’ in Figure 7.1 shows that the grouping

of sub-categories into categories involves comparing sub-categories with each other to

ascertain whether they are unique or are so similar that they should be merged. Sub-

categories are compared with their categories to determine whether the category

represents the sub-category; and categories are compared with one another to refine

their meaning and what they represent. For example, the first three sub-categories in

Table 7.4 relate to the Test manager waiting for products or services in order to progress

the Test execution phase and the following three sub-categories represent delay in

providing the products or services by the provider. These six sub-categories seemed to

represent dependency when carrying out project activities, hence were grouped under a

category named ‘Dependency’. It is possible that waiting may not lead to schedule

delay, but waiting and delay are two sides of the same phenomenon; i.e. dependency.

Thus, the sub-categories in Table 7.4 were categorised as shown in Table 7.5. For

description of these codes see Appendix A1.

Sub-category Category

1 Awaiting decision

Dependency

2 Awaiting defect fix

3 Awaiting product

4 Delay in deciding

5 Delay in fixing defect

6 Delay in providing product

7 Client

People 8 Consumer

9 Peer Supplier

10 Code
Product

11 Defect

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 197

Sub-category Category

12 Test completion report

13 Activity delay

Schedule

14 Duration extension

15 Lacking control over progress

16 Phase delay

17 Reporting progress status

18 Start variance

19 Scope change Scope

Table 7.5 P1-IT (Inc4) Categories

7.3.2.4 Theoretical sampling and saturation

The emergent categories in Table 7.5 represent categories of phenomena present in the

P1-IT (Inc4)’s textual data. It was reasonable to examine whether the categories were

supported by sufficient amount of data (i.e. are well-developed) and how applicable the

categories were to other cases (i.e. generalised) - see section 7.2.1. These can be

achieved by checking that coding the data of additional cases uses existing categories

(i.e. enlarge existing categories) and does not need new categories (i.e. generalise

existing categories); this is called Theoretical saturation in GT (Corbin & Strauss 2008,

pages: 143 and 148; Urquhart 2013, page: 9).

Reaching the saturation point in GT is considered at category level rather than sub-

category, because a grounded theory (i.e. the product of a grounded theory study) is

typically based on categories. Urquhart (2013) noted that ‘It is usually quite obvious, in

a grounded theory study, when to stop data collection. It is when the researcher finds no

new concepts are emerging from the data - all that is happening is there are more

instances of existing categories. In this way, theoretical saturation is reached - the

particular category is seen to be ‘saturated’, that is, full’ (page: 9) (emphasis in

original). It may be noted that ‘category’ and ‘concept’ are used interchangeably in the

GT literature - see also (Corbin & Strauss 2008, page: 159). Table 7.6 shows a count of

references to the data items under each of the emergent categories.

Category P1-IT (Inc4)

Dependency 26

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 198

People 4

Product 10

Schedule 38

Scope 2

Table 7.6 Category saturation in P1-IT (Inc4)

In order to determine whether the phenomena in Table 7.6 are only applicable to case

P1-IT (Inc4), or whether other cases exhibit similar or different phenomena; another

Integration Test phase was analysed in Project 1 to develop the above categories further.

The theoretical sampling strategy in section 7.2.1 is designed for the development of

categories and their generalisation across more than one case. The codes, sub-categories

and categories from the first case were used as the starting point for the constant

comparison in the later cases, rather than each case starting with a blank sheet. Further

cases were analysed as shown in Figure 7.1 and the emergent codes, sub-categories, and

categories are all presented in Appendix A1.

Selecting further cases to P1-IT (Inc4) for analysis followed the order presented in

Table 7.1 (section 7.2.1). Since P1-IT (Inc4) was an Integration Test execution phase in

Project 1, another Integration Test execution phase (P1-IT-Ex-Au (Inc1)) in Project 1

was analysed to further develop the categories in Table 7.6. This analysis resulted in the

emergence of the same categories as P1-IT (Inc4) with exception of Scope, which

indicates lack of saturation of this particular category; because the new case did not use

the category (i.e. remained small), and the category remained representing the data of

only one case thus far (i.e. not generalised). Thus another Integration Test execution

phase (P1-IT-Ex-no-Au (Inc1)) in Project 1 was analysed, again without resulting in the

saturation of category Scope.

In order to generalise the developed categories from P1-IT (Inc4), P1-IT-Ex-Au (Inc1),

and P1-IT-Ex-no-Au (Inc1) in Project 1, across the three projects, the analysis then

moved to the Test phase most contributing to delay in Project 2: P2-IT-PP (Integration

Test - Plan & Preparation). This resulted in emergence of the same categories as the

preceding ones, in addition the category ‘Scope’ re-emerged. Then in order to develop

the categories further, P2-IT-Ex (Integration Test - Execution phase) was selected in

Project 2 which confirmed the categories emerged thus far. In order to generalise the

emerged categories further and ascertain saturation, the research analysed P3-DBT

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 199

(Inc6) the most delayed phase in Project 3, which supported the emergence of all the

categories thus far whereby achieving theoretical saturation.

Table 7.7 shows the count of references to the textual information where instances of

the particular category emerged in all six cases. Table 7.7 shows the cases on the

horizontal axis, the categories on the vertical axis, and the count of the references to the

categories for each case in the intersection of the horizontal to the vertical entry. A

count of zero indicates that no category appeared in the particular case - Table 7.7

shows that all the categories became saturated as the analysis progressed to the last three

cases.

Name P1-IT

(Inc4)

P1-IT-

Ex-Au

(Inc1)

P1-IT-Ex-

no-Au

(Inc1)

P2-

IT-PP

P2-

IT-Ex

P3-DBT

(Inc6)

Total

Dependency 26 16 10 31 19 70 172

People 4 6 2 11 5 20 48

Product 10 13 11 10 14 57 115

Schedule 38 31 11 36 46 83 245

Scope 2 0 0 4 5 13 24

Table 7.7 Theoretical saturation across the six cases

Examining Table 7.7 closely, the following observations can be made:

 The category ‘Scope’ emerged in P1-IT (Inc4), which is the phase most

contributing to the delay of Project 1. However, Scope did not appear in the other

two integration test phases in Project 1: P1-IT-Ex-Au (Inc1) and P1-IT-Ex-no-Au

(Inc1). This does not mean, however, that the delay in P1-IT (Inc4) was only due to

scope related phenomena.

 The category ‘Schedule’ emerged as the most prevalent across the six cases

(referenced 245 times - see the ‘Total’ column). The case with highest schedule

related phenomena is P3-DBT (Inc6), followed by P2-IT-Ex. Considering that P3-

DBT (Inc6) was a combined increment (Design, Build, and Test); P2-IT-Ex would

be the highest among the Test-only phases with schedule related phenomena.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 200

 The category ‘Dependency’ emerged as the second most prevalent phenomena,

with P3-DBT (Inc6) exhibiting emergence of highest number of this phenomenon

among the cases. Among the Test-only phases, however, P2-IT-PP exhibits highest

of dependency related phenomena.

 The fact that, P3-DBT (Inc6) exhibits highest number of phenomena in all

categories reflects the composition of the phase in reporting on a combined Design,

Build, and Test phases rather than the Test-only phase as with the other five cases.

Given the difference in the nature of this last case, lack of emergence of new

categories supports the achievement of theoretical saturation.

The emergent sub-categories that are present in all six cases are:

 Awaiting defect fix, Awaiting product, Delay in providing product under the

category Dependency.

 Defect under the category Product.

 Activity delay, Lacking control over progress, Reporting progress status under the

category Schedule.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 201

7.4 Narrative schema

The emergent sub-categories (consisting of both selective and theoretical codes) from

the six cases (see Appendix A1) have been integrated into diagram to enable the

visualisation of the relationships among the sub-categories and the making sense of

what might be happening in the text (Urquhart 2013, page: 114; Charmaz, 2006, page:

117; Corbin & Strauss 2008, page: 124). Such a narrative schema, however, is limited

to what was reported in the performance reports rather than the underlying physical

system, and therefore it cannot be assumed to encapsulate all the contextual information

surrounding the project.

Although the following subsections divide the narrative schema into three sections for

easier reading, the narrative schema should be seen as one representation of what was

reported in the six Test phases’ performance reports. Some repetition may therefore be

seen across the diagrams.

7.4.1 Notation of the narrative schema

The narrative schema was developed using the existing diagramming functionality of

NVivo, the qualitative data management software application. This was used to

graphically represent the contents of the textual data in the Test performance reports.

Thus, the notation used in the narrative schema is that available in NVivo which

provides a generic set of symbols that can be used by the researcher to draw diagrams of

the underlying text. Recall that two types of sub-categories emerged (section 7.3.2.2):

Selective and Theoretical, with the former representing elements (constituent parts) of

the Test phase, and the latter representing the links between the elements. The selective

sub-categories (nodes) were assigned different symbols; the theoretical sub-categories

(links) were assigned a uniform symbol (diamond shape); the direction of the

relationship is expressed as arrow going out from the source phenomenon/issue (arrow

tail) towards the destination phenomenon (arrowhead) - see Table 7.8. The narrative

schema depicts the sub-categories and the links among them rather than their higher

level categories; because this offers an appropriate view of the various phenomena

present during the Test phase execution and their influence on one another and on

schedule delay.

 Qualitative approach Chapter 7

Controlling schedule duration during software project execution 202

Category/sub-category Classification Notation

Dependency Category

Awaiting decision Theoretical code

Awaiting defect fix Theoretical code

Awaiting product Theoretical code

Awaiting resource Theoretical code

Delay in deciding Theoretical code

Delay in fixing defect Theoretical code

Delay in providing product Theoretical code

Delay in providing resource Theoretical code

People Category

Build manager Selective code

Client Selective code

Consumer Selective code

Cross project delivery managers Selective code

Peer supplier Selective code

Solution architecture manager Selective code

Technical environment manager Selective code

Test data manager Selective code

Test manager Selective code

Tester Selective code

Product Category

Application server Theoretical code

Authentication tool Theoretical code

Build approach Theoretical code

Code Theoretical code

Code deploy tool Theoretical code

Component catalogue tool Theoretical code

Defect Theoretical code

 Qualitative approach Chapter 7

Controlling schedule duration during software project execution 203

Category/sub-category Classification Notation

Enterprise service bus Theoretical code

Introducing new product Theoretical code

Performance report Theoretical code

Regression Test tool Theoretical code

Scope of deliverables Theoretical code

Technical environment Theoretical code

Test completion report Theoretical code

Test data Theoretical code

Test data build Theoretical code

Test data requirement Theoretical code

Test environment Theoretical code

Use Case Theoretical code

Wireframe Theoretical code

Schedule Category

Activity delay Selective code

Duration compression Selective code

Duration extension Selective code

No schedule baseline Selective code

Phase delay Selective code

Start variance Selective code

Lacking control over progress Theoretical code

Nonworking time Theoretical code

Reporting progress status Theoretical code

Scope Category

 Qualitative approach Chapter 7

Controlling schedule duration during software project execution 204

Category/sub-category Classification Notation

Requirements gap Theoretical code

Scope change Theoretical code

Table 7.8 Notation of the narrative schema

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 205

The aim of the research at this stage was to learn about phenomena most contributing to

project delay present during the Test phases, therefore, the category ‘Schedule’ in table

7.8 has a special role since it captures the changes to the schedule reflected in the

metrics in Chapter 5. For example, the sub-categories ‘Activity delay’ and ‘Phase delay’

relate to the behaviour of schedule delay as reported in section 5.3.3.2 (Chapter 5); the

sub-categories ‘Duration extension’ and ‘Duration compression’ relate to the behaviour

of schedule accuracy in section 5.3.3.6 (Chapter 5); the sub-category ‘Start variance’

relate to the behaviour of schedule change in section 5.3.3.4 (Chapter 5). This special

role of ‘Schedule’, however, was not given superior explanatory power over the other

categories; in fact all the categories were treated equally to ensure emergence of the

phenomena in the data rather than enforcing preconceived ideas.

The relationships linking the nodes in the narrative schema may be seen as sequence of

events taking place during the Test phase execution. It was noted in section 3.4.1

(Chapter 3) that, the textual reports, which the event sequence is based on, assumed

considerable background knowledge of the projects and omitted generally known

contextual information within ABC projects. Consequently, a gap developed in the

narrative schema in some positions in the event sequence relating to the missing

contextual information. These positions are assigned a grey hexagon (labelled ‘No

reference to recipient’) in the narrative schema to indicate the location in the event

sequence where we sought the support of the contextual information from Chapter 3 to

fill the gaps during analysis. In the following, textual narrative information that was

derived from the context presented in Chapter 3 is indicated by ‘(context)’, and

information provided by project participants is indicated by ‘(participant)’.

The following sections present the narrative schema of the Test manager’s interaction

with each of the three spheres (project participant groups) presented in Figure 3.6

(section 3.3 - Chapter 3): product development, product line development, and others -

Table 7.9 lists the participants belonging to each of the groups. The particular

perspective in this narrative schema is that of the Test manager as reported in the Test

performance reports (solely written by the Test manager). However, it will be the case

that the other phase managers will have different (valid) interpretations of the

circumstances of the particular situation; and so other analyses could be done from the

view point of various different roles. Nevertheless, the Test manager’s narratives were

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 206

scrutinised by other project participants attending the project performance meetings, and

therefore had to carry a degree of accuracy if the Test manager to maintain their

professional integrity.

Sphere Representative Acronym

Product development

Test manager TM

Build manager BM

Design manager DM

Project manager PM

Tester TS

Product line development

Technical environment manager TEM

Solution architecture manager SAM

Enterprise service bus manager ESBM

Technical architecture manager TAM

Test data manager TDM

Others

Client CLT

Peer supplier PS

Consumer CONS

Cross project delivery managers CPDM

Table 7.9 Groups of project participants

7.4.2 Product development narrative schema

The interaction of the TM within the product development sphere is depicted in Figure

7.4. In order to progress the Test phase the TM was awaiting a product (Code) and a

defect fix from the BM. Although the BM provided code to the TM, the delay in

providing the code and the defects in the code both caused activity delay and phase

delay in the Test phase progress. The delay in providing product (Code) by the BM

(context) caused start variance (starting Test phase execution late).

The TM was awaiting a resource (Design information) from the DM (context), and

delay in providing the resource caused activity delay. The TM was also awaiting a

resource (the TS) to perform test activities, however, the TS was on vacation

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 207

(nonworking time) which led to activity delay. The Tester’s unavailability also caused

delay in providing product (Code) to CONS. The TM reported progress status, delivered

performance reports, and conveyed lacking control over progress to the PM (context).

The preceding text illustrates complexity of interdependent problems interacting with

each other, and that the factors influencing schedule duration can be implicit; exerting

their influence through means other than direct interaction - such as the Code causing

schedule delay through the prevalence of defects.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 208

Figure 7.4 Product Development narrative schema

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 209

7.4.3 Product line development narrative schema

The interaction of the TM with the product line development sphere is depicted in

Figure 7.5. The TM was awaiting a defect fix from the TEM which caused activity and

phase delays. The TM was also awaiting defect fix from the SAM, which caused

activity delay. The SAM provided a definition of the scope of deliverables to TM, and

also scope changes during Test execution, resulting in the Test phase to operate without

baseline schedule (see section 3.4 - Chapter 3), i.e. fluctuation of scope during phase

execution. The SAM also provided Wireframes (instead of conventional functional

design documents), which caused gaps in the requirements during Test phase execution.

The TM received Use cases from SAM (participant) instead of conventional functional

design documents, which also caused a requirements gap.

The TM was awaiting defect fix (of Authentication and Code deploy tools) from the

TEM (context), but the defect caused activity delay, phase delay, and delay in starting

the phase (start variance). The TM was also awaiting product (Test environment) from

the TEM (context); however, delay in providing product caused activity delay, start

variance, and duration compression. The TM was also awaiting resource (Technical

architecture information) from TAM (participant), but delay in providing resource

caused activity delay. The TM conveyed lack of control over progress to the PM

(context).

Figure 7.5 shows a number of products affecting one another and causing schedule

delay. For example, a defect in the Technical environment - managed by the TEM

(context) - caused activity delay, phase delay, start variance, and duration extension.

Furthermore, the defect in the Technical environment created defects in other products

such as the Enterprise service bus (ESB) - managed by the ESBM (participant) - which

in turn caused activity delay and delay in providing product; the Technical environment

defect also created defect in the Regression Test tool - managed by the TEM

(participant) - which in turn caused delay in providing product. In addition, defects in

Technical environment caused delay in providing products (Code and Test

environment) needed for testing.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 210

Figure 7.5 shows other products causing problems. A defect in the Authentication tool -

managed by the TEM (context) - caused activity delay, phase delay, and duration

extension. Defect in the Code deploy tool - managed by the TEM (context) - caused

activity delay and delay in providing product. Defect in the Component catalogue tool -

managed by the TEM (context) - caused activity delay and delay in providing product.

Introducing new products caused activity delays, such as: Authentication tool and Code

branch (specific area on the configuration management system to store and maintain

versions of the developed code) - managed by the TEM (participant), and new ESB

Code - managed by the ESBM (participant). Application server upgrade - managed by

the TEM (participant) caused defect in the ESB. Defect in the Test environment. A

defect in the Code caused delay in providing product (Code) and scope change (scope

increase due to deferred code defects from previous Test phase).

Finally, Figure 7.5 shows that the TM submitted their requirements of Test data to the

TDM.

The interdependency and influence of project products on one another, during project

execution, can be noted from the preceding text. The complexity of the sequence of

events led to products to cause problems in other products, influencing schedule

duration, and eventually leading to schedule delay.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 211

Figure 7.5 Product Line Development narrative schema

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 212

7.4.4 Others narrative schema

The interaction of the TM with the ‘other’ project participants is depicted in Figure 7.6.

The TM was awaiting decision (on scope change) and resource (clarification on

requirements gap) from CONS. However, a delay in providing resource caused activity

and phase delays. Furthermore, requirements gap (i.e. the need for a clarification of the

requirements) from CONS caused defect, which in turn caused activity delay; and that

there was scope change from CONS. The TM delayed providing product (tested Code)

to CONS because the TS was away.

The TM was awaiting decision (on scope change) from CLT; however, delay in

deciding caused phase delay. The CLT requested scope change from TM (context). The

TM submitted Test completion report to CLT (context), and was awaiting decision

(sign-off); however, delay in deciding caused phase delay.

The TM was awaiting decision on Build approach; because of a defect discovered

during the Test phase execution, which was blocking progress, and the fix of which

required agreement with the CPDM as it was impacting other dependent projects;

however, delay in deciding caused phase delay.

The TM was awaiting product (Test data and Test data build) from PS; whilst the PS

provided Test data and Test data build to TM, delay in providing the products to TM

(context) caused phase delay and duration extension. A defect from PS caused activity

delay and scope change; the TM was awaiting defect fix from PS, but delay in fixing

defect caused activity delay.

The TM conveyed lacking control over progress to the PM (context).

The influence of the external parties to ABC on controlling schedule duration becomes

visible in the emergent picture, and that this influence is sometime indirect; for

example, through delay in signing-off project deliverables.

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 213

Figure 7.6 Others narrative schema

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 214

7.4.5 A conclusion on the narrative schema

The preceding sections illustrate that the narrative schema is a representation of the

textual content of the Test progress reports. This is not a model in the sense that in its

current state it can be generalised. For instance when it shows ‘defect’ it is referring to a

specific mention of defects in the progress reports. Some of the situations could have

different outcomes to the ones identified in the narrative; e.g. defects in project products

may lead to a duration extension in the situation described in the text, but will not be the

case with all defects (e.g. they could catch up). Furthermore, the challenges inherent in

developing software in a globally distributed environment (see sections 3.2.2 and 3.3 -

Chapter 3) seems to have not been mentioned in the progress reports; this may be due to

the assumption, by the development teams, that they ought to operate within this

environment and therefore no point in complaining about obstacles relating to the

distributed nature of the work.

In addition, it was seen that the narrative schema was incomplete and, in some

situations, needed the support of the contextual information and/or input from the

participants to make sense of what was happening - Tables 7.10 and 7.11 summarise

when this support was needed (indicated by an ‘x’ against the source). In the tables’

header, n refers to the narrative schema, c to the contextual information from Chapter 3,

and p to the project participants input.

People n c p

Build manager x

Client x x

Consumer x

Cross project delivery managers x

Design manager x

ESB manager x

Peer supplier x

Project manager x

Solution architecture manager x x

Technical architecture manager x

Technical environment manager x x x

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 215

People n c p

Test data manager x

Test manager x

Tester x

Table 7.10 People information to support the narrative schema

Product n c p

Application server x x

Authentication tool x x

Build approach x

Code x

Code deploy tool x x

Component catalogue tool x x

Defect x

Enterprise service bus x x

Introducing new product x x

Performance report x

Regression Test tool x x

Scope of deliverables x

Technical environment x

Test completion report x x

Test data x x

Test data build x x

Test data requirement x

Test environment x x

Use Case x x

Wireframe x

Table 7.11 Product information to support the narrative schema

Qualitative approach Chapter 7

Controlling schedule duration during software project execution 216

7.5 Summary

This chapter set out to answer the second research question:

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

The QUAL approach categorised the phenomena present during the execution of six

Test phases across three projects. A total of 213 phenomena (159 codes, 49 sub-

categories, and 5 categories) emerged. The thesis then developed a narrative schema

depicting the relationships among the sub-categories as present in the content of the

textual data in the Test phase performance reports, which showed, to a considerable

extent, the factors that influenced schedule duration across the six cases leading to

schedule delay from the perspective of the Test manager. This, however, needed the

support of the contextual information and input from the project participants to obtain a

fuller picture of the sequence of events influencing schedule delay in ABC. As was seen

that a modern software development project can be very complex; it involves interaction

among various actors (human and nonhuman) who to varying degrees influence

schedule duration.

Although the findings from this chapter answered the RQ2; they are very local to ABC,

and are interpretations by the participants of what was happening. In order to take the

study to the next level of understanding and be able to extend the findings to a broader

range of experiences/contexts of other researches, an explanatory model was developed

(using Actor-network theory) to understand the causes of schedule delay - the subject of

Chapter 8.

Explanation development Chapter 8

Controlling schedule duration during software project execution 217

8 Explanation development

8.1 Introduction

This chapter describes the process of developing explanation of schedule delay and

presents its findings; the final step in the research process outlined in Chapter 4: Figure

4.1 and section 4.4.4. The chapter attempted to answer the third research question:

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

The investigation of software development projects at ABC in the previous chapters has

revealed that projects contain different actors - such as design, build and test specialists

and their managers - and technical artefacts - such as code and development and test

environments - which support and constrain each other in a network of interactions. It

will be seen in this chapter that this picture coincides with conceptualisation of

organisational behaviour known as actor-network theory (ANT). The fit between the

current research and ANT is explored and where possible ANT concepts are used to

explain the behaviours found in the projects investigated. Finally, the research journey,

as a whole, is reflected upon.

8.2 The fit between the current research and ANT

Examining the narrative schema in sections 7.4.2 - 7.4.4 (Chapter 7) indicates that,

varied phenomena were in a network of interaction during the execution of the Test

phases, where some were nodes - e.g. people - and others as links that connect the nodes

- e.g. products. This suggests that the project can be seen as a network of actors and

intermediaries, both human and nonhuman, each of whom can, to varying degrees,

empower or constrain others. For example, the ‘People’ category are human actors, the

‘Product’ cases can usually be seen as intermediaries. The narrative schema that came

out of the Grounded theory (GT) analysis seemed aligned to that expected by Actor-

Network Theory (ANT), and therefore the ability of ANT to explain/illuminate the

picture that had emerged seemed to demand some attention. Thus, Table 8.1 applied

Explanation development Chapter 8

Controlling schedule duration during software project execution 218

ANT concepts to the GT categories, followed by description of the ANT concepts (in

italics) and how they might be applied within the software engineering management

field. This will be illustrated by examples drawn from, but not limited to, ABC’s

software project management practices.

Explanation development Chapter 8

Controlling schedule duration during software project execution 219

GT category Description Relates to ANT concept Description Indicator of problematic

project

Dependency Test manager was

dependent on other

project participants, for

provision of products

and/or services, in order

to maintain progress of

the Test phase on

schedule

Reliance on

someone or

something for

resources in order

to carry out tasks

Coordination The extent to which a network

is governed by principles, such

as rules (explicit agreement) or

conventions (a way in which

things are usually done),

governing the interaction

among the actors dependent on

one another, aiming to stabilise

the actor-network

Weak coordination: project

conventions (rather than rules)

govern the interaction among

the actors; conventions are not

widely accepted by project

actors, which exert

constraining influences on

achieving project objectives

People Human project

participants who to

varying degree contribute

to the Test phase

progress

The ability to do or

influence

something; and the

needs for resources

in order to carry

out tasks

Actor An element within the network

of associations that has the

ability to exert influence on the

other elements in the network;

that is, it can act. Most actors

can be seen as in fact actor-

networks. They are effectively

a representative of a group of

actors

A project with a large number

of actors is likely to be more

complex (and therefore more

problematic) than one that has

very few actors

Explanation development Chapter 8

Controlling schedule duration during software project execution 220

GT category Description Relates to ANT concept Description Indicator of problematic

project

Product Artefacts produced by

project participants for

use by other project

participants which enable

further producing project

deliverables

Things that

circulate/flow

between people;

i.e. which link

people together

Intermediary

and Inscription

Intermediary: an element

within the network of

associations that facilitates

interaction between actors;

they are the

relationships/associations the

actors forge to enable

interaction. A product can

become a nonhuman actor (see

1
st
 paragraph after this table)

Inscription: embedding

programs of action in technical

artefacts to influence the

artefact user to operate in a

certain way

Intermediaries in the project

become ‘mediators’. Whilst

intermediary transports

meaning or force without

transformation; a mediator

may change the input in some

way before they pass it on

(Latour 2005, page: 39), thus

adding uncertainty to the

progress of the project

Programs of action can be

weakly inscribed, leading to

weakening irreversibility (see

final item in this table). A

‘strong’ program of action is

not just one that is detailed and

enforceable. It needs to be

Explanation development Chapter 8

Controlling schedule duration during software project execution 221

GT category Description Relates to ANT concept Description Indicator of problematic

project

widely accepted - i.e.

contribute to alignment

Schedule The means by which

project/phase activities

were ordered on a

timeline showing what

activity was planned to

be carried out, by when,

and in what order; for

example, Gantt chart

Organisation of

activities according

to certain rules

Coordination The extent to which a network

is governed by principles, such

as rules (explicit agreement) or

conventions (a way in which

things are usually done),

governing the interaction

among the actors dependent on

one another, aiming to stabilise

the actor-network

Weak coordination: project

conventions (rather than rules)

govern the interaction among

the actors; conventions are not

widely accepted by project

actors, which exert

constraining influences on

achieving project objectives

Scope The total number of

products and services

agreed to be delivered as

part of the project or

within a phase in a

particular point in time;

scope can change during

Increasing stability

in project execution

through defining

the boundary of the

work and reducing

uncontrolled

change

Inscription and

Irreversibility

Inscription: embedding

programs of action in technical

artefacts to influence the

artefact user to operate in a

certain way

Programs of action can be

weakly inscribed, leading to

reducing irreversibility (see

next). A ‘strong’ program of

action is not just one that is

detailed and enforceable. It

needs to be widely accepted -

Explanation development Chapter 8

Controlling schedule duration during software project execution 222

GT category Description Relates to ANT concept Description Indicator of problematic

project

project execution due to

change requests

Irreversibility: the degree of

stability of an actor-network

and its resistance to going back

and changing things that have

already been done

i.e. contribute to alignment

Unstable project; prevalence of

disorder in project activities;

disruption in producing

deliverables

Table 8.1 Application of ANT concepts to GT categories

 Explanation development Chapter 8

Controlling schedule duration during software project execution 223

In ANT terminology, an interaction between actors is facilitated by some form of

intermediary. It could be, but is not limited to, text inscribed and circulated on paper or

an electronic medium (Callon 1991, page: 135) as with a test performance report. In

Figure 8.1, below, a group of actors (including Design, Build and Test managers) work

to perform a software development task using intermediaries (such as a functional

design and design defect reports) to coordinate their activities. Actors and

intermediaries can be human or nonhuman, and can be called ‘actant’ as a generic term

to avoid separating the human from nonhuman (Akrich & Latour, 1992; Bijker & Pinch,

2012). An example of nonhuman actor might be where legacy software is involved: the

complexity of its structure and the dependence of existing users on the system will

influence the behaviour of other, human, actors. An intermediary (the

relationship/association among actors) can itself become an actor (i.e. it can act) by

putting other intermediaries into circulation (Callon 1991, page: 141); for example a

software component under construction can have errors (code defects), the correction of

which absorbs effort and causes delays; this is very similar to what Latour (2005) calls

mediator; whilst intermediary transports meaning or force without transformation; a

mediator may change the input in some way before they pass it on (page: 39); for

example, a product behaves contrary to (e.g. generates defect) how it was intended to

operate (e.g. to provide a service), thus adding uncertainty to the progress of the project.

Thus, actors can be seen as elements of a project that interact through intermediaries.

Test

manager

Build

manager

Design

manager

Functional

design
Software

Project

manager

Design

defect

Code

defect

Test

performance

report

Project

Figure 8.1 Software development process

A typical software development process (Figure 8.1) includes the Design, Build, and

Test phases. The Design manager (actor) delivers functional design (intermediary) to

 Explanation development Chapter 8

Controlling schedule duration during software project execution 224

the Build manager (actor). The Build manager registers design defects (intermediary)

for the Design manager to resolve when seeking clarity on the functional design. The

Build manager delivers software (intermediary) to the Test manager (actor). The Test

manager registers code defects (intermediary) for the Build manager to fix when defects

are discovered during testing of the Software. The Test manager produces regular test

performance reports (intermediary) to inform the Project manager (actor) of progress of

the Test phase execution. Thus, the category people in Table 8.1 can be seen as actors

because they can create and circulate intermediaries; and the category products as

intermediaries because they are created and circulated to others.

The actors in Figure 8.1 can be seen as actor-networks; they are effectively

representatives of a group of actors, intermediaries, and their interactions (Callon,

1991). These actor-networks can be thought of as black-boxes. In ANT terminology, a

black-box is an artefact with a number of elements (which itself would be a network)

whose internal interaction is concealed. An outsider interacts only with the artefact’s

external features, which may be a few well defined parameters (Callon, 2012; Monteiro,

2001). For example, software testers may be interested in the external behaviour of a

software component and not in its internal workings. They treat the internal structure as

a ‘black-box’ and simply check that the inputs and outputs conform to the functional

design. Actors make their relationships with large and complicated actor-networks

easier by treating them as a black-box (Law 2012, page: 125). This way, the black-box

can join other actor-networks as a punctualised entity within these networks.

Punctualisation, in ANT terms, converts an entire actor-network into a single point or

node in another actor-network (Callon, 1991); this node can play the role of actor or

intermediary in the new network. Alternatively an individual can be treated as a

representative of a broader actor-network. Thus, the Design, Build, and Test phases

each can be seen as individual actor-networks comprising a team that carry out daily

tasks needed for that phase and a phase manager who represents the team to the outside

world (the project).

The mechanism for embedding programs of action in technical artefacts (e.g. the

functional design in Figure 8.1), with the aim of guiding the artefact user to operate in a

certain way, is called inscription in ANT terms (Akrich & Latour, 1992; Latour, 1991).

For example, requirements inscribed into functional designs which in turn inscribed

into computer code, later influences the software user to operate in certain ways to carry

 Explanation development Chapter 8

Controlling schedule duration during software project execution 225

out routine operations. A weakly inscribed program of action weakens the irreversibility

of an actor-network. A strong inscription resists reversibility attempts (Monteiro, 2001).

Irreversibility in ANT refers to the degree of stability of an established actor-network

and its resistance to going back and changing things that have already been done. A

reversible actor-network is unstable; it is prone to influences exerted by internal and/or

external forces attempting to reconstruct the network according to these influences (Law

2012, page: 115). An irreversible network brings stability; it resists these influences,

which can be achieved through maintaining the alignment and coordination (see further

down) between the actors and the overall control of the project manager to achieve

project objectives (Law, 2012). The degree of irreversibility, therefore, is related to the

extent of resistance to changing the inscriptions that have already been circulated

(Monteiro 2001, page: 79), which make it difficult to deconstruct the

network/association and establish a different one (Callon 1991, page: 150).

For example, requirements informally described by the client may be weakly inscribed

during the Design and lead to reversibility at the Build and Test phases if the client then

modifies their requirements. ‘Weak inscription’ here refers to ‘room for interpretation’

as well as poor definition of system requirements; for example, a requirements

document could be accurate but there may be lots of different ways that it can be

implemented. The functional design phase selects a design which will meet those

requirements, but the software developers will have some scope in deciding how that

design will be converted into code. A stable actor-network enables steady progress in

producing project deliverables and can be said to be black-boxed. Although,

irreversibility may sound contrary to the desirable quality of agility in software projects,

there is a need even for software produced using agile approaches to become eventually

a stable project deliverable. Thus, the category scope in Table 8.1 can be paralleled with

inscription and irreversibility; since when scope changes during project execution it

indicates weak inscription of the requirements; this also indicates reversibility because it

results in going back and changing things that have already done. The category product

in Table 8.1 can also be seen as inscription because it embeds programs of action for

users to use the product in certain ways.

ANT can be applied to non-projects as well as projects; whether during project setup or

project execution (McLean & Hassard, 2004; Bloomfield & Vurdubakis, 1997). An

 Explanation development Chapter 8

Controlling schedule duration during software project execution 226

ANT study can examine the process of constructing a network, called translation in

ANT (Callon, 1986; Monteiro, 2001; Callon & Law, 1989; Walsham & Sahay, 1999),

through focussing on the attempts of the focal actor - an actor of interest to the area

under study whose viewpoint of the network is being examined such as Test manager -

to assemble relations among heterogeneous elements and align their interest to achieve

particular purpose (Law, 1999). The Test manager position themselves at the centre of

the network - an obligatory passage point (OPP) in ANT terms, in order to exercise

control at a distance drawing from the strength and credibility of others (Law, 1986).

One way of achieving this is through inscribing these interests into all sorts of

intermediaries and circulating them to the target actors (Callon, 1991).

An ANT study can also investigate the operation of an already established actor-

network (e.g. project); examining the interactions among the actors and intermediaries

which are well understood and accepted, Callon (1991) called this the dynamics of

networks and refer to it as ‘the complex process in which actors and their talkative

(sometimes indiscreet) intermediaries weave themselves together’ (page: 144). For

example, Figure 8.2 shows ABC’s version of the iterative and incremental development

(IID) model described in detail in section 3.2.3 (Chapter 3). This approach and the roles

needed for its implementation are well understood, even before a new project is

planned. Some elements of the project, for example, relationships with new client may

need new working relationships to be formed that will involve translations.

Key

Design

Test

Build

Design

Test

Build

Design

Test

Build

P
ro

ject ex
ecu

tio
n

Project progress

Software

released

to users

Increment 1

Increment 2

Increment 3

Increment n

Design

Test

Build

Figure 8.2 ABC’s software engineering method

As noted in section 3.2.3 a problem controlling this version of IID (i.e. semi-parallel

execution of increments) is that at any one time, the functional project teams will be

 Explanation development Chapter 8

Controlling schedule duration during software project execution 227

working on different increments of the same project. This may be a problem when one

of the specialist teams needs to call upon the services of another. For example, the Test

phase in increment 1 may require fixes of the code developed by the Build phase in

Increment 1. However, at the time of executing the Test phase in Increment 1 (see the

solid vertical line cutting through the phases) the Build resources are working on

building Increment 2 of the functionality which leads to an issue about how the Build

team should prioritise the competing demands on their services. ANT offers the

concepts of alignment and coordination to make sense of such interactions among

project actors (Callon 1991, page: 152). The dynamics of networks ought to be

supportive of achieving the network objectives if the actor-network is to succeed.

Alignment indicates the degree of agreement between the actors on, and their

commitment to, their role in the network (Callon 1991, pages: 144-146). In project

terms, during the execution of a software project, the Project manager attempts to

maintain the Design, Build, and Test managers’ alignment to the set targets agreed prior

to the execution of their corresponding phases in order to meet project end date.

Accomplishing alignment is, therefore, attempted during project set up; i.e. through the

translation process described earlier.

Coordination in ANT refers to the extent to which a network is governed by principles,

such as rules (explicit agreement) or conventions (a way in which things are usually

done), governing the interaction among the actors dependent on one another, aiming to

stabilise the actor-network (Callon 1991, page: 146-147). For example, the Build

manager (in Figure 8.2), whilst focused on developing the code in Increment 2, is also

fixing defects of the code developed in Increment 1; because the Fix team (who is part

of the Build team) are selected members of the Build team dedicated to perform fix

activities for the code they developed in Increment 1. However, no prior agreed timeline

(rule) existed to provide such fixes to the Test manager of Increment 1, it was done by

convention. A network governed by convention exhibits ‘weak co-ordination’, which

exert constraining influences on achieving network objectives. A network governed by

rules, exhibit ‘strong co-ordination’, which exerts empowering influences on achieving

network objectives. Thus, absence/lack of acceptance of rules among the three

phases/actor-networks above results in weak coordination. As will be seen that

managing dependencies and defining and enforcing rules will become particularly

challenging during project execution among the Design, Build, and Test networks - see

 Explanation development Chapter 8

Controlling schedule duration during software project execution 228

Figure 8.2. The weekly progress meetings held by ABC projects were part of the

coordination process. The creation of the original schedule was also part of the

coordination process. Thus, the category schedule (Table 8.1) can be seen as a

coordination mechanism. There was a rule ‘phase teams must do everything to conform

to the plan’, because delivering on schedule was the key success measure in ABC. The

category dependency in Table 8.1 can be seen as a way of coordinating the relationships

among project activities/phases, since a dependent activity in later phases is affected by

an activity in the earlier phases.

The ‘weak’ and ‘strong’ modifiers used with ANT concepts above indicate points on a

continuum rather than a yes/no state, and have been replaced here by ‘constraining’ and

‘empowering’ respectively to indicate the influence exerted.

8.3 An explanatory model of schedule delay

In order to make sense of the complexity emerged in the preceding analyses; a model

(i.e. a simplified representation) is needed which illustrates the constraining and

empowering influences at play during testing which caused schedule delay. One way to

achieve this is to model the interactions among the project participants (Abdel-Hamid &

Madnick 1991, page: 7) which converts the underlying complex reality into a

comprehendible view to enable reasonable analysis (DeMarco1982, page: 41). As noted

earlier that, developing an ANT model involves modelling the interactions among the

actors in the network, which could be a graphical representation of a network comprised

sequences of points and lines (Callon 2012 page: 90).

The analysis in this research selected the Test manager as its focal actor because the

research was concerned primarily with the problems of testing. The ‘focal actor’ is the

actor from which the analysis departs in following its interactions in the actor-network

(Callon & Law 1989, page: 77-78). This is to allow the investigator to set practical

limits on the analysis rather than to privilege one actor (Law, 2012). Not everyone at

ABC was focused on maintaining testing on schedule at the expense of such things as

ensuring new functionality did not degrade existing functions. While the Test manager’s

perspective on the actor-network is reflected in the analysis, it is discussed in the

context of the other actors concerned with project progress who have different

 Explanation development Chapter 8

Controlling schedule duration during software project execution 229

perspectives, and which their interaction and influence appear in the analysis (Law,

2012).

The Test manager (TM), among other things, speaks on behalf of a team of testers, and

thus can be seen as a representative of the Test actor-network. Similarly, the other

project participants (see Table 7.9 - section 7.4.1 in Chapter 7), who contribute to the

completion of the Test phase, can be seen as representatives of individual actor-

networks (i.e. their respective teams). Thus, the developed ANT model (Figure 8.3)

from the interaction of the TM with all project participants should be seen as

interactions among various actor-networks (black-boxed in ANT terms - section 8.2),

represented by their respective manager. In this model a solid-line diamond between the

actor-networks indicate an association that exerts empowering influence on maintaining

progress of the Test phase on schedule; in contrast a dotted-line diamond indicates a

relationship that exerts constraining influence on maintaining progress of the Test phase

on schedule; i.e. it causes schedule delay.

 Explanation development Chapter 8

Controlling schedule duration during software project execution 230

Coordination

Coordination

PM

Inscription

Inscription

BM

Coordination

DM

Coordination

TS

Coordination

Inscription

Coordination

Inscription

ESBM

SAM

Coordination

Inscription

CLT

Coordination

InscriptionPS

Coordination

Inscription

CONS

Coordination

CPDM

Coordination

Mediator

TEM

Mediator

Coordination

TAM

Coordination

TDM

TM

Figure 8.3 ANT model of schedule delay

 Explanation development Chapter 8

Controlling schedule duration during software project execution 231

The emergent picture shows prevalence of constraining influences on maintaining the

progress of the Test phase on schedule; through constraining coordination, large number

of actor-networks, intermediaries transforming to mediators, and constraining

inscription between the Test actor-network and most of the actor-networks. The limited

empowering influences to maintain progress can be seen in the interaction between TM

with PM, and TM with TDM showing empowering coordination.

The constraining coordination, shown in the model, indicates that the various actor-

networks focused on the rule ‘phase teams must do everything to conform to the plan’ in

relation to the phase for which they were responsible because delivering on schedule

was the key success measure in ABC (see Figure 8.2 - section 8.2). For testing there is

another rule ‘all defects must be detected and removed’ which has priority over the

deadline rule. Therefore, any supporting activities to other phases (such as the Test

phase) may have been viewed as convention rather than rule. A convention ‘phase

teams should support other phase teams, especially in testing’ would be interpreted in

light of the priorities of the support provider. Thus, this convention is not widely

accepted by all project actors; leading to delay in providing products and services to the

TM, and eventually to schedule delay. If the BM slowed down on their work for the

next increment in order to deal with fixes to last increment this too would delay final

project completion. Although, the empowering coordination with the PM may have

eventually brought progress back on schedule through the PM negotiating priorities

with other managers in the weekly performance meetings, this was after event targets

were missed.

The large number of actors (or actor-networks) in the model shows the complexity of

the development process that the TM is attempting to grapple with; added to this, the

complexity inherent in coordinating project activities between UK and India (see

section 3.2.2 - Chapter 3; section 7.4.5 - Chapter 7), which is abstracted away by the

model, but which makes the interaction among the actor-networks even more complex.

Section 2.4.1 (Chapter 2) described the complexity of such projects as the

interrelationship between the actor-networks in terms of: the number and variety of

actors and intermediaries, the number and variety of interactions among actors (that

exert constraining or empowering influences), the number and variety of

interdependencies (that exert direct or indirect influences), and the rate of change of the

 Explanation development Chapter 8

Controlling schedule duration during software project execution 232

project situation/context. Such projects, as the ones in Figure 8.3, are more problematic,

than one that has very few actors; and therefore more difficult to control.

The model shows intermediaries that became mediators; behaving contrary to how they

were intended to operate; that is, products (that were intended to provide services)

created other products (defects), which affected many other products, which then led to

schedule delay (see section 7.4.3 - Chapter 7). Attempting to anticipate this kind of

chain of events and factoring them into the project plan prior to execution is a

challenging task. Intermediaries transforming to mediators, during project execution,

create uncertainty in managing such projects, because they demand additional time and

effort.

The constraining (i.e. incorrect/incomplete) inscriptions emerged in the model indicate

that the programs of action put in place among the actor-networks did not produce the

intended outcome. That is, the products that were created to support the TM in

executing the activities of the Test phase did not operate properly to enable TM to

maintain the progress of the Test phase on schedule (see section 7.4.3 - Chapter 7).

These products kept breaking down during phase execution leading to schedule delay.

In addition, some of the user requirements were not appropriately inscribed into

functional designs; some of the designs were not appropriately inscribed into code; and

some of the code was not appropriately inscribed to reflect the designs. Thus led to

various defects (design defects and code defects) emerging during the Test phase

execution. Furthermore, the various change requests put forth by various actor-networks

(section 7.4.4 - Chapter 7) during the development process indicates constraining

inscriptions of the intended functionality needed to be developed at the end, which led

to reversibility to the previous stages of development.

The reduced irreversibility indicates incorrect/incomplete inscription of the various

products as noted in the preceding paragraph. Reversibility to the previous stages

created disorder in project activities. For example, going back and changing user

requirements, design and code statements, as well as to clarify what was needed created

disruption. The resulting changes had to be retested by the TM within constraints of the

original Test phase schedule. Reversibility destabilised the Test phase progress for the

TM and led to schedule delay. ‘Traditional’ project planning is based on the assumption

 Explanation development Chapter 8

Controlling schedule duration during software project execution 233

that the nature of future activities can be forecast with certainty and project managers

can have perfect control over them. This research shows that this is not usually the case.

ANT provided a layer of insight into the causes of schedule delay that was not possible

from the interpretive findings in Chapter 7 - which is much localised to ABC. ANT

surfaced the problems inherent in the development process, the complexity of the

delivery model, and the influence of the various parts of the overall system that

hindered progress causing schedule delay.

The dominance of the constraining influences in the emerged picture (Figure 8.3)

indicates that the TM had limited/no control over progress in order to maintain phase

execution on schedule. While the TM is formally responsible for the progress of testing,

actual progress is governed by factors outside their control. The more defects that are

found, the more effort is needed to correct them. The effort needed to correct them

requires services from Build, Design, and Technical environment, but these have

competing demands made on them. One reason for the competing demands is the

parallel incremental development approach which means work is going on for the next

increment while there is a demand for remedial work for the previous increment leading

to resource clashes. This contradicts the assumption that the project manager (the Test

manager in focus) ‘owns’ and controls all the resources allocated to the project. In fact,

the system forces the project to interact with other actor-networks, outside the control of

the Test manager, that constrain the TM from achieving its objective in maintaining

progress on schedule.

Hughes (2012) noted that a project has a context/environment not under the control of

the project manager, yet to reduce sources of uncertainty, the project manager attempts

to bring the context under the control of the project. Further, Law & Callon (1992, page:

46) noted that the ‘shape and fate of technological projects’ is a function of the project

manager’s building of and maintaining the alignment and coordination of (i) the

external actor-networks which the project is dependent on for products and services (ii)

the internal actors to produce project deliverables (iii) maintaining control over events

(obligatory passage point - OPP) which take place between the internal and external

networks during project execution (Callon & Law, 1989; Law & Callon 1992). The

absence of OPP may lead to lack of control on the project and eventually project failure

(Law & Callon 1992). In practice, the OPP may move/shift from initially being the

 Explanation development Chapter 8

Controlling schedule duration during software project execution 234

focal actor to become some other actor/s; what emerged from the ANT model is that,

the TM is not the OPP, rather it is TEM who controls most of the products used by TM

to carry out Test phase activities; and hence, controlling the events during project

execution and influencing project success. Elbanna (2008)’s empirical study on

Enterprise Resource Planning implementation, suggests that the examined project

tended to drift from the plan because the actors, that were dependent on one another,

slowed down or speeded up progress of work activities within the network based on

their own priorities; in this way, the various project actors influenced the execution path

of the project by being a positive force towards achieving project objectives or a

negative force that impeded project progress.

It can be argued that product development projects contain a degree of uncertainty and

instability, and that their outcome cannot be accurately predicted (Akrich et al. 2002).

However, the stability of a project may be increased through the network of associations

built by the project manager and the influences the project manager exerts, through the

network, to maintain that stability (Latour 1986, page: 267). Hanseth et al. (2006)’s

empirical study indicate that the complexity of the information technology project

studied, which was operating in very open environment and used a number of very

different stakeholders, led to unexpected results through emergence of side effects that

generated new actions, which had their own side effects and so on, which then led to

disorder and eventually to the failure of the project despite the application of project

management best practices. The constraining coordination and inscriptions, the

complexity of the actor-networks and emergent mediators, and the reversibility to

previous phases emerged under the ANT lens, in this research, have constrained the

Test manager’s control on schedule duration and led to schedule delay.

In conclusion, the nature of an actor-network of being constructed from heterogeneous

entities makes it prone to divergence in some way or another during its lifetime. Hence,

the project manager ought to maintain the relations, with other actor-networks, in place

(stabilise) during execution to avoid getting out of control. Law (2012) noted that

‘large-scale heterogeneous engineering is difficult. Elements of the network prove

difficult to tame or difficult to hold in place. Vigilance and surveillance have to be

maintained, or else the elements will fall out of line and the network will start to

crumble’ (page: 108). The ANT model (Figure 8.3) illustrates the complexity of the

projects undertaken; the numerous links/interfaces between project elements demands

 Explanation development Chapter 8

Controlling schedule duration during software project execution 235

additional time from the project schedule that were not accounted for during planning.

The more parts a project needs to interact with in order to carry out its activities, the

more complex the project becomes, this complexity adds to the project schedule, and if

was not incorporated in the original plan, it may lead to schedule delays. On partitioning

the model of a project system, DeMarco noted long ago that ‘each time you partition,

there are interfaces to be considered, interfaces between the various pieces of the

partitioning. There may be a choice of ways to divide a whole into pieces. When this is

true, the complexity of the resultant interfaces is a clue to which way is better. A

partitioning with few and simple interfaces is preferable to one with many and complex

interfaces’ (1982, page: 43). Thus, the development and delivery model in ABC ought

to be simplified if it were to hand control back to the project manager and deliver

projects on schedule.

This chapter attempted to answer the final research question:

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

The approach to developing explanation applied Actor-network theory concepts to the

Grounded theory categories of phenomena present during Test phase execution, to

examine the interaction developed among the project actors, culminating in an ANT

model which identified the influences on schedule delay. As can be noted that,

controlling schedule duration in software projects can be influenced by the interaction

of heterogeneous elements (human and nonhuman), and that these influences emerge at

the time of project execution, which can exert constraining influences on the progress of

project activities and cause schedule delay. Furthermore, the effect of a project’s context

on the progress of the project activities cannot be overlooked; it contradicts the

assumption that the project manager ‘owns’ and controls all the resources allocated to

the project; in fact, the system forces the project to interact with other actors, outside the

control of the project manager, that constrain the project from achieving its objectives.

The reminder of this chapter reflects on the overall journey of this programme of study.

 Explanation development Chapter 8

Controlling schedule duration during software project execution 236

8.4 A reflection on the research journey

The works in this dissertation adopted the mixed method research (MMR) approach to

enquiry, integrating quantitative (QUAN) and qualitative (QUAL) analyses to develop

answers to the questions of the research. This approach views the understandings

obtained from the QUAN and QUAL approaches as being complementary rather than

alternative methods of scientific enquiry (Mingers, 2001; Mingers, 2003). The

combination of QUAN and QUAL approaches to enquiry attempts to understand

different sides of the same (Creswell & Plano Clark 2011; Biesta, 2010; Guba &

Lincoln, 1994; Greene & Hall, 2010; Venkatesh et al. 2013). A research programme can

seek different kinds of understanding; descriptive, interpretive, and/or theoretical

understanding (Maxwell, 1992). The nature of the data available to the research which

comprised project performance reports containing both numeric data (project metrics)

and text (narratives of project participants’ perspective) made is relevant to seek

obtaining these types of understanding.

Descriptive understanding is concerned with accurately describing the activities

observed in the studied domain. Activities are seen as physical and behavioural events

rather than in terms of their meaning. These could be observed directly - through the

human senses (seeing, hearing…etc.), or indirectly - inferred from data but which could

in principle be observed. ‘Accuracy’ refers to not distorting the activities observed in

the reporting of the account (Maxwell 1992, page: 285). This meant accepting that,

while there was an attempt to distance the researcher from the researched phenomena,

the knowledge claims made could not be guaranteed to be free from the influence of the

participant’s particular standpoint (Crotty, 2013; Chia, 2013) when analysing the

schedule metrics in Chapter 5. For example, a key metric in the QUAN analysis was

schedule delay where the research measured the number of days by which a project and

its phases were completed late; whilst the researcher’s task was solely to describe and

apply the measurement on ABC data (i.e. without intervention), he is aware that the

project schedule was constructed and influenced by the project manager.

Interpretive understanding is concerned with comprehending the studied phenomena

from the perspective of the participants in the studied situation. Therefore, this

understanding is based on the mental construction (concepts) of the people whose

meaning is in question (Maxwell, 1992). As it is not possible to directly access the

 Explanation development Chapter 8

Controlling schedule duration during software project execution 237

participant’s mind to obtain accounts (a description at a very low level of inference and

abstraction) of their meaning, the researcher constructs the meaning based on the

participant’s accounts and other evidence (Maxwell, 1992; Guba & Lincoln, 1994). This

meant making meaning whilst the researcher was interacting with the researched

phenomena (Crotty, 2013; Chia, 2013) when analysing the project participants’

statements in Chapter 7. For example, the Test phase’ performance report is the Test

manager’s view/construction of the events during the Test phase execution, which other

phase managers may disagree with; different people make different constructions of the

same thing. Thus, the author of this thesis is aware that other perspectives are possible;

for example, examining the performance reports of the Technical environment manager

would have resulted in the emergence of a different set of categories of phenomena,

since the Technical environment manager had responsibilities not for just one project,

but several other ones simultaneously. Thus, the lateness of the Test phase from the

Technical environment manager’s perspective may be just one of many, and considered

less priority to, other challenges they were facing.

Theoretical understanding is concerned with obtaining a degree of abstraction from the

physical and mental phenomena studied; it goes beyond the immediate description and

interpretation of the phenomena and develops explanation of the studied domain; that is,

a theory/explanation of some phenomenon (Maxwell, 1992). This meant while

attempting to develop an explanation of schedule delay in Chapter 8, the researcher is

aware that this understanding was based on the his application of explanatory

constructs, and the connection among them, to the descriptive and interpretive

understanding obtained beforehand, but which increases the degree of abstraction and

make statements more generally applicable to a broader range of experiences/contexts

of other researches.

The understandings obtained by a research programme can be examined from various

aspects (Maxwell, 1992; Runeson & Höst, 2008; Yin, 2009; Onwuegbuzie & Johnson,

2006; Tashakkori & Teddlie, 1998; Guba & Lincoln, 1989, 2011). The following

reflects on the findings of the research according to the types of understanding obtained:

descriptive, interpretive, theoretical, and the generalizability of the findings to other

contexts (Maxwell, 1992).

 Explanation development Chapter 8

Controlling schedule duration during software project execution 238

8.4.1 The descriptive results

This relates to obtaining ‘descriptive understanding’, and is concerned with accurately

(i.e. without distortion) describing the activities and events (seen as physical

phenomena) in the account, through using and applying appropriate terms; it can be

examined through intersubjective agreement (Maxwell, 1992). Chapter 5 used schedule

metrics on the numeric data of ABC project performance reports to describe schedule

behaviour. The direct measurements (Kitchenham et al. 1995): scheduled start day,

actual start day, scheduled finish day, actual finish day, and precedence relationships

were collected retrospectively from ABC management reports complied at the time and

which may not be complete or accurate. This may pose a threat to the validity of the

direct measures. However, the project phase’s key dates, dependencies, and activity

progress were monitored and scrutinised weekly for accuracy in the performance

meetings in ABC. Theretofore, it is reasonable to attach a degree of confidence to the

data.

The indirect measurements, derived from the direct measurements via equations

(Kitchenham et al. 1995), were project schedule delay (PSD), phase schedule change

(PSC), and phase schedule accuracy (PSA). It can be noted from Table 5.8 (section

5.3.3 - Chapter 5) that each metric measured an attribute of schedule (Procaccino &

Verner, 2006); the terms used to define the metrics are relevant to what they were

intended to measure, and the unit of measurement used for each metric was consistent

with the direct measures it was derived from (Kitchenham et al. 1995). For example the

PSD measured the ‘delay’ attribute of schedule, which was defined as the degree of

mismatch between the scheduled duration of a project from its actual duration. The PSD

metric was derived from the direct measures obtained from ABC progress reports. Thus

the terms used to describe PSD is appropriate to how it was applied (i.e. measuring

delay in schedule); and the indirect and direct measures used a consistent unit of

measurement (number of days), which increases the validity of the PSD measure

(Kitchenham et al. 1995). The PSD metric showed that the phases most contributing to

schedule delay were the three Test phases: IT (Inc4) in Project 1; Integration Test - Plan

& Preparation in Project 2; and DBT (Inc6) in Project 3. Although, it would be expected

that the phases at the end of a project to be most subject to delay because they are

affected by all the accumulated delays earlier in the project; it was seen that they

 Explanation development Chapter 8

Controlling schedule duration during software project execution 239

introduced their own delay as well. These indicate points in the projects when

something may be obstructing progress.

8.4.2 The interpretive findings

This relates to obtaining ‘interpretive understanding’, and is concerned with grounding

the terms/meanings ascribed to participants’ statements (seen as mental phenomena) in

the language and concepts of the people studied; it can be examined through member

checking (Maxwell, 1992). Chapter 7 interpreted the textual data, the narrative of the

project participants of ABC project performance reports, to categorise types of

phenomena present during the execution of the Test phases and the way they influenced

schedule duration. These accounts are the participants’ views at the time, not

reconstructions by researcher; the research itself cannot have influenced outcomes.

However, bias of participants at the time in structuring their narrative may pose threat to

the interpretive validity. Similar to the numeric data, the participants’ statements were

scrutinised during the performance meetings for its accurate representation of the events

taking place at the time; and so should carry a degree of confidence.

Another threat to interpretive validity was the narrative in the textual reports being

written in ABC terminology. In order to reduce this threat, triangulation of the

contextual information about ABC projects (Chapter 3) and consultation with the

project participants to interpret the terms in the textual reports and clarify points in the

narrative schema that were not referenced, helped in further grounding the

interpretations in the participants’ perception.

The use of Grounded theory techniques to analyse the textual information in this

research was effective. Through its rigour, the GT enabled grounding the interpretive

categories of phenomena into the perceptions of the project participants and revealed the

interact interrelationships among the various project elements and how they influence

one another and schedule duration. Nonetheless, a challenge was making sense of the

various styles, advocated in the literature, of doing a GT study. In particular, the broad

explanation offered in the literature on the practical applications of the theoretical

sampling and theoretical saturation approaches. This challenge was overcome by

consulting several authorities, and closely examining and re-examining the two

approaches to clarify how they might be applied in practice.

 Explanation development Chapter 8

Controlling schedule duration during software project execution 240

8.4.3 The explanation development

This relates to obtaining ‘theoretical understanding’, and is concerned with developing

theoretical constructions/explanation through increasing the degree of abstraction of the

account from the physical or mental phenomena studied. Therefore, the concepts that

the explanatory model applies to the phenomena and the relationships suggested among

the concepts are examined for their appropriate characterisation of the phenomena

(Maxwell, 1992). Chapter 8 increased the degree of abstraction of the GT categories of

phenomena framing them within ANT concepts to develop explanatory model of the

behaviour of schedule delay. A threat to validity may be in characterising a particular

GT category in Table 8.1 (section 8.2) into an inappropriate ANT concept; for example,

characterising ‘scope’ as ‘coordination’ since scope may not directly relate to reliance

on someone or something for resources in order to carry out tasks. However, this threat

was reduced through careful examination of how ANT concepts may be applied to

software project management field as detailed in section 8.2.

Another threat to validity may be to use ANT concepts in incorrect ways; for example,

using irreversibility as a concept of interaction (incorrect) instead of a feature of

inscription (correct); because irreversibility indicates the degree of stability of an actor-

network and its resistance to going back and changing the inscriptions that have already

been circulated, rather than interaction among actors. Again, this threat was reduced

through careful examination of the appropriate use of the ANT concepts in the literature

(section 8.2).

The contribution of ANT to this study can be seen in its illumination of the constraining

and empowering influences exerted by various actors (human and nonhuman) on

achieving project objectives in maintaining the Test phase progress on schedule.

Without the application of ANT concepts, it would have been difficult to identify the

causes of schedule delay in such a complex project environment. ANT enabled

investigating the interdependent areas of software project management through its

demand on the researcher to attend to the context of the research object more carefully.

A similarity that can be observed between ANT and GT is that they both encourage the

researcher to learn from the investigated domain and identify behaviours not

immediately apparent, rather than impose preconceived ideas or existing frameworks on

 Explanation development Chapter 8

Controlling schedule duration during software project execution 241

the domain. A difference that can be drawn is that, whilst GT categories emerge from

the subject domain, ANT concepts (e.g. actors and intermediaries) are used to explain

the subject domain. Thus, ANT and GT can be seen to complement one another; the GT

analysis generating phenomena, while the ANT concepts illuminate the influence of

interactions among them. Nonetheless, applying the ANT concepts to the GT categories

was not straightforward; in particular, the limited explanation available in the literature

on how concepts such as ‘coordination’ or ‘irreversibility’ ought to operate in practice.

This challenge was overcome by careful examination and re-examination of the ANT

concepts in light of various authorities who developed and added to the concepts over

time. Although, applying ANT concepts to GT categories is not new - see for example

Lopes (2010), further research producing innovative ways to bridge the two methods

would benefit the field.

Finally, the overall methodological approach of this programme of study; where project

metrics, grounded theory, and actor-network theory were integrated within an

explanatory sequential mixed method design to make sense of the complexity of

software project execution was effective. The implication is that, the research and

practice bodies of knowledge need to match the complexity of a domain if they are to

produce practical solutions to the challenges facing the area being investigated.

Connecting the quantitative method to the qualitative method enabled project schedule

delays (the quantitative results) to be explained through the more detailed analysis of

selected cases using qualitative analysis; which could not have been possible using

either of the methods alone; the mixed method approach offered a more complete

understanding of the domain investigated. Furthermore, this research improved the

clarity of the implementation and reporting from the explanatory sequential design by

clearly distinguishing between the QUAN and QUAL phases of the research. The

clarity was also improved by emergent nature of the approaches; since the design of the

second phase (QUAL) was based on what was learned from the first phase (QUAN).

Nonetheless, a challenge was the lengthy amount of time to implement to two phases.

8.4.4 Generalizability

Generalizability refers to the extent to which one can extend the account of a particular

situation or population to other persons, times, or settings than those directly studied

(Maxwell 1992, page: 293). Generalizability takes place through the development of a

theory that makes sense of the particular context studied which may be useful in making

 Explanation development Chapter 8

Controlling schedule duration during software project execution 242

sense of similar contexts (Maxwell 1992; Yin 2009, pages: 15 and 38; Verner et al.

2009, page: 319; Walsham 1995, page: 79; Gomm et al. 2000, page: 103; Mitchel 2000,

page: 176; Stake, 2000; Donmoyer, 2000; Lincoln & Guba, 2000; Guba & Lincoln

1989, page: 243). That is, the ‘claim is that those things not directly observed are

similar to those described in the account; that the account can be generalized to some

wider context’ (Maxwell 1992, page: 294). Two aspects of generalizability - internal

and external - are considered below.

8.4.4.1 Internal generalizability

This is concerned with the applicability of the findings to cases inside ABC that were

not directly observed by the study (Maxwell 1992). It is worth noting that the

explanations of schedule delay developed in this thesis represent six cases across three

projects; and thus, the findings can be seen as already generalised across the three

projects, and can be extended to other projects within the programme which the three

projects belong to because the context of the programme is the same.

However, ABC is a global company providing system development and integration

services to varied public and private organisations, which their existing information

technology (IT) environments and needs differ. Therefore, three aspects of system

development and delivery need to be considered when examining the applicability of

the findings of the research to projects, inside ABC but which fall, outside the studied

programme.

Software development method - ABC employs customised development methods

applicable to the client’s IT environment and needs. For example, a particular client

relationship may require using ABC’s customised version of the Iterative and

Incremental Development (IID) method; another client may require using ABC’s

customised version of the Agile practices. However, all client relationships that require

using ABC’s IID, throughout the world, use the same ABC’s customised version of the

method. Same applies to the Agile projects, and so on. A threat to internal

generalizability is that the findings of this research may only be applicable to projects

using ABC’s IID. However, as the next section illustrates that the findings can be

extended to projects using other development methods (e.g. Agile) in other

organisations, which reduce the threat of extending the findings to ABC’s non-IID

projects.

 Explanation development Chapter 8

Controlling schedule duration during software project execution 243

Onshore/offshore model - ABC projects make extensive use of onshore/offshore

distributed development to lower development cost and win contracts. However, some

of ABC clients (e.g. the banking industry) are reluctant to share sensitive data outside

the country of which the client is based. A threat to internal generalizability is that some

of the research findings may not be applicable to the projects undertaken within a

country. Nonetheless, the next section notes that the findings can be extended to

projects executed within a country in other organisations, which reduces the threat of

applying the same on ABC projects.

Size of the system being developed - a lot of ABC projects develop and integrate large

software systems; with some projects undertaking medium size systems development. A

threat to internal generalizability is the applicability of the findings to projects

developing medium size systems in ABC. Yet, the next section shows that projects

developing medium or small software from other organisations exhibit similar

challenges to the ones identified in this research; therefore, the threat above can be

reduced for similar projects within ABC.

8.4.4.2 External generalizability

This is concerned with the applicability of the findings to cases outside ABC (Maxwell

1992). There appears to be few studies investigating schedule behaviour at phase level;

existing work mostly examine behaviour at project level. This makes it difficult to

compare the findings at phase level, but does mean this research fills a gap in the

research literature. Furthermore, this study is one of only a few that have investigated

the management of software projects developing enterprise architecture systems using

globally distributed teams. Still, the following relates the empirical findings of this

research to those of other researchers and practitioners.

Applicability to the same industry sector- the findings of this research can be useful to

organisations operating within the same industry sector as ABC; i.e. global

organisations that develop software through onshore/offshore model, and target public

and private clients. For example, Rainer (1999)’s study on project schedule behaviour at

IBM (see section 2.3.2 - Chapter 2) identified factors relating to dependency such as

‘waiting on resources’ and ‘waiting on code defects’ as contributing to schedule delay

(which are compared to the ‘constraining coordination’ concept in this research); factors

 Explanation development Chapter 8

Controlling schedule duration during software project execution 244

related to product such as ‘code’, ‘defect/fix’, and ‘system reliability problems’ (which

are compared to the ‘intermediaries becoming mediators’ in this research). However,

the findings of this thesis extends Rainer (1999)’s work as they are based on projects

developing large systems with globally distributed teams, compared to Rainer’s

investigation of projects developing small systems with collocated teams.

Applicability to projects developing small or medium size systems - the findings of this

research was based on projects developing large systems through Iterative and

Incremental Development and distributed globally. The findings can be useful to

projects developing small and medium size software systems through Agile and in

collocated teams. For example, Lehtinen et al. (2014)’s study (section 4.2 - Chapter 4)

point to the dependency on other project participants for decisions, products, or

resources to progress project work (i.e. ‘constraining coordination’ in this research); and

project products causing problems (i.e. ‘intermediaries becoming mediators’). A key

point about this research, however, is that it is examining projects in a very integrated

enterprise architecture environment compared to Lehtinen and colleagues research.

Applicability to projects developing large software systems - the findings of this

research can be applied to projects developing large systems where more

specific/subsystems are embedded within more generic/larger system structures.

Petersen et al. (2014)’s study aimed at identifying bottlenecks in developing very large-

scale system of systems (SoS), at Ericsson AB in Sweden, is a case in point (see section

2.3.3 - Chapter 2). The findings are similar to the findings of this research. For example,

factors relating to clarity and consistency of requirements between the SoS and system

view in Petersen et al. (2014)’s study is compared with (‘constraining inscription’ and

‘reversibility’); factors relating to architecture dependencies and lack of available

architecture knowledge is analogous to (‘constraining coordination’ and ‘intermediaries

becoming mediators’); coordination related factors such as coordinating work activities

and communication being impacted by multiple teams working on different systems in

Petersen et al. (2014)’s study can be contrasted with the (‘large number of actors/actor-

networks’); factors relating to the SoS and the system view having different/conflicting

views of priority can be paralleled with (‘constraining coordination’) in this research.

The works in this thesis extends Petersen et al. (2014)’s study in its examination of

projects developing software in a globally distributed environment.

 Explanation development Chapter 8

Controlling schedule duration during software project execution 245

Applicability to projects developing enterprise systems - the findings of this research

can be applied to projects developing systems within enterprise architecture

environment. Hustad & Lange (2014)’s study (see section 2.4.4 - Chapter 2)

investigating five SOA projects in Norway suggests comparable insights to the findings

of this research in the factors influencing schedule delay. For example, a number of the

findings of Hustad & Lange (2014)’s study can be contrasted with the (‘constraining

coordination’) concept in this research, such as challenges with coordinating dependent

activities among the projects, delays caused by these dependencies, insufficient

communication, and dependency on the competency of the internal and external parties.

Other findings in Hustad & Lange (2014)’s study such as the approach to running the

four projects in parallel and constant change of shared services causing delays are

contrasted with the (‘constraining inscription’); the complexity of the project

management effort was significantly underestimated with the large number of parties

involved in the development effort can be compared with the (‘large number of actor-

networks’ concept in this research).

Applicability to projects developing software globally - the findings of this research can

be extended to projects developing software through globally distributed teams. For

example, Herbsleb et al. (2001)’s findings (see section 2.3.4 - Chapter 2) that work

distributed across sites take longer to complete (‘constraining coordination’) compared

to same-site work, and that the factors influencing the delay being: the size of the

change (‘constraining inscription’ and ‘irreversibility’), the number of software

components affected by the change (‘intermediaries becoming mediators’), and the

number of people involved in carrying out the change (‘large number of actors’). This

thesis extends Herbsleb et al. (2001)’s study in its focus on developing large software

systems in an enterprise architecture environment.

Applicability to non-project situations - the findings of this research may be useful to

non-project situations. For example, Lopes (2010)’s work (section 6.5.1 - Chapter 6)

combining Grounded theory with Actor-network theory to explain the learning process

during decision-making under uncertain and complex situations, generated comparable

findings to the works in this thesis. The categories of phenomena and their interactions

in Lopes (2010)’s PhD thesis such as ‘decision-maker’ is compared with (‘actor’) in this

research; the ‘support’, ‘systems’, and ‘uncertainty’ compared with (‘intermediary’); the

‘context’, ‘uncertainty’, and ‘learning’ with (‘constraining coordination’). The two

 Explanation development Chapter 8

Controlling schedule duration during software project execution 246

studies differ as our research investigated software engineering projects to understand

controlling schedule duration, compared to Lopes (2010) which investigated human’s to

understand the learning process during decision-making; however, the two studies are

similar as the situation examined in both studies occur within an uncertain and complex

environment/context. Furthermore, it can be argued that the learning process during

decision-making under uncertainty and complexity’ could be applied to project control.

Conclusion Chapter 9

Controlling schedule duration during software project execution 247

9 Conclusion

9.1 Introduction

This thesis has argued that there is a need for a better understanding of the project

behaviours that influence software project progress. In particular, the interactions that

emerge among project actors during project execution and the way they influence

schedule duration, leading to possible schedule delay, should be studied. The

researcher’s experience has been that projects developing and integrating large software

systems within an enterprise architecture environment and with globally distributed

teams are particularly vulnerable to delays. The thesis has also argued that for this

understanding to be useful research needs to draw upon empirical data, both the

quantitative and qualitative, reflecting the many interdependent facets of such projects.

Having concluded the research effort, this final chapter formulates the answers to the

research questions, conclusions from the research, and directions for further work.

9.2 Answering the research questions

The first question to which this research sought answers was:

RQ1 - To what extent do the mechanisms used to control schedule duration in projects

developing and integrating large software systems within enterprise architecture

environment through globally distributed teams identify the causes of schedule

delay?

The mechanism used to control schedule duration in ABC included; the reporting of

weekly performance of work activities by phase managers and meeting with project

management to monitor progress, overlapping phases within an increment during

project execution to maintain project end date, and the use of the parallel incremental

development approach to deliver software in shorter time.

Conclusion Chapter 9

Controlling schedule duration during software project execution 248

The weekly performance reports combined numeric data (locally-tailored SPI) with

textual data (narratives) to inform management of what was going on. While the SPI

could only tell that there was a delay, the textual reports explained why. The SPI

provides unreliable information to schedule delay, because whilst project phases were

completed later than scheduled, the SPI data at the end of the phase suggested that

phases were finished on schedule (i.e. SPI value is 1).

The tendency for phases planned as (Finish-to-start) to be started when the phase it

depended upon had not been completed - a tactic aimed at maintaining the project end

date, created more dependences and rework for the dependent phase. We can see,

particularly with Project 1, that the PM was able to recover lost time, only for it to be

lost at the testing phase.

The research also suggests that the parallel nature of incremental development though

improves staff utilisation, it also can have a slowing effect; for example, building code

for the second increment can create resource clashes with the demands of remedial work

as a result of the testing of the first increment being carried out at the same time. Thus,

the parallel incremental development contributes to schedule delay rather than enabling

identification of the causes of delay. We can see that the testing phase is the most

difficult phase to control and the methods used for control appeared to be particularly

weak.

Thus, the control mechanisms enabled identifying the project phases most contributing

to project delay, rather than the specific causes of schedule delay. The latter, needed the

support of the textual data.

RQ2 - In such an environment, what phenomena emerge during the execution of the

project that influence schedule duration?

The research coded the textual data, in the project progress reports, into categories of

phenomena present during the execution of the Test phases, the emergent categories

were: dependency, people, product, schedule, and scope. For example, the category

‘schedule’ showed delay in completing activities and phases, a phase’s duration being

extended or compressed, or phases starting later than planned. The category

Conclusion Chapter 9

Controlling schedule duration during software project execution 249

‘dependency’ showed waiting on and delays to providing various products and services

to the Test phase by project participants internal and external to ABC.

The developed narrative schema depicted the intricate relationships among the various

phenomena revealing the factors influencing schedule duration; for example, defect in

the Technical environment created defects in other products; such as the Enterprise

service bus, which in turn influenced schedule duration. The large number of parties

(14) that could be called upon to intervene at testing phase, and the large number of

products (20) supporting the Test phase progress and their influence on one another

illustrate the complexity inherent in executing the Test phase.

Thus, the phenomena that influenced schedule duration during the execution of the

project were identified. However, this was limited to the perspective of the Test

manager, rather than the underlying physical system, and it was a partial view; it needed

the support of the contextual information and input from project participants. Although,

the three sources of information enabled obtaining a more complete view of what was

happening, the emergent interpretation was very local to ABC; hence, and a broader

understanding was needed.

RQ3 - How do the interactions that develop among project actors during project

execution influence schedule delay?

Studying the interaction among the project actors under an ANT lens enabled

identifying the causes of schedule delay since it revealed the constraining influences

exerted during such interactions on maintaining progress on schedule: constraining

coordination, large number of actor-networks, intermediaries becoming mediators,

constraining inscription, and reduced irreversibility.

The constraining coordination indicated that project rules were not widely accepted by

the actor-networks due to competing priorities in maintaining their increment on

schedule instead of supporting the one being tested, leading to delays in providing

dependent products and services and leading to schedule delay. The large number of

actor-networks revealed that the project was complex (due to the integrated enterprise

architecture environment) and difficult to manage (because of globally distributed work

activities). The intermediaries turning into mediators led to uncertainty in managing the

Conclusion Chapter 9

Controlling schedule duration during software project execution 250

project because they behaved differently to what was expected: various products and

services used to support Test phase activities kept breaking down. Flawed inscriptions

showed the programmes of action put in place among the actor-networks not producing

the intended outcomes; various design and code defects emerging and the scope

changing frequently during testing. The reversibility to previous phases created

disruption in producing deliverables and destabilised progress; as project deliverables

had to be reworked.

9.3 Conclusions from the research

The conclusions of the research can be grouped under three headings:

9.3.1 Underlying assumptions

The main managerial concern at project level in ABC was the delivery date, and project

control was focused on this. The main metric used in project control was a locally-

tailored SPI. Conventional SPI is calculated as Earned Value/Planned Value (EV/PV)

where PV is the sum of the agreed estimates for the work which are scheduled to

complete on the selected date, and EV is the sum of these values for the work that has

actually been completed. ABC used a version of this based on counts of the key

milestone events that have actually been achieved as opposed to those scheduled to be

completed. The adoption of this ‘event-SPI’ was designed to quickly identify where

obstacles to planned progress had appeared.

Another key practice in the management of projects at ABC was the adoption of a

parallel incremental approach. The project was divided into increments. Activities were

planned so that work on increments could be executed in parallel. For example, the

design team finished the design for increment 1 and then started immediately on the

design for increment 2, while the build team worked on coding increment 1.

The basic planning of activities within the parallel incremental approach was based on

the assumption that, where possible, links between the incremental phases would be

finish-to-start. A dependent activity (such as build) would only start when the necessary

precursor (in this case, design) has been completed. From a quality control viewpoint

this is the optimal approach. Another assumption was that, the only constraint on the

Conclusion Chapter 9

Controlling schedule duration during software project execution 251

execution of an activity was the completion of the activities upon which it was

dependent.

9.3.2 Consequences of assumptions

The finish-to-start assumption, where one task is seen as requiring the completion of

another previous one before it can start, in practice was a false one (see for example

Figure 5.3 in section 5.3.3.3). Work was regularly started on the subsequent activity

before the completion of the preceding dependent activity; for example, build work

started before design had been completed. This would almost certainly mean rework

when the final designs came through, it may also have been responsible for the number

of defects coming through to testing.

For the parallel incremental approach to work properly, the resource requirements for

all specialist activities have to be self-contained, that is that they should not be affected

by demands for work outside that needed for the current task. In practice, software

development staff could, for example, be working on building code for increment 2 of a

project, but then be required to do remedial work as the consequence of the testing of

increment 1. This caused a resource clash requiring the prioritising of build tasks.

This situation illustrates the complexity inherent in the development process.

Schneberger & McLean (2003) noted that the complexity of a system is a function of

the number and variety of components, the number and variety of their interactions, the

number and variety of interdependencies, and the rate of change in the system; however,

they also found that the ‘rate of change’ factor increases the complexity of the system

greater than either the variety of components or their interaction factors. The rate of

change (i.e. incrementing and iterating through development) in ABC projects was

considerable (increments occurred in parallel), carried out by the same project teams

working on multiple changes simultaneously. In addition, other change-related activities

took place during the Test phase execution on all running increments, such as

introducing a new product, scope changes, and requirements gaps. Thus, the parallel

incremental approach increased the complexity of managing the project.

While the assumption that activities could be constrained by other activities upon which

they were dependent turned out to be flexible, other constraints became apparent that

had not been made explicit in project plans. There were several occasions where

Conclusion Chapter 9

Controlling schedule duration during software project execution 252

activities were constrained by the need to wait for services to be delivered which were

supplied by other project actors. These appeared to be when either (i) specialist

technical resources outside the project team were needed or (ii) assurance was needed

that new functionality being developed by the team would not have a detrimental effect

on existing implemented systems. The external parties involved could need to service

requests from a range of different clients within the organisation, and once again there

could be resource clashes, and a need for prioritisation at a higher level than the current

project.

The number and variety of interdependencies, described above, increases the

complexity of the project. Schneberger & McLean (2003) noted that interdependency

among system components makes understanding and managing the system more

difficult than a system with independent components. Furthermore, these

interdependencies are more complex to manage when project actors are geographically

distributed, compared to collocated projects, due to challenges in coordinating project

tasks and communication among project teams at distance (Herbsleb & Moitra, 2001).

Schneberger & McLean (2003) noted that distributed environments and enterprise

systems are event driven, and when events occur in some pattern, complexity increases

exponentially. The distributed nature of the project actors in two sites within the UK

and between UK and India increased the complexity of interdependencies to manage

project activities. In complex programme of work there are many organisational

constraints on progress that may not be identified in a conventional plan.

It is interesting to see this in the light of the current promotion of Agile development

practices. These advocate that development teams be self-contained as far as possible,

so that external brakes on speed of code delivery are minimised (Stapleton, 1997).

However, Petersen et al. (2014) point out that many contemporary systems can be seen

as ‘systems of systems’ (SoS) where an individual software application is incorporated

into a larger system to deliver business benefits. They noted that applications that are

built as part of a SoS are particularly subject to development bottlenecks because of the

needs to conform to externally imposed requirements. The ABC development

environment fits into this characterisation.

Conclusion Chapter 9

Controlling schedule duration during software project execution 253

9.3.3 Testing

The analysis of which activities seemed most prone to delay singled out testing as being

the biggest contributor. As testing comes near the end of the development lifecycle it

may of course be inheriting problems from earlier activities: a key factor in testing time

is the number of errors found, which cannot be forecast, that need correction and re-

testing. The management system in place assigned the test manager a key role in

attempting to control the testing progress, but they did not have direct control of many

actors whose contribution was essential to the successful completion of the project, such

as the build and design teams; specialists responsible for the test environment,

enterprise service bus, solution and technical architectures, suppliers of test data, the

clients, peer suppliers, and other project teams.

The large number and variety of project actors, described above, increases the

complexity of the project. A total of 49 different project elements (sub-categories of

phenomena - Table A.1 in Appendix A) were in interaction during the Test phase

execution, which illustrate the complexity of the execution effort. Schneberger &

McLean (2003) found that that the variety of components in a computer system creates

a more complex system for managers to understand and deal with; they also found that

the variety has a greater effect than the number of components and their interactions.

This research showed that, a total of 20 different products and 14 different people were

in interaction during the Test phase execution.

The number and variety of interactions, among the project actors, increases the

complexity of the project (Schneberger & McLean, 2003). Chapter 2 (section 2.4.1),

extended Schneberger & McLean (2003)’s definition of system complexity to project

complexity, in that: complexity of software project management can refer to, the

interrelationship between the project elements in terms of: the number and variety of

project elements (human and nonhuman), the number and variety of interactions among

project elements (that exert constraining or empowering influences), the number and

variety of interdependencies (that exert direct or indirect influences), and the rate of

change of the project situation/context. This research showed that, there were 22

interactions at play among the project actors; and these interactions were of 3 different

types: coordination, mediators, and inscription; added to this, the context of the project

Conclusion Chapter 9

Controlling schedule duration during software project execution 254

in having large number of actors and reversibility to previous phases (Figure 8.3 in

Chapter 8), which illustrate the complexity being grappled with.

9.4 Implications for research and practice

9.4.1 Implications for practice

1 In order for project managers to maintain a project’s progress on schedule, they

ought to have control on all project resources; since the influences exerted by the

project’s context on the project’s schedule duration cannot be underestimated (see

section 8.3). In ABC’s case, for example, the Technical environment manager

(currently under the Technical environment management function) needs to be

brought under the control of the Test manager, because almost all Test activities are

dependent on the former to make progress; the Test manager can set priorities but

without due impact on the technical aspects of the enterprise environment since

more than one project may be going on at the same time.

2 In order to reduce the challenges of managing the development of large software

systems, the use of globally distributed teams need to be minimised; since

coordination of project activities becomes more difficult with distributed teams,

which influences schedule delay and can increase the overall project cost (see

section 2.3.4).

3 When employing the Iterative and incremental development model on a project,

scheduling overlapping increments need to be avoided; since having the

development team working on more than one increment simultaneously contributes

to schedule delay due to competing priorities and resource clashes, which increases

task’s lead time (see section 2.3.2).

4 Project managers may need to assess the complexity of a project before execution

commences, and where possible factor in this complexity in the schedule estimates.

An indicator of project complexity can be a view of the interrelationship between

the project elements in terms of, the number and variety of: project elements,

expected interactions, anticipated interdependencies, and the expected rate of

change of the project situation (see section 2.4.1).

Conclusion Chapter 9

Controlling schedule duration during software project execution 255

5 When using the SPI (Schedule performance index) metric to track schedule

performance, awareness of its limitations need to be exercised, since the SPI

measure is misleading (see section 2.2.3). In general, regardless of the type of the

measurement used to assess progress, project managers must remain vigilant to the

progress of the critical tasks as these may be indistinguishable by the measurement

used from the non-critical ones (see section 2.3.2).

6 Clear and specific rules of interaction between the project and other dependent

projects or supporting functions need to be articulated prior to project execution; in

order to commit these dependent teams to their role in providing timely support to

enable maintaining the project’s progress on schedule (see section 8.3).

7 Equal attention to the nonhuman elements of the project network need to be paid as

is done to the human elements, since they may exert constraining influences on

achieving project objectives that are no less hindering of project progress compared

to human elements (see section 7.4).

9.4.2 Implications for research

1 The considerable influences exerted by external factors on the progress of a project

suggests that the traditional perception of project boundary might need to be

revisited to include elements surrounding the project because they are beyond the

control of the project but still influence schedule delay; i.e. research to focus more

on programmes rather than projects in isolation.

2 This research suggests that more attention needs to be paid to the interdependent

areas of projects developing enterprise systems within globally distributed

environments, rather than one or two discrete areas, because the interactions among

these areas exert constraining influences on achieving project objectives.

3 Project execution need to be viewed as occurring in an interactive environment,

involving complex networks of project elements (human and nonhuman)

influencing one another and producing intermediary activities and products not

accounted for during planning, rather than just the project team producing standard

products on a specified timeframe.

Conclusion Chapter 9

Controlling schedule duration during software project execution 256

9.5 Future work

A number of directions for further research can depart from the findings of this

research. For example, future studies can examine the progress reports of phases other

than testing of the ABC projects to understand how the interaction among the project

actors influence schedule delay in these phases. In addition, further research into project

rules that govern the interaction across teams/phases dependent on one another to

progress work activities would be useful to identify ways in which coordination can be

strengthened - both candidates for future possible work by the author of this thesis.

Other lines of enquiry may further investigate projects with similar characteristics to the

ones examined here; i.e. projects that develop large software systems and within

enterprise architecture environment and with globally distributed teams, but in a

different organisation; in order to further support/extend the findings of the influencing

factors on schedule delay emerged in this research.

Future research can look at the creation of simulation models of the interactions found

in this research, and by rearranging the interdependencies and relationships of the actor-

networks, the research can examine through different scenarios how the various

interaction arrangements influence project outcome, and perhaps suggest ways to

increase project success. This may help in addressing challenges facing management to

resolve competing organisational and project priorities, physical resource clashes, and

the escalation processes to resolve such problems.

Furthermore, the causes of schedule delay identified in this research can be used as

knowledge base to intelligent systems like Case-based reasoning (CBR). A future study

can implement a CBR system based on the six cases (Test phases) investigated in this

research: then add new cases of other projects from other organisations over time to

expand the knowledge base. Armed with more cases, the CBR system can further be

used to inform novice project managers of potential causes of schedule delay before

they start their project, by comparing the context of their projects with the knowledge

base.

To conclude then, it would seem that our understanding of controlling schedule duration

and the way it influences schedule delay in software projects is still developing, and

Conclusion Chapter 9

Controlling schedule duration during software project execution 257

further work is required in order to unpack such a complex undertaking; Checkland

(1981, page: xii) put it succinctly:

‘Obviously the work is not finished, and can never be finished. There

are no absolute positions to be reached in the attempt by men to

understand the world in which they find themselves: new experience

may in the future refute present conjectures. So the work itself must be

regarded as an on-going system of a particular kind: A learning

system which will continue to develop ideas, to test them out in

practice, and to learn from the experience gained’.

Appendix A Qualitative approach data

Controlling schedule duration during software project execution 258

Appendix A: Qualitative approach data

This appendix is associated with Chapter 7 (Qualitative approach) and provides

supporting information on the Grounded theory analysis carried out in the QUAL

approach, it includes: code hierarchy structure, relationship among the sub-categories,

the textual data of five cases (source data of this research), and sample analytic memos.

A1. Code hierarchy structure

Figure A.1 shows screenshot example of the code hierarchy structure in the qualitative

data management software NVivo, followed by Table A.1 showing the full list of

emergent codes from analysing the textual data of the performance reports of the six

cases. The code classification and hierarchy follows the description presented in section

7.3.2 - Chapter 7: i.e. Category\Selective or Theoretical code\Open code; the hierarchy

is indicated through indentation of the various codes under the column ‘Name’ in Table

A.1. Where the name of the code is indicative of its meaning, no description is

provided.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 259

Figure A.1 Code hierarchy structure in NVivo

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 260

Name Classification Description

Dependency Category Test manager was dependent on other

project participants, for provision of

products and/or services, in order to

maintain progress of the Test phase on

schedule

Awaiting decision Theoretical code Test manager awaited decision from

other project participants. Decision

refers to sign-off, agreement, or

approval. Where ‘Name’ does not

specify the project participant, it

means that the textual data did not

identify the project participant

Awaiting Client decision on Scope change Open code

Awaiting Consumer decision on Scope change Open code

Awaiting Cross project delivery managers decision on Build approach Open code

Awaiting decision on Test completion report Open code

Awaiting defect fix Theoretical code Test manager awaited defect fix from

other project participants

Awaiting Authentication tool defect fix Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 261

Name Classification Description

Awaiting Code defect fix Open code

Awaiting Code defect fix from Peer supplier Open code

Awaiting Code deploy tool defect fix Open code

Awaiting Component catalogue tool defect fix from Peer supplier Open code

Awaiting Design defect fix from Solution architecture manager Open code

Awaiting ESB Code defect fix Open code

Awaiting Technical environment defect fix from Technical environment manager Open code

Awaiting Test environment defect fix from Technical environment manager Open code

Awaiting product Theoretical code Test manager awaited product from

other project participants. Product

refers to the items under the category

‘Product’ - see further down

Awaiting Code Open code

Awaiting Test data build from Peer supplier Open code

Awaiting Test data from Peer supplier Open code

Awaiting Test environment Open code

Awaiting resource Theoretical code Test manager awaited resource from

their team or other project participants.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 262

Name Classification Description

Resource refers to information,

clarification, or people (see the items

under category ‘People’ further down)

Awaiting clarification on Requirements gap from Consumer Open code

Awaiting Design information Open code

Awaiting Technical architecture information Open code

Awaiting Tester Open code

Delay in deciding Theoretical code Project participant delayed making

decision needed by Test manager

Client delay in deciding on Scope change Open code

Cross project delivery managers delay in deciding on Build approach Open code

Delay in deciding on Test completion report Open code

Delay in fixing defect Theoretical code Project participant delayed fixing

defect needed by Test manager

Delay in fixing Design defect from Solution architecture manager Open code

Delay in fixing Peer supplier Code defect Open code

Delay in fixing Technical environment defect from Technical environment manager Open code

Delay in providing product Theoretical code Project participant delayed providing

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 263

Name Classification Description

product needed by Test manager

Delay in providing Code Open code

Delay in providing Code due to Component Catalogue Tool defect Open code

Delay in providing Code due to Technical environment defect Open code

Delay in providing Code to Consumer due to Build approach Open code

Delay in providing Code to Consumer due to Code defect Open code

Delay in providing Code to Consumer due to Regression Test tool defect Open code

Delay in providing Code to Consumer due to Technical environment defect Open code

Delay in providing Code to Consumer due to Tester on vacation Open code

Delay in providing Peer supplier Test data Open code

Delay in providing Peer supplier Test data build Open code

Delay in providing Test data build due to Component Catalogue Tool defect Open code

Delay in providing Test environment Open code

Delay in providing Test environment due to Code deploy tool defect Open code

Delay in providing Test environment due to ESB Code defect Open code

Delay in providing Test environment due to Technical environment defect Open code

Delay in providing resource Theoretical code Project participant delayed providing

resource needed by Test manager

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 264

Name Classification Description

Delay in providing clarification on Requirements gap from Consumer Open code

Delay in providing Design information Open code

Delay in providing Technical architecture information Open code

People Category Human project participants who to

varying degree contribute to the Test

phase progress

Build manager Selective code As defined in Table 3.3 - section 3.2 -

Chapter 3

Build manager Open code

Client Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Client Open code

Consumer Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Consumer Open code

Cross project delivery managers Selective code Project participants that

developed/updated parts of the

enterprise system, but which are not

investigated by this research

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 265

Name Classification Description

Cross project delivery managers Open code

Peer supplier Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Peer Supplier Open code

Solution architecture manager Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Solution architecture manager Open code

Technical environment manager Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Technical environment manager Open code

Test data manager Selective code As defined in Table 3.6 - section 3.3 -

Chapter 3

Test data manager Open code

Test manager Selective code As defined in Table 3.3 - section 3.2 -

Chapter 3

Test manager Open code

Tester Selective code Member of the Test team; works for

the Test manager

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 266

Name Classification Description

Tester Open code

Product Category Artefacts produced by project

participants for use by other project

participants which enable further

producing project deliverables

Application server Theoretical code Software/ hardware artefact that serves

requests made from client computer

machines. For example, a personal

computer downloads an article from

the internet (a server computer)

Application server Open code

Authentication tool Theoretical code As defined in Table 3.1 - section 3.2.1

- Chapter 3

Authentication tool Open code

Build approach Theoretical code Document that outlines the approach

to develop software

application/component

Build approach Open code

Code Theoretical code As defined in Table 3.7 - section 3.3 -

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 267

Name Classification Description

Chapter 3

Code Open code

Code deploy tool Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Code deploy tool Open code

Component catalogue tool Theoretical code As defined in Table 3.1 - section 3.2.1

- Chapter 3

Component catalogue tool Open code

Defect Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Authentication tool defect Open code

Code defect Open code

Code deploy tool defect Open code

Component catalogue tool defect Open code

Design defect Open code

Design defect due to Requirements gap Open code

ESB Code defect Open code

ESB Code defect due to Application server upgrade Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 268

Name Classification Description

ESB Code defect due to Technical environment defect Open code

Regression test tool defect Open code

Regression Test tool defect due to Technical environment defect Open code

Technical environment defect Open code

Test environment defect Open code

Enterprise service bus Theoretical code As defined in Table 3.1 - section 3.2.1

- Chapter 3

Enterprise service bus Open code

Introducing new product Theoretical code Integrating or upgrading new product

into the enterprise system during Test

phase execution

New product Open code

Performance report Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Performance report Open code

Regression Test tool Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Regression Test tool Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 269

Name Classification Description

Scope of deliverables Theoretical code List of the artefacts required to be

designed, developed, and tested

Component Inventory Open code List of the software components

required to be modified or newly

developed

Technical environment Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Technical environment Open code

Test completion report Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Test completion report Open code

Test data Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Test data Open code

Test data build Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Test data build Open code

Test data requirement Theoretical code Specification of the type/format of the

Test data required to be available on

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 270

Name Classification Description

the Test environment ready for

performing Test execution

Test data requirement Open code

Test environment Theoretical code As defined in Table 3.7 - section 3.3 -

Chapter 3

Test environment Open code

Use Case Theoretical code A scenario of how the future software

will be used by the user to carry out

business functions

Use Case Open code

Wireframe Theoretical code A page schematic or screen

blueprint/visual guide representing the

skeletal framework of online

application software; they are created

for the purpose of arranging elements

to best accomplish a particular purpose

during the design stage of the

development lifecycle

Wireframe Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 271

Name Classification Description

Schedule Category The means by which project/phase

activities were ordered on a timeline

showing what activity was planned to

be carried out, by when, and in what

order; for example, Gantt chart

Activity delay Selective code As defined in section A4.2

Activity delay due to Authentication tool defect Open code

Activity delay due to Code defect Open code

Activity delay due to Code deploy tool defect Open code

Activity delay due to Component catalogue tool defect Open code

Activity delay due to delay in fixing Design defect from Solution architecture manager Open code

Activity delay due to delay in fixing Peer supplier Code defect Open code

Activity delay due to delay in fixing Technical environment defect Open code

Activity delay due to delay in providing clarification on Requirements gap Open code

Activity delay due to delay in providing Code Open code

Activity delay due to delay in providing Technical architecture information Open code

Activity delay due to delay in providing Test environment Open code

Activity delay due to Design defect Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 272

Name Classification Description

Activity delay due to ESB Code defect Open code

Activity delay due to introducing new product Open code

Activity delay due to lack of Design knowledge Open code

Activity delay due to Technical environment defect Open code

Activity delay due to Tester on vacation Open code

Duration compression Selective code As defined in section A4.4

Duration compression due to delay in providing Test environment Open code

Duration extension Selective code As defined in section A4.5

Duration extension due to Authentication tool defect Open code

Duration extension due to delay in providing Peer supplier Test data Open code

Duration extension due to Technical environment defect Open code

Lacking control over progress Theoretical code Test manager conveying lacking

control over Test phase progress due

to factors outside their sphere of

influence and which affect

maintaining Test phase progress on

schedule

Lacking control over progress due to Authentication tool defect Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 273

Name Classification Description

Lacking control over progress due to Code defect Open code

Lacking control over progress due to delay in approving Test completion report Open code

Lacking control over progress due to delay in deciding on Build approach Open code

Lacking control over progress due to delay in fixing Peer supplier Code defect Open code

Lacking control over progress due to delay in providing Peer supplier Test data Open code

Lacking control over progress due to delay in providing Peer supplier Test data build Open code

Lacking control over progress due to delay in providing Technical architecture

information

Open code

Lacking control over progress due to delay in providing Test environment Open code

Lacking control over progress due to Design defect Open code

Lacking control over progress due to lack of Design knowledge Open code

Lacking control over progress due to Technical environment defect Open code

No schedule baseline Selective code Execution of Test phase schedule

without being approved prior to start

of execution

Unapproved schedule Open code

Unapproved schedule due to Scope change Open code

Nonworking time Theoretical code Vacation time for Tester

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 274

Name Classification Description

Nonworking time Open code

Phase delay Selective code As defined in section A4.3

Phase delay due to Authentication tool defect Open code

Phase delay due to Code defect Open code

Phase delay due to delay in Client deciding Scope change Open code

Phase delay due to delay in deciding on Build approach Open code

Phase delay due to delay in deciding on Scope change Open code

Phase delay due to delay in deciding on Test completion report Open code

Phase delay due to delay in fixing Technical environment defect Open code

Phase delay due to delay in providing clarification on Requirements gap Open code

Phase delay due to delay in providing Code Open code

Phase delay due to delay in providing Peer supplier Test data Open code

Phase delay due to Design defect Open code

Phase delay due to Technical environment defect Open code

Reporting progress status Theoretical code Test manager reporting the status of

the progress of the Test phase; e.g.

affirming activity finish - see below

Open codes

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 275

Name Classification Description

Affirming activity finish Open code

Affirming activity in-progress Open code

Affirming activity start Open code

Affirming phase finish Open code

Affirming phase start Open code

Explaining missing schedule target Open code

Indicating maintaining progress Open code

Quantifying progress Open code Test manager quantified the progress

of activities, such as: 3 out of 10

components tested

Setting schedule target Open code

Voicing concerns about resource contention Open code

Start variance Selective code Test phase execution started later than

scheduled

Started late Open code

Started late due to delay in providing Code Open code

Started late due to delay in providing Test environment Open code

Started late due to Technical environment defect Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 276

Name Classification Description

Scope Category The total number of products and

services agreed to be delivered as part

of the project or within a phase in a

particular point in time; scope can

change during project execution due to

change requests

Requirements gap Theoretical code Unclear functional requirements

discovered during Test phase execution

Requirements gap due to provision of Use Cases instead of Functional Designs Open code

Requirements gap due to Solution architecture manager providing Wireframe Open code

Requirements gap from Consumer Open code

Scope change Theoretical code Modification of scope of work, during

project execution, which was agreed

prior to project execution

Consumer Change request Open code

Open scope due to Solution architecture manager providing unconfirmed Scope of

deliverables

Open code Unapproved scope of deliverables

Scope cut Open code

Scope cut due to Client Change request Open code

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 277

Name Classification Description

Scope increase due to deferred Code defects from previous Test phase Open code

Scope move Open code Specific functionality was taken out

from the current increment and moved

to a future increment during Test

phase execution

Scope move due to Peer supplier Code defect Open code

Table A.1 Code hierarchy structure

A2. Relationships among the sub-categories

Table A.2 shows the relationships (i.e. theoretical codes in Table A.1) among the elements (i.e. the selective codes in Table A.1) across the six cases.

From Name (Selective code) Relationship type (Theoretical code) To Name (Selective code)

People\Test manager Awaiting decision People\Client

People\Test manager Awaiting decision No reference to recipient

People\Test manager Awaiting decision People\Cross project delivery managers

People\Test manager Awaiting decision People\Consumer

People\Test manager Awaiting defect fix People\Build manager

People\Test manager Awaiting defect fix No reference to recipient

People\Test manager Awaiting defect fix People\Technical environment manager

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 278

From Name (Selective code) Relationship type (Theoretical code) To Name (Selective code)

People\Test manager Awaiting defect fix People\Solution architecture manager

People\Test manager Awaiting defect fix People\Peer supplier

People\Test manager Awaiting product People\Build manager

People\Test manager Awaiting product No reference to recipient

People\Test manager Awaiting product People\Peer supplier

People\Test manager Awaiting resource No reference to recipient

People\Test manager Awaiting resource People\Tester

People\Test manager Awaiting resource People\Consumer

People\Test manager Build approach People\Cross project delivery managers

People\Build manager Code People\Test manager

People\Build manager Defect Schedule\Activity delay

People\Build manager Defect Schedule\Phase delay

Product\Component catalogue tool Defect Dependency\Delay in providing product

Product\Authentication tool Defect Schedule\Activity delay

Product\Authentication tool Defect Schedule\Duration extension

Product\Authentication tool Defect Schedule\Phase delay

Product\Code deploy tool Defect Schedule\Activity delay

Product\Enterprise service bus Defect Schedule\Activity delay

Product\Technical environment Defect Schedule\Activity delay

Product\Technical environment Defect Schedule\Phase delay

Product\Technical environment Defect Schedule\Duration extension

Product\Test environment Defect No reference to recipient

No reference to recipient Defect Schedule\Activity delay

No reference to recipient Defect Schedule\Phase delay

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 279

From Name (Selective code) Relationship type (Theoretical code) To Name (Selective code)

People\Peer supplier Defect Schedule\Activity delay

People\Peer supplier Defect Scope\Scope change

Product\Code Defect Scope\Scope change

No reference to recipient Defect Schedule\Start variance

Product\Technical environment Defect Product\Enterprise service bus

Product\Component catalogue tool Defect Schedule\Activity delay

Product\Technical environment Defect Product\Regression Test tool

Product\Regression Test tool Defect No reference to recipient

Product\Technical environment Defect Dependency\Delay in providing product

Product\Code Defect Dependency\Delay in providing product

Product\Regression Test tool Defect Dependency\Delay in providing product

Product\Code deploy tool Defect Dependency\Delay in providing product

Product\Enterprise service bus Defect Dependency\Delay in providing product

Scope\Requirements gap Defect Schedule\Activity delay

Product\Technical environment Defect Schedule\Start variance

People\Client Delay in deciding Schedule\Phase delay

No reference to recipient Delay in deciding Schedule\Phase delay

People\Cross project delivery managers Delay in deciding Schedule\Phase delay

People\Technical environment manager Delay in fixing defect Schedule\Activity delay

People\Technical environment manager Delay in fixing defect Schedule\Phase delay

People\Solution architecture manager Delay in fixing defect Schedule\Activity delay

People\Peer supplier Delay in fixing defect Schedule\Activity delay

People\Build manager Delay in providing product Schedule\Activity delay

People\Build manager Delay in providing product Schedule\Phase delay

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 280

From Name (Selective code) Relationship type (Theoretical code) To Name (Selective code)

No reference to recipient Delay in providing product Schedule\Activity delay

No reference to recipient Delay in providing product Schedule\Duration compression

People\Test manager Delay in providing product People\Consumer

People\Peer supplier Delay in providing product Schedule\Phase delay

People\Peer supplier Delay in providing product Schedule\Duration extension

People\Peer supplier Delay in providing product No reference to recipient

No reference to recipient Delay in providing product Schedule\Start variance

Schedule\Nonworking time Delay in providing product People\Consumer

No reference to recipient Delay in providing resource Schedule\Activity delay

People\Consumer Delay in providing resource Schedule\Activity delay

People\Consumer Delay in providing resource Schedule\Phase delay

Product\Application server Enterprise service bus Product\Defect

No reference to recipient Introducing new product Schedule\Activity delay

People\Test manager Lacking control over progress No reference to recipient

People\Tester Nonworking time Schedule\Activity delay

People\Tester Nonworking time Dependency\Delay in providing product

People\Test manager Performance report No reference to recipient

People\Test manager Reporting progress status No reference to recipient

People\Consumer Requirements gap Product\Defect

People\Client Scope change No reference to recipient

People\Consumer Scope change No reference to recipient

People\Solution architecture manager Scope change Schedule\No schedule baseline

People\Solution architecture manager Scope of deliverables People\Test manager

People\Test manager Test completion report No reference to recipient

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 281

From Name (Selective code) Relationship type (Theoretical code) To Name (Selective code)

People\Peer supplier Test data People\Test manager

People\Peer supplier Test data build People\Test manager

People\Test manager Test data requirement People\Test data manager

No reference to recipient Use Case People\Test manager

No reference to recipient Use Case Scope\Requirements gap

People\Solution architecture manager Wireframe Scope\Requirements gap

Table A.2 Relationships among the sub-categories

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 282

A3. Textual information of the cases

This section presents the textual information (source data) of the Test phase

performance reports, an extract from NVivo (the qualitative data management

software). Entries between square brackets [researcher entry] indicate an entry made by

the researcher; for example, [No performance report] indicates that progress report does

not exist for the particular week.

The textual information for P1-IT (Inc4) was presented in Table 7.2 (section 7.3.1 -

Chapter 7); the textual information of the remaining five cases is presented in Tables

A.3 through to A.7 following a screenshot example of the data in NVivo (Figure A.2).

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 283

Figure A.2 Textual information in NVivo

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 284

Narrative # Textual information

N_01 Integration Test started Wk1 and all components blocked by defect XXXXNNNNNNNN. On Shore Test Lead recovering from

Surgery. Code Fix is required for Operating System X L Integration.

N_02 Integration Test started Wk1 and making good progress, but faces a very aggressive schedule to complete by the planned completion

date (Wk4). Onshore Test Lead recovering from surgery; mitigation strategy in place. Late start to execution due to delays in

Integration Test environment readiness. Aiming to absorb the 1 week lost, by delivering over a 3 week execution plan (rather than 4

weeks). No points claimed on Wk2 due to configuration issues in introducing the new Authentication Tool. Agreed with Client Test

Management to track points for the Authentication Tool separately from next reporting period onwards to clarify the position, as many

of the components are now running clean without the Authentication Tool.

N_03 Confirmed at Consumer Supplier Cross Management Meeting (Wk3) that the Authentication Tool part can be delivered on Wk5 (1

week extension) without impact to Consumer. Therefore reporting separate EV/PV for with and without Authentication Tool. Require

re-plan for extension to Wk5.

N_04 10 of 17 components clean. Pass through Authentication Tool components execution due this week; however XXX environment not

available – completion at risk. Severe downtime incurred on most days due to environment and code/deploy issues. Test Lead

replacement identified – joining Wk5 team.

N_05 17 of 17 components clean with the Authentication Tool. 7 of 10 Inc3 scenarios clean (incl. Authentication Tool). Downtime incurred

due to environment and code/deploy issues has been reduced this week.

N_06 3 component tests and 2 Authentication Tool only scenarios outstanding. Outstanding defects are held on a variety of Third-party and

architecture queries.

N_07 Integration Test complete for R1 Inc3:1 outstanding defect with Third-party with no ETC, agreed by all stakeholders this can be carried

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 285

Narrative # Textual information

over to Inc4 (Defect NNNNN – components X and Y issue, technical error defect in analysis with Third-party as possibly L issue.)

Table A.3 Case P1-IT-Ex-Au (Inc1) Textual information

Narrative # Textual information

N_01 10/17 components are running clean without Authentication Tool, but recent environment downtime has threatened the target to

complete all by Wk2. Now expecting a small delay into next week. Integration Test Environment received 1 week late due to issues in

connection with new ESB code to support XXXN upgrade.

N_02 14 of 17 components clean. Pass through Authentication Tool components execution due this week; however XXX environment not

available – completion at risk. Severe downtime incurred on most days due to environment and code/deploy issues. Test Lead

replacement identified – joining Wk3 team.

N_03 Outstanding points are on Inc3 scenarios, functional knowledge needed to create input message.

Table A.4 Case P1-IT-Ex-no-Au (Inc1) Textual information

Narrative # Textual information

N_01 Integration Test data requirements have been submitted to Test Data team. E/J data requirements have been submitted to Third party.

Request X creation has started 2 weeks ahead of plan and is 60% complete.

N_02 E/J data requirements have been submitted to Third party. Request X creation and review is complete. No further activities can be

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 286

Narrative # Textual information

carried out until Environment L data is built.

N_03 Awaiting Integration Test data from the Third-party. Without a data build environment, the data must be built directly on the test

environment. During this period the test environment is unavailable for testing. Therefore further delays on commissioning of

Environment L will mean that Integration Test data cannot be delivered without stopping Assembly Test execution.

N_04 Some preparation completed, but require Environment L data build to proceed further. Awaiting all Integration Test data from the

Third-party. 3 week delay expected on Functionality X data – now expecting on Wk6. No revised ETC has been provided for

Functionality Y data but expecting further delays. If Integration Test data can be provided by Wk6 Functionality X and dd/mm

Functionality Wk8 then we could complete Integration Test 1 week later than currently planned. Component Catalogue Tool defect

NNNNNNNNNNN raised with Third-party. This is preventing completion of environment build. Late delivery of these environments

hinders test execution due to negative impact on fix quality and execution environment downtime.

N_05 Some preparation completed, but require Environment L data build to proceed further. Awaiting all Integration Test data from the

Third-party. 3 week delay expected on Functionality X data – now expecting on Wk6. No revised ETC has been provided for

Functionality Y data but expecting further delays. If Integration Test data can be provided by Wk6 Functionality X and dd/mm

Functionality Wk8 then we could complete Integration Test 1 week later than currently planned. Component Catalogue Tool defect

NNNNNNNNNNN raised with Third-party. This is preventing completion of environment build. Late delivery of these environments

hinders test execution due to negative impact on fix quality and execution environment downtime.

N_06 Some preparation completed, but require Environment L data build to proceed further. Awaiting Integration Test data from Third-

party. Revised ETC of Wk7. Integration Test preparation should have completed on Wk6.

N_07 Some preparation completed, but require Environment L data build to proceed further. Awaiting Integration Test data from Third-

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 287

Narrative # Textual information

party. Re-plan based on assumption data delivered Wk7. Integration Test preparation should have completed on Wk6.

N_08 Some preparation completed, but require Environment L data build to proceed further. Awaiting Integration Test data from Third-

party. Re-plan based on assumption data delivered Wk9. Integration Test preparation should have completed on Wk6.

N_09 [No performance report]

N_10 [No performance report]

N_11 [No performance report]

N_12 Some preparation completed, but require Environment L1 test data from the Third-party build to proceed further. Re-plan to complete 7

weeks behind original plan on Wk12 - based on assumption Environment L data delivered, successfully pipecleaned and cloned by

Wk13. P1_R2_IT1 Integration Test now includes 3 XX scenarios and scenarios for deferred defects in Assembley Test. 7 P1_R2_IT1

Integration Test scenarios with Supplier component changes in P1_R3_IT2 moved to P1_R3_IT2 Assembly Test – this does not

change the timelines for testing these scenarios.

N_13 Some preparation completed, but require Environment L1 test data from the Third-party build to proceed further. Re-plan to complete 8

weeks behind original plan on Wk13 - based on assumption Environment L data delivered, successfully pipecleaned and cloned by

Wk14. P1_R2_IT1 Integration Test now includes 3 XX scenarios and scenarios for deferred defects in Assembley Test. 7 P1_R2_IT1

Integration Test scenarios with Supplier component changes in P1_R3_IT2 moved to P1_R3_IT2 Assembly Test – this does not

change the timelines for testing these scenarios.

N_14 [No performance report]

N_15 All data successfully pipecleaned. Third-party are now cloning all P1_R3 Integration Test data.

N_16 All master data successfully pipecleaned. Environment L test data clones built but not visible in the test environment.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 288

Narrative # Textual information

N_17 [No performance report]

N_18 Environment test data clones built and visible in the test environment. Complete.

Table A.5 Case P2-IT-PP Textual information

Narrative # Textual information

N_01 Integration Test execution should have started on Wk1. Re-planned to start and complete 3 weeks later due to delays in Environement

L test data – revised completion date Wk7. This is based on the assumptions that all integration test data is delivered to test on Wk2

and data pipecleaning activities and cloning takes 10 days. Consuming Team's Change Requests NN and NN are not dependant on

delayed data so will only complete Integraion Test execution 1 week behind the original Integration Test completion date – Wk5. If

Integration Test completes more than 1 week behind the original plan we will encounter an impact to P1_R3 due to resource

contention.

N_02 Integration Test execution should have started on Wk1. Re-planned to start and complete 3 weeks later due to delays in Environement

L test data – revised completion date Wk7. This is based on the assumptions that all integration test data is delivered to test on Wk2

and data pipecleaning activities and cloning takes 10 days. Consuming Team's Change Requests NN and NN are not dependant on

delayed data so will only complete Integraion Test execution 1 week behind the original Integration Test completion date – Wk5. If

Integration Test completes more than 1 week behind the original plan we will encounter an impact to P1_R3 due to resource

contention. Execution readiness activities in progress.

N_03 Integration Test execution should have started on Wk1. Re-planned to start and complete 5 weeks later due to delays in Environment L

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 289

Narrative # Textual information

test data – revised completion date Wk9. This is based on the assumptions that all integration test data is delivered to test Wk4 and data

pipecleaning activities and cloning takes 10 days. Execution readiness activities in progress.

N_04 [No performance report]

N_05 [No performance report]

N_06 [No performance report]

N_07 Re-planned to complete 7 weeks later due to delays in the Third-party Environment L test data – revised completion date Wk11. This is

based on based on the assumption that Environment L data is delivered, successfully pipecleaned and cloned by Wk8. 7 P1_R2

Integration Test scenarios with Supplier component changes in P1_R3 moved to P1_R3 Assembly Test – this does not change the

timelines for testing these scenarios. Execution started Wk7.

N_08 Re-planned to complete 7 weeks later due to delays in the Third-party Environment L test data – revised completion date Wk12. This is

based on the assumption that Environment L data is delivered, successfully pipecleaned and cloned by Wk8. 7 P1_R2 Integration Test

scenarios with Supplier component changes in P1_R3 moved to P1_R3 Assembly Test – this does not change the timelines for testing

these scenarios. Execution started Wk7.

N_09 [No performance report]

N_10 Integration Test due to complete on Wk12. 54 Defects have been raised in total: 11 Rejected; 29 tested and passed; 2 Implementation

Completed / Pending Completion / Pending Rejection; 3 Awaiting Impact / Awaiting Implementation; 9 Reviewed.

N_11 High number of Design Queries have now been processed and teams are now working through resulting Defects and Design Defects

backlog. Integration Test due to complete on Wk12. 64 Defects have been raised in total: 16 Rejected; 34 tested and passed; 5

Implementation Completed / Pending Completion / Pending Rejection; 6 Awaiting Impact / Awaiting Implementation; 3 Reviewed.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 290

Narrative # Textual information

N_12 [No performance report]

N_13 P1_R2_IT1 ST now due to complete Wk14. 36 points are still to be claimed in total: 4 are pending de-scope (Currently with the

Client); 32 are blocked. 94 Defects have been raised in total: 60 Tested and Passed, 26 Rejected, 5 Implementation Completed/Pending

Completion/Pending Rejection, 3 Awaiting Impact/Awaiting Implementation.

N_14 P1_R2 Integration Test now due to complete Wk14. 25 points are still to be claimed in total. 12 points (Consumer Change Request

NN) XXNNN issue. Currently under investigation. 8 are pending transfer into P1_R3_IT5 (Currently with Client). 4 points on

component XXXNNN. Authentication Tool issue. 1 point on component XXXNNN. XXX signature error.

N_15 P1_R2 Integration Test now due to complete Wk15. 1 points are still to be claimed in total. 1 point blocked by defect

XXXXNNNNNNNN. Expected to be resolved Wk15.

N_16 Completed Wk15.

Table A.6 Case P2-IT-Ex Textual information

Narrative # Textual information

N_01 Component Inventory has been discussed and is in process of being finalised by Sol Arc. Technical Design phase for CRM and ESB

scheduled to start, but no FDs have been received. Technical Design phase for CRM and ESB scheduled to start, but no FDs have been

received. Component Inventory has been discussed and is in process of being finalised by Sol Arc. No FDs in the traditional format

have been received. Use Cases have been provided but they do not provide the level of functional coverage typical of previous FDs.

Component Inventory – List of CRM and ESB components has not yet been finalised, hence scope cannot be considered closed. Build

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 291

Narrative # Textual information

schedule is therefore open to change.

N_02 TD and Build started early for stable components. Technical Design phase for CRM and ESB scheduled to start, but no FDs have been

yet received. Wireframes to be sent through by Sol Arch by end of week. Technical Design phase for CRM and ESB scheduled to start,

but no FDs have yet been received. Wireframes to be sent through by Sol Arch by end of week. TD and Build started early for stable

components. No FDs in the traditional format have been received. Use Cases have been provided but they do not provide the level of

functional coverage typical of previous FDs.

N_03 Components R and C items are blocked by Design Query (NNNNN, NNNNN – prioritised with Sol Arch). Component R development

blocked by Design Query (NNNNN). Creation of new XXX_XX_XXX branch in progress (Technical Environement IssueTicket

NNNNNN) – holding up check in and claiming of points. Technical Environment team targeting completion COP Thursday. Behind

plan – SPI 0.5. Wireframes sent through by Sol Arch – Build clarifications raised as Design Queries. Recoverable on plan once

blocking Design Queries and Technical Environment Issue Tickets are resolved. No FDs in the traditional format have been received.

Wireframes have been provided and are being evaluated for functional gaps; suggested improvements will be fed back to Sol Arch

team.

N_04 [No performance report]

N_05 TD/Build activities in progress. Technical Environement Issue Ticket NNNNNN – CRM DB extract in progress and blocked by

underlying environment issues. Issues escalated with Technical Environement team as high priority. Behind plan – SPI 0.64.

Recoverable on plan once blocking Technical Environement Issue Ticket is resolved. No FDs in the traditional format have been

received. Wireframes have been provided and are being evaluated for functional gaps; suggested improvements will be fed back to Sol

Arch team. Technical Environment Issue Ticket NNNNNN – CRM DB extract in progress and blocked by underlying environment

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 292

Narrative # Textual information

issues. Issues escalated with Technical Environement team as high priority.

N_06 [No performance report]

N_07 Previously blocking build environment Technical Environment Issue Ticket NNNNNN now resolved, unlocking UT for Components T

and C. Remaining Build and Assembly Test activities continue to be impacted by Technical Environment Issue Tickets and Design

Queries below:

XXX/XXX Launch: Design Queiry NNNNNN – Clarify expected applet behaviour for Component E. Design Defect to be raised.

Technical Environment Issue Ticket NNNNNN and NNNNNN – Assembly Test environment deploy issues. Environment

XXXNN being used temporarily.

Design Query NNNNNN – Component S. Recently answered, UT now unlocked.

Behind plan – SPI 0.78. Progress continues to be impacted by Technical Environment Issue Tickets and Design Queries. Likely to

overrun into next week – Original completion date was end of this week. Absolute deadline for completion is Wk10 (Consumer It1

Assembly Test start) – we expect to complete before.

No FDs in the traditional format have been received. Wireframes have been provided and are being evaluated for functional gaps;

suggested improvements will be fed back to Sol Arch team. Further progress blocked by Technical Environment Issue Ticket

NNNNNN and NNNNNN; and Design Query NNNNNN. Prioritised with Technical Environment team and Sol Arch.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 293

Narrative # Textual information

N_08 XXXXXN and XXXXXN envs are available for use but continue to exhibit instability. XXXNN being used for Assembly Test

activities while investigation continues.

3/5 work packages complete. Remaining Build and Assembly Test activities are impacted by Technical Environment Issue Ticket and

Design Query below:

Component C: Technical Environment Issue Ticket NNNNNN – Log in access to Component Catalogue Tool. Preventing Build

from progressing.

XXX/XXX Launch: Design Query NNNNNN – Clarify expected applet behaviour for Component E. Sol Arc due to discuss this

with Consumer business representatives.

Behind plan – SPI 0.91. Progress continues to be impacted by a Technical Environment Issue Ticket and a Design Queries. Likely to

overrun into next week – Original completion date was end of last week Wk7. Absolute deadline for completion is Wk10 (Consumer

It1 BE Assembly Test start) – expected to complete before.

Further progress blocked by Technical Environment Issue Ticket NNNNNN; and Design Query NNNNNN. Prioritised with Technical

Environment team and Sol Arch.

N_09 XXXXXN and XXXXXN envs are available for use and operational. 4/5 work packages complete. XXX/XXX Launch: Design Query

NNNNNN – Design change required; Design Defect NNNNN raised. Build based on current design is closed.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 294

Narrative # Textual information

Component C: Discussing appropriate build approach with Cross project delivery teams. Downstream impact highlighted to Consumer

Assembly Test team.

Behind plan – SPI 0.93. Completion held up by clarification on appropriate build approach for Component C. Likely to overrun into

next week – Original completion date was end of last week Wk 7. Downstream impact highlighted to Consumer It1 BE Assembly Test

team – due to start Wk10.

N_10 XXXXXN and XXXXXN envs are available for use and operational. 4/5 work packages complete. Targeting completion of final

Component C package by end of week.

Component C: Key resource has been on vacation. Prioritisation of other DBT activities has led to this package being postponed until

resource returns. Downstream impact highlighted to Consumer Assembly Test team.

Behind plan – SPI 0.93. Completion held up by clarification on appropriate build approach for Component C. Targeting completion by

end of week. Downstream impact highlighted to Consumer It1 BE Assembly Test team – due to start Wk10.

N_11 XXXXXN and XXXXXN envs are available for use and operational. 4/5 work packages complete. Targeting completion of final

Component C package by end of week.

Component C: Technical Environment Issue Ticket NNNNN – issue with test harness preventing injection of messages into ESB.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 295

Narrative # Textual information

Highlighted to downstream Consumer Assembly Test team.

Slightly Behind Plan – [SPI: 0.93, Comp: 93%]. Completion held up by Unit Test delay of Component C package due to env issue.

Targeting completion by end of week. Downstream impact highlighted to Consumer It1 BE Assembly Test team.

N_12 XXXXXN and XXXXXN envs are available for use and operational. 4/5 work packages complete. Targeting completion of final

Component C package by end of week.

Component C: Technical Environment Issue Ticket NNNNN – token correction in env file; prevents test harness messages being

picked up from ESB queue. Prioritised with Technical Environment team. Highlighted to downstream Consumer Assembly Test team.

Behind plan – SPI 0.93. Completion held up by Unit Test delay of Component C package due to env issue. Targeting completion by

end of week. Downstream impact highlighted to Consumer It1 BE Assembly Test team.

N_13 XXXXXN and XXXXXN envs are available for use and operational. 4/5 work packages complete. Targeting completion of final

Component C package by end of week.

Component C: Multiple issues have been worked through. Technical Environment Issue Ticket NNNNN – messages not picked up

from ESB queue. Under investigation with Build and Technical Environment team. Highlighted to downstream Consumer Assembly

Test team.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 296

Narrative # Textual information

Behind plan – SPI 0.93. Completion held up by Unit Test delay of Component C package due to env issue. Targeting completion by

end of week. Downstream impact highlighted to Consumer It1 BE Assembly Test team.

N_14 Complete – [SPI: 1.00, Comp: 100%]. 5/5 work packages complete. Environmental issues resolved. Completed build numbers

publicised to Assembly Test and Integration Test teams for deployment.

N_15 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

N_16 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

N_17 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

N_18 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

N_19 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

N_20 Complete – [SPI: 1.00, Comp: 100%]. Environmental issues resolved. Completed build numbers publicised to Assembly Test and

Integration Test teams for deployment.

Table A.7 Case P3-DBT (Inc6) Textual information

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 297

A4. Analytic memos

In the course of coding the textual data, a number of analytic memos were written to

record the thoughts emerged during the analysis, and which helped in refining and

comparing the emergent codes/sub-categories and their relationships. Section 7.4.1 in

Chapter 7 outlined the special role of the category ‘Schedule’ in this research; thus, the

following presents exerts of the memos for this category and example sub-categories.

A4.1 Memo: Schedule

This memo attempts to define the category 'Schedule' and its properties and

relationships. Schedule refers to the means by which project/phase activities are

organised on a timeline showing what activity is planned to be started and completed by

when - an example would be the Gantt chart used widely in the project management

discipline. Schedule seems to manifest itself in various ways, such as: delay in

achieving event targets (Activity delay), delay in completing the phase on schedule

(Phase delay), shortening the schedule during Test phase execution (Duration

compression), lengthening the schedule during Test phase execution (Duration

extension), actual execution may start later than scheduled (Start variance), the Test

manager may have no control over progress/actual schedule (Lacking control over

progress), the schedule may have not been baselined during execution (No schedule

baseline), the schedule may include vacation time (Nonworking time), and the Test

manager may report progress status of the schedule (Reporting progress status).

A4.2 Memo: Activity delay

Activity delay represents a situation where fewer activities were carried out (i.e. fewer

event targets were achieved) compared to what were scheduled to be carried out at a

particular point in time. The missed events can be recovered without affecting

subsequent phases or the project finish day; i.e. without affecting the project’s critical

path; for example, through working overtime to catch up. Activity delay could be due

to: product defect such as Authentication tool defect or Code defect; or due to delay in

providing or fixing product, such as delay in providing Code or delay in fixing Design

defect; or delay in providing information such as delay in providing clarification on

Requirements gap; or other factors such as introducing new product in the middle of

Test phase execution.

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 298

A4.3 Memo: Phase delay

Phase delay represents completing project phase later than was scheduled. Phase delay

differs from Activity delay in that, missing the phase's scheduled completion day may

impact subsequent phases and possibly the project finish day; i.e. the critical path for

the project is affected. Phase delay can be paralleled with the Project schedule delay

measure introduced in section 5.3.3.1 (Chapter 5) where the number of days in which a

phase was late was calculated. Phase delay can occur due to several factors; for

example: due to product defect such as Technical environment defect, or due to delay in

making decision such as delay in deciding on (signing off) Test completion report; or

due to delay in providing product such as delay in providing Peer supplier Test data; or

due to delay in fixing defect such as delay in fixing Technical environment defect.

A.4.4 Memo: Duration compression

Compressing schedule duration refers to shortening the schedule, during execution, in

order to complete the phase earlier than was scheduled to complete; or to doing the

same volume/amount of work, which was scheduled to do, in a shorter period of time in

order to maintain the original completion day. The decision to compress duration may

be made internally by the phase manager and project manager without involving the

Client, in order to avoid extending the phase or project finish date. This may be

achieved through getting the phase team to work overtime in order to do the same

volume of work in a shorter period. Duration compression can be paralleled with the

Phase schedule accuracy metric introduced in section 5.3.3.5 (Chapter 5) where the

duration of a project phase appears to have been overestimated. Duration compression

occurs due to delays in providing product such as Test environment.

A4.5 Memo: Duration extension

Extending schedule duration refers to lengthening the schedule, during execution, in

order to complete the phase later than was scheduled to complete; or doing the same

volume/amount of work, that was scheduled originally to do, but in a longer period of

time. The decision to extend schedule is often made after agreement with the Client, as

schedule extensions typically have implications on subsequent phases and possibly

project finish day. Duration extension can be paralleled with the Phase schedule

accuracy metric introduced in section 5.3.3.5 (Chapter 5) where the duration of a project

phase appears to have been underestimated. Duration extension occurs due to product

 Appendix A Qualitative approach data

Controlling schedule duration during software project execution 299

defects such as Authentication tool defect; and due to delay in providing product such

as delay in providing Peer supplier Test data.

 Bibliography

Controlling schedule duration during software project execution 300

Bibliography

Abdel-Hamid, T., & Madnick, S. E. (1991). Software Project Dynamics: An Integrated

Approach. USA: Prentice-Hall.

Ackoff, R. L. (1979). The Future of Operational Research is Past. Journal of the

Operational Research Society, 30(2), 93-104.

Adolph, S., Kruchten, P., & Hall, W. (2012). Reconciling perspectives: A grounded

theory of how people manage the process of software development. The Journal

of Systems and Software, 85, 1269– 1286.

Akkermans, H., & Helden, K. v. (2002). Vicious and virtuous cycles in ERP

implementation: a case study of interrelations between critical success factors.

European Journal of Information Systems, 11(1), 35–46.

Akrich, M., Callon, M., & Latour, B. (2002). The Key to Success in Innovation Part I:

The Art of Interessement. International Journal of Innovation Management,

6(2), 187–206.

Akrich, M., & Latour, B. (1992). A Summary of a Convenient Vocabulary for the

Semiotics of Human and Nonhuman Assemblies. In W. E. Bijker & J. Law

(Eds.), Shaping Technology/Building Society: Studies in Sociotechnical Change

(pp. 259-264). London: MIT Press.

Alberts, C. J., & Dorofee, A. J. (2010). Risk Management Framework. Retrieved from

Carnegie Mellon University:

Allison, I. (2005). Towards an agile approach to Software Process Improvement:

addressing the changing needs of software products. Communications of the

IIMA, 5(1), 67-76.

Allison, I. (2010). Organizational factors shaping software process improvement in

small-medium sized software teams: A multi-case analysis. Paper presented at

the 2010 Seventh International Conference on the Quality of Information and

Communications Technology, Porto.

Allison, I., & Merali, Y. (2007). Software process improvement as emergent change: A

structurational analysis. Information and Software Technology, 49(6), 668–681.

Anbari, F. T. (2003). Earned Value Project Management Method And Extensions.

Project Management Journal, 34(4), 12-23.

Anderson, L. (2006). Analytic Autoethnography. Journal of Contemporary

Ethnography, 35(4), 373-395.

Andrade, A. D., & Urquhart, C. (2010). The affordances of actor network theory in ICT

 Bibliography

Controlling schedule duration during software project execution 301

for development research. Information Technology & People, 23(4), 352-374.

APM. (2006). APM Body of Knowledge (5th EDITION ed.). UK: Association for

Project Management.

Bakker, K. d., Boonstra, A., & Wortmann, H. (2010). Does risk management contribute

to IT project success? A meta-analysis of empirical evidence. International

Journal of Project Management, 28(5), 493-503.

Balaji, S., Ahuja, M. K., & Ranganathan, C. (2006). Offshore Software Projects:

Assessing the Effect of Knowledge Transfer Requirements and ISD capability.

Paper presented at the Proceedings of the 39th Annual Hawaii International

Conference on In System Sciences, 2006. HICSS'06, Hawaii.

Bannerman, P. L. (2008). Risk and risk management in software projects: A

reassessment. The Journal of Systems and Software, 81(12), 2118-2133.

Basili, V. R., Rombach, D., & Schneider, K. (2006). Preface. In V. R. Basili, D.

Rombach, K. Schneider, B. Kitchenham, D. Pfahl, & R. Selby (Eds.), Empirical

Software Engineering Issues: Critical Assessment and Future Directions (pp. V-

XI). International Workshop, Dagstuhl Castle, Germany: Springer-Verlag Berlin

Heidelberg.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation in Software

Engineering. IEEE Transactions on Software Engineering, SE-12(7), 733-743.

Baskerville, R., & Pries-Heje, J. (1999). Grounded action research: a method for

understanding IT in practice. Accounting, Management & Information

Technologies, 9(1), 1–23.

Bass, J. M., Allison, I. K., & Banerjee, U. (2013). Agile Method Tailoring in a CMMI

Level 5 Organization: Addressing the Paradox. Journal of International

Technology and Information Management, 22(4), 77-98.

Battin, R. D., Crocker, R., Kreidler, J., & Subramanian, K. (2001). Leveraging

Resources in Global Software Development. IEEE Software, 18, 70-77.

Bauer, H. A., & Birchall, R. H. (1978). Managing large scale software development

with an automated change control system. Paper presented at the IEEE

Computer Society's Second International Computer Software and Applications

Conference, 1978. COMPSAC '78.

Belady, L. A., & Lehman, M. M. (1976). A model of large program development. IBM

Systems journal, 15(3), 225-252.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in

Studies of Information Systems. MIS Quarterly, 11(3), 369-386.

 Bibliography

Controlling schedule duration during software project execution 302

Biesta, G. (2010). Pragmatism and the Philosophical Foundations of Mixed Methods

Research. In A. Tashakkori & C. Teddlie (Eds.), SAGE Handbook of Mixed

Methods in Social & Behavioral Research (Second Edition ed., pp. 95-117).

USA: SAGE Publications, Inc.

Bijker, W. E., & Pinch, T. (2012). Preface to the Anniversary Edition. In W. E. Bijker,

T. P. Hughes, & T. Pinch (Eds.), The Social Construction of Technological

Systems (Anniversary Edition ed., pp. xi-xxxiv): Massachusetts Institute of

Technology.

Blackburn, J., Scudder, G., & Wassenhove, L. N. V. (1996). Improving Speed and

Productivity of Software Development. INSEAD Working Paper Series.

Technology Mnagement INSEAD. Fontainebleau, France.

Blackburn, S. (2002). The project manager and the project-network. International

Journal of Project Management, 20(3), 199–204.

Bloomfield, B. P., Coombs, R., Cooper, D. J., & Rea, D. (1992). Machines and

manoeuvres: Responsibility accounting and the construction of hospital

information systems. Accounting, Management and Information Technologies,

2(4), 197–219.

Bloomfield, B. P., Coombs, R., Owen, J., & Taylor, P. (1997). Doctors as Managers:

Constructing Systems and Users in the National Health Service. In B. P.

Bloomfield, R. Coombs, D. Knights, & D. Litter (Eds.), Information Technology

and Organizations: Strategies, Networks, and Integration (pp. 113-134). USA:

Oxford University Press Inc.

Bloomfiled, B. P., & Vurdubakis, T. (1997). Paper Traces: Inscribing Organizations and

Information Technology. In B. P. Bloomfield, R. Coombs, D. Knights, & D.

Litter (Eds.), Information Technology and Organizations: Strategies, Networks,

and Integration (pp. 85-111). USA: Oxford University Press Inc.

Boehm, B. (2002). Get Ready for Agile Methods, with Care. Computer, 35(1), 64-69.

Boehm, B. W. (1981). Software Engineering Economics. USA: Prentice-Hall.

Boehm, B. W., & Ross, R. (1989). Theory-W Software Project Management: Principles

and Examples. IEEE Transactions on Software Engineering, 15(7), 902-916.

Bower, D. C. (2007). New Directions in Project Performance and Progress Evaluation.

(PhD), RMIT University, Melbourne, Australia.

Bower, D. C., & Finegan, A. D. (2009). New approaches in project performance

evaluation techniques. International Journal of Managing Projects in Business,

2(3), 435-444.

Bryant, A. (2002). Re-Grounding Grounded Theory. Journal of Information Technology

 Bibliography

Controlling schedule duration during software project execution 303

Theory and Application (JITTA), 4(1), 25-42.

Budd, C. I., & Budd, C. S. (2010). A Practical Guide to Earned Value Project

Management (Second Edition ed.). USA: Management Concepts, Inc.

Burke, R. (2013). Project management: Planning and Control Techniques (Fifth

Edition ed.). UK: Wiley.

Butler, T., & Fitzgerald, B. (1999). Unpacking the systems development process: an

empirical application of the CSF concept in a research context. Journal of

Strategic Information Systems, 8(4), 351–371.

Cadle, J., & Yeates, D. (2008). Project Management for Information Systems (F. edition

Ed.). England: Pearson Education.

Callon, M. (1986). Some Elements of a Sociology of Translation: Domestication of the

Scallops and the Fishermen of St Brieuc Bay. In J. Law (Ed.), Power, action and

belief: a new sociology of knowledge? (pp. 196-233). London: Routledge.

Callon, M. (1991). Techno-economic Networks and Irreversibility. In J. Law (Ed.), A

Sociology of Monsters: Essays on Power, Technology and Domination (pp. 132-

161). London: Routledge.

Callon, M. (2012). Society in the Making: The Study of Technology as a Tool for

Sociological Analysis. In W. E. Bijker, T. P. Hughes, & T. Pinch (Eds.), The

Social Construction of Technological Systems (Anniversary Edition ed., pp. 77-

97). London: Massachusetts Institute of Technology.

Callon, M., & Law, J. (1989). On the Construction of Sociotechnical networks: content

and context revisited. Knowledge and Society: Studies in the Sociology of

Science Past and Present, 8(1), 57-83.

Cameron, R. (2012). Applying the Newly Developed Extended Mixed Methods Research

(MMR) Notation System. Paper presented at the British Academy of

Management 2012 Conference, 11-13th September, Cardiff, Wales.

Cameron, R. (2013). A Methodological Scan of a National Industry Based Research

Program for the Rail Industry 2007-2014. Paper presented at the 12th European

Conference on Research Methodology for Business and Management Studies,

Portugal.

Cameron, R., & Sankaran, S. (2013). Mixed Methods Research Design: Well Beyond

the Notion of Triangulation. In N. Drouin, R. Muller, & S. Sankaran (Eds.),

Novel Approaches to Organizational Project Management Research:

Translational and Transformational (Vol. 29, pp. 383-401).

Universitetsforlaget: Copenhagen Business School Press.

Carmel, E. (1995). Time-to-completion factors in packaged software development.

 Bibliography

Controlling schedule duration during software project execution 304

Information and Software Technology, 37(9), 515-520.

Carmel, E., & Agarwal, R. (2001). Tactical Approaches for Alleviating Distance in

Global Software Development. IEEE Software, 18, 22-29.

Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F. C., & Walker, C. F. (1993).

Taxonomy-Based Risk Identification. Retrieved from Carnegie Mellon

University:

Carver, J. C. (2003). The Impact of Background and Experience on Software

Inspections. (Doctor of Philosophy), University of Maryland, College Park,

USA.

Casey, V., & Richardson, I. (2006). Project Management within Virtual Software

Teams. Paper presented at the International Conference on Global Software

Engineering, 2006. (ICGSE'06), Florianopolis.

Cerpa, N., & Verner, J. M. (2009). Why Did Your Project Fail? Communications of the

ACM, 52, 130-134.

Chai, K.-H., & Xin, Y. (2006). The application of new product development tools in

industry: the case of Singapore. IEEE Transactions on Engineering

Management, 53(4), 543-554.

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through

Qualitative Analysis. London: SAGE Publications Ltd.

Checkland, P. (1981). Systems Thinking, Systems Practice. Great Britain: John Wiley &

Sons Ltd.

Chia, R. (2013). Paradigms and Perspectives in Organizational Project Management

Research: Implications for Knowledge-Creation. In N. Drouin, R. Muller, & S.

Sankaran (Eds.), Novel Approaches to Organizational Project Management

Research: Translational and Transformational (Vol. 29, pp. 33-55).

Universitetsforlaget: Copenhagen Business School Press.

Cho, S., Mathiassen, L., & Nilsson, A. (2008). Contextual dynamics during health

information systems implementation: an event-based actor-network approach.

European Journal of Information Systems, 17(6), 614-630.

Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for Development – Guidelines

for Process Integration and Product Improvement (Third Edition ed.). USA:

Addison-Wisely.

Chua, B. B., & Verner, J. M. (2005). Risk management practices and tools: A pilot

study of Australian software development projects.

Cicmil, S., Williams, T., Thomas, J., & Hodgson, D. (2006). Rethinking Project

 Bibliography

Controlling schedule duration during software project execution 305

Management: Researching the actuality of projects. International Journal of

Project Management, 24(8), 675–686.

Ciolkowski, M., & Briand, L. (2006). Roadmapping: Working Group 2 Results. In V.

R. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, & R. Selby

(Eds.), Empirical Software Engineering Issues: Critical Assessment and Future

Directions (pp. 175-177). International Workshop, Dagstuhl Castle, Germany:

Springer-Verlag Berlin Heidelberg.

Clegg, C., Axtell, C., Damodaran, L., Farbey, B., Hull, R., Lloyd-Jones, R., . . .

Tomlinson, C. (1997). Information technology: a study of performance and the

role of human and organizational factors. Ergonomics, 40(9), 851-871.

Clegg, S. (2013). Foreword. In N. Drouin, R. Muller, & S. Sankaran (Eds.), Novel

Approaches to Organizational Project Management Research: Translational

and Transformational (Vol. 29, pp. 17-18). Universitetsforlaget: Copenhagen

Business School Press.

Cockburn, A. (2008). Using Both Incremental and Iterative Development. CROSSTALK

The Journal of Defense Software Engineering, 27-30.

Coleman, G., & O’Connor, R. (2007). Using grounded theory to understand software

process improvement: A study of Irish software product companies. Information

and Software Technology, 49(6), 654–667.

Collins, K. M. T. (2010). Advanced Sampling Designs in Mixed Research: Current

Practices and Emerging Trends in the Social and Behavioral Sciences. In A.

Tashakkori & C. Teddlie (Eds.), SAGE Handbook of Mixed Methods in Social &

Behavioral Research (Second Edition ed., pp. 353-377). USA: SAGE

Publications, Inc.

Conchúir, E. Ó., Ågerfalk, P. J., Olsson, H. H., & Fitzgerald, B. (2009). Global

Software Development: Where are the Benefits? Communications of the ACM,

52, 127-131.

Conte, S. D., Dunsmore, H. E., & Shen, V. Y. (1986). Software engineering metrics and

models: Benjamin-Cummings Publishing Co., Inc..

Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory (3e ed.). USA: Sage Publications

Inc.

Corporation, M. (2012). Finish Variance fields.

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches (Third Edition ed.). USA: SAGE Publications Inc.

Creswell, J. W., Clark, V. L. P., & Garrett, A. L. (2008). Methodological Issues in

 Bibliography

Controlling schedule duration during software project execution 306

Conducting Mixed Methods Research Designs. In M. M. Bergman (Ed.),

Advances in Mixed Methods Research: Theories and Applications (pp. 66-83).

UK: SAGE Publications Ltd.

Creswell, J. W., & PlanoClark, V. L. (2011). Designing and Conducting Mixed Methods

Research (2nd Edition ed.). USA: SAGE Publications Inc.

Crotty, M. (2013). The Foundations of Social Research: Meaning and Perspective in

the Research Process. London: SAGE Publications.

Curtis, B., Krasner, H., & Isoce, N. (1988). A field study of the software design process

for large systems. Communications of the ACM, 31, 1268-1287.

Damian, D., & Lanubile, F. (2004). The 3rd International Workshop on Global

Software Development. Paper presented at the Proceedings of the 26th

International Conference on Software Engineering (ICSE’04), Edinburgh, UK.

Damian, D., & Moitra, D. (2006). Global Software Development: How Far Have We

Come? IEEE Software, 23, 17-19.

Dankert, R. (2009a). How to balance between embedding and deviation?

Dankert, R. (2009b). Is Latour’s due process feasible?

Dankert, R. (2011). Using Actor-Network Theory (ANT) doing research.

Deephouse, C., Mukhopadhyay, T., Goldenson, D. R., & Kellner, M. I. (1996).

Software Processes and Project Performance. Journal of Management

Information Systems, 12(3), 187-205.

DeMarco, T. (1982). Controlling Software Projects: Management, Measurement &

Estimation. USA: Prentice-Hall.

DeMarco, T. (2011). All Late Projects are the Same. IEEE Software, 28, 103-104.

DeMarco, T., & Boehm, B. (2002). The Agile Methods Fray. Computer, 35(6), 90-92.

Dhlamini, J., Nhamu, I., & Kachepa, A. (2009). Intelligent Risk Management Tools for

Software Development. Paper presented at the Proceeding SACLA '09

Proceedings of the 2009 Annual Conference of the Southern African Computer

Lecturers' Association, Eastern Cape, South Africa.

Doll, W. J., Deng, X., & Scazzero, J. A. (2003). A process for post-implementation IT

benchmarking. Information & Management, 41(2), 199–212.

Donmoyer, R. (2000). Generalizability and the Single-Case Study. In R. Gomm, M.

Hammersley, & P. Foster (Eds.), Case Study Method: Key Issues, key Texts (pp.

45-68). SAGE Publications Ltd.

 Bibliography

Controlling schedule duration during software project execution 307

Ebert, C. (2007). The impacts of software product management. The Journal of Systems

and Software, 80(8), 850–861.

Ebert, C., & Neve, P. D. (2001). Surviving Global Software Development. IEEE

Software, 18, 62-69.

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy

of Management Review, 14(4), 532-550.

Elbanna, A. R. (2008). Strategic systems implementation: diffusion through drift.

Journal of Information Technology, 23, 89–96.

Er, M., Pollack, J., & Sankaran, S. (2013). Actor-Network Theory, Activity Theory and

Action Research and their Application in Project Management Research. In N.

Drouin, R. Muller, & S. Sankaran (Eds.), Novel Approaches to Organizational

Project Management Research: Translational and Transformational (Vol. 29,

pp. 164-198). Universitetsforlaget: Copenhagen Business School Press.

Fan, C.-F., & Yu, Y.-C. (2004). BBN-based software project risk management. The

Journal of Systems and Software, 73(2), 193-203.

Feldon, D. F., & Kafai, Y. B. (2008). Mixed methods for mixed reality: understanding

users’ avatar activities in virtual worlds. Educational Technology Research and

Development, 56(5-6), 575-593.

Feng, N., Li, M., & Gao, H. (2009). A Software Project Risk Analysis Model Based on

Evidential Reasoning Approach. Paper presented at the WRI World Congress on

Software Engineering, 2009. WCSE '09, Xiamen.

Fitzgerald, B. (1998). An empirical investigation into the adoption of systems

development methodologies. Information & Management, 34(6), 317–328.

Fleming, Q. W., & Koppelman, J. M. (2010). Earned Value Project Management

(Fourth Edition ed.). USA: Project Management Institute.

Fleming, Q. W., & Koppelman, J. M. (July 1998). Earned Value Project Management:

A Powerful Tool for Software Projects. CROSSTALK The Journal of Defense

Software Engineering, 19-23.

Frederick P. Brooks, J. (1995). The Mythical Man-Month: Essays on Software

Engineering (Anniversary edition ed.). USA: Addison Wesley.

Georgieva, S., & Allan, G. (2008). Best Practices in Project Management Through a

Grounded Theory Lens. The Electronic Journal of Business Research Methods,

6(1), 43 - 52.

Giddens, A. (1984). The Constitution of Society: Outline of the Theory of Structuration.

Great Briton: Polity Press.

 Bibliography

Controlling schedule duration during software project execution 308

Gilb, T. (1985). Evolutionary Delivery versus the "Waterfall model". ACM Sigsoft

Software Engineering Notes, 10(3), 49-61.

Gilb, T. (1988). Principles of Software Engineering Management: Addison-Wesley.

Glaser, B. G. (1978). Theoretical Sensitivity: Advances in the Methodology of Grounded

Theory. USA: The Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: strategies

for qualitative research. USA: AldineTransaction.

Goldratt, E. M. (1997). Critical Chain: A Business Novel. UK: Gower.

Gomm, R., Hammersley, M., & Foster, P. (2000). Case Study and Generalization. In R.

Gomm, M. Hammersley, & P. Foster (Eds.), Case Study Method: Key Issues,

Key Texts (pp. 98-115). UK: SAGE Publications Ltd.

Graham, D. R. (1992). Incremental Development and Delivery for Large Software

Systems. Paper presented at the IEE Colloquium on Software Prototyping and

Evolutionary Development, London.

Greene, J. C., & Hall, J. N. (2010). Dialectics and Pragmatism: Being of Consequences.

In A. Tashakkori & C. Teddlie (Eds.), SAGE Handbook of Mixed Methods in

Social & Behavioral Research (Second Edition ed., pp. 119-143). USA: SAGE

Publications, Inc.

Greenfield, J., & Short, K. (2003). Software Factories: Assembling Applications with

Patterns, Models, Frameworks and Tools. Paper presented at the OOPSLA '03

Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, New York, USA.

Greenhalgh, T., & Stones, R. (2010). Theorising big IT programmes in healthcare:

Strong structuration theory meets actor-network theory. Social Science &

Medicine, 70(9), 1285–1294.

Guba, E. G., & Lincoln, Y. S. (1989). Fourth Generation Evaluation. USA: SAGE

Publications, Inc.

Guba, E. G., & Lincoln, Y. S. (1994). Competing Paradigms in Qualitative Research. In

N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of Qualitative Research (pp.

105-117). USA: Sage Publications, Inc.

Hammersley, M., Gomm, R., & Foster, P. (2000). Case Study and Theory. In R. Gomm,

M. Hmmersley, & P. Foster (Eds.), Case Study Method: Key Issues, Key Texts

(pp. 234-258). London: SAGE Publications Ltd.

Hansen, B. H., & Kautz, K. (2005). Grounded Theory Applied – Studying Information

Systems Development Methodologies in Practice. Paper presented at the

 Bibliography

Controlling schedule duration during software project execution 309

Proceedings of the 38th Hawaii International Conference on System Sciences -

2005, Hawaii.

Hanseth, O., Jacucci, E., Grisot, M., & Aanestad, M. (2006). Reflexive Standardization:

Side Effects and Complexity in Standard Making. MIS Quarterly, 30(Special

issue), 563-581.

Harbers, H. (1995). We Have Never Been Modern by Bruno Latour. Science,

Technology, & Human Values, 20(2), 270-275.

Henderson, K. (2003). Earned schedule: A breakthrough extension to earned value

theory? A retrospective analysis of real project data. The Measurable News, 1,

13-23.

Henderson, K. (2006). Earned Schedule in Action. Paper presented at the Earned Value

Analysis - 11 Conference, London, United Kingdom.

Henderson, K. (2007). Earned Schedule: A Breakthrough Extension to Earned Value

Management. Paper presented at the PMI Asia Pacific Global Congress

Proceedings, Hong Kong.

Herbsleb, J. D. (2007). Global Software Engineering: The Future of Socio-technical

Coordination. Paper presented at the Future of Software Engineering (FOSE

'07), Minneapolis, MN.

Herbsleb, J. D., & Grinter, R. E. (1999). Architectures, Coordination, and Distance:

Conway’s Law and Beyond. IEEE Software, 16, 63-70.

Herbsleb, J. D., & Mockus, A. (2003). An Empirical Study of Speed and

Communication in Globally Distributed Software Development. IEEE

Transactions on Software Engineering, 29(6), 481-494.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2001). An Empirical Study

of Global Software Development: Distance and Speed. Paper presented at the

Proceedings of the 23rd International Conference on Software Engineering.

ICSE '01, USA.

Herbsleb, J. D., & Moitra, D. (2001). Global Software Development. IEEE Software,

18, 16-20.

Herbsleb, J. D., Paulish, D. J., & Bass, M. (2005). Global Software Development at

Siemens: Experience from Nine Projects. Paper presented at the Proceedings of

the 27th international conference on Software engineering. ICSE '05, USA.

Herroelen, W., Leus, R., & Demeulemeester, E. (2002). Critical Chain Project

Scheduling: Do Not Oversimplify. Project Management Journal, 33(4), 48-60.

Hoda, R., Kruchten, P., Noble, J., & Marshall, S. (2010). Agility in Context. Paper

 Bibliography

Controlling schedule duration during software project execution 310

presented at the Proceedings of the ACM international conference on Object

oriented programming systems languages and applications OOPSLA '10,

Reno/Tahoe, Nevada USA.

Hoegl, M., & Weinkauf, K. (2005). Managing task interdependencies in Multi-Team

projects: A longitudinal study. Journal of Management Studies, 42(6), 1287-

1308.

Holmstrom, H., Conchúir, E. Ó., Ågerfalk, P. J., & Fitzgerald, B. (2006). Global

Software Development Challenges: A Case Study on Temporal, Geographical

and Socio-Cultural Distance. Paper presented at the IEEE International

Conference on Global Software Engineering (ICGSE'06), Florianopolis.

Holton, J. A. (2007). The Coding Process and Its Challenges. In A. Bryant & K.

Charmaz (Eds.), The SAGE Handbook of Grounded Theory (Paperback Edition

ed., pp. 265-289). UK: SAGE Publications Ltd.

Hossain, E., Babar, M. A., & Verner, J. (2009). How Can Agile Practices Minimize

Global Software Development Co-ordination Risks? Paper presented at the

Proceedings of the 16th European Conference on Software Process

Improvement, EuroSpi 2009, Alcala (Madrid), Spain.

Hughes, B. (2000). Practical Software Measurement. Cambridge: McGraw-Hill.

Hughes, B., & Cotterell, M. (2009). Software Project Management (Fifth Edition ed.).

Berkshire: McGraw-Hill.

Hughes, T. P. (2012). The Evolution of Large Technological Systems. In W. E. Bijker,

T. P. Hughes, & T. Pinch (Eds.), The Social Construction of Technological

Systems: New Directions in the Sociology and History of Technology

(Anniversary Edition ed., pp. 45-76). USA: MIT.

Hustad, E., & Lange, C. d. (2014). Service-oriented architecture projects in practice: A

study of a shared document service implementation. Procedia Technology, 16,

684 – 693.

Ikonen, M., Kettunen, P., Oza, N., & Abrahamsson, P. (2010). Exploring the Sources of

Waste in Kanban Software Development Projects. Paper presented at the 36th

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Lille.

Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., & Abraha, P. (2011). On the

Impact of Kanban on Software Project Work: An Empirical Case Study

Investigation. Paper presented at the 16th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), Las Vegas, NV.

Ivankova, N., & Kawamura, Y. (2010). Emerging Trends in the Utilization of Integrated

Designs in the Social, Behavioral, and Health Sciences. In A. Tashakkori & C.

 Bibliography

Controlling schedule duration during software project execution 311

Teddlie (Eds.), SAGE Handbook of Mixed Methods in Social & Behavioral

Research (Second Edition ed., pp. 581-611). USA: SAGE Publications, Inc.

Jacobson, I., Meyer, B., & Soley, R. (2012). Software Engineering Method and Theory

– A Vision Statement.

James E. Kelley, J., & Walker, M. R. (1959). Critical-Path Planning and Scheduling.

Paper presented at the Proceeding IRE-AIEE-ACM '59 (Eastern) Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference, New York.

Janes, A., & Succi, G. (2009). To Pull or Not to Pull. Paper presented at the OOPSLA

2009 Proceedings of the 24th ACM SIGPLAN conference companion on Object

oriented programming systems languages and applications, Florida, USA.

Jenkins, A. M., Naumann, J. D., & Wetherbe, J. C. (1984). Empirical Investigation of

Systems Development Practices and Results. Information & Management, 7, 73-

82.

Jiang, J. J., Klein, G., & Ellis, T. S. (2002). A Measure of Software Development Risk.

Project Management Journal, 33(3), 30-41.

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a Definition of

Mixed Methods Research. Journal of Mixed Methods Research, 1(2), 112-133.

Jones, C. (1995). Patterns of large software systems: Failure and success. Computer,

28(3), 86-87.

Kelle, U. (2007). The Development of Categories: Different Approaches in Grounded

Theory. In A. Bryant & K. Charmaz (Eds.), The SAGE Handbook of Grounded

Theory (pp. 191-213). London: SAGE Publication Ltd.

Kerzner, H. R. (2013). Project Management: A Systems Approach to Planning,

Scheduling, and Controlling (Eleventh edition ed.). USA: Wiley.

Kim, E., Jr., W. G. W., & Duffey, M. R. (2003). A model for effective implementation

of Earned Value Management methodology. International Journal of Project

Management, 21(5), 375–382.

Kim, H.-W., & Pan, S. L. (2006). Towards a process model of information systems

implementation: the case of customer relationship management (CRM).

Database for Advances in Information Systems, 37(1), 59-76.

Kitchenham, B. (2006). Empirical Paradigm – The Role of Experiments. In V. R. Basili,

D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, & R. Selby (Eds.),

Empirical Software Engineering Issues: Critical Assessment and Future

Directions (pp. 25-32). International Workshop, Dagstuhl Castle, Germany:

Springer-Verlag Berlin Heidelberg.

 Bibliography

Controlling schedule duration during software project execution 312

Kitchenham, B., Pfleeger, S. L., & Fenton, N. (1995). Towards a framework for

software measurement validation. IEEE Transactions on Software Engineering,

21(12), 929-944.

Kitchenham, B. A. (1987). Controlling software projects. Electronics & Power, 312-

315.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam,

K. E., & Rosenberg, J. (2002). Preliminary Guidelines for Empirical Research in

Software Engineering. IEEE Transactions on Software Engineering, 28(8), 721-

734.

Kommeren, R., & Parviainen, P. (2007). Philips experiences in global distributed

software development. Empirical Software Engineering, 12(6), 647–660.

Kumar, R. (2011). Research Methodology (3rd edition ed.). London: SAGE

Publications Ltd.

Kutsch, E., & Hall, M. (2009). The Rational Choice of Not Applying Project Risk

Management in Information Technology Projects. Project Management Journal,

40(3), 72–81.

Kwak, Y. H., & Anbari, F. T. (2011). History, Practices, and Future of Earned Value

Management in Government: Perspectives From NASA. Project Management

Journal, 43(1), 77–90.

Larman, C., & Basili, V. R. (2003). Iterative and Incremental Development - A Brief

History. Computer, 36(6), 47-56.

Latour, B. (1986). The powers of association. In J. Law (Ed.), Power, action and belief:

a new sociology of knowledge? (pp. 264-280). London: Routledge.

Latour, B. (1987). Science in Action: How to follow scientists and engineers through

society. USA: Harvard University Press.

Latour, B. (1991). Technology is society made durable. In J. Law (Ed.), A Sociology of

Monsters: Essays on Power, Technology and Domination (pp. 103-131).

London: Routledge.

Latour, B. (1996). Aramis, or, the love of technology. Cambridge, MA: Harvard

University Press.

Latour, B. (1999). On Recalling ANT. In J. Law & J. Hassard (Eds.), Actor Network

Theory and after (pp. 15-25). UK: Blackwell Publishers.

Latour, B. (2004a). On using ANT for studying information systems: a (somewhat)

Socratic dialogue. In C. Avgerou, C. Ciborra, & F. Land (Eds.), The Social

Study of Information and Communication Technology: Innovation, Actors, and

 Bibliography

Controlling schedule duration during software project execution 313

Contexts (pp. 62-76). USA: Oxford University Press Inc.

Latour, B. (2004b). Politics of nature: How to Bring the Sciences into Democracy. UK:

Harvard University Press.

Latour, B. (2005). Reassembling the Social - An Introduction to Actor-Network-Theory.

USA: Oxford University Press.

Law, J. (1986). On the methods of long-distance control: vessels, navigation and the

Portuguese rout to India. In J. Law (Ed.), Power, action and belief: a new

sociology of knowledge? (pp. 234-263). London: Routledge.

Law, J. (1991). Introduction: monsters, machines and sociotechnical relations. In J. Law

(Ed.), A Sociology of Monsters: Essays on Power, Technology and Domination

(pp. 1-23). London: Routledge.

Law, J. (1999). After ANT: complexity, naming and topology. In J. Law & J. Hassard

(Eds.), Actor Network Theory and after (pp. 1-13): Blackwell Publishers.

Law, J. (2012). Technology and Heterogeneous Engineering: The Case of Portuguese

Expansion. In W. E. Bijker, T. P. Hughes, & T. Pinch (Eds.), The Social

Construction of Technological Systems: New Directions in the Sociology and

History of Technology (Anniversary Edition ed., pp. 105-127). London: MIT.

Law, J., & Callon, M. (1992). The Life and Death of an Aircraft: A Network Analysis

of Technical Change. In W. E. Bijker & J. Law (Eds.), Shaping

Technology/Building Society: Studies in Sociotechnical Change (pp. 21-52).

London: MIT Press.

Leach, L. P. (1999). Critical Chain Project Management Improves Project Performance.

Project Management Journal, 30(2), 39-51.

Lechler, T. G., & Cohen, M. (2009). Exploring the Role of Steering Committees in

Realizing Value From Project Management. Project Management Journal,

40(1), 42–54.

Lechler, T. G., Ronen, B., & Stohr, E. A. (2005). Critical Chain: A New Project

Management Paradigm or Old Wine in New Bottles? Engineering Management

Journal, 17(4), 45-58.

Lee-Kelley, L. (2006). Locus of control and attitudes to working in virtual teams.

International Journal of Project Management, 24(3), 234–243.

Lehtinen, T. O. A., & Mäntylä, M. V. (2011). What Are Problem Causes of Software

Projects? Data of Root Cause Analysis at Four Software Companies. Paper

presented at the International Symposium on Empirical Software Engineering

and Measurement (ESEM), 2011, Banff, AB.

 Bibliography

Controlling schedule duration during software project execution 314

Lehtinen, T. O. A., Mäntylä, M. V., & Vanhanen, J. (2011). Development and

evaluation of a lightweight root cause analysis method (ARCA method) – Field

studies at four software companies. Information and Software Technology,

53(10), 1045–1061.

Lehtinen, T. O. A., Mäntylä, M. V., Vanhanen, J., Itkonen, J., & Lassenius, C. (2014).

Perceived causes of software project failures – An analysis of their relationships.

Information and Software Technology, 56(6), 623–643.

Leigh, E. (2013). Simulation for Project Management Research. In N. Drouin, R.

Muller, & S. Sankaran (Eds.), Novel Approaches to Organizational Project

Management Research: Translational and Transformational (Vol. 29, pp. 199-

219). Universitetsforlaget: Copenhagen Business School Press.

Leonardi, P. M. (2011). When Flexible Routines Meet Flexible Technologies:

Affordance, Constraint, and the Imbrication of Human and Material Agencies.

MIS Quarterly, 35(1), 147-167.

Leonardi, P. M. (2013). Theoretical foundations for the study of sociomateriality.

Information and Organization, 23(2), 59–76.

Leszak, M. (2006). Extending Empirical Studies to Cover More Realistic Industrial

Development and Project Management Issues. In V. R. Basili, D. Rombach, K.

Schneider, B. Kitchenham, D. Pfahl, & R. Selby (Eds.), Empirical Software

Engineering Issues: Critical Assessment and Future Directions (pp. 131).

International Workshop, Dagstuhl Castle, Germany: Springer-Verlag Berlin

Heidelberg.

Lincoln, Y. S., & Guba, E. G. (2000). The only Generalization is: There is no

Generalization. In R. Gomm, M. Hammersley, & P. Foster (Eds.), Case Study

Method: Key Issues, key Texts (pp. 27-44). UK: SAGE Publications Ltd.

Lipke, W. (2003). Schedule is Different. The Measurable News, 31, 31-34.

Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project

outcome: The application of statistical methods to earned value management and

earned schedule performance indexes. International Journal of Project

Management, 27(4), 400–407.

Locke, K. (2001). Grounded Theory in Management Research. London: Sage

Publications Ltd.

Lockyer, K., & Gordon, J. (2005). Project Management and Project Network

Techniques (Seventh edition ed.). UK: Prentice Hall.

Lopes, E. (2010). A Grounded Theory of Decision-Making under Uncertainty and

Complexity. UK: VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG.

 Bibliography

Controlling schedule duration during software project execution 315

Lu, X., Liu, H., & Ye, W. (2010). Analysis failure factors for small & medium software

projects based on PLS method. Paper presented at the 2010 The 2nd IEEE

International Conference on Information Management and Engineering

(ICIME), 2010, Chengdu.

Lyneisa, J. M., & Ford, D. N. (2007). System dynamics applied to project management:

a survey, assessment, and directions for future research. System Dynamics

Review, 23(2/3), 157–189.

Mahring, M., Holmstrom, J., Keil, M., & Montealegre, R. (2004). Trojan actor-

networks and swift translation: Bringing actor-network theory to IT project

escalation studies. Information Technology & People, 17(2), 210-238.

Malcolm, B. (1990). A Large Embedded System Project Case Study. In B. A.

Kitchenham (Ed.), Software Engineering for Large Software Systems (pp. 96-

121): Elsevier Applied Sciences.

Malone, T. W., & Crowston, K. (1994). The Interdisciplinary Study of Coordination.

ACM Computing Surveys, 26(1), 87-119.

Maxwell, J. A. (1992). Understanding and validity in qualitative research. Harvard

educational review, 62(3), 279-301.

McDermid, J. A. (1990). Integrated Project Support Environments: General principles

and issues in the development of high integrity systems. In B. A. Kitchenham

(Ed.), Software Engineering for Large Software Systems (pp. 27-81). UK:

Elsevier Applied Sciences.

McGrath, K. (2002). The Golden Circle: a way of arguing and acting about technology

in the London Ambulance Service. European Journal of Information Systems,

11(4), 251-266.

McLean, C., & Hassard, J. (2004). Symmetrical Absence/Symmetrical Absurdity:

Critical Notes on the Production of Actor-Network Accounts. Journal of

Management Studies, 41(3), 493-519.

McLeod, L., & MacDonell, S. G. (2011). Factors that affect software systems

development project outcomes: A survey of research. ACM Computing Surveys,

43(4), Article No. 24.

Middleton, P., & Joyce, D. (2012). Lean Software Management: BBC Worldwide Case

Study. IEEE Transactions on Engineering Management, 59(1), 20-32.

Miles, M. B., & Huberman, A. M. (1994). An Expanded Sourcebook: Qualitative Data

Analysis (Second Edition ed.). USA: SAGE Publications, Inc.

Milosevic, D., & Patanakul, P. (2005). Standardized project management may increase

development projects success. International Journal of Project Management,

 Bibliography

Controlling schedule duration during software project execution 316

23(3), 181–192.

Mingers, J. (2001). Combining IS Research Methods: Towards a Pluralist Methodology.

Information Systems Research, 12(3), 240–259.

Mingers, J., & Willcocks, L. (2014). An integrative semiotic framework for information

systems: The social, personal and material worlds. Information and

Organization, 24(1), 48–70.

Mitchell, J. C. (2000). Case and Situation Analysis. In R. Gomm, M. Hammersley, & P.

Foster (Eds.), Case Study Method: Key Issues, key Texts (pp. 165-186). UK:

SAGE Publications Ltd.

Miyazaki, Y., Takanou, A., Nozaki, H., Nakagawa, N., & Okada, K. (1991). Method to

estimate parameter values in software prediction models. Information and

Software Technology, 33(3), 239-243.

Mockus, A., & Herbsleb, J. (2001). Challenges of Global Software Development. Paper

presented at the Proceedings of the Seventh International Symposium on

Software Metrics, 2001. METRICS 2001., London.

Moløkken-Østvold, K., & Jørgensen, M. (September 2005). A Comparison of Software

Project Overruns—Flexible versus Sequential Development Models. IEEE

Transactions on Software Engineering, 31(9), 754-766.

Monteiro, E. (2001). Actor-Network Theory and Information Infrastructure. In Ciborra

& Associates (Eds.), From Control to Drift: The Dynamics of Corporate

Information Infrastructure (pp. 71-83). Oxford: Oxford University Press.

Monteiro, E. (2004). Actor network theory and cultural aspects of interpretive studies.

In C. Avgerou, C. Ciborra, & F. Land (Eds.), The Social Study of Information

and Communication Technology: Innovation, Actors, and Contexts (pp. 129-

139). USA: Oxford University Press Inc.

Montoni, M. A., & Rocha, A. R. (2010). Applying Grounded Theory to Understand

Software Process Improvement Implementation. Paper presented at the 2010

Seventh International Conference on the Quality of Information and

Communications Technology (QUATIC), Porto.

Morris, P. W. G. (2002). Science, objective knowledge, and the theory of project

management. Civil Engineering, 150(2), 82-90.

Morris, P. W. G., & Jamieson, A. (2005). Moving from corporate strategy to project

strategy. Project Management Journal, 36(4), 5-18.

Morris, P. W. G., Jamieson, A., & Shepherd, M. M. (2006). Research updating the

APM Body of Knowledge 4th edition. International Journal of Project

Management, 24(6), 461–473.

 Bibliography

Controlling schedule duration during software project execution 317

Muller, R., Sankaran, S., & Drouin, N. (2013). Introduction. In N. Drouin, R. Muller, &

S. Sankaran (Eds.), Novel Approaches to Organizational Project Management

Research: Translational and Transformational (Vol. 29, pp. 19-30).

Universitetsforlaget: Copenhagen Business School Press.

Münch, J. (2006). Effective Data Interpretation. In V. R. Basili, D. Rombach, K.

Schneider, B. Kitchenham, D. Pfahl, & R. Selby (Eds.), Empirical Software

Engineering Issues: Critical Assessment and Future Directions (pp. 83-90).

International Workshop, Dagstuhl Castle, Germany: Springer-Verlag Berlin

Heidelberg.

Nandhakumar, J. (1996). Design for success?: critical success factors in executive

information systems development. European Journal of Information Systems,

5(1), 62-72.

Nasir, M. H. N., & Sahibuddin, S. (2011). Critical success factors for software projects:

A comparative study. Scientific Research and Essays, 6(10), 2174-2186.

Nelson, R. R. (2007). IT Project Management: Infamous Failures, Classic Mistakes, and

Best Practices. MIS Quarterly Executive, 6(2), 67-78.

Nguyen, T., Wolf, T., & Damian, D. (2008). Global software development and delay:

Does distance still matter? Paper presented at the IEEE International

Conference on Global Software Engineering, 2008. ICGSE 2008, Bangalore.

Nidiffer, K. E., & Dolan, D. (2005). Evolving Distributed Project Management. IEEE

Software, 22, 63-72.

Nijland, M. H.-J. (2004). Understanding the Use of IT Evaluation Methods in

Organisations. (PhD), University of London, United Kingdom.

O'Cathain, A. (2010). Assessing the Quality of Mixed Methods Research: Toward a

Comprehensive Framework. In A. Tashakkori & C. Teddlie (Eds.), SAGE

Handbook of Mixed Methods in Social & Behavioral Research (Second Edition

ed., pp. 531-555). USA: SAGE Publications, Inc.

OGC. (2009). Managing Successful Projects with PRINCE2 (2009 Edition ed.). UK:

Office of Government Commerce Stationery Office Books.

Onwuegbuzie, A. J., & Combs, J. P. (2010). Emergent Data Analysis Techniques in

Mixed Methods Research: A Synthesis. In A. Tashakkori & C. Teddlie (Eds.),

SAGE Handbook of Mixed Methods in Social & Behavioral Research (Second

Edition ed., pp. 397-430). USA: SAGE Publications, Inc.

Onwuegbuzie, A. J., & Johnson, R. B. (2006). The Validity Issue in Mixed Research.

Research in the Schools, 13(1), 48-63.

Oorschot, K. v. (2013). System Dynamics for Project Management Research. In N.

 Bibliography

Controlling schedule duration during software project execution 318

Drouin, R. Muller, & S. Sankaran (Eds.), Novel Approaches to Organizational

Project Management Research: Translational and Transformational (Vol. 29,

pp. 220-236). Universitetsforlaget: Copenhagen Business School Press.

Orlikowski, W. J. (1993). CASE Tools as Organizational Change: Investigating

Incremental and Radical Changes in Systems Development. MIS Quarterly,

17(3), 309-340.

Orlikowski, W. J. (2009). The Sociomateriality of Organizational Life: Considering

Technology in Management Research. Cambridge Journal of Economics,

34(bep058), 125-141.

O’Cathain, A., Murphy, E., & Nicholl, J. (2008). The Quality of Mixed Methods

Studies in Health Services Research. Journal of Health Services Research &

Policy, 13(2), 92–98.

Patanakul, P. (2014). Managing large-scale IS/IT projects in the public sector: Problems

and causes leading to poor performance. Journal of High Technology

Management Research, 25(1), 21–35.

Pernstål, J., Feldt, R., & Gorschek, T. (2013). The lean gap: A review of lean

approaches to large-scale software systems development. The Journal of

Systems and Software, 86(11), 2797– 2821.

Petersen, K., Khurum, M., & Angelis, L. (2014). Reasons for bottlenecks in very large-

scale system of systems development. Information and Software Technology,

56(10), 1403–1420.

Phan, D. D., Vogel, D. R., & Jay F. Nunamaker, J. (1995). Empirical studies in software

development projects: Field survey and OS/400 study. Information &

Management, 28(4), 271-280.

Piri, A., & Niinimäki, T. (2011). Does distribution make any difference? Quantitative

comparison of collocated and globally distributed projects. Paper presented at

the 2011 Sixth IEEE International Conference on Global Software Engineering

Workshops, Helsinki, Finland.

PMI. (2008). A Guide to the Project Management Body of Knowledge (Fourth Edition

ed.). USA: Project Management Institute Inc.

Poppendieck, M. (2007). Lean Software Development. Paper presented at the 29th

International Conference on Software Engineering - Companion, 2007. ICSE

2007 Companion, Minneapolis, MN.

Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach (Sixth

Edition ed.). USA: McGraw-Hill.

Procaccino, J. D., & Verner, J. M. (2006). Software project managers and project

 Bibliography

Controlling schedule duration during software project execution 319

success: An exploratory study. The Journal of Systems and Software, 79(11),

1541–1551.

Procaccino, J. D., Verner, J. M., & Lorenzet, S. J. (2006). Defining and contributing to

software development success. Communications of the ACM, 49, 79-83.

Qureshi, S., Liu, M., & Vogel, D. (2004). A Grounded Theory Analysis of E-

Collaboration Effects for Distributed Project Management. Retrieved from

Netherlands:

Rabbi, M. F., & Mannan, K. O. B. (2008). A Review of Software Risk Management for

Selection of best Tools and Techniques. Paper presented at the Ninth ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing, 2008. SNPD '08, Phuket.

Rainer, A. (2010). Representing the behaviour of software projects using multi-

dimensional timelines. Information and Software Technology, 52(11), 1217-

1228.

Rainer, A. (2011). The Longitudinal, Chronological Case Study Research Strategy: A

Definition, and an Example from IBM Hursley Park. Information and Software

Technology, 53(7), 730-746.

Rainer, A. W. (1999). An empirical investigation of software project schedule

behaviour. (Doctor of Philosophy), Bournemouth University, United Kingdom.

Ramasubbu, N., & Balan, R. K. (2007). Globally Distributed Software Development

Project Performance: An Empirical Analysis. Paper presented at the ESEC-FSE

'07 Proceedings of the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering, Dubrovnik, Croatia.

Raz, T., Barnes, R., & Dvir, D. (2003). A Critical Look at Critical Chain Project

Management. Project Management Journal, 34(4), 24-32.

Redmill, F. (1992). Incremental Delivery - not all Plain Sailing. Paper presented at the

IEE Colloquium on Software Prototyping and Evolutionary Development,

London.

Remenyi, D. (2013). Case Study Research (2nd Edition ed.). UK: Academic

Conferences and Publishing International Limited.

Robertson, S., & Williams, T. (2006). Understanding Project Failure: Using Cognitive

Mapping in an Insurance Project. Project Management Journal, 37(4), 55-71.

Robson, C. (2011). Real World Research (Third edition ed.). UK: Wiley.

Rook, P. (1986). Controlling software projects. Software Engineering Journal, 1(1), 7-

 Bibliography

Controlling schedule duration during software project execution 320

16.

Rose, J., Pedersen, K., Hosbond, J. H., & Kræmmergaard, P. (2007). Management

competences, not tools and techniques: A grounded examination of software

project management at WM-data. Information and Software Technology, 49(6),

605–624.

Royce, W. W. (1970). Managing the development of large software systems. Paper

presented at the IEEE Wescon.

Runeson, P., & Höst, M. (2008). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering, 14(2), 31-

164.

Sage, D., Dainty, A., & Brookes, N. (2011). How actor-network theories can help in

understanding project complexities. International Journal of Managing Projects

in Business, 4(2), 274-293.

Sankaran, S., Muller, R., & Drouin, N. (2013). Creative and Innovative Contemporary

Approaches. In N. Drouin, R. Muller, & S. Sankaran (Eds.), Novel Approaches

to Organizational Project Management Research: Translational and

Transformational (Vol. 29, pp. 162-163). Universitetsforlaget: Copenhagen

Business School Press.

Sauer, C., Gemino, A., & Reich, B. H. (2007). The Impact of Size and Volatility on IT

Project Performance: Studying the Factors Influencing Project Risk.

Communications of the ACM, 50(11), 79-84.

Schneberger, S. L., & McLean, E. R. (2003). The Complexity Cross—Implications for

Practice. Communications of the ACM, 46, 216-225.

Schonberger, R. J. (1981). Why Projects are "Always" Late: A Rationale Based on

Manual Simulation of a PERT/CPM Network. Interfaces, 11(5), 66-70.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action.

UK: Basic Books.

Scott, J. E., & Vessey, I. (2002). Managing risks in enterprise systems implementations.

Communications of the ACM, 45, 74-81.

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software

Engineering. IEEE Transactions on Software Engineering, 25(4), 557-572.

Shahzad, B., & Al-Mudimigh, A. S. (2010). Risk Identification, Mitigation and

Avoidance Model for Handling Software Risk. Paper presented at the 2010

Second International Conference on Computational Intelligence,

Communication Systems and Networks (CICSyN), Liverpool.

 Bibliography

Controlling schedule duration during software project execution 321

Shahzad, B., Ullah, I., & Khan, N. (2009). Software Risk Identification and Mitigation

in Incremental Model. Paper presented at the International Conference on

Information and Multimedia Technology, 2009. ICIMT '09., Jeju Island.

Shermer, C. L., Neighbors, M. A., & Maitland, R. (1981). Systems engineering for

medium to large software development projects. Paper presented at the

Conference Proceedings Southeastcon '81, Huntsville, AL, USA.

Silva, F. Q. B. d., Costa, C., C., A. C., & Prikladinicki, R. (2010). Challenges and

Solutions in Distributed Software Development Project Management: a

Systematic Literature Review. Paper presented at the 5th IEEE International

Conference on Global Software Engineering (ICGSE), 2010, Princeton, NJ.

Sjøberg, D. I. K., Dybå, T., & Jørgensen, M. (2007). The Future of Empirical Methods

in Software Engineering Research. Paper presented at the Future of Software

Engineering, 2007. FOSE '07, Minneapolis, MN.

Sommerville, I. (2011). Software Engineering (Ninth Edition ed.). USA: Pearson.

Staats, B. R., Brunner, D. J., & Upton, D. M. (2011). Lean principles, learning, and

knowledge work: Evidence from a software services provider. Journal of

Operations Management, 29(5), 376–390.

Stake, R. E. (2000). The Case Study Method in Social Inquiry. In R. Gomm, M.

Hammersley, & P. Foster (Eds.), Case Study Method: Key Issues, key Texts (pp.

19-26). UK: SAGE Publications Ltd.

Stapleton, J. (1997). Dynamics Systems Development Method: the method in practice.

England: Addison-Wesley.

Star, S. L. (1991). Power, technology and the phenomenology of conventions: on being

allergic to onions. In J. Law (Ed.), A Sociology of Monsters: Essays on Power,

Technology and Domination (pp. 26-56). London: Routledge.

Stensrud, E., Foss, T., Kitchenham, B., & Myrtveit, I. (2002). An Empirical Validation

of the Relationship Between the Magnitude of Relative Error and Project Size.

Paper presented at the Proceedings of the Eighth IEEE Symposium on Software

Metrics (METRICS'02).

Stratton, R. (2009). Critical Chain Project Management Theory and Practice. Paper

presented at the POMS 20th Annual Conference, Orlando, Florida, USA.

Sun, S. (2009). Study on Software Project Risk Priority Management and Framework

Based on Information Management System. Paper presented at the 1st

International Conference on Information Science and Engineering (ICISE),

2009, Nanjing.

Söderlund, J. (2004). Building theories of project management: past research, questions

 Bibliography

Controlling schedule duration during software project execution 322

for the future. International Journal of Project Management, 22(3), 183–191.

Tarawneh, M. d. M. I., AL-Tarawneh, H., & Elsheikh, A. (2008). Software

Development Projects: An Investigation into the Factors that Affect Software

Project Success/ Failure in Jordanian Firms. Paper presented at the First

International Conference on the Applications of Digital Information and Web

Technologies, 2008. ICADIWT 2008., Ostrava.

Tashakkori, A., & Teddlie, C. (1998). Mixed Methodology: Combining Qualitative and

Quantitative Approaches (Vol. 46). USA: SAGE Publications.

Tashakkori, A., & Teddlie, C. (2008). Quality of Inferences in Mixed Methods

Research: Calling for an Integrative Framework. In M. M. Bergman (Ed.),

Advances in Mixed Methods Research (pp. 101-119). London: Sage Publications

Ltd.

Tashakkori, A., & Teddlie, C. (2010). Current Developments and Emerging Trends in

Integrated Research Methodology. In A. Tashakkori & C. Teddlie (Eds.), SAGE

Handbook of Mixed Methods in Social & Behavioral Research (Second Edition

ed., pp. 803-826). USA: SAGE Publications, Inc.

Tate, G., & Verner, J. (1990). Case study of risk management, incremental

development, and evolutionary prototyping. Information and Software

Technology, 32(3), 207-214.

Taylor, H. (2006). Risk Management and Problem Resolution Strategies for IT Projects.

Project Management Journal, 35(5), 49-63.

Teddlie, C., & Tashakkori, A. (2010). Overview of Contemporary Issues in Mixed

Methods Research. In A. Tashakkori & C. Teddlie (Eds.), SAGE Handbook of

Mixed Methods in Social & Behavioral Research (Second Edition ed., pp. 1-41).

USA: SAGE Publications, Inc.

Trietsch, D. (2005). Why a Critical Path by any other name would smell less sweet?

Towards a holistic approach to PERT/CPM. Project Management Journal,

36(1), 27-36.

Urbaczewski, L., & Mrdalj, S. (2006). A comparison of enterprise architecture

frameworks. Issues in Information Systems, 7(2), 18-23.

Urquhart, C. (2007). The Evolving Nature of Grounded Theory Method: The Case of

the Information Systems Discipline. In A. Bryant & K. Charmaz (Eds.), The

SAGE Handbook of Grounded Theory (pp. 339-359). London: SAGE

Publication Ltd.

Urquhart, C. (2013). Grounded Theory for Qualitative Research. UK: SAGE

Publications Ltd.

 Bibliography

Controlling schedule duration during software project execution 323

Urquhart, C., Lehmann, H., & Myers, M. D. (2010). Putting the ‘theory’ back into

grounded theory: guidelines for grounded theory studies in information systems.

Information Systems Journal, 20(4), 357–381.

Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration

forecasting methods using earned value metrics. International Journal of Project

Management, 24(4), 289–302.

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative

divide: Guidelines for conducting mixed methods research in information

systems. MIS Quarterly, 37(1), 21-54.

Verner, J., Sampson, J., & Cerpa, N. (2008). What factors lead to software project

failure? Paper presented at the Second International Conference on Research

Challenges in Information Science, 2008. RCIS 2008., Marrakech.

Verner, J. M., Brereton, O. P., Kitchenham, B. A., Turner, M., & Niaz, M. (2014). Risks

and risk mitigation in global software development: A tertiary study.

Information and Software Technology, 56(1), 54–78.

Verner, J. M., Brereton, O. P., Kitchenham, B. A., Turner, M., & Niazi, M. (2012a).

Risk Mitigation Advice for Global Software Development from Systematic

Literature Reviews. Retrieved from Staffordshire, UK:

Verner, J. M., Brereton, O. P., Kitchenham, B. A., Turner, M., & Niazi, M. (2012b).

Systematic literature reviews in global software development: a tertiary study.

Paper presented at the 16th International Conference on Evaluation &

Assessment in Software Engineering (EASE 2012), Cuidad Real, Spain.

Verner, J. M., Overmyer, S. P., & McCain, K. W. (1999). In the 25 years since The

Mythical Man-Month what have we learned about project management?

Information and Software Technology, 41(14), 1021–1026.

W.Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.

Computer, 21(5), 61-72.

Walsham, G. (1995). Interpretive case studies in IS research: nature and method.

European Journal of information systems, 4(2), 74-81.

Walsham, G. (1997). Actor-network theory and IS research: current status and future

prospects. Paper presented at the Proceedings of the IFIP TC8 WG 8.2

International Conference on Information Systems and Qualitative Research, 31st

May–3rd June 1997, Philadelphia, Pennsylvania, USA.

Walsham, G., & Sahay, S. (1999). GIS for district-level administration in India:

problems and opportunities. MIS quarterly, 23(1), 39-66.

Williams, K. T. G. (2005). Modelling complexity in the automotive industry supply

 Bibliography

Controlling schedule duration during software project execution 324

chain. Journal of Manufacturing Technology Management, 16(4), 447 - 458.

Williams, R., Ambrose, K., & Bentrem, L. (2004a). A Roadmap of Risk Diagnostic

Methods: Developing an Integrated View of Risk Identification and Analysis

Techniques. Retrieved from USA:

Williams, R. C., Ambrose, K., Bentrem, L., & Merendino, T. (2004b). Risk Based

Diagnostics. Retrieved from USA:

Winner, L. (1993). Upon opening the black box and finding it empty: Social

constructivism and the philosophy of technology. Science, Technology, and

Human Values, 18(3), 362-378.

Winter, M., Smith, C., Morris, P., & Cicmil, S. (2006). Directions for future research in

project management: The main findings of a UK government-funded research

network. International Journal of Project Management, 24(8), 638–649.

Winter, R., & Fischer, R. (2006). Essential Layers, Artifacts, and Dependencies of

Enterprise Architecture. Paper presented at the 10th IEEE International

Enterprise Distributed Object Computing Conference Workshops (EDOCW'06),

Hong Kong, China.

Yamamoto, S., Ibe, K., Verner, J., Cox, K., & Bleistein, S. (2009). Actor relationship

analysis for the i* framework. Paper presented at the Proceedings of the 11th

International Conference on Enterprise Information Systems, ICEIS 2009,

Milan, Italy.

Yeo, K. T. (2002). Critical failure factors in information system projects. International

Journal of Project Management, 20(3), 241–246.

Yin, R. K. (2009). Case Study Research: Design and Methods (Fourth edition ed. Vol.

5). USA: SAGE Publications.

Zhou, L., Vasconcelos, A., & Nunes, M. (2008). Supporting decision making in risk

management through an evidence-based information systems project risk

checklist. Information Management & Computer Security, 16(2), 166-186.

Zmud, R. W. (1980). Management of large software development efforts. MIS

Quarterly, 4(2), 45-55.

Šmite, D., Wohlin, C., Gorschek, T., & Feldt, R. (2010). Empirical evidence in global

software engineering: a systematic review. Empirical Software Engineering,

15(1), 91–118.

