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Abstract 

Genes which are co-expressed in tissues or processes are often regulated by the same 

transcription factors.  In this thesis, the analysis of transcription factors predicted to 

regulate a gene is conducted to attempt to discover co-regulated, possibly co-

expressed, genes.  The initial problem tackled in the thesis is to determine an accurate 

method of predicting transcription factor binding sites (TFBS), and therefore 

regulatory transcription factors.  Three TFBS prediction methods are developed; one 

consensus method combining pairs of prediction algorithms, one consensus method 

combining 6 algorithms through a Naïve Bayes classifier and a phylogenetic 

footprinting method combining data from multiple organisms using a Naïve Bayes 

classifier.  The methods are comparable to or an improvement on current TFBS 

prediction methods. The second problem, with which the thesis is concerned, is the 

utilisation of these methods to predict genes which may be co-expressed in certain 

systems.  Two systems will be analysed; (a) the IFN-γ related immune response to 

Mycobacterium tuberculosis, and (b) the host processes regulated by the Epstein Barr 

transcription factor, Zta.  Several sets of candidate genes are predicted in each of these 

systems to take forward for experimental verification.  In particular, three genes from 

regions linked to the IFN-γ immune response to M. tuberculosis have been shown to 

be involved in similar processes and to contain a putative cis-regulatory module. 
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1. Introduction 

The analysis of regulatory motifs in a gene’s promoter region can provide information 

on gene expression and function.  This thesis centres on the hypothesis that two genes 

are more likely to be co-regulated if they share a common binding site for a specific 

transcription factor.  Two systems will be analysed; (a) the IFN-γ related immune 

response to Mycobacterium tuberculosis, and (b) the host processes regulated by the 

Epstein Barr transcription factor, Zta.  

 

1.1. Genetic Regulation 

1.1.1. Transcription Factors 

Transcription factors (TFs) are a diverse category of proteins that regulate the 

transcription of DNA, through direct binding to the nucleotide sequence, using a DNA 

binding domain (Mitchell & Tjian, 1989; Ptashne & Gann, 1997). There are numerous 

other proteins involved in the regulation of transcription, such as co-activators, 

chromatin remodelers and histone acetylases.  However, these proteins do not contain a 

DNA binding domain and are therefore not classified as TFs for the purpose of this 

thesis (Brivanlou & Darnell, Jr., 2002).  

 

TFs can be classified into two main categories in eukaryotic organisms. The first 

category consists of the basal transcription factors; TFIIA, TFIIB, TFIID, TFIIE, TFIIF 

and TFIIH.  The basal transcription factors form a large complex with RNA polymerase 

II and are involved in the regulation of all eukaryotic genes (Lee & Young, 2000). The 

mechanisms behind the initiation of transcription by basal transcription factors are well 

characterised (Gross & Oelgeschläger, 2006).  The second category of TFs is more 

numerous and diverse than that of the basal transcription factors.  TFs in this second 
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category are able to bind to DNA in a sequence specific manner and effect the temporal 

and spatial regulation of a gene. The large numbers of these specific transcription 

factors, combined with the large number of possible binding sites means that our 

knowledge of their regulatory function is far from complete. It is these TFs, their 

binding sites and the genes that they regulate that are the focus of this thesis.  

 

Specific transcription factors, which will be referred to simply as TFs for the remainder 

of the thesis, can be classified in two main ways; firstly, by function (Brivanlou & 

Darnell, Jr., 2002), and secondly, by structure (Stegmaier et al., 2004).  Functional 

classification of TFs allows for the classification of TFs by the function of the genes 

that they regulate.  The HNF TFs, for example, regulate genes involved in liver function 

processes, whereas SP1 is a ubiquitous TF, regulating genes involved in many varied 

processes. 

 

Structural classification categorises TFs by the tertiary structure of their binding 

domains into one of five superclasses, each of which has numerous subclasses 

(Stegmaier et al., 2004).  The five superclasses (Matys et al., 2006) are: 
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1. Basic domains, which includes TFs such as AP-1 (activator protein 1), a leucine 

zipper factor, and MyoD (Myogenic differentiation 1) (Ma et al., 1994), a helix-

loop-helix factor. 

 

 

 

Figure 1.1. MyoD a Helix-loop-helix transcription factor, in the basic domain 

superclass, bound to a DNA molecule (PDB code – 1mdy) (Ma et al., 1994). 

 

 

 

 

 

 

 

 

 
 

Image not available due to copyright restrictions
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2. Zinc co-ordinating DNA-binding domains, including the GATA family of TFs 

(Bates et al., 2008) which contain diverse Cys4 zinc fingers, and SP1, which 

contains a Cys2His2 zinc finger domain. 

 

 

 

Figure 1.2. Two GATA transcription factors binding to a DNA molecule (PDB 

code -3dfv) (Bates et al., 2008). 

 

 

 

 

 

 

 
 

Image not available due to copyright restrictions
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3. Helix-turn-Helix factors, including the homeo domain containing POU domain 

factors, such as Oct (Octamer transcription factor), and the tryptophan clusters 

subclass which contains Myb (Ogata, 1994) and numerous interferon regulatory 

factors. 

 

 

 

Figure 1.3. A Myb transcription factor bound to a DNA molecule (PDB code – 

1mse) (Ogata, 1994). 

 

 

 

 
 

Image not available due to copyright restrictions
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4. β-Scaffold Factors with minor groove contacts, including NFκB (Nuclear 

Factor-kappa B) (Muller, 1995) in the Rel homology region class and the STAT 

(Signal transducer and activator of transcription) family of TFs. 

 

 

 

Figure 1.4. Two NFκB p50 transcription factors bound as a homodimer to a DNA 

molecule (PDB code – 1svc) (Muller, 1995). 

 

 

 

 

 

 
 

Image not available due to copyright restrictions
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5. Other transcription factors, such as Copper fist proteins (Turner, 1998) and the 

AP2/EREBP-related factors. 

 

 

Figure 1.5.  The solution structure of a Yeast Copper Fist transcription factor (PDB 

code – 1co4) (Turner, 1998). 

 

The amino acid sequence and the structure of the DNA binding domain in a TF affects 

the sequence of the transcription factor binding site (TFBS) that can be bound.  

However, not all nucleotides within a TFBS may be in direct contact with the TF, hence 

a degree of variability is often allowed in a binding site before the strength of the 

interaction becomes too weak for the TF to bind (Berg & von Hippel, 1987).  

 

 
 

Image not available due to copyright restrictions
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1.1.2. Other regulatory mechanisms 

The position and sequence of TFBSs are extremely important in the regulation of gene 

expression. However the existence of a putative TFBS does not necessarily mean that 

the gene will be regulated by this TF at all times and in all tissues; many other issues 

can affect this.  

 

The first issue to consider when determining if a TFBS is functional is the localisation 

of the gene product.  If the gene is a housekeeping gene it will be switched on in most 

tissues, examples being glyceraldehydes-3-phosphate dehydrogenase (GAPDH) and 

succinate dehydrogenase (SDHA) (Silver et al., 2006).  However, if the gene product 

has a specific function it may only be switched on in certain tissues or at certain times.  

Some TFs, such as Sp1, are found ubiquitously and are involved in many diverse 

signalling pathways (Lin et al., 2009; Prasanna Kumar et al., 2008; Sugawara et al., 

2007).  Many other TFs are much more specific, occurring only in certain tissues.  The 

Hepatocyte nuclear factors-3 alpha, -3 beta and -3 gamma (HNF-3α, HNF-3β, HNF-3γ) 

are good examples of this type of transcription factor.  HNF-3α, HNF-3β and HNF-3γ 

are found in the liver and regulate a number of hepatocyte-specific genes (Clevidence et 

al., 1993).  Binding sites for HNF factors found in genes relating to processes in the 

brain or the heart are much less likely to be functional binding sites than those found in 

genes relating to the liver. 

 

The second mechanism to consider when differentiating between functional and non-

functional TFBSs relates to the shape of the DNA. In the cell, DNA is not a linear 

molecule but is coiled around histone molecules (Kornberg, 1974).  Histone molecules 

are octamers consisting of 2 copies of H2A, H2B, H3 and H4.  The DNA wrapped 
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around this molecule forms a nucleosome, approximately 147bp wrapped in 1.67 left-

handed superhelical turns (Luger et al., 1997).  This DNA coiling affects the 

accessibility of some potential TFBSs and renders them non-functional. This effect has 

been shown to prevent the initiation of transcription (Lorch et al., 1987).    

 

1.2. Predicting function from Co-regulation 

One of the working hypotheses of functional genomics is that genes with similar mRNA 

expression profiles are likely to be regulated via the same mechanisms.  Microarray 

experiments are based on this hypothesis and allow mRNA expression data to be 

extrapolated to regulatory networks (Altman & Raychaudhuri, 2001; Brazma et al., 

1998).  Clustering experiments have given indirect evidence for this hypothesis.  When 

genes have been clustered, according to their mRNA expression profiles, the clusters 

often share a common TF (Brazma et al., 1998; Tavazoie et al., 1999; Wolfsberg et al., 

1999).  Following these experiments, a wide scale analysis in Saccharomyces cerevisiae 

was carried out by Allocco et al. (Allocco et al., 2004).  In this study, data from a 

genome wide binding analysis was used in combination with mRNA expression data to 

quantify the likelihood of genes sharing a common TFBS, given a certain level of 

similarity in expression profiles.  It was shown that genes with expression profiles with 

a correlation greater than 0.84 had a greater than 50% chance of sharing a common 

TFBS.  At lower correlation levels a much lower fraction of the gene pairs shared a 

TFBS.  However, when information about function, through the use of gene ontology 

(GO) terms, was included, it was shown that gene pairs with correlations between 0.5 

and 0.8 were more likely to share a TFBS if they had a high level of GO term similarity 

(Figure 1.6). 
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Figure 1.6. Co-regulation vs. co-expression and functional similarity as defined by 

level of GO term match. A, B and C were created using the biological process, 

molecular function and cellular component ontologies, respectively. For each of the 

three ontologies, the fraction of gene pairs sharing a common transcription factor binder 

is shown as a function of both correlation in expression profile and the level of GO term 

match (Allocco et al., 2004). 

 
 

Image not available due to copyright restrictions
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Marco et al. (Marco et al., 2009) have carried out an analysis similar to that carried out 

by Allocco et al. (Allocco et al., 2004); however this analysis has been carried out in 

Drosophila melanogaster.  Experimentally verified TFBSs were extracted from the 

REDFly 2.0 database (Halfon et al., 2008), plus some additional TFBS data from a 

study by Li et al. (Li et al., 2008).  Expression profiles were extracted from microarray 

analyses (Spellman & Rubin, 2002) and co-expression levels were measured using 

Pearson’s correlation coefficient.   

 

Genes sharing at least one TFBS had a significantly higher correlation coefficient than 

genes with no common TFBSs (p<0.01).  The average correlation coefficient was again 

higher for genes sharing two TFBSs; however the difference was not significant (Marco 

et al., 2009).  In the S. cerevisiae analysis 100% of genes with expression correlation 

≥0.9 shared at least one TFBS in common (Allocco et al., 2004).  In the D. 

melanogaster analysis only 24% of genes with ≥0.9 expression correlation were found 

to share a TFBS.  This implies that while some highly co-expressed genes may be found 

by comparing TFBSs, unfortunately there may also be a high rate of false negatives.  It 

would be expected that when applying this analysis to a higher level organism, such as 

Homo sapiens, this effect would be even greater. 

 

Recently, methods have been developed to combine transcriptional information with 

microarray experiment results.  Microarray experiments are often clustered to find co-

regulated genes.  However the genes in these clusters may be co-expressed but not co-

regulated.  By combining the two sets of data together there is a much higher chance of 

finding genes which are both co-expressed and co-regulated (Clements et al., 2007).   

The results obtained by Allocco et al. show a correlation between the level of the GO 
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match and the gene expression correlation coefficient (Allocco et al., 2004).  Analysing 

the level of GO term at which the two genes match is not necessarily the most 

informative method of assessing the similarity between the annotations of the two 

genes.  The problem arises due to the structure of the gene ontology graph, where leaf 

nodes can have any number of generations of parent nodes, causing leaf nodes to have 

varying levels of specificity.  This means that nodes on a certain level may have 

different degrees of specificity and are therefore not immediately comparable.  A 

number of statistical methods have been developed to address these problems (Rivals et 

al., 2007; Pesquita et al., 2008; Tao et al., 2007).   

 

One such method is the relative specific similarity (RSS) method which compares the 

similarity between two GO terms of the same category i.e. biological process, molecular 

function or cellular component (Wu et al., 2006).  RSS uses three components to assess 

the similarity between two GO terms (termi and termj): α, β and γ.  The α component 

measures the similarity between the paths from termi to the root node e.g. biological 

process (GO:008150), and termj to the same root node (equation 1.1), in effect it 

determines the most similar shared term (MRCA).  
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The β component measures the generality of termi and termj in the GO (equation 1.2).  

The generality of a term is defined as the minimum distance between it and the leaf 

terms decending from it.   
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The γ component measures the local distance between termi and termj in relation to the 

most similar shared term (MRCA)(equation 1.3).   
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The RSS score is shown in equation 1.4, where MaxDepthGO is the maximum depth 

between root and leaf nodes in the graph. 
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The statistic used to measure the similarity of GO terms in this thesis is the path specific 

relative similarity score (PSRSS), a statistic derived from RSS and developed by David 

Damerrell (personal communication). 

 

The difference between the PSRSS and the RSS is in the MaxDepthGo component.  In 

RSS the MaxDepthGo term is the same for all terms in the GO graph.  However, it is 

entirely possible that the terms of interest have maximum paths which are much shorter 

than this value.  In PSRSS this component is term specific, giving a different 

MaxDepthGo depending on the terms of interest.  This prevents bias against terms 

which, while specific concepts, have short paths from the root node, although does bias 

the statistic to terms which have not been fully mapped to the GO. 
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1.3. Determining Transcription factor binding sites 

1.3.1. Experimental methods 

Experimental methods for determining TFBSs and their functionality include: 

electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP) 

and ChIP-chip assays.  Each of these methods has advantages and disadvantages.   

 

Electrophoretic mobility shift assays (EMSAs) (Fried & Crothers, 1981; Garner & 

Revzin, 1981) are the traditional approach for assessing protein-DNA interactions.  

EMSAs separate a protein bound DNA molecule from the unbound DNA molecules and 

‘shift’ them on the gel according to size and shape, the bound molecules moving 

different amounts to the unbound molecules.  It allows for the determination of whether 

a particular protein has the ability to bind a specific DNA sequence in vitro, however it 

is unable to tell us whether this interaction is functional in vivo (Elnitski et al., 2006).   

 

Chromatin immunoprecipitation (ChIP) assays are an alternative method which allow 

for binding reactions to be analysed in vivo in real time.  ChIP assays cause cross-

linking to occur between proteins and their DNA recognition sites through the 

application of formaldehyde, the DNA is then fragmented and precipitated by a 

transcription factor-specific antibody.  After precipitation the cross-links are dissolved 

and the DNA sequence is elucidated through a PCR amplification reaction.  This 

method is therefore particularly useful when the specific DNA binding sequence is not 

known. A variation on the ChIP assay, ChIP-chip (Ren et al., 2000), is a high 

throughput version of the reaction, the DNA binding sites recovered in a ChIP assay are 

hybridised to a microarray chip.  The DNA from the ChIP assay is labelled with Cy5 
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and an equal amount of total input DNA is labelled with Cy3, the microarray chip can 

then be visualised in the usual way. 

 

Experimental techniques, while the most comprehensive and reliable methods for 

discovering functional TFBSs, are time consuming and expensive.  In many cases these 

costs would be decreased by a pre-processing step using in silico methods to make 

predictions about the location of TFBSs. A number of computational prediction 

methods currently exist and will now be discussed.   

 

1.3.2. In Silico prediction of Transcription Factor Binding Sites 

1.3.2.1. TFBS databases 

Information known about TFBSs is stored in two principle databases TRANSFAC 

(Matys et al., 2006) and JASPAR (Bryne et al., 2008; Sandelin et al., 2004a; Vlieghe et 

al., 2006). Information is stored as position weight matrices (PWM) which describe the 

probability of each nucleotide occurring at each position in the TFBS.  

 

TRANSFAC exists in two forms; the public version, containing a reduced set of TFBSs, 

and the professional version, containing the whole of the TRANSFAC database.  

TRANSFAC stores data in three primary tables; Gene, Site and Factor.  These tables 

contain information on regulated genes, TFBSs and TFs respectively (Matys et al., 

2006).  The site table contains both genomic binding sites and artificial binding sites 

from oligonucleotide selection assays or IUPAC consensus sequences.  The information 

in these tables is manually extracted from the literature by a curator and is usually based 

on experimental evidence. Meta data is inferred via comparison and classification of 

this data (Matys et al., 2006).  In addition to this primary data, TRANSFAC contains 

 
 



 28  

secondary data, the most important of this being information on TFBS matrices.  

Information from the Site table is collated for each TF and nucleotide distribution 

matrices are produced and stored in the Matrix table. 

 

JASPAR, unlike TRANSFAC, is an open access database with all data free to the 

public.  JASPAR CORE, the central database of JASPAR contains a set of curated, non-

redundant models from multi-cellular eukaryotic organisms (Sandelin et al., 2004a).  

Other JASPAR databases also exist, e.g. JASPAR PHYLOFACTS, a database of 

evolutionary conserved motifs in 5’ promoter regions of multi-cellular eukaryotes 

(Bryne et al., 2008).  The purpose of JASPAR is to act as a repository for TFBS matrix 

models, not for individual TFBSs (Bryne et al., 2008).  This is the main difference 

between the purposes of the two databases.   

 

1.3.2.2. Prediction algorithms for TFBSs 

With the large volume of DNA sequences deposited in public databases, algorithms 

have been developed to make predictions on the location of TFBSs in genomic DNA.  

Such prediction algorithms can be categorised into three groups.  The first, and largest 

group, includes methods which match DNA motifs to those stored in a database of 

known TFBSs (Cartharius et al., 2005; Kel et al., 2003; Lenhard & Wasserman, 2002; 

Sandve et al., 2007).  Many of these algorithms match DNA motifs against 

TRANSFAC (Matys et al., 2006).  The second group uses phylogenetic footprinting, 

which involves the comparison of orthologous sequences, to detect conserved motifs 

(Carmack et al., 2007; Friberg, 2007; Sandelin et al., 2004b; Tsai et al., 2007).  The 

third group uses ab initio methods to search the genomic DNA for over expressed 
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motifs in groups of genes known to have similar functions (Corà et al., 2005; Dai et al., 

2007).   

 

1.3.2.3. Methods using Position Weight Matrices for TFBS prediction 

Most TFBS prediction algorithms which use TFBS databases use PWMs, also known as 

position specific scoring matrices (PSSM), to find probable binding sites.  PWMs are 

created by aligning families of experimentally determined TFBSs and calculating the 

frequency of each nucleotide base, at each position in the alignment, assuming 

independence.  This creates a position frequency matrix (PFM) which can then be 

converted into a PWM through the generation of log-likelihood scores for each 

nucleotide and position (Figure 1.7) (Crooks et al., 2004; Wasserman & Sandelin, 

2004).  The algorithms used by TRANSFAC to create the PFMs have not been 

published. However, a study by Fu and Weng (Fu & Weng, 2005), showed 

TRANSFAC PWMs to have a superior ability to detect functional TFBSs than matrices 

created using the other algorithms tested; MotifSampler, MEME, AlignACE and 

Possum.  The exception to this being matrices created using GLAM (Frith et al., 2004) 

which had a comparable performance to the TRANSFAC matrices. 

 

Although hundreds of PWMs are available through TRANSFAC and JASPAR, many of 

these PWMs are not large enough nor specific enough to enable reliable predictions of 

TFBSs without large numbers of false positive predictions occurring by chance 

(Rahmann et al., 2003). Hence, algorithms have been developed which use additional 

features to reduce the number of false positive TFBS predictions.  Features which have 

been used include phylogenetic data (Lenhard et al., 2003), nucleosome positioning 

(Westholm et al., 2008), clustering of binding sites (Zeng et al., 2008) and the distance 
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from both the transcription start site (Makita et al., 2005) and from other TFBSs 

(Larsson et al., 2007; Singh et al., 2007).  Successful methods have been developed 

using each of these methods.  However, none have completely solved the problem.   

 

 

Figure 1.7. Diagram describing the creation of a position weight matrix (PWM) for 

MEF2 (myogenic enhancer factor 2) from transcription factor binding site (TFBS) 

sequence alignments.  A position frequency matrix (PFM) is created from a sequence 

alignment of the TFBS for the relevant transcription factor.  The PWM is created from 

the PFM and can be represented numerically or graphically. Alignments and the PWM 

representation were retrieved from TRANSFAC. 

 

1.3.2.4. Phylogenetic Footprinting for TFBS prediction 

Phylogenetic footprinting is one way to improve the ratio of functional to non-

functional TFBSs predicted using PWM based methods.  It is used to good effect in the 

ConSite algorithm (Lenhard et al., 2003; Sandelin et al., 2004b).  Phylogentic 

footprinting involves the retrieval of orthologous sequences, the alignment of the 

sequences, and the subsequent use of a PWM searching algorithm on the alignment.  By 
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comparing homologous sequences, and only retrieving TFBSs which score above a 

certain threshold value in both the sequences in the alignment, TFBSs can be filtered for 

those which have been evolutionarily conserved.  These TFBSs are more likely to be 

functional binding sites; gene expression is known to be well conserved in vertebrates, 

and non-functional sequences are known to have a much higher mutation rate (Ganley 

& Kobayashi, 2007; Sorek & Ast, 2003).  This is particularly the case if the orthologous 

sequences are carefully chosen. The work of Lenhard et al. shows that mouse-human 

comparisons are a particularly suitable evolutionary distance to consider (Lenhard et al., 

2003). Most phylogenetic methods for TFBS discovery in the human genome focus on 

the comparison of two species (Lenhard et al., 2003), although methods which use 

multiple genomes have been developed for Drosophila or prokaryotic motif prediction 

(Maeder et al., 2007; Neph & Tompa, 2006; Sandelin et al., 2004b). The use of only 

one comparison genome makes the analysis prone to errors due to lack of orthologous 

sequences, or to alignment errors caused by the difficulty in aligning badly conserved 

sequences such as promoter regions (Satija et al., 2008).   

 

1.3.2.5. Other Computational methods 

Ab-initio methods of TFBS prediction look for statistical over-representation of motifs 

in a sequence, or a set of sequences.  The occurrence of a particular motif more 

frequently than would be expected for a random motif, implies that the sequence is 

being conserved.  The conservation of the motif implies that it is a biologically relevant 

sequence.  These methods are particularly useful when searching for motifs in genes 

which are assumed to be co-regulated.  These methods are less useful for sets of 

sequences from genes not expected to be co-regulated.  These sequences may not 

contain over-represented TFBS motifs.  AlignAce (Hughes et al., 2000; Roth et al., 
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1998) and MEME (Zheng et al., 2003) are examples of ab initio algorithms and involve 

the analysis of DNA sequences for short motifs which occur more often than expected 

by chance.  One of the main advantages of this type of method is to be able to predict 

unknown motifs.  This is not possible using the PWM based methods as only well 

characterised binding sites can be searched for. 

 

1.4. Finding functionally related genes in biological systems 

This thesis focuses on the prediction of functional TFBSs to identify functionally 

related genes in two biological systems. The first system is the IFN-γ immune response 

to the Mycobacterium bovis Bacillus Calmette-Guérin vaccine (hereafter referred to as 

BCG) vaccination given to infants in The Gambia (Section 1.5 – 1.9).  For this system 

the starting point was set of 532 genes from 3 different chromosomal regions identified 

in a genetic linkage study, which include genes linked to the the IFN-γ immune 

response to BCG.  The chromosomal regions identified in the linkage study are large 

and the aim in this system was to use methods which compare TFBSs to identify co-

regulated genes linked to the IFN-γ immune response. The second system is the 

interaction between the Epstein Barr Virus and its human host, through the Zta protein 

(Section 1.10 – 1.12).  In this system TFBS prediction methods are used to identify 

candidate genes with Zta binding sites and further functional analyses are conducted to 

identify potential functional links between these genes.  

 

1.5. System 1: IFN-γ immune response to BCG 

1.5.1. Genetic Linkage Analysis 

Following the success of linkage analysis in the identification of genes responsible for 

Mendelian disorders (Abou-Sleiman et al., 2004; Altshuler et al., 2008; Pericak-Vance, 
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2001), the methodology was used to find genes involved in complex traits, such as the 

IFN-γ immune response to BCG.  Linkage analysis is based on the assumption that, 

during meiosis, independent assortment has occurred.  The Law of Independent 

Assortment states that alleles of different genes assort independently of one another 

during gamete formation.  An exception to this occurs when genes are positioned 

closely together on a chromosome, reducing the likelihood of a crossover event 

occurring between them.  Genes which are physically close are genetically linked and 

alleles are more likely to be inherited together.  The distance between genes can then be 

calculated using this knowledge (Ott, 1991; Pericak-Vance, 2001).  The more closely 

together the genes are positioned on the chromosome, the more frequently alleles occur 

together in families.  Due to this linkage phenomenon, genetic markers can be used to 

determine where in the genome the genes related to a certain disease or condition lie.  

Markers are genotyped at intervals in the region of interest and inheritance of marker 

alleles in relation to the trait of interest is studied. Cosegregation of a particular allele of 

a marker and the trait within families suggests the two are linked (Pericak-Vance, 

2001).  However, in order to find the exact location of the gene the markers must be 

positioned very closely together and large numbers of families must be studied.  Often a 

preliminary search with markers a greater distance apart will be carried out to determine 

the region in which the gene(s) of interest lie before continuing to a much more specific 

search in those regions to determine the actual gene(s). The aim of the TFBS prediction 

methods applied to this system is to take this coarse linkage data and identify candidate 

genes in-silico and hence avoid the need for further linkage analysis.  

 

An alternative method of determining the genes involved in complex traits is by the use 

of genetic association studies.  Association studies have been shown to be able to detect 
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smaller genetic effects than linkage analysis studies.  These studies involve the 

genotyping of single nucleotide polymorphisms (SNPs) and the statistical analysis of 

whether a certain SNP is causal for a disease (Jakobsdottir et al., 2009).  However, until 

recently it has not been feasible to carry out study of the size required by association 

studies; thousands of individuals are required for testing by approximately 0.5 million 

markers (Barrett, J. et al., 2007; Collins, 2009).  It was due to these extensive 

requirements and cost, for a genetic association study, that a linkage study was carried 

out. 

 

1.5.2. Tuberculosis : an overview 

Tuberculosis (TB) is one of the major causes of death in humans, particularly in Asian 

and African populations.  It is estimated that 2 billion people are infected with TB; this 

is equal to one third of the world’s population (Stop TB Partnership and World Health 

Organization, 2006). In 2006, 9.2 million new cases and 1.7 million deaths occurred 

across the world (World Health Organisation, 2009). In most developing countries the 

BCG vaccine is used as an integral part of the TB prevention program.  The BCG 

vaccine, however, has variable efficacy.  In different population BCG efficacy varies 

from 0-80% (Fine, 1995). TB cannot be entirely prevented through the use of this 

vaccine so treatments must be administered to individuals who develop disease.  

Traditionally TB is treatable, however due to inconsistent or partial treatment drug 

resistant TB strains have developed.  Multidrug-resistant TB (MDR-TB) fails to 

respond to standard first line drugs and as such is difficult and expensive to treat (Heym 

et al., 1994; Jacobs, 1994).  Extensively drug-resistant TB (XDR-TB) is caused by TB 

strains where second-line drug resistance has developed as well as first line drug 
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resistance.  XDR-TB is virtually untreatable as the situation stands (Matteelli et al., 

2007). 

 

The TB epidemic has not reached its peak in many countries, particularly in Africa.  

sub-Saharan African countries have the highest burden of TB morbidity and mortality 

(Corbett, 2003; Dolin et al., 1994), a large proportion of which is due to co-infection 

with HIV.  Many social factors increase the incidence of TB in these regions such as; 

population growth, over crowding, war, smoking, alcoholism and natural disasters such 

as drought and famine (Daniel et al., 1994; Lönnroth et al., 2009).  Resistant strains of 

TB have appeared in developing countries such as those in sub-Saharan Africa due to 

the lack of availability of first line drugs, and the difficulty in administering 6 month 

long treatments for TB. 

 

1.5.3. Immune response to TB 

Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis.  M. 

tuberculosis is an intracellular parasite that grows within mononuclear phagocytes and 

as such requires the co-ordinated activity of a number of different immunological 

defence systems (Flynn & Chan, 2001).  There is evidence that the host response plays 

an important role in determining the clinical symptoms and ultimate outcome for 

individuals infected with M.tuberculosis (Young, 1993). 

 

1.5.4. Innate immunity 

The human response to M.tuberculosis is provided primarily by the innate immunity of 

the host.  The macrophage constitutes the primary defense against invasion.  For the 

majority of microbes, the acidic and hydrolytically active environment of the 
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phagosome is deadly (Dietrich & Doherty, 2009; Rhode et al., 2007).  For microbes 

where this response is not sufficient the macrophage undergoes a number of steps to 

change it into a fully activate macrophage.  On entering the host, M tuberculosis is 

recognised by the macrophage through the activation of at least two pattern recognition 

receptor families: the Toll-like receptors (TLR) and the nucleotides oligomerization 

domain (NOC)-like receptors (Balaram et al., 2009; Jo, 2008).  The TLR-2, TLR-1 

heterodimer activates NF-κB after recognition of a triacylated lipoprotein derived from 

M. tuberculosis.  Activation of NF-κB leads to the production of inflammatory 

cytokines and direct antimicrobial activity (Brightbill et al., 1999; Liu et al., 2006; 

Thoma-Uszynski et al., 2001).  NOD2 recognises a peptidoglycan, muramyl dipeptide 

(MDP), which can be found on M. tuberculosis (Girardin et al., 2003; Yang, 2007).  

The activation of NOD2 leads to the activation of a NF-κB mediated response, but also 

causes an activation of the inflamasome (Delbridge & O’Riordan, 2007).  The activated 

macrophage has increased microbicidal activity through the expression of inducible 

nitric oxide sythase (iNOS) (MacMicking et al., 1997; Nathan, 2002).  This has been 

shown to be a highly effective mechanism in murine models of tuberculosis infection 

(Chan et al., 1995; Chan et al., 1992; MacMicking, 1997). 

 

M. tuberculosis is able to survive within a macrophage by inhibiting phagolysosome 

biogenesis.  It is thought that the induction of autophagy by the macrophage overcomes 

this maturation block and allows the M. tuberculosis to be eliminated (Vergne et al., 

2006).  Stimulation of mouse macrophages with IFN-γ has been shown to induce 

autophagy (Gutierrez et al., 2004).  Serum starvation and rapamycin induced 

autophagy-dependent activity has been shown to be an active defense against M. 

tuberculosis in human macrophages (Gutierrez et al., 2004).  
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1.5.5. Evidence for genetic factors 

Susceptibility to M. tuberculosis was thought to involve genetic factors long before this 

hypothesis could be tested.  In the nineteenth century, when European TB incidence had 

reached epidemic levels, it was observed that incidence of TB appeared to run in 

families.  It has been shown that only 10% of individuals who contract the infection 

develop the disease (Murray et al., 1990).  This suggests that susceptibility or resistance 

to mycobacterial infections varies between individuals.  Convincing evidence for the 

genetic influence in the level of resistance to TB comes from an accidental study in 

Germany in 1926 (Birkhaug, 2005).   Two hundred and fifty one children were 

immunised with a BCG vaccine which had been contaminated by the virulent Kiel 

strain of M. tuberculosis.  Of the children infected with M. tuberculosis, 47 (20%) 

developed no clinical symptoms, 127 (50%) developed radiologically evident disease 

and 77 (30%) died.  That not all children developed the same level of disease, if they 

developed the disease at all, suggests that there is variability in susceptibility to the 

disease between individuals and that this difference may be genetic.  Further evidence 

for genetic factors, in the susceptibility to TB, come from twin studies (Kallman & 

Reisner, 1943).  The prophet survey of the 1950s concluded that there was a 2.5 fold 

higher concordance rate for TB among monozygotic twins compared to dizygotic twins, 

clearly showing a large genetic component to development of the disease (Comstock, 

1978).  Further studies into this survey have questioned the strength of this relationship 

due to an imbalance of variables within subgroups (van der Eijk et al., 2007), however 

there is still undeniable evidence for a genetic element in the human susceptibility to 

TB. 
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1.5.6. Known genetic factors for susceptibility to TB 

The identification of TB susceptibility genes has been attempted by many groups, on 

the grounds that the proteins they encode could be targets for new drugs and vaccines.   

Genes indentified in murine models have proved to be relevant in humans – a good 

example is NRAMP1 (also known as SLC11A1) (Awomoyi et al., 2002; Bellamy et al., 

1998).  Studies in human families with rare mendelian disorders have identified a role 

for genes within the IFN-γ/Interleukin-12 pathway (Casanova & Abel, 2002).  However, 

studies in outbred populations have generally been disappointing (Newport, 2009).  This 

led to the development of the neonatal BCG model in which to study the genetic 

regulation of important immune responses relevant in TB. 

 

1.5.7. Simplifying the Tuberculosis problem 

The response to the Bacillus Calmette-Guérin (BCG) vaccine by naïve individuals can 

be used as a model for infection by M. tuberculosis (Newport et al., 2005).  Infant 

vaccination is an excellent model in which to study the role of host genetic variation in 

the regulation of immune responses: a vaccine represents a controlled antigenic 

challenge in which immunologically naive infants receive the same infecting dose of a 

well characterised antigen(s), and responses are measured at the same interval post-

vaccination in all infants. Variation due to non-genetic causes is minimised as far as 

possible in a human study.  A study was carried out with infant cohorts in the Gambia 

by et al. (Newport et al., 2004).  BCG was given at birth, according to the Expanded 

Programme on Immunisation, to twin pairs.  All study twins received BCG vaccination 

with the same dose of the same BCG strain within 24 hours of birth.  IFN-γ responses to 

mycobacterial antigens including purified protein derivative (PPD), antigen 85, killed 

Mycobacterium tuberculosis (KMTB) and short term culture filtrate (STCF) were 

 
 



 39  

measured at 5 months of age (Newport et al., 2004).  A genome-wide linkage scan was 

conducted in 155 DZ twin families using microsatellite markers spaced at 10 

centimorgan intervals across the genome (Newport et al., see appendix).   

 

Dizygous twins are genetically equivalent to siblings and non-parametric allele sharing 

methods were applied to identify chromosomal regions linked to IFN-γ production.    

Data were analysed using both variance components methods and more robust 

regression-based methods including the Haseman-Elston method (Haseman & Elston, 

1972), which regresses the trait difference squared directly on the identical by descent 

(IBD) allele sharing, and the Visscher-Hopper method, which regresses a weighted 

combination of the trait difference squared and the mean-corrected trait sum squared on 

the IBD sharing (Visscher & Hopper, 2001).   

 

The linkage analysis has identified three chromosomal regions, linked to IFN-γ response 

to BCG. The results show that these regions include 659 genes distributed across 

chromosomes 8, 10 and 11.  A region of chromosome 8 has also been identified as a 

major TB susceptibility locus in Moroccan subjects (Baghdadi et al., 2006), the other 

regions do not appear to have been identified, although other chromosome regions such 

as Xq and 15q have been identified in other studies (Bellamy et al., 2000). 

 

Traditionally, further genetic mapping techniques would be employed to narrow down 

the regions and the candidate genes systematically investigated.  However, this 

approach is laborious, expensive and requires additional clinical cohorts.  Instead, TFs 

and TFBSs in common between genes in each of the gene regions shall be searched for.  
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The similarity of TFBSs in common between the genes will give an indication of genes 

which may be functionally related. 

 

1.6. System 2: Epstein Barr Zta binding in the human host  

1.6.1. Epstein Barr Overview 

Epstein-Barr virus (EBV) is a member of the herpes family and is also referred to as 

human herpesvirus 4 (HHV-4) (Epstein et al., 1964).  Approximately 95% of the human 

population is infected with EBV and most infection is asymptomatic (World Health 

Organisation, 2008).  Infection usually occurs in adolescence through contact with 

infected saliva or through the airborne virus; in adolescents and young adults (15-25) 

initial infection causes infectious mononucleosis, also known as glandular fever, in 

approximately 50% of cases.  Infectious mononucleosis is usually a benign and self-

limiting disease.  However, EBV has also been associated with a number of malignant 

tumours which is a much more serious complication of EBV infection (Maeda et al., 

2009). 

 

Burkitt’s lymphoma is a tumour of B cell origin, occurring primarily in children 

between 3 and 13 years of age, with a peak incidence at 6 or 7 years.  The tumour 

occurs endemically in parts of Africa and in Papua New Guinea, particularly in areas in 

which malaria in also endemic (Bornkamm et al., 2009; Wright et al., 2009).  Areas in 

which malaria has been eradicated have a much lower incidence of Burkitt’s lymphoma, 

as do children who carry the sickle cell anaemia allele, which is known to give 

protection against malaria.  Although it seems likely that malaria is a co-factor of EBV 

in the development of Burkitt’s lymphoma, the mechanism is yet to be completely 

elucidated.  It is thought, however, that the malarial infections may have reduced the 
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patients’ resistance to EBV (Ferry, 2006).  Analysis of Burkitt’s lymphoma tumour cells 

have shown multiple copies of the EBV genome to be present, and infectious EBV 

particles can be recovered from tumour cell lines.  All patients with African Burkitt’s 

lymphoma have antibodies to EBV antigens, which are present at much higher levels 

than infected subjects without Burkitt’s lymphoma (Besson et al., 2009; Bhaduri-

McIntosh et al., 2007).  EBV has also been shown to transform human B-lymphocytes 

in vitro and to cause tumours in subhuman primates (Bornkamn, 2009).   Although 

evidence points to a role of EBV in Burkitt’s Lymphoma, the exact role of the virus is 

still unknown (Bornkamn, 2009; Brady et al., 2008).   

 

Nasopharyngeal carcinoma is a tumour of the nasopharynx, or throat, which is also 

associated with EBV.  The tumour occurs most commonly in southern China, however 

it can also be found in localised areas in Africa, Malaysia, Alaska and Iceland.  

Environmental and genetic factors have been implicated in the susceptibility of subjects 

to the development of nasopharyngeal carcinomas and with the highly specific 

geographical locations in which the disease can be found.  As in Burkitt’s lymphoma, 

multiple copies of the EBV genome can be found in the malignant cells of 

undifferentiated nasopharyngeal carcinomas and infectious particles can be recovered 

from cell lines.  The antibodies to EBV antigens are also found to be much higher in 

EBV infected individuals with nasopharyngeal carcinomas than those without (Ayadi et 

al., 2009; Lin, 2009; Mo et al., 2009). 

 

1.6.2. Zta and ZRE3 

EBV has a biphasic infection cycle, consisting of both a lytic and a latent phase.  

During the latent phase, EBV is in a dormant state, only a restricted number of genes 
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are expressed.  These include Epstein-Barr viral nuclear antigens 1, 2, 3A, 3B and 3C 

(EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C), Epstein-Barr nuclear antigen 

leader protein (EBNA LP), Latent membrane protein 1, 2A and 2B (LMP-1, LMP2A, 

LMP2B) and Epstein-Barr viral small RNA 1 and 2 (EBER1, EBER2) (Kieff, 1996). In 

the lytic phase the virus reactivates and starts to replicate itself, a part of the life cycle 

essential for propagation and transmission of the virus (Bornkamm & Hammerschmidt, 

2001; Rodriguez et al., 2001).  The switch to the lytic phase is though to be initiated by 

the EBV immediate-early transcription factor Zta (ZEBRA, BZLF1, Z, EB1), encoded 

by the BZLF1 gene (Chevallier-Greco et al., 1986; Countryman & Miller, 1985; Takada 

et al., 1986). BZLF1 is silent during latency, but is expressed early in the lytic cycle and 

has been shown to disrupt latency in EBV (Sinclair, 2003).  Zta binds to Zta response 

elements (ZREs) in order to activate the EBV lytic gene promoters, starting a cascade 

of over 50 genes (Petosa et al., 2006).     

 

Zta belongs to the bZip TF family.  bZip is a family of TFs found across all taxonomic 

groups from viruses to mammals.  Other examples of TFs in this family are c-fos, MafG 

and AP-1.  Zta belongs to the AP-1 sub family and has been shown to have a similar 

binding site to AP-1 (El-Guindy et al., 2006; Farrell et al., 1989). The Zta protein is 

composed of 245 amino acid residues and can be divided into five functional domains.  

The five domains are: a transactivation domain (aa 1-167), a regulatory domain (aa 168-

177), a basic DNA binding domain (aa 178-194), a coiled-coil dimerisation domain (aa 

195-227) and an accessory activation domain (aa 228-245) (Chang et al., 1990; Chi & 

Carey, 1993; Countryman & Miller, 1985; Farrell et al., 1989).    
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A number of ZREs have been identified and reported in the literature (Lehman et al., 

1998), all with a binding sequence of 7 nucleotides, conserved for that particular ZRE.  

This study concentrates on ZRE3, which consists of a 7 base conserved sequence; 

TCGCGAA.  ZRE3 is shown to preferentially bind Zta in a methylated state (El Guindy 

et al., 2006).   

 

Figure 1.8. The Zta transcription factor in complex with a DNA binding site (PDB file 

2C9I) (Petosa et al., 2006).  

 

1.6.3. Known ZRE3 interactions 

Zta has been shown to bind to motifs in human promoter regions and interact with 

cellular factors, activating genes in a manner out of the control of the human host.  

TRK-related tyrosine kinase has been shown to be up-regulated in Zta transfected cells 

but not in control cells (Lu et al., 2000).  The up-regulation of a kinase suggests that 

host signalling cascades could be initiated by Zta.  Zta is able to regulate AP1 protein 

expression and to compete with Fos-Jun heterodimers for AP1 sites suggesting that Zta 
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also has the potential to interfere with AP1-mediated cell proliferation and 

differentiation (Speck et al., 1997).  Zta has also been shown to induce cell cycle arrest 

in the G0/G1 phase of epithelial tumour cell lines through the activation of p53, p21 and 

p27 (Cayrol & Flemington, 1996). Another effect of the Zta protein is an inhibition of 

the IFN-γ signalling pathway, altering host immune responses and suggesting a 

mechanism through which EBV may avoid host responses during initial infection 

(Morrison et al., 2001).  

 

1.7. Thesis Aims 

The three main aims of the work presented in this thesis are to:   

(a) Benchmark current TFBS prediction tools and develop novel methods for 

improving their accuracy for predicting functional TFBSs.  

(b) Apply the improved TFBS prediction method(s) to identify candidate genes 

linked to the the IFN-γ response to BCG, in biological data derived from a genetic 

linkage study.  

(c) Apply TFBS prediction methods to the identification of genes with TFBSs 

for the Zta transcription factor which activates lytic gene promoters in EBV.  
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2. Benchmarking and Combining TFBS prediction 

algorithms 

2.1. Introduction 

The first step in the identification of co-regulated genes through shared TFs is the 

accurate prediction of TFBSs (Section 1.2).  A large number of TFBS prediction tools 

exist, which use a variety of different methods, and the field is continually growing 

(Section 1.3.2).  One of the simplest groups of TFBS prediction tools use PWMs, or 

other pattern matching techniques, to search a DNA sequence for motifs contained in 

databases such as TRANSFAC (Matys et al., 2006) or JASPAR (Bryne et al., 2008). 

 

One problem that commonly occurs with pattern matching TFBS prediction algorithms 

is that in order to achieve a high level of sensitivity the level of specificity is low.  This 

results in a large number of false positive predictions.  It is a common approach in many 

fields to combine different prediction algorithms and produce a consensus method with 

a higher rate of precision than the individual algorithms.  The consensus method 

assumes that a prediction made by more than one algorithm is likely to be more accurate 

than one made by a single algorithm.  Such an approach has been used in the prediction 

of structural domains and secondary structure in proteins (Frousios et al., 2009; Kumar 

& Carugo, 2008; Vilar et al., 2009). The integration of multiple databases or methods 

has also been used for TFBS prediction.  PromAn is a tool developed for promoter 

analysis which integrates a phylogenetic footprinting method with multiple database 

sources to search for TFBSs (Lardenois et al., 2006). However, what is lacking in this 

field is the systematic bench marking of algorithms to evaluate their reliablity and 

potential applications.  Many programs have been tested on extremely small and highly 
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specific datasets, but when scaled up to large gene datasets actually perform very 

poorly.  In addition many TFBS prediction algorithms have restrictions on the length or 

number of sequences that can be processed which limits their application to large gene 

datasets.  The research described in this chapter addresses this issue. 

 

2.1.1. Algorithms to be compared 

Seven algorithms, in the pattern matching group of TFBS prediction tools, were 

benchmarked and then used to create a consensus TFBS prediction method (Table 2.1).  

These algorithms were: (I) Alibaba 2.1 (Grabe, 2000), (II) Match (Kel et al., 2003), (III) 

MatInspector (Quandt et al., 1995), (IV) Patch (Striepe & Goessling, 2009), (V) P-

Match (Chekmenev et al., 2005), (VI) TFsearch (Akiyama, 1998) and (VII) the 

forkhead TFBS perl modules (Lenhard & Wasserman, 2002).  The algorithms use 

pattern matching techniques, primarily PWMs, to search TRANSFAC, JASPAR or an 

in house database of a similar type. 

 

(I) AliBaba 2.1 

AliBaba 2.1 was created as an alternative to the programs that rely on predefined 

matrices (Grabe, 2000).  With programs which rely on predefined matrices it is difficult 

to make generalized statements about how accurate the predictions are; some matrices 

may be very specific, while others may have a much weaker specificity.  Therefore, 

AliBaba 2.1 constructs context specific matrices for each sequence to be analysed. 

AliBaba 2.1 is based on the theory of Berg and von Hippel (Berg & von Hippel, 1987) 

which calculates how much energy is needed to bind a TF to DNA. The less 

conservation there is between the DNA sequence and the consensus sequence, the more 

energy is needed to bind the TF (Grabe, 2000).  In an unpublished analysis, details of 
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which are available on the AliBaba 2.1 website (Grabe, 2000), Alibaba 2.1 had a higher 

sensitivity and a higher sensitivity/specificity ratio than MatInspector, a commercially 

available algorithm also included in this analysis.  

 

(II) Match 

Match is a PWM based search program that uses the information contained in the 

Transfac database (Matys et al., 2006) to search for likely TFBSs (Kel et al., 2003).  

Two scores are used to assess similarity between a prediction and a known TFBS 

matrix, the Matrix Similarity Score (MSS) and the Core Similarity Score (CSS).  These 

scores range from 0.0 to 1.0, where 1.0 denotes an exact match and 0.0 denotes an 

incorrect match.  The scores are calculated in the same way, but MSS analyses the 

whole sequence, whereas CSS analyses only the core sequence.  The core sequence is 

defined as the first 5 conserved positions in the matrix.  A TFBS prediction is only 

included if it has both an MSS and a CSS score higher than the threshold value, either 

the default or a user defined value (Kel et al., 2003).  

 

Three different threshold values are recommended for Match (Kel et al., 2003).  The 

first is designed to minimise false negative results.  The threhold is set so that 90% of 

correct results in the data set are found.  An error rate of 10% is tolerated to take into 

account that the data used to determine the threshold values might contain weak 

representatives.  This set of threshold values is designated minFN.  The second score 

minimises false positive results.  This is achieved by setting the score at a value where 

no TFBSs were predicted in sequences which are either known or assumed to contain no 

functional TFBSs.  This set of threshold values is designated minFP.  The final score, 
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and default setting, is set to minimise the sum of both errors. This set of threshold 

values is designated minSum (Kel et al., 2003). 

 

There are two versions of Match.  The first version of Match searches the public version 

of TRANSFAC, the second version searches the professional version and can only be 

accessed though a subscription to the professional database (Matys et al., 2006).  

TRANSFAC Professional is regularly updated; the current version (2009.2) contains 

892 matrices alongside information about 12,443 transcription factors and 37,255 genes.  

Transfac Public (version 7) was last updated in 2005, and contains 398 matrices 

alongside information about 6133 transcription factors and 2397 genes. Therefore, for 

predictions which represent the current knowledge of TFBSs, the professional database 

is superior. 

 

(III) MatInspector 

MatInspector (Quandt et al., 1995) is another PWM weight matrix based search 

program. MatInspector uses both a CSS and MSS score, similar to Match, but the MSS 

score is only calculated if the CSS score exceeds a given threshold value.  This pre-

selection step reduces the total number of matches and increases the performance of the 

algorithm (Quandt et al., 1995). A final difference between MatInspector and Match is 

that MatInspector uses a family concept to group matrices.  This process reduces the 

number of redundant matches by only showing a match to a family of matrices rather 

than including matches to all similar matrices.  MatInspector uses 634 matrices 

constructed by using information from the public Transfac database.  This is the largest 

number of matrices available free of charge to the academic community (Cartharius et 

al., 2005).  The free version of MatInspector is restrictive in that each search is limited 
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to 5000 TFBS predictions, and a user is only permitted 20 searches a month. However, a 

licensed version removes these restrictions.   

   

(IV) Patch 

Patch (Striepe & Goessling, 2009) is a pattern based search program, which, like Match, 

uses PWMs from the TRANSFAC Professional database to predict likely transcription 

factor binding sites. Unfortunately, no further literature exists to provide more details on 

the method. 

 

(V) P-Match 

P-Match (Checkmenev et al., 2005), as its name suggests, is a combination of the 

pattern matching method used in Patch and the PWM searching method used in Match.  

This combination of methods provides a higher level of accuracy than either method 

separately.  P-Match searches PWM and binding site alignments found in TRANSFAC 

professional version 6.0, which while not the current version of TRANSFAC is far more 

up to date than that used by many other programs, e.g. TFSearch. 

 

(VI) TFSearch 

TFSearch searches sequence fragments against the 2,285 matrices found in the 

TFFACTOR section of the public TRANSFAC database version 3.3 (Akiyama, 1998) 

which was released in January 1998.  In the current version of TRANSFAC Public, 

version 7.0, there are 6,133 entries in the TFFACTOR table of the database.  TFSearch, 

therefore, is only able to search for a subset of the known TFBSs in TRANSFAC. 
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(VII) TFBS perl modules 

The TFBS perl modules (Lenhard & Wasserman, 2002) are a set of integrated, object 

oriented perl modules designed to enable TFBS detection and analysis.  The modules 

allow for PWM creation or retrieval from either a local database or a database available 

through the internet. The algorithm allows for the detection of putative TFBSs in a user 

given sequence via these PWM.  Unlike the other TFBS prediction methods which are 

all based on external servers (and therefore must limit lengths or numbers of sequences 

which can be processed) the TFBS perl modules can be run locally. Hence the algorithm 

is far more flexible. The TFBS perl modules can also be used for phylogentic 

footprinting methods of TFBS detection, however in this analysis they were used 

without this additional capability. 

 

The majorty of the algorithms assessed rely on PWM to predict TFBS.  However, 

PWMs are not uniform, some allow much more degeneracy in the TFBS motif than 

others, some may contain information confirmed using less accurate techniques than 

others and the frequency of occurrence of motifs matching the PWM across the genome 

can be widely divergent.  The algorithms do not all search using the same set of PWMs.  

This may affect the performance of the algorithms, as the PWMs used in one algorithm 

may be more specific than others, causing fewer false positive results.  It is possible that 

bias is introduced to the analysis because of these factors.  However, because may of the 

algorithms have not been published, it is not possible to determine the PWM datasets 

used to train the algorithms.  Therefore we have assumed, for the purposes of this 

analysis, that the PWM sets for each algorithm are equally reliable.  It is, however, 

important to remember that this may not be the case. 
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In the current chapter, the 7 TFBS prediction algorithms (Table 2.1) were benchmarked 

on a dataset of 151 genes extracted from TRANSFAC Public version 7.0 (Matys et al., 

2006). The performance of pairs of TFBS prediction algorithms were then evaluated to 

assess if combinations of methods gave results that had higher rates of precision, 

sensitivity and specificity than the algorithms separately.  The highest performing 

combined methods were then applied to data from a genetic linkage study. 

 

  Matching 
System 

Database 
Searched 

Scoring 
System 

Reference 

AliBaba 2.1 (I) PWM TRANSFAC 
Public v.7.0 

No score (Grabe, 2000) 

Match (II) PWM TRANSFAC 
Public v.7.0 
 

MSS & CSS (Kel et al., 
2003) 

MatInspector (III) PWM Internal MSS & CSS (Quandt et al., 
1995) 

Patch (IV) PBS TRANSFAC 
Public v.7.0 

SS (Striepe & 
Goessling, 
2009) 

P-Match (V) PWM & 
PBS 

TRANSFAC 
Public v.7.0 

MSS & CSS  

TFSearch (VI) PWM TRANSFAC 
Public 3.3 

SS (Akiyama, 
1998) 

TFBS 
modules 

(VII) PWM TRANSFAC 
Public v.7.0 

SS (Lenhard & 
Wasserman, 
2002) 

Table 2.1. Details of the 7 algorithms assessed.  Matching system refers to whether the 

algorithms uses a Position Weight Matrix (PWM) or some other Pattern Based 

Searching mechanism (PBS).  Only MatInspector uses a database other than 

TRANSFAC (public version 7), using an internal database instead.  The scoring 

systems used by the algorithms fall into three categories; Matrix similarity scores 

(MSS), Core similarity scores (CSS) and other types of similarity scoring systems (SS).  
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2.1.2. Application to genetic linkage data 

Three chromosomal regions, containing a total of 532 genes, have been identified in a 

genetic linkage study.  The study was designed to find genes linked to the IFN-γ 

response to mycobacterial antigens following BCG vaccination (Section 1.9) (Newport 

et al., 2004).  It has been shown that genes with similar functions are likely to be 

regulated by the same, or similar mechanisms, and are likely to share regulatory TFs 

(Section 1.2) (Allocco et al., 2004).  The 3 chromosomal regions contain genes that are 

linked to the IFN-γ immune response but also large numbers of genes that have no 

functional role in the immune response. The working hypothesis was that the genes 

linked to the IFN-γ immune response will have similar transcription factor binding 

profiles.  Hence, in order to identify these IFN-gamma linked genes, TFBSs would be 

predicted for each gene. The TFs that bind to predicted TFBSs in at least one gene from 

each of the three chromosomal regions, using combined pairs of algorithms, would be 

identified. The genes these shared TFs bind would then be investigated further to assess 

their potential functional links to the IFN-gamma response.  

 

2.2. Methods 

2.2.1. Dataset of genes for benchmarking  

Information retrieved from the TRANSFAC database was used as a gold standard to 

measure the performance of the prediction algorithms.  TRANSFAC is useful as a gold 

standard because the data, peer-reviewed and experimentally validated, can be assumed 

to be correct with a high degree of confidence.  There are however problems with the 

use of TRANSFAC as a gold standard.  The nature of curated data is that it is slow to 

accumulate; the input of new TFBS motifs relies on the publication of data and for the 

publication to be found and inputted by the curators.  This naturally leads to the 
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existence of a large number of false negatives – TFBS which cannot be found in the 

data.  A further issue with the use of TRANSFAC is that the majority of the algorithms 

to be analysed were originally trained and tested using TRANSFAC data.  However, 

regardless of these flaws, TRANSFAC is the largest most reliable dataset available for 

TFBS data and therefore is used as the gold standard in this study. 

 

The distance from the start site of all of the TFBSs in the public TRANSFAC version 

7.0 (Matys et al., 2006) was analysed to determine the optimum length of sequence in 

which to predict the TFBSs.  It was determined that the majority of TFBSs could be 

found within 700bp in either direction from the transcription start site (Figure 2.1).  

Although the histogram in Figure 2.1 is not a normal curve, showing higher frequencies 

for the upstream (negative) TFBSs, it was decided to use the same length of sequence 

both up- and downstream from the transcription start site to adjust for a any possible 

bias in the database caused by more experimental determination of TFBSs occurring in 

the upstream promoter region (Collins & Hu, 2007; Jin et al., 2007; Oh et al., 2009; Xia 

et al., 2008).  
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Figure 2.1. Histogram showing the distribution of start sites (basepairs) for the TFBSs 

found in Public Transfac version 39.    

 

All TFBSs in public TRANSFAC, which occurred within 700bp up- or downstream of 

the TSS, were retrieved.  TFBSs without start or end positions, information about which 

TF the motif binds to, or the sequence of the motif, were removed from the set.  The 

700bp sequences up- and downstream of the TSS, for each of the genes with TFBSs 

reported, were retrieved from Ensembl version 40 (Hubbard et al., 2007) via Biomart 

(Smedley et al., 2009; Durinck et al., 2005). Any TFBSs that was not found in the 

reported position was removed from the dataset.  This resulted in a dataset of 475 

TFBSs located in 151 genes; designated Transfac_public_475. 
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2.2.2. Benchmarking the TFBS prediction algorithms 

TFBSs were predicted in the 1400bp sequences for the 151 genes in the 

Transfac_public_475 dataset using each of the seven algorithms described in section 

2.1.1: AliBaba 2.1, Match, MatInspector, Patch, P-Match, TFSearch and the TFBS perl 

modules.   

 

The TFBS predictions made by each algorithm were compared against the location of 

known functional TFBSs in the Transfac_public_475 dataset. Each prediction was 

classified as true positive (TP), false positive (FP), true negative (TN) or false negative 

(FN).  A TP was defined as a prediction which overlapped >80% of a 

Transfac_public_475 TFBS motif for the same TF and had an associated score above 

the given threshold value.  A TN was defined as a prediction given by the algorithm 

which did not match a motif in the Transfac_public_475 set and which had an 

associated score below the given threshold.  The assumption was made that the 

Transfac_public_475 dataset contained all TFBSs for the set of genes, therefore any 

TFBS predicted by the algorithm which were not classified as TP were assumed to be a 

FP. FNs are predictions matching functional TFBSs in the Transfac_public_475 dataset 

with scores below the threshold, not those TFBSs from Transfac_public_475 which 

were not predicted by the algorithm. The percentage of TFBSs from 

Transfac_public_475 which were predicted is measured as a separate statistic.  Receiver 

Operating Characteristic (ROC) curves (Hanley & McNeil, 1983; Hanley & McNeil, 

1982) were made for each algorithm with the exception of Alibaba 2.1 which did not 

have an associated scoring system.  A ROC curve is constructed by plotting the 

sensitivity (equation 2.1) on the y axis and 1-specificity (equation 2.2) on the x axis.   
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Sensitivity = TP / (TP + FN) (2.1) 

Specificity = TN / (TN + FP) (2.2) 

 

The area under the ROC curve (AUC) statistic is used to measure the performance of 

the algorithm.  It is based on the assumption of a binormal distribution of the data.  A 

high AUC value indicates that the frequency curves consisting of either the positive or 

negative data have no, or only a small, overlap (Figure 2.2 A & B) and therefore by 

setting the correct threshold value both a high sensitivity and specificity is achieved.  If 

the AUC value is low, between 0.5 and 0.7, the negative and positive results are not 

successfully split by the scoring system (Figure 2.2 C), and the threshold can be set to 

have either a high sensitivity level or a high specificity level, but not both (Hanley & 

McNeil, 1983; Hanley & McNeil, 1982). 

 

B) C)

 

Figure 2.2. Frequency curves for positive data (red) and negative data (black) plotted 

against a hyperthetical scoring system (x axis).  A) The curves underlying a ROC curve 

with AUC=1. B) The curves underlying a ROC curve with AUC ≈ 0.8. C) The curves 

underlying a ROC curve with AUC  ≈ 0.6.  
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ROC curves were constructed using the statistical software package MedCalc (version 

9.2.1.0) (Schoonjans et al., 1995).  The software uses the Hanley and McNeil method 

(Hanley & McNeil, 1983; Hanley & McNeil, 1982) for determining the significance of 

the difference between the AUC values for each curve.  This method relies on the 

similarity between the ROC curve and the wilcoxin statistic to derive the standard error 

of the curve, from which the standard error of the difference between the AUC values 

can be calculated (equation 2.3) (Hanley & McNeil, 1982).   However, the difference 

between the two curves must be calculated differently when comparing scoring systems 

for the same dataset than when using different datasets (equation 2.4) (Hanley & 

McNeil, 1982).  The Z statistic is used to compare the differences between the AUC 

values of the two curves (equation 2.5) (Hanley & McNeil, 1983). 
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The optimum threshold value was calculated from the ROC curves by determining the 

score at which the distance between the curve and the point (0,1) was the smallest.  This 

point represents the best possible classification of the data into positive and negative 

sets (Hanley & McNeil, 1983; Hanley & McNeil, 1982). The precision value (equation 

2.6) at each threshold value was also calculated and a second threshold value was 

determined using this criteria.   

 

Precision = TP / (TP + FP)  (2.6) 
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2.2.3. Pairwise consensus prediction method 

The predictions from the algorithms were combined in a pairwise manner.  For each 

pair of algorithms the TFBS predictions from each algorithm were collated and exact 

matches were removed to create a non-redundant set of predictions (Figure 2.3).  This 

was done to prevent the results in the intersect from being counted twice in the analysis. 

 

The pairwise prediction dataset was compared to the Transfac_public_475 dataset.  

Predictions which have a >80% overlap with a known TFBS in the 

Transfac_public_475 dataset, and which predicted the same TF, were assigned as 

functional predictions (TP or FN).  Predictions which did not meet these criteria were 

designated non-functional predictions (FP or TN).  

 

        Predictions made by algorithm 2

Remove duplicate predictions

    Predictions made by algorithm 1

Prediction dataset

 

Figure 2.3. Creation of the pairwise prediction data set.  One set of predictions made by 

both algorithms 1 and 2 was removed to create a non-redundant dataset. 

 

The pairwise prediction dataset was compared against the predictions made by each of 

the two algorithms (Figure 2.4A).  Each prediction in the non-redundant set was 

assigned a score for each of the two algorithms, normalised to a range from 0 to 1.  If 

the prediction from the pairwise dataset overlapped a prediction made by the algorithm 

by >80%, and predicted the same transcription factor, the score given by the algorithm 
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was assigned to the prediction (Figure 2.4A). If more than one prediction made by the 

algorithm matched the prediction from the pairwise dataset, the highest score was used.  

This can occur if more than one matrix predicts the TFBS, or if overlapping TFBSs are 

predicted due to repeating nucleotide sequences. If there was no matching algorithm 

prediction the score was set to 0.  After each prediction was assigned a score from each 

of the two algorithms, a final score was assigned by taking the mean of the two 

algorithm scores.  This resulted in scores between 0 and 0.5 for all TFBSs predicted by 

only one of the algorithms and scores ≤1 for TFBSs predicted by both algorithms 

(Figure 2.4B). 

 

A B  

Figure 2.4. (A) Calculating the scores for each algorithm in the dataset.  Each 

prediction in the pairwise dataset was compared to the original algorithm 1 and 

algorithm 2 data and if a match existed the score for the TFBS was retrieved.  If no 

score existed a zero was retrieved.  The final score for the predicted TFBS was the mean 

of these two scores.  (B) The range of scores achieved for TFBSs predicted by either 

one or both of the algorithms.  TFBS predictions made by only one algorithm were 
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assigned scores in the region 0 to 0.5, scores in the region 0.5 to 1 were only assigned to 

TFBS predictions made by both algorithms. 

 

ROC curves were constructed for each pair of algorithms using the final scores for each 

prediction in the pairwise prediction set.  The line y=x with an AUC of 0.5 is considered 

to represent a random classification.  Scoring systems with an AUC of ≥0.7 are 

considered to be successful classifiers (Hanley & McNeil, 1983; Hanley & McNeil, 

1982).  The smallest distance between a ROC curve and the optimum classification 

point at (0,1) is a statistic that evaluates the compromise between sensitivity and 

specificity.  The threshold value was calculated by determining the closest point to 

(1,0), the perfect classification, on the ROC curve, as in section 2.2.2 (Hanley & 

McNeil, 1983; Hanley & McNeil, 1982).  Precision scores were also calculated and an 

alternate threshold value was determined by the score at which the precision was the 

highest.  

 

2.2.4. Applying the algorithm to the IFN-γ linked genes 

700bp up- and downstream of the TSS were retrieved for each of the 532 genes in the 

genetic linkage analysis regions from chromosomes 8, 10, 11 (Section 1.9).  TFBS 

predictions were made for these sequences using the three consensus prediction 

algorithms with the highest performance.  TFBS predictions with scores above the 

threshold values calculated in section 2.3.2 were defined as correct predictions.   

 

The set of genes predicted to be regulated by TFs binding TFBSs in at least one gene 

from each chromosomal location were investigated further using the Gene Ontology 

(GO) (Ashburner et al., 2000) and text-mining techniques.  Biological process (BP) 
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terms from GO were used to assess the processes and mechanisms that each gene was 

involved with.  The set of BP GO terms for each gene was retrieved from the Ensembl 

annotations via BioMart.  These are known to be slightly different to those retrieved 

through AmiGO, the Gene ontology browser. However AmiGO does not have 

functionality allowing for batch download.  The set of BP GO annotations for each gene 

was compared to the set of annotations for every other gene in the set.  Path specific 

relative similarity statistic (PSRSS) scores were used to determine the similarity 

between the sets of terms for each gene.  The scores were calculated using a set of Java 

classes developed by David Damerell (personal communication).  Pairs of genes with 

PSRSS score <0.4 were assumed to be very functionally similar. 

 

Text mining was carried out using the web based tool PubGene (Jenssen, et al., 2001).  

PubGene automatically creates graphs showing the relationship in the text between 

genes, proteins, or other biological concepts such as a disease, the edges represent a co-

occurrence in an abstract, in the literature, between the two concepts represented by the 

nodes.  Direct connections were searched for between each of the genes in the dataset.  

This search was then expanded to allow a connection between two genes to have a 

linked node, i.e. another gene that both genes were found to have a co-occurrence with 

in the literature.  

 

2.3. Results 

2.3.1. Benchmarking the TFBS prediction algorithms 

The AUC values (Table 2.2b) for the ROC curves constructed using each algorithm 

varied from 0.54 for MatInspector, to 0.7 for Match and the TFBS perl modules.  

Precision rates were very low (<10%) for all algorithms, including those with AUC 
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values greater than 0.7.  The TFBS perl modules had the highest overall performance 

with the joint highest AUC value (Table 2.2), the highest precision value and the second 

highest percentage of known TFBSs found.  The AUC value for Patch and MatInpsector 

was 0.54, indicating a performance barely better than random.  The reason for the poor 

performance of Patch may be the much higher number of predicted TFBSs per sequence 

found using this algorithm than is found using other algorithms (Table 2.2).  Equally, 

MatInspector is designed to have a high sensitivity level, predicting as many known 

TFBSs as possible (Quandt et al., 1995).  This aim can be seen to be achieved by the 

high percentage of TFBSs found (Table 2.2c).  However with high sensitivity levels 

comes a large number of FP predictions and thus low specificity levels, reducing the 

AUC. 

 

 

 

No

 
 
 
Algorithm 

(a) 
 
Mean no

TFBSs 
predicted  
per 
sequence

(b) 
 
Area 
Under 
Curve 
(AUC) 
 

(c) 
 
% 
TFBSs 
found 

(d) 
 
Best 
Precision
% 

(e) 
 
Best 
Threshold 
Score :  
mean AUC 

(f) 
 
Best 
Threshold 
Score : 
precision 

2 Match 100 0.70 27.8 1.3 0.98 0.80 

7 TFBS modules 395 0.70 69.9 8.5 7.7 14.9 

5 P-Match 20 0.60 14.3 4.8 0.99 1.00 

6 TFSearch 107 0.55 34.3 1.9 89.0 98.0 

4 Patch 1954 0.54 42.7 0.7 90.3 87.5 

3 MatInspector 252 0.54 88.4 2.7 0.87 1.00 

1 AliBaba 2.1  153 N/A 39.0 N/A N/A N/A 

Table 2.2. Results for the analysis of the TFBS prediction algorithms. N/A = not 

applicable to this algorithm. 
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Precision values were low for all of the algorithms.  This was due to the large number of 

FP predictions made by each algorithm.  By combining the results from pairs of 

algorithms it was hoped that the precision of the predictions could be increased.  

 

2.3.2. Pairwise consensus prediction method 

In seven of the paired combinations the AUC values show an improvement over using 

either of the algorithms separately.  Four pairs of algorithms achieved AUC values 

higher than 0.70.  These pairs were: Match with MatInspector, the TFBS modules with 

Patch, TFSearch with Patch and TFsearch with the TFBS modules (Table 2.3).  One of 

these pairs (TFSearch with Patch) achieved an AUC of >0.80. 

 

 Match MatInspector Patch P-Match TFBS TFSearch 

Match - 0.71 0.54 0.56 0.57 0.47 

MatInspector - - 0.63 0.65 0.48 0.52 

Patch - - - 0.61 0.79 0.81 

P-Match - - - - 0.66 0.57 

TFBS - - - - - 0.79 

TFSearch - - - - - - 

Table 2.3. Empirical AUC values for ROC curves created from the combination of two 

TFBS prediction algorithms.  Values in bold represent AUCs which are higher than 

those achieved by the constituent algorithms separately. 
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Figure 2.5. Graphs showing the percentage of functional TFBSs and non-functional 

TFBSs predicted at each score. A) The results from combining Patch and TFSearch, the 

combination with the highest AUC of 0.81. B) The results from combining TFSearch 

and Match, the combination with the lowest AUC of 0.47. 

 

Pairs of algorithms with high AUC values, i.e. those with AUC values >0.70, all gave 

bimodal graphs when the percentage of functional and non-functional TFBSs predicted 

at each score threshold was plotted (Figure 2.5A).  This confirmed that the combined 

algorithm was assigning high scores to functional TFBSs and low scores to non-

functional TFBSs. Combinations with low AUC values did not show the same 
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distinction between the scores at which functional and non-functional TFBSs were 

predicted (Figure 2.5B).  The combination of Match and TFSearch (Figure 2.2B) 

predicted the majority of both functional and non-functional TFBSs at low scores; this 

is because, in the majority of cases, there was little overlap between the results predicted 

by the two algorithms. 

 

The AUC statistic gave a good overall evaluation of the scoring systems for each pair of 

algorithms.  The closest point to (0,1) on the x=y line designating a random 

classification had a distance of 0.71. Hence, the distance between the threshold point 

and (0,1) must be less than 0.71 if the distribution is to be considered better than 

random.  On this basis all but one of the pairs of algorithms (Match with P-Match) had a 

better than random performance.  The pairs of algorithms with the highest difference 

between the threshold value and the optimum value were: TFSearch with Patch at a 

distance of 0.32, TFsearch with TFBS at a distance of 0.32 and TFBS with Patch at a 

distance of 0.31 (Table 2.4). 

 

 Match MatInspector Patch P-Match TFBS TFSearch 
Match - 0.42 

(0.85) 
0.67 
(0.50) 

0.75 
(0.98) 

0.60 
(0.14) 

0.69 
(0.94) 

MatInspector - - 0.51 
(0.50) 

0.55 
(0.48) 

0.70 
(0.14) 

0.65 
(0.45) 

Patch - - - 0.63 
(0.50) 

0.31 
(0.57) 

0.32 
(0.88) 

P-Match - - - - 0.50 
(0.14) 

0.59 
(0.45) 

TFBS - - - - - 0.32 
(0.57) 

TFSearch - - - - - - 
Table 2.4. Distance from (0,1) to the closest point on ROC curves created from a 

combined scoring system between pairs of TFBS prediction algorithms.  Optimum 

threshold values are shown in parenthesis. 
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 Match MatInspector Patch P-Match TFBS TFSearch 
Match - 0.96 

(0.94) 
0.94 
(0.50) 

3.47 
(0.98) 

2.44 
(0.71) 

0.90 
(0.45) 

MatInspector - - 1.18 
(0.88) 

2.44 
(0.95) 

1.82 
(0.66) 

1.22 
(0.95) 

Patch - - - 2.21 
(0.99) 

2.36 
(0.63) 

4.73 
(0.97) 

P-Match - - - - 4.05 
(0.67) 

3.75 
(0.98) 

TFBS - - - - - 2.40 
(0.63) 

TFSearch - 
 

- - - - - 

Table 2.5. Precision percentage scores for each combination of paired algorithms.  The 

threshold value at which this precision occurs is displayed in parenthesis. 

 

Combining the results from two algorithms did not, in the majority of cases, improve 

the precision (Table 2.5).  This was most likely to be due to an increase in both positive 

and negative results.  It is interesting that the two threshold values, one based on the 

nearest point to (0,1) (Table 2.4), and one based on the highest precision value (Table 

2.5), were rarely found to be the same for any pair of algorithms.  This shows that 

depending on the type of information the user wishes to extract from the prediction 

algorithm it may be useful to vary the threshold value.  For example, if the user wants 

predictions which are predominantly TPs, the precision based threshold would be the 

most useful.  Conversely, if the user wants to find all possible TPs but still limit the 

number of false positives retrieved, the threshold based on the distance from (0,1) 

would be the most useful. 

 

2.3.3. Applying the algorithm to the genes from the IFN-γ genetic linkage study  

The three paired algorithms with the highest AUC values and the closest point to (0,1) 

were: TFSearch with TFBS (TFS_TFBS), TFSearch with Patch (TFS_P) and TFBS 

with Patch (TFBS_P).  Each paired method was used to make predictions for the 532 
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genes in the datasets from the genetic linkage studies. TFS_P predicted an average of 

162.4 TFBSs per gene when using a threshold value of >0.88. TFS_TFBS and TFBS_P 

both gave a smaller number of predictions (Table 2.6.) with an average of 7.9 and 14.2 

TFBSs per gene respectively.   

 

Method Total TFBSs predicted for each 
Chromosome 

Mean TFBSs / 
gene 

 Chr 8 Chr 10 Chr 11 All 
TFS_TFBS 1227 1688 1298 7.9 
TFS_P 25914 36690 23809 162.4 
TFBS_P 2064 3035 2429 14.2 
Table 2.6.  TFBS predictions, given by the three best pairs of algorithms, for the genes 

from the IFN-γ linked regions. 

 

Method Total TFs predicted for each Chromosome Total TFs 
 Chr 8 Chr 10 Chr 11  
TFS_TFBS 16 16 16 16 
TFS_P 28 31 31 32
TFBS_P 10 11 11 11 
Table 2.7. Numbers of transcription factors (TFs), predicted by each of the three best 

pairs of algorithms, in each chromosomal region in the dataset. 

 

The TFS_TFBS pairing predicted TFBSs for 16 different transcription factors.  All 16 

transcription factors had a corresponding TFBS in at least one gene from each of the 

three regions (Table 2.7).  The TFBS_P pairing predicted TFBSs for 11 different 

transcription factors, 10 of these were found in genes from all 3 regions, 1 (p53) was 

found only in genes from the regions in chromosomes 10 and 11 (Table 2.7).    The 

TFS_P pairing found TFBSs for 27 different transcription factors in all three regions 

and TFBSs for 32 unique transcription factors in total (Table 2.7).  Only TFs with 

predicted binding sites in each of the three regions were further analysed. 
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A large proportion of TFs, predicted to bind genes in all three regions, were only 

identified by one of the paired algorithms (Figure 2.6). For example TFS_P predicted 21 

TFs not identified by TFBS_TFS or TFBS_P. These data indicate that more complex 

combinations of TFBS prediction algorithms may result in a method with even greater 

sensitivity. 

 

The five TFs (Figure 2.6) predicted to bind to genes from each of the three 

chromosomal regions, by the three algorithm pairings, are: cAMP response element 

binding protein (CREB), TFs from the E2F family (with indistinguishable binding 

sites), hepatic nuclear factor 1 (HNF1), serum response factor (SRF) and upstream 

stimulatory factor (USF). 

 

Figure 2.6. Venn diagram showing the number of transcription factors predicted to bind 

to at least one gene from each of the chromosomal regions (identified in the genetic 

linkage study) for the three pairs of algorithms.  The three pairs of algorithms are those 

with the highest performance according to ROC curve statistics. 
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USF

 

Figure 2.7. Venn diagrams showing the number of genes predicted by each of the 

paired methods to bind to a certain transcription factor.  Venn diagrams were created for 

each transcription factor predicted, by all three methods, to bind to at least one gene in 

each of the three chromosomal regions. 
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Figure 2.7 shows the number of genes predicted to be regulated by the five TFs 

(common to all three chromosomal regions) for each of the 3 paired methods.  The 

TFBS_TFS method showed a particularly large overlap with the other two paired 

algorithms; in most cases the majority of predictions made by TFBS_TFS were made by 

both of the other paired algorithms.  In the results from three of the five transcription 

factors (CREB, E2F, USF) the TFS_Patch and TFBS_Patch algorithms showed a large 

overlap of predictions which are not predicted by the TFBS_TFS algorithms. In these 

cases the score from the Patch algorithm elevated the overall score above the threshold, 

whilst the TFBS_TFS predictions had a score lower than the threshold value.       

 

Transcription 
Factor 

Total genes 
predicted 

Genes with 
PSRSS<0.4 

Immune Response 

CREB 106 73 39 

E2F 147 96 64 

HNF1 8 0 0 

SRF 8 2 1 

USF 36 21 10 

Table 2.8. Total number of genes predicted to contain TFBSs, the number of these 

genes which have a PSRSS score <0.40 when paired with a gene from at least one of the 

other regions and the number of these genes to have a co-occurrence with the term 

‘immune response’ detected by PubGene for each transcription factor,  

 

151 genes were predicted by all three pairwise algorithms to have binding sites for at 

least one of the 5 TFs of interest.  The functions of these genes were investigated.  

Genes with similar functions from different chromosomal regions were determined by a 

PSRSS score of <0.40.  Of the genes with <0.40 PSRSS score, when paired with a gene 
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from one of the other chromosomes, those with text mined associations to the term 

‘immune response’, were determined (Table 2.8).  The genes which achieved these 

criteria were assumed to be the most likely candidate genes. 

 

Graphs showing the connections between genes from different chromosome regions 

with PSRSS scores <0.40 could only be constructed for four of the TFs: CREB, E2F, 

SRF and USF (Figures 2.8, 2.10, 2.12).  None of the genes found with HNF1 binding 

sites were functionally related to each other as determined by the PSRSS score.  It was 

therefore assumed that HNF1 is not the regulatory TF in this system.  The CREB and 

E2F graphs in particular show a large number of possible connections between genes 

from each of the chromosome regions, the USF graph shows five complete subgraphs 

containing three nodes, one from each of the regions, while the SRF graph contains only 

2 genes and therefore cannot show connections between genes from all three regions.  

By looking for co-occurance in the literature of the genes with predicted connections, 

through Pubgene, the number of candidates was significantly reduced (Figures 2.9, 2.11 

& 2.14). 

 

Two complete 3 node subgraphs containing one node from each of the three 

chromosomal regions were found by looking for both a PSRSS score <0.40 and for co-

occurrence of genes in the literature for CREB TFBS containing genes (Figures 2.8, 

2.9).  In both cases these subgraphs contain RIPK2 (receptor-interacting 

serine/threonine kinase 2) and NOX4 (NADPH oxidase 4), with the addition of BLNK 

(B-cell linker protein) in one case and SMC3 (structural maintenance of chromosomes 

protein 3) in the other.  The most promising of these is the RIPK2, NOX4, BLNK group 

as these genes are connected by a CREB TFBS, a PSRSS score <0.4 and co-occurrence 
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in the literature found using PubGene.  Both RIPK2 and BLNK are also annotated with 

the GO term ‘immune response’.  RIPK2 is of particular interest given its role in nuclear 

factor kappa B activation which in turn can lead to transcription of the IFN-γ gene 

(Hawiger, 2001). 

 

 

Figure 2.8. Graph showing the <0.4 PSRSS relations between genes with a predicted 

CREB binding site, from the different chromosomal regions (red represents genes from 

chromosome 8, green from chromosome 10 and cyan from chromosome 11).  Genes 

with a co-occurrence in the literature, found using PubGene (Jenssen, et al., 2001), with 

the term ‘immune response’ have a black border (see also figure 2.9). 
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Figure 2.9. A graph showing the CREB binding site genes with a PSRSS score <0.4 

with at least one other CREB binding site containing genes that have connections found 

through PubGene (Jenssen, et al., 2001).  PubGene connections were allowed to either 

be direct connections between the genes, or have one gene connecting both genes.  

Black edges connect gene which have a PSRSS score <0.4 as well as a PubGene 

connection.  Grey edges connect genes with a PubGene connection, but a PSRSS score 

≥0.4. Red nodes represent genes from chromosome 8, green nodes from chromosome 

10 and blue nodes from chromosome 11.   
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Figure 2.10. Graph showing the <0.4 PSRSS relations between genes with a predicted 

E2F binding site, from the different chromosomal regions.  Genes with a co-occurrence 

in the literature, found using PubGene (Jenssen, et al., 2001), with the term ‘immune 

response’ have a black border.  Red nodes represent genes from chromosome 8, green 

nodes from chromosome 10 and cyan nodes from chromosome 11.   
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Figure 2.11. A graph showing the E2F binding site genes with a PSRSS score <0.4 with 

at least one other E2F binding site containing gene that have connections found through 

PubGene (Jenssen, et al., 2001).  PubGene connections are allowed to either be direct 

connections between the genes, or have one gene connecting both genes.  Black edges 

connect gene which have a PSRSS score <0.4 as well as a PubGene connection.  Grey 

edges connect genes with a PubGene connection, but a PSRSS score ≥0.4. Red nodes 

represent genes from chromosome 8, green nodes from chromosome 10 and blue nodes 

from chromosome 11.   

 

Two complete 3 node subgraphs containing one node from each of the three 

chromosomal regions were found by looking for literature connections between the E2F 

binding site containing genes (Figure 2.8).  Both subgraphs contain NOX4 with one 

subgraph containing SGK3 (serum/glucocorticoid-regulated kinase 3) and SUFU 

(homologue of drosophila suppressor/fused gene) as the remaining nodes and the other 

containing PABPC1 (polyadenylate-binding protein, cytoplasmic, 1) and EIF3S10 
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(eukaryotic translation initiation factor 3).  NOX4 was also found in the most likely 

combinations when comparing the genes with CREB binding sites.  SUFU is the only 

node involved in the subgraphs which is annotated with the ‘immune response’ GO 

term.  However this does not preclude the other genes from being involved in the 

‘immune response’, merely that they have not been annotated as such.  This fact 

coupled with the interactions being found using both PSRSS scores and co-occurrence 

in the literature makes the NOX4, SGK3, SUFU combination of genes the most likely 

when looking at literature connections of E2F binding site containing genes.  NOX4 has 

been shown to be functionally positively regulated by the E2F transcription factor E2F1 

in vascular smooth muscle (Zhang et al., 2008). 

 

Only two of the genes with SRF binding sites, CRH (chromate resistance) and MAML2 

(homologue of Drosophila mastermind-like 2), were found to have a PSRSS score <0.4 

between them.  This prevents the formation of a complete three node subgraph 

containing a gene from each of the chromosomal regions.  No co-occurrence was found 

in the literature between the genes CRH and MAML2.  It would still be worth 

considering these genes as candidates, however, as CRH is annotated as an ‘immune 

response’ gene. 

 
 



 77  

 

 

Figure 2.12. Graph showing the <0.40 PSRSS relations between genes with a predicted 

USF binding site, from the different chromosomal regions.  Genes with a co-occurrence 

in the literature, found using PubGene, with the term ‘immune response’ contain an 

inner circle of black.  Red nodes represent genes from chromosome 8, green nodes from 

chromosome 10 and blue nodes from chromosome 11.   
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The smaller number of genes and edges involved in the USF binding site containing 

gene network (Figure 2.12) allows for the closer identification of possible co-regulated 

genes before the PubGene filter is applied.  Five 3 node complete subgraphs, with one 

gene from each chromosome, were identified.  These were; i) RAB11FIP2 (Rab11 

family-interacting protein 2), CEP57 (centrosomal protein 57kD) and SLC25A32 

(Solute carrier family 25 member 32) where both CEP57 and SLC25A32 were 

annotated with the ‘immune response’ GO term, ii) YHWAZ (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide), 

ARAP1 (ankyrin repeat and PH domain 1) and MMS19 (MMS19 nucleotide excision 

repair homologue) where YHWAZ and ARAP1 were annotated with the ‘immune 

response’ GO term, iii) YHWAZ, MMS19 and CAPN5 (calpain 5) where only YHWAZ 

was annotated with the ‘immune response’ GO term, iv) NPM3 (nucleoplasmin 3), 

PCF11 (cleavage and polyadenylation factor subunit) and WDSOF1 (WD repeats and 

SOF1 domain containing) where both PCF11 and WDSOF1 were annotated with the 

‘immune response’ GO term and v) TTPA (Alpha-tocopherol transfer protein), 

CEP57(centrosomal protein 57kD) and RAB11FIP2 (Rab11 family-interacting protein 

2) where CEP57 was annotated with the term ‘immune response’.  The inclusion of at 

least one ‘immune response’ annotated term in each of these subgraphs warrants the 

inclusion of each of these genes as candidates. 

 

When the connections found through pubgene were included in the network (Figure 

2.13), two complete three node subgraphs containing genes from each of the three 

regions were found using the USF binding site containing genes.  The subgraphs both 

contain PCF11 and MMS19.  The third nodes in the subgraphs are WDSOF1 and 

ATP6V1C1 (ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1).  Only one of 
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the edges is representative of a link through both PSRSS score and through the 

literature, this edge linked the two ‘immune response’ GO term annotated genes; 

WDSOF1 and PCF11.  Therefore the most likely of the subgraphs is that containing 

PCF1, MMS19 and WDSOF1. 

 

Figure 2.13. A graph showing the USF binding site genes with a PSRSS score <0.40 

with at least one other USF binding site containing gene that have connections found 

through PubGene.  PubGene connections are allowed to either be direct connections 

between the genes, or have one gene connecting both genes.  Black edges connect gene 

which have a PSRSS score <0.40 as well as a PubGene connection.  Grey edges connect 

genes with a Pubgene connection, but a PSRSS score ≥0.40.  Red nodes represent genes 

from chromosome 8, green nodes from chromosome 10 and blue nodes from 

chromosome 11.   
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2.4. Conclusions 

The TFBS prediction algorithms analysed showed varying levels of performance.  

Using the benchmark dataset only TFBS and Match performed to a satisfactory level 

giving AUC values ≥ 0.70.  The great variations in performance observed in the current 

work highlights the importance of using a single standard dataset to benchmark the in-

silico TFBS prediction tools. 

 

By combining certain pairs of TFBS prediction algorithms the performance as measured 

by AUC value was improved.  Three pairs of algorithms, TFS_P, TFBS_TFS and 

TFBS_P, showed a significant increase in AUC over the highest AUC values for single 

TFBS prediction algorithms.  The TFBS modules, one of the highest performing 

algorithms with an AUC of 0.70 was included in two of the three pairings. However, 

Match, the other high performing algorithm showed a significant decrease in AUC 

value when combined with almost all other algorithms.  The improvement in AUC 

achieved by combining pairs of algorithms observed in the current study indicates that 

the performance may be further improved by combining more than two prediction 

algorithms. This question is investigated in chapter 3, where more than two prediction 

algorithms are combined using machine learning techniques. 

 

Three of the best paired TFBS prediction methods revealed five transcription factors 

shared by at least one gene from each of the 3 chromosomal regions from the IFN-γ 

response genetic linkage study. These transcription factors were CREB, E2F, HNF-1, 

SRF and USF.   
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CREB is known to be directly involved in the activation of IFN-γ in T cells (Pasquinelli 

et al., 2009; Samten et al., 2008). CREB, enhanced via phosphorylation, binds to the 

proximal promoter of IFN-γ.  Stimulation of peripheral blood mononuclear cells 

(PBMC) with M. tuberculosis has been shown to induce phosphorylation and binding of 

CREB to the IFN-γ gene promoter.  M. tuberculosis infected patients with ineffective 

immunity show both diminished IFN-γ production and reduced amounts of CREB 

binding to the IFN-γ proximal promoter (Samten et al., 2005).  Although there is 

evidence for a direct link between IFN-γ and the CREB TF, if CREB is regulating the 

IFN-γ linked genes, it would imply that CREB is also involved in another indirect 

method of IFN-γ regulation.  This may be via the MHC pathways.  CREB has been 

shown to transcriptionally regulate MHC class II expression (Burd et al., 2004) which 

plays a critical role in mycobacterial immunity through antigen presentation to CD4+ T-

cells leading to the production of cytokines such as IFN-γ. 

 

The E2F family of TFs bind to similar TFBSs with the consensus sequence; 

TTTCGCGC, although it has been recently shown that many E2F transcription factors 

also bind to alternative sites (Rabinovich et al., 2008).  The E2F family is involved in a 

large number of processes including cell cycle, apoptosis, nucleotide synthesis, DNA 

repair and DNA replication.  Many of the of genes with E2F TFBSs were associated 

with the term ‘immune response’ in the literature and had known functional links to 

other genes with E2F TFBSs.  There is little evidence in the literature of a link between 

E2F transcription factors and IFN-γ, although, it has been shown that e2f1 deficient 

mice have an increase in numbers of CD4+ cells, a decrease in CD4+25+ cells and a 

significant increase of IFN-γ following antigenic stimulation when measure in-vitro 

(Salam et al., 2004). 
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HNF1 is a hepatocyte nuclear factor, expressed mainly in the liver.  HNFs regulate a 

wide variety of targets involved in processes such as development and metabolic 

homeostasis (Pontoglio, 2000; Tronche & Yaniv, 1992).  Due to its location and 

functional bias it seems unlikely that HNF1 is involved in the regulation of IFN-γ and 

therefore unlikely that the IFN-γ linked genes are regulated by HNF1.  There is a 

singular lack of evidence in the literature for a link between, HNF1 and IFN-γ, 

tuberculosis or the immune response in general.    The conclusion that HNF1 is not one 

of the TFs regulating IFN-γ linked genes is further defended by the lack of genes with 

similar functions in the set of those with HNF1 TFBSs, although this does not preclude 

the existence of genes with similar functions that are at present unknown. 

 

Serum response factor, SRF, is involved in the transformation of extracellular signals 

into specific nuclear responses (Ling et al., 1998).  The SRF DNA binding domain has 

been shown to act as a docking site for multiple TFs.  Therefore, it is unlikely that by 

analysing SRF binding sites, functionally related genes could be predicted.  The 

prediction of whether genes were co-regulated would depend on which other 

transcription factors were co-operating with SRF. Only two of the genes with predicted 

SRF TFBSs were linked by known functions.  However, one of these had a co-

occurrence with the ‘immune response’ term in the literature and so the two genes 

should still, therefore, be considered candidate genes. 

 

USF is reported to be an integral part of the IFN-γ inducibility of the type IV CIITA 

promoter (O'Keefe et al., 2001).  The type IV CIITA promoter contains three cis-acting 

elements the proximal IFN-γ activation sequence (GAS) element, the E box, and the 

proximal IFN regulatory factor (IRF) element.  The E box binds USF-1 while Gas binds 
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STAT-1 and IRF binds to the IFN regulatory factor.  The binding of STAT-1 to the 

promoter appears to be dependent on URF-1 binding to the promoter (Dong et al., 1999; 

O'Keefe et al., 2001).  Several possible groups of genes from each of the three 

chromosomal regions exist with USF TFBSs, many of these groups contain at least one 

gene with co-occurrence to the ‘immune response’ term, although none of the grouping 

contain immune response related genes for all three regions. 

 

151 unique candidate genes have been identified by analysing co-occurrence of TFBSs 

for the five selected transcription factors.  This number has been reduced to 21 (Table 

2.9) when the most likely groups of three genes are considered. 

 

However, due to the limitations of the method, it is possible that additional candidates 

have been missed. The main cause of this is the inability to predict TFBSs for certain 

transcription factors by some of the algorithms due to an incomplete set of PWM. The 

development of a search method that utilised information from a greater number of 

algorithms and was not restricted by the version of TFBS database used as a reference, 

would be an improvement over the methods described here. The first element of such a 

method is described in Chapter 3. 
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Candidate 
Gene 

Chromosome Transcription 
Factor(s) 

Immune Response 
GO term 

ARAP1 11 USF Yes 

ATP6V1C1 8 USF  

BLNK 10 CREB Yes 

CAPN5 11 USF  

CEP57 11 USF Yes 

CRH 8 SRF Yes 

EIF3S10 10 E2F  

MAML2 11 SRF  

MMS19 10 USF  

NOX4 11 CREB, E2F  

NPN3 10 USF  

PABPC1 8 E2F  

PCF11 11 USF Yes 

RIPK2 8 CREB Yes 

SGK3 8 E2F  

SLC25A32 8 USF Yes 

SMC3 10 CREB  

SUFU 10 E2F  

RAB11FIP2 8 USF  

WDSOF1 8 USF Yes 

YHWAZ 8 USF Yes 

Table 2.9. The candidate genes most likely to be linked to the IFN-γ immune response 

from the co-regulatory evidence in the current analysis. 
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3. Bayesian Analysis 

3.1. Introduction 

A number of the combinations of current TFBS prediction programs analysed in 

Chapter 2 show an improvement in accuracy compared to the performance of single 

algorithms.  However, this is a simplistic method of combining the information from the 

two algorithms, and does not easily allow for scaling up to use information from 

additional prediction algorithms.  By using machine learning techniques a variety of 

information can be integrated and applied to the TFBS prediction problem.  In this 

problem a machine learning classifier would be used to classify the predicted TFBSs 

into one of two classes.  The first class contains TFBSs which are functional binding 

sites in vivo while the second class contains TFBSs which are not functional in vivo.  

Particular advantages of machine learning include the ability to assign different 

weighting to different types of information, allowing some features to influence the 

classification decision more than others, and the use of real data to train the algorithm, 

computationally calculating weightings to attach to the features.  In this analysis two 

different sets of features were used to describe the data for the classification problem:  

firstly, the TFBS prediction algorithms assessed in Chapter 2 and secondly, 

phylogenetic data utilised through the TFBS Perl modules (Lenhard & Wasserman, 

2002) in a similar fashion to Consite (Sandelin et al., 2004b).  

 

The TFBS Perl modules, when analysed as an individual algorithm, achieved the 

highest precision at 8.5% and the joint highest AUC at 0.70.  In the analysis in Chapter 

2 the TFBS modules were used as a PWM searching algorithm.  However there are 

additional modules which allow the algorithm to include additional information in the 

form of phylogenetic footprinting.  Phylogenetic footprinting algorithms are mainly 
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used on sequences from only two species, one being the sequence and species of interest 

and the other being an orthologous sequence from another species.  This allows for the 

identification of regions which have a higher level of conservation between the two 

organisms than would be expected.  The method suggested here uses the addition of 

extra species to phylogenetic footprinting.  This is a proposition which has been 

suggested before, but usually for lower level organisms and often for very closely 

related species.  For example, phylogenetic footprinting methods have recently been 

used to identify microRNA cis-regulatory elements across 12 Drosophila species 

(Wang et al., 2008). 

 

3.1.1. Classic Naïve Bayes 

Bayes’ theorem is a probabilistic theorem which describes conditional dependencies.  In 

the classic Naïve Bayes classifier, Bayes’ theorem (equation 3.1) is used to calculate the 

conditional probability of a data point or example belonging to a certain class (A), given 

a set of features which describe the data point (B) (Zhang, 2004).   

 

)(
))(|()|(

BP
AABPBAP =     (3.1) 

 

The classic Naïve Bayes classifier is based on applying Bayes’ theorem with strong, 

naïve, independent assumptions.  It is a supervised learning algorithm which creates a 

model based on parameters estimated using maximum likelihood.  Each feature in the 

classic Naïve Bayes classifier is assumed to independently contribute to the probability 

of a prediction, although this may not in reality be the case.  Therefore, independent 

probability distributions are calculated, using a training dataset, for each feature 
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describing the data.  The training process uses both positive and negative examples to 

calculate these distributions and other parameters.   

 

One of the most important other parameters in the Naïve Bayes classifier is the a priori 

value.  This value gives the likelihood of any given example belonging to a class before 

any additional knowledge has been gained by the analysis of features by the classifier.  

It is often calculated by the number of examples belonging to each class in the data that 

the classifier will be trained on.  If the training set contained equal numbers of examples 

of each of two classes, this would set the a priori value at 0.5 as without further 

information all that can be predicted about the data is that a given example has the same 

likelihood of belonging to either class.  Further conditional probabilities of a data point 

belonging to a class are calculated in the training phase.  The classifier gives a 

probability of a datapoint belonging to a certain class by combining these probabilities.  

For each attribute associated with the data point, a distribution is created showing the 

probabilities of the data point belonging to a certain class, given a certain value of the 

attribute.  For each datapoint the probabilities of it belonging to a certain class given 

each attribute value are combined with the prior probability to give a final posterior 

probability of the data point belonging to the class. 

 

Bayesian classifiers have been shown to perform at a much higher level than would 

normally be assumed and are able to estimate parameters for a model with a small 

amount of training data compared to many other classifiers (Zhang, 2004). 
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3.1.2. Positive Naïve Bayes 

Positive Naïve Bayes (PNB) is a variation of the classic Naïve Bayes algorithm which 

allows the data to be trained with positive examples but without negative examples.  

This is particularly interesting when dealing with biological problems as negative data 

is often missing.  If there is no negative data the usual strategies are either to generate 

negative data or use real data which is unknown but likely to contain mostly negative 

examples (Erill & O'Neill, 2009).  Parameters used to train the classifier are calculated 

differently in PNB compared to the classic Naïve Bayes classifier. This is due to the 

difference in classification datasets (Calvo et al., 2007a).  As in classical Naïve Bayes, 

the probability distribution of feature occurrence given that the datapoint is positive 

(D|1) is calculated from the training dataset.  However, the lack of negative training data 

means that the probability distribution of feature occurrence given that the datapoint is 

negative (D|0), must be estimated.  In PNB equation 1 is used to estimate the probability 

of (D|0) (Denis et al, 2003). 

 

)1Pr(1
)1Pr()1|Pr()Pr()0|Pr(

−
−

=
DDD        (3.2) 

 

The PNB algorithm (Denis et al., 2003) was first proposed as a tool for classifying text 

documents, represented as bags of words. The algorithm has since been adapted for use 

in other situations and has been used productively in a number of different situations, 

including biological problems (Calvo et al., 2007a). One problem where the PNB 

classifier has been successfully used is in the classification of dominant and recessive 

human disease genes (Calvo et al., 2007b). Another problem involves the prediction of 

true or false, donor or acceptor splice sites as defined by the database ACCDON (Calvo 

et al., 2007a).  
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3.1.3. Positive Tree Augmented Naïve Bayes 

The tree augmented Naïve Bayes classifier (TAN) is a variation on the Naïve Bayes 

classifier (see figure 3.2).  Unlike the Naïve Bayes classifier in which prior probabilities 

for each attribute are only dependent on the class, additional relationships and 

dependencies between features are allowed (Figure 3.1).  If all possible combinations of 

relationships between features were allowed this could quickly increase the 

computational power and time needed to perform the classification.  Friedman et al., 

suggest limiting the parents of each attribute to the class and, at most, one other 

attribute.  It has been shown that this approximation of the dependencies between 

features is optimal and that the TAN classifier can be learned quickly without the need 

for large amounts of computer power (Friedman et al., 1997).  An example of the 

dependencies in the TAN classifier can be seen in Figure 3.1. In the Naïve Bayes 

classifier (NB) the probability distribution associated with each attribute (A1-A4) are 

calculated using only the class feature (C).  In the TAN classifier the probability 

distribution of each attribute is dependent on both the class and at most, one other 

attribute. For example, A2 is dependent on both the class and A1; however A1 is only 

dependent on the class.  Figure 3.1 shows a very simplistic view of the TAN classifier, 

in reality one feature may have many dependents while other features may have none.  
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Figure 3.1. Simplistic representation of the differences in the structure of the Naïve 

Bayes classifier and the tree augmented Naïve Bayes classifier.  C is the class 

variable, A’s are features, and arrows indicate dependence among variables. 

 

The optimum relationships between attributes in the TAN classifier are chosen by 

estimating conditional frequencies using the training data.  One disadvantage of this 

method is that a lack of instances representing certain conditions can often occur, 

causing less reliable estimates of conditional probabilities.  This is less likely to occur 

when training a Naïve Bayes classifier where the conditional probabilities are only 

reliant on the class. 

 

The Positive Tree Augmented Naïve (PTAN) Bayes classifier (Calvo et al., 2007a) is a 

partially supervised classifier based on the TAN Bayes classifier  (Friedman et al., 

1997) in much the same way as the PNB classifier is based on the classic Naïve Bayes 

classifier (Figure 3.2).  The PTAN algorithm is an adaptation of the TAN algorithm 

which allows for the use of only positive examples in the training of the classifier.  This 

involves changes in the parameter estimation step to adapt for the lack of negative 

variables. The PTAN algorithm was assessed using datasets which were both biological 

and non-biological.  The biological example involved the prediction of donor or 

acceptor splice sites from the ACCDON dataset (Castelo & Guigó, 2004).  This dataset 

contains a set of known canonical donor splice sites and a set of known canonical 
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acceptor splice sites extracted from the RefSeq genes (Pruitt et al., 2009). Using the 

ACCDON-based data PTAN underperformed compared to PNB when assessed by F 

measure.  However, when the classifiers were trained and tested using synthetic data, 

PTAN significantly out performed PNB (Calvo et al., 2007a).  

 

 

Figure 3.2. The relationships between the various Naïve Bayes classifiers used in the 

study.  Both Positive Naïve Bayes (PNB) and Tree Augmented Naïve Bayes (TAN) are 

types of Naïve Bayes classifier.  Positive Tree Augmented Naïve Bayes (PTAN) is a 

type of TAN classifier. 

 

3.1.4. Feature selection 

For many supervised machine learning techniques, to optimally train a set of data, the 

features which describe the data must be carefully chosen.  Failure to do this can lead to 

incorrect weights being assigned to features and to overtraining of the classifier, 

reducing performance when an unseen dataset is introduced.  Feature selection is the 

technique of selecting a subset of the most relevant features for use in machine learning 

algorithms.  Naïve Bayes classifiers, in particular, have been shown to perform 

optimally after feature selection (Ratanamahatana & Gunopulos, 2002; Zhang, 2004).   

If a feature set chosen for a classifier is particularly large, it is helpful to reduce the 

number of features needed to classify the data.  This often improves both classification, 
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reducing the chance of over fitting, and the efficiency of the classifier (Hall & Smith, 

1998).    

 

There are two main methods of reducing the number of features used in machine 

learning.  The first method is by combining existing features into a smaller number of 

abstract features. Principal component analysis is one method of this type which is often 

used.  The second method is feature selection.  Ideally the feature selection should 

involve an exhaustive search of all possible combinations of features.  If large numbers 

of features are available this is not practical, therefore feature selection algorithms are 

used to search for a local maximum.  There are a large number of feature selection 

algorithms which have been developed.  Four of these methods are used in this study: 

Chi squared, Support Vector Machines (SVM), Information gain and Gain ratio.  

 

(I) Chi squared 

Chi squared (χ2) is one method used for feature selection (Liu & Setiono, 1995).  Chi 

squared is used to test the independence of two events.  When this test is applied to 

feature selection the two events are: the value associated with the feature and the class 

associated with the example.  Features are selected based on a low probability of 

independence between the occurrence of the term and occurrence of the class 

(Doraisamy et al., 2008; Manning et al., 2008).  

 

(II)  Support Vector Machines (SVM) 

Support vector machines attempt to find a linear decision boundary where objects with 

one classification fall one side and objects with the other classification fall on the other 

side.  Although the decision boundary is linear, the space through which it runs can be 
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multidimensional.  SVMs, used as a feature selection method, determine how closely a 

boundary, calculated by using any given feature, represents the known classification of 

the data (Doraisamy et al., 2008; Guyon et al., 2002).  

 

(III) Information Gain 

Information gain, or the Kullback-Leibler divergence (Kullback, 1987) is a measure of 

the difference between two probability distributions P and Q.  The algorithm is used to 

measure the expected difference in the number of bits required to code examples from P 

using a code based on P and using a code based on Q.  P represents the actual data 

whereas Q represents a theory or model.  When used for feature selection Q represents 

the class as determined by the feature being assessed and P represents the actual class 

(Kullback, 1987).   

 

(IV) Gain Ratio 

The gain ratio (Doraisamy et al., 2008) is a statistic which is derived from the 

information gain statistic.  Gain ratio is the information gain divided by the intrinsic 

information measure.  The intrinsic information measure shows how well the data is 

split by a certain feature.  It has been suggested that information gain, when applied to a 

dataset with a large number of distinct variables, may learn the data too well and over fit 

the data.  Information gain ratio (Gain Ratio) biases the decision against features with a 

large number of distinct values through the use of the intrinsic information measure and 

therefore solves this problem (Doraisamy et al., 2008). 
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3.2. Pattern Matching Algorithm Naïve Bayes Methods 

3.2.1. Feature sets 

A set of data which can be used to test the Pattern Matching Algorithm Naïve Bayesian 

classifier (PMANB) exists from the work in Chapter 2.  Only six of the algorithms used 

to predict TFBSs in the dataset are used as input to the PMANB classifier.  AliBaba 2.1 

is left out due to the lack of a score associated with the predictions.  The set of total 

predictions made by the six TFBS prediction algorithms is checked for redundancy, 

removing all TFBSs which have the same start, end and binding factor.  This is the 

dataset used in the training and testing of the classifier and is denoted 

PublicTFBS_206384.  The name represents the fact that the data comes from the public 

version of TRANSFAC and that it contains 206384 TFBS predictions.  Subsequent 

datasets were named using these conventions.  

 

Each predicted TFBS in the dataset was described by two different feature sets.  Feature 

set ‘B’ was a binary array where each element in the array represented one prediction 

algorithm (Figure 3.3).  The final element in the array coded whether the TFBS 

prediction was found in the TRANSFAC database, using a 1 to represent a positive 

match and a 0 to represent no match to a TFBS from the database.  

 

The second feature set, ‘S’, was prepared in a similar way.  In this array the elements 

contained the score given by the algorithm.  If no matching prediction existed then the 

element contained a 0 (Figure 3.3).  Using the scoring systems of the algorithms 

potentially allowed the classifier to bias the features depending on how successful the 

scoring system of each algorithm was.  

 

 
 



 95  

Extra features were added to feature sets B and S. Firstly, nucleosome positioning 

information was included.  The probability of a nucleosome occurring at each position 

of the sequence was calculated using the Recon algorithm (Levitsky, 2004). The data 

from Recon was used in two ways, firstly, by using the score at the first position of the 

TFBS prediction, secondly by taking the mean of the nucleosome prediction scores at 

each position of the TFBS. The distance and direction from the transcription start site 

(TSS) start site was also included as feature.  This was given by the start position of the 

TFBS prediction. 
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Figure 3.3.  Representation of the feature sets used in the Naïve Bayes classifier.  Each 

example has a binary class representation ‘C’.  Either feature set ‘B’ or ‘S’ can then be 

used to describe the main features. The 6 elements in the ‘B and ‘S’ arrays represent one 

TFBS prediction algorithm each.    Feature set B contains binary representations of 

whether the example was found by an algorithm or not, in this example, algorithms 1, 3 

and 4 predicted the TFBS, algorithms 2, 5 and 6 did not.  Feature set ‘S’ contains the 

score returned by each algorithm for the example, the example shows a high scoring 

match for algorithm 1, low scoring matches for algorithms 3 and 4 and no match for 

algorithms 2, 5 and 6.  As additional features to the ‘B’ or ‘S’ feature set, N1, N2 or P 

can be added.  These features are added to the array singly. 

  

3.2.2. Naïve Bayes Classifier 

The Naïve Bayes classification algorithm was implemented using the Weka suite of 

machine learning programs (Witten et al., 1999).  The Weka suite has been successfully 
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implemented in other studies using both Naïve Bayes and other machine learning 

techniques (Chen et al., 2009; Ivanciuc, 2008; Pirooznia et al., 2008).  It contains a 

large selection of supervised and unsupervised classification algorithms and feature 

selection methods and is a reliable and fast method of implementing the classic Naïve 

Bayes classifier.   

 

The classic Naïve Bayesian classifier was trained and tested using 5 fold cross 

validation.  The classic Naïve Bayes classification was, firstly, carried out using 921 

positive examples.  These were the predicted TFBSs from the PublicTFBS_206384 

dataset which matched a known TFBS in TRANSFAC.  The negative examples used in 

the classifier were the 205463 remaining predicted TFBSs from the 

PublicTFBS_206384 dataset which did not match any known TFBS. When performing 

the cross validation with these positive and negative examples the positive a priori 

value for the Naïve Bayes classifier was very low.  The Weka suite calculates the a 

priori value based on the proportion of positive and negative examples in the training 

dataset.  In this case there was a much larger amount of negative data than positive data, 

skewing the a priori value and causing the classifier to predict a similar ratio of positive 

and negative examples in the testing data.   

 

The classifier was then trained and tested a second time.  The number of negative 

examples used in the classifier was reduced.  This gave a smaller dataset consisting of 

equal numbers of positive and negative examples, 921 examples of each.  The negative 

data was sampled using a random number generator to pick the examples 

(http://www.random.org/).  This process was performed three separate times to create 

three alternative negative datasets.  The new datasets were designated 
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PublicTFBS_1842a, PublicTFBS_1842b and PublicTFBS_1842c.  The mean result of 

the classifier using each of the three datasets was used in the analysis.   

 

The features initially used to train the classifier consisted of only the prediction 

algorithm results, either in the binary or the scoring based forms.  The extra features, 

nucleosome probability at the start position (N1), average nucleosome probability (N2) 

and position (P) were added to the array singly to determine whether they improved the 

classification.   

 

Sensitivity, specificity and accuracy scores were calculated at the 0.5 probability 

threshold.  All TFBSs with Naïve Bayes predictions of 0.5 or greater were assumed to 

be positive predictions; those with less than 0.5 were assumed to be negative 

predictions.  ROC curves were created, and the AUC was calculated, for each 

classification undertaken.  The AUC was measured using a ROC curve which had been 

fitted using the maximum likelihood fit of a binormal model.  Where a small number of 

points are plotted on a ROC curve, or the points fall very closely together, empirical 

ROC curves often severely under estimate the AUC (Park et al., 2004).   The curves 

were calculated using JROCFIT and JLABROC4 as found on the John Hopkins Web 

based calculator for ROC curves (www.jrocfit.org).  Overall performance was measured 

by a combination of these statistics. 

 

3.3. Phylogenetic Pattern Matching Naïve Bayes Methods (PPMNB) 

3.3.1. Dataset 

The PublicTFBS_206384 dataset used for the PMANB classification contained enough 

examples to successfully train and test the classifier when using either the ‘B’ or ‘S’ 
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feature sets.  The use of phylogenetic data is able to predict functional important TFBSs 

through the identification of evolutionarily conserved motif.  However, the inclusion of 

this data can also prevent a prediction being made for a gene; this occurs if there are no 

known homologs from the species in question.  This can reduce the available dataset 

considerably; hence to implement the phylogenetic pattern matching Naïve Bayes 

method (PPMNB) the size of the dataset was increased. 

 

By using TRANSFAC Professional the number of known TFBSs and genes containing 

TFBSs is increased.  All TFBSs with associated start sites, end sites and sequences were 

retrieved from TRANSFAC Professional and the position of the TFBSs in TRANSFAC 

Professional were analysed to determine the most useful length of sequence to use for 

the dataset (Section 3.6.1, Figure 3.9).  

 

Sequences of length 9.5Kb, 5.4Kb upstream from the transcription start site and 4.1 Kb 

downstream from the transcription start site were used.  This distance was one standard 

deviation in length from the mean position of the TFBSs found in TRANSFAC 

Professional (Section 3.6.1., Figure 3.9).   ConSite is a phylogenetic TFBS prediction 

program based on the TFBS Perl modules, it allows the user to compare two 

orthologous sequences.  It is a useful tool to use as a comparison to the PPMNB because 

the TFBSs are predicted using the same algorithm. The publicly available web version 

of ConSite limits the length of sequences to 10Kb which makes this a useful length of 

sequence to allow for comparison between the PPMNB classification and predictions 

made by ConSite in the standard way.  The 9.5Kb sequences containing a TFBS were 

retrieved from Ensemble 49 (Hubbard et al., 2007).  The genes were searched for the 

TFBSs to ensure that the binding site could be found in the correct position, with 
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reported start and end positions and with a reported binding factor.  This resulted in 362 

known TFBSs which could be found in 114 genes.  

 

3.3.2. Feature Set 

The TFBS algorithm (Lenhard & Wasserman, 2002) was applied to the 114 9.5 Kb 

human sequences using the search criteria of a 50 nucleotide search window and a score 

threshold of 80%.  The TFBS algorithm is essentially the ConSite algorithm used 

without a homologous sequence for comparison.  This created the total set of possible 

TFBS predictions which could be made for each sequence when the ConSite algorithm 

was applied.  This dataset was designated ProfessionalTFBS_20467. Each predicted 

TFBS was categorised as a positive i.e. a match against a TRANSFAC TFBS, or a 

negative, a TFBS prediction which did not match a known TFBS.  The same criteria as 

that used with the PublicTFBS_206384 dataset was used to determine a match (Section 

3.2.1).      

 

Orthologs for each of the genes in the dataset were retrieved from each of the 38 

eukaryotic full genomes available in Ensemble 50 via Biomart.  TFBS predictions were 

made for each ortholog, paired with its corresponding human sequence, using the orca 

alignment method (unpublished) recommended by ConSite, and the ConSite 

phylogenetic footprinting algorithm (Lenhard & Wasserman, 2002; Sandelin et al., 

2004b). The search parameters used were the presence of 80% sequence conservation in 

a 50 nucleotide search window and a score threshold of 80%. The conservation level of 

80% was chosen to select for regions which were more conserved than average for the 

majority of species.  For example, mouse-human promoters have been shown to have a 

mean similarity level of 77% (Sorek & Ast, 2003).   
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Figure 3.4.  Representation of the phylogenetic feature set used with the Naïve Bayes 

classifier.  38 possible phylogenetic features are used, but are represented in the diagram 

as the three features, Cat, Horse and Dog.  These features are represented in a binary 

format with 1 representing a conserved TFBS in the species.   Additional features are 

‘N2’ representing the likelihood of a nucleosome occurring at the same position as the 

TFBS prediction and ‘P’, the start site of the TFBS.  

 

For each TFBS prediction an array consisting of 40 elements was created (Figure 3.4).  

Each element in the array represents a feature.  The first 38 features represent a possible 

phylogenetic match to a TFBS predicted using ConSite with each of the 38 orthologs. 

The remaining two features represent the distance, given by the position on the 

sequence, and the predicted probability of nucleosome occupancy. Each element 

contains a value for the particular feature, a binary value for the phylogenetic features, 

the position on the sequence for the distance and the score retrieved from Recon, 

averaged across the TFBS motif, for the nucleosome occupancy probability.  

 

 
 



 102  

3.3.3. Feature selection 

Four feature selection methods were chosen from Weka (Witten et al., 1999); SVM, Chi 

Squared, Info gain and Gain Ratio.  The features were ranked by each method using 5 

fold cross validation on the test dataset.  The features to be used in the classifiers were 

selected incrementally starting with the feature ranked highest by each classifier.  After 

the addition of each feature the performance of the classifier was assessed.  While 

performance increased, features continued to be added.  Once performance stopped 

increasing, the optimum selection of features was assumed to have been reached. 

   

3.3.4. Naïve Bayes Classifier 

Three types of classifiers were used; Naïve Bayes (NB) from Weka (Witten et al., 

1999), Positive Naïve Bayes (PNB) and Positive Tree Augmented Naïve Bayes (PTAN) 

(Calvo et al., 2007a).  The Naïve Bayes classifier was first used to determine the 

optimum set and number of features, through 5 fold cross validation.  All three 

classifiers were then used to classify the data based on the optimum set of features.  

This was to determine whether classification based only on positive examples improved 

performance.   

 

The classic Naïve Bayes classifier was trained and tested using 5 fold cross validation 

using the Weka implementation.  The first dataset that the classifier used, 

ProfessionalTFBS_20467, contained all examples, both positive and negative, predicted 

by the TFBS algorithm; as with the PMANB dataset, PublicTFBS_206384, this gave a 

very low positive a priori value due to a much larger negative data set than positive data 

set.  The classifier was secondly trained using a smaller dataset.  The second dataset 

contained a random selection of the negative examples of the same size as the positive 
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examples.  This meant that the a priori value was set to 0.5 as the algorithm calculated 

that there was an equal chance of a data point being classified as positive or negative.  

The creation of the second dataset and the testing of the classifier with the dataset were 

repeated three times, as in the PMANB classifier. The three resulting datasets were 

designated ProfessionalTFBS_230a, ProfessionalTFBS_230b and 

ProfessionalTFBS_230c.  Neither PNB nor PTAN needed negative classification data 

however, meaning that the a priori value was user defined. The a priori value of 0.5 

was used as this was the value used by the Naïve Bayes classifier. 

 

Performance was measured and compared by the sensitivity, specificity and accuracy 

values obtained at a 0.5 threshold value. ROC curves were also created and the AUC 

value made an additional measure of performance (Hanley & McNeil, 1982; McNeil & 

Hanley, 1984).  All three Bayesian methods were compared to predictions made using 

the ConSite algorithm using mouse and human paired orthologs. 

 

3.4. Applying the methods to the genes from the IFN-γ genetic linkage study 

Once the optimum PMANB and PPMNB TFBS classifiers had been ascertained, they 

were used to predict TFBSs in the set of genes from the IFN-γ genetic linkage study 

(Section 1.9 & Section 2.2.4).  Sequences for each of the genes in the linked regions 

were retrieved from Ensembl 49.  The sequences were of the same length as those of the 

dataset used to test and train the prediction model.  For the PPMNB classifier this was 

5.4Kb upstream from the transcription start site and 4.1Kb downstream from the 

transcription start site.  For the PMANB classifier this was 0.7 KB both up and 

downstream from the transcription start site.  The dataset and feature information was 

obtained in the same way as the testing and training data for each classifier.  TFBS 
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predictions which were assigned a probability value greater than 0.5 by the classifier 

were assumed to be correct.   

 

3.5.Pattern Matching Algorithms (PMANB) Results 

3.5.1. Datasets 

The full dataset, PublicTFBS_206384, consisted of 921 examples in the positive set and 

205463 examples in the negative set.  When using the ‘B’ feature set, with the 

PublicTFBS_206384 dataset, there were no positive predictions made by the classifier.  

This was due to the positive a priori value being automatically set as very low.  The ‘S’ 

feature set predicted a small number of positive predictions, but most of the predictions 

made were still negative. This resulted in a high specificity score of 99.0% and an 

accuracy score of 98.6%.  The sensitivity score was very low at 7.9%. These statistics 

show that the classifier was not accurately predicting the data; the results were being 

skewed by the large amount of negative data. 

 

Smaller datasets, PublicTFBS_1842a, PublicTFBS_1842b or PublicTFBS_1842c, were 

created by taking all positive examples and subset of random negative examples from 

PublicTFBS_206384.  This gave positive and negative datasets of the same size.   The 

sensitivity was much higher when using these datasets with either the ‘B’ or ‘S’ feature 

sets (Table 3.1). Specificity and accuracy values were reduced, when using the 

PublicTFBS_1842 datasets with either feature set, however this reduction is very small 

compared to the increase in sensitivity. 
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Figure 3.5. Fitted ROC curve showing the classification of predicted TFBSs by Naïve 

Bayes using either the ‘B’ or ‘S’ features sets.  The three solid lines represent the results 

given when the ‘B’ feature set was used to test and train the classifier on each of the 

three datasets: PublicTFBS_1842a, PublicTFBS_1842b and PublicTFBS_1842c.  The 

three dotted lines represents the results obtained when the ‘S’ feature set was used to 

test and train the classifier on each of the three datasets: PublicTFBS_1842a, 

PublicTFBS_1842b and PublicTFBS_1842c. 

 

The three ROC curves created using the ‘B’ feature set (one curve for each of the small 

datasets) and the three ROC curves created using the ‘S’ feature set all showed an AUC 

of over 0.82 (Figure 3.5).  The repetitions using the PublicTFBS_1842a, 

PublicTFBS_1842b and PublicTFBS_1842c datasets gave ROC curves of the same 

shape and size in each case when the ‘B’ feature set was used to train and test the 

classifier.  There was a much greater variation in both the shape and AUC of the ROC 

curves when the ‘S’ feature set was used for training and testing purposes (Figure 3.5).  
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Neither feature set was shown to consistently outperform the other feature set as a 

means of representing the data.  There was a slight decrease of less than 1% in mean 

sensitivity when using the ‘S’ feature set rather than the ‘B’ features set (Table 3.1).  In 

contrast to this, specificity and accuracy scores were increased when using the ‘S’ 

feature set rather than the ‘B’ features set (Table 3.1). Both feature sets gave similar 

AUC values in the ROC curves but the repetitions using the ‘B’ feature set gave a much 

more consistent ROC curve shape and AUC than the repetitions carried out using the 

‘S’ feature set.    

    

3.5.2. Feature selection 

3.5.2.1. Nucleosome probability at start position (N1) 

The effect of the addition of nucleosome positioning data was shown to be inconsistent 

in the PublicTFBS_1842a, PublicTFBS_1842b and PublicTFBS_1842c datasets.  In two 

of the PublicTFBS_1842 datasets, when using the ‘B’ features set, the addition of the 

N1 feature did not improve the classification as measured by AUC, in the third dataset 

an improvement was seen (Figure 3.6).  When using the ‘S’ feature set the N1 feature 

increased the AUC for two of the PublicTFBS_1842 datasets and reduced the AUC for 

the third PublicTFBS_1842 dataset.  In all cases the average sensitivity, specificity and 

accuracy were reduced by the addition of the nucleosome data (Table 3.1).  It can 

therefore be deduced that the N1 feature is not a useful addition to the classifier. 
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Figure 3.6.  a) shows the classification of TFBSs using the ‘B’ feature set, b) shows the 

ROC curves when using the ‘S’ feature set.  The solid lines show the classification if 

only the ‘B’ or ‘S’ feature sets are used with each of the PublicTFBS_1842 datasets.  

The dotted lines show the classification if the nucleosome prediction at the start site 

(N1) is included as a feature with each of the PublicTFBS_1842 datasets. 
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  Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

6 features 78.8 74.3 76.5 
+ N1 75.5 73.5 74.4 
+ N2 78.9 77.7 78.3 

B
 fe

at
ur

es
 

+ P 77.9 83.3 80.6 

6 features 78.3 77.8 78.1 
+ N1 77.6 77.6 77.6 
+ N2 78.1 79.3 78.7 

S 
fe

at
ur

es
 

+ P 77.7 83.4 80.5 

Table 3.1. Table containing the mean sensitivity, specificity and accuracy values 

obtained when using the Naïve Bayes classifier.  These values were recorded by taking 

the mean across the three datasets: PublicTFBS_1842a, PublicTFBS_1842b and 

PublicTFBS_1842c, when using different feature sets.  In each case the base S or B 

feature set is used, with 0 or 1 additional feature. 

 

3.5.2.2. Average nucleosome probability (N2) 

Using the N2 feature (mean value of the nucleosome scores over all positions of the 

TFBS) showed improved performance, as measured by ROC curve, compared to using 

the ‘B’ or ‘S’ feature sets without either nucleosome feature (Figure 3.7).  When using 

either of the ‘B’ or the ‘S’ feature sets with the additional N2 feature, the AUC of the 

ROC curves was larger in all three of the PublicTFBS_1842 datasets, than when using 

the ‘B’ or ‘S’ feature sets alone. 

 

The change in the shape of the ROC curve with the addition of the N2 feature is 

interesting.  The ROC curves based on the ‘S’ feature set and the ROC curves based on 

the ‘B’ feature set do not improve in the same way as each other.  The ‘B’ feature set 

with N2 (Figure 3.7a) has improved sensitivity at low specificity values; this implies 

that fewer FN results will be predicted by the classifier.  The ‘S’ feature set with N2, 

however, has improved sensitivity at high specificity values; this will result in fewer FP 
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results.  The three curves created using the ‘S’ + N2 feature set can also be seen to have 

very similar shapes to each other, showing that the addition of the N2 feature has 

reduced the variability in the classification of the data from that seen in the ‘S’ feature 

set.   

 

 

Figure 3.7. a) shows the classification of TFBSs using the ‘B’ feature set, b) shows the 

ROC curves when using the ‘S’ feature set.  The solid lines show the classification if 

only the ‘B’ or ‘S’ feature sets are used with each of the PublicTFBS_1842 datasets.  

The dotted lines show the classification if the mean nucleosome prediction values (N2) 

are included with each of the PublicTFBS_1842 datasets.   

 

When using the ‘B’ features set plus N2, the sensitivity, specificity and accuracy scores 

were all improved when compared to the ‘B’ feature set alone (Table 3.1).  When using 

the ‘S’ feature set plus N2, there was no real change to the mean sensitivity, a drop of 

0.20%, compared to the ‘S’ feature set alone. Improvement could be seen, however, in 
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the specificity and accuracy values obtained using the ‘S’ + N2 feature set compared to 

the ‘S’ feature set (Table 3.1).  

 

3.5.2.3. Position on sequence (P) 

The addition of ‘P’ (TFBS start site), to either feature set ‘B’ or ‘S’, increased the AUC 

of the ROC curves (Figure 3.8).  All ROC curves created using the ‘B’ + ‘P’ feature set 

had AUC scores of above 0.88.  The AUC scores for the ROC curves based on the ‘S’ 

+’P’ feature set were 0.86 and above.  The average sensitivity scores, using either 

feature set, were slightly decreased, a reduction of less than 1.00%, with the addition of 

‘P’.  However, the specificity and accuracy scores were substantially increased. 

 

 

Figure 3.8. (a) shows the classification of TFBSs using the ‘B’ feature set, (b) shows 

the ROC curves when using the ‘S’ feature set.  The solid lines show the classification if 

only the ‘B’ or ‘S’ feature sets are used with each of the three PublicTFBS_1842 

datasets.  The dotted lines show the classification of each of the three PublicTFBS_1842 

datasets if ‘P’ is included as a feature.  
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The final PMANB classifier consisted of the 6 TFBS prediction algorithm features and 

the position of the TFBS relative to the TSS. 

 

3.6. Phylogenetic Naïve Bayes Results (PPMNB)       

3.6.1. Dataset 

Phylogenetic conservation across species was used as another method of generating 

features describing the functionality of TFBSs.  These features were used to train a 

Naïve Bayes classifier.  The classifier trained using these features was designated 

PPMNB. 

 

The histogram showing the start positions of the TFBSs in TRANSFAC peaks at 250bp 

upstream of the transcription start site (Figure 3.9).  The curve is skewed towards the 

upstream positions.  This is consistent with the literature which states that a peak in 

TFBS occurrence can be found within 300bp upstream of the TSS (Koudritsky & 

Domany, 2008).   

 

Sequences of length one standard deviation from the mean position of the binding sites 

were found to be 5.4Kb upstream from the transcription start site and 4.1Kb 

downstream from the transcription start site.  This gave sequences of 9.5Kb in total.  

This length of sequence contained over 50% of the TFBSs, to increase this percentage 

the length of sequence would need to be substantially increased.   
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Figure 3.9. Histogram showing the frequency of TFBSs found different distances from 

the TSS in TRANSFAC Professional.  Frequency is measured in number of TFBSs 

found at the position, start site is measured in nucleotides upstream (-) or downstream 

(+) from the transcription start site (0). 

 

3.6.2. Feature Selection for PPMNB 

All four feature selection methods used, SVM, Chi Squared, InfoGain and GainRatio, 

found distance from the TSS, armadillo (Dasypus novemcinctus) orthologs and cat 

(Felis catus) orthologs to be the highest scoring features. This convergence of results 

indicates that the features chosen are likely to represent the real optimum rather than a 

local optimum in the search space.  Chi squared and Info gain methods both selected 

Guinea Pig (Cavia porcellus) orthologs as the fourth feature. The SVM algorithm 

selected horse (Equus caballus) orthologs as the fourth feature and GainRatio selected 

Stickleback (Gasterosteus aculeatus) orthologs. All three features selected as the fourth 
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possible feature were assessed to determine which gave the most improved 

performance.   

 

Three of the feature selection algorithms, Chi Squared, Info Gain and Gain Ratio, gave 

very similar rankings for each of the organisms (Figure 3.10).  The SVM classifier gave 

very different rankings to these other methods.  The SVM classifier uses a supervised 

machine learning method of feature selection compared to the other methods which use 

simpler statistical functions for feature selection and it is most likely to be this 

difference which is showing in the rankings.    
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Figure 3.10. Histogram showing the rank given by each of the four feature selection 

methods.  The features are ordered by average rank.  The features are named according 

to the naming scheme used in the Biomart entry point to Ensembl which accounts for 

the mixture of common and Latin names for the organisms.  Features which are not 

orthologous comparisons are shown in boxes. These features are ‘P’, the position of the 

TFBS on the sequence and ‘N2’ the mean probability of nucleosome occupancy across 

all positions in the TFBS.   
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3.6.3. Naïve Bayes  

As with the PMANB classifier, the PPMNB classifier consistently classified all 

examples as negative when the ProfessionalTFBS_20467 dataset was used.  The 

negative classification of the entire data set occurred with any and all feature 

combinations attempted.  This was due to the very small positive a priori value that is 

calculated when a large imbalance in numbers of positive and negative training data 

exists.  Due to the small number of positive test examples compared to the large number 

of negative test examples the specificity was close to 100% while the sensitivity was 

0%.  

 

The alternative dataset included equal numbers of positive and negative examples.  

There were three datasets: ProfessionalTFBS_230a, ProfessionalTFBS_230b and 

ProfessionalTFBS_230c.  When these datasets were used for the training and testing of 

the classifier both positive and negative predictions were made. This was due to the 

reduced bias towards negative prediction. 

 

Using only two features, ‘P’ (TFBS start site position) and the phylogenetic 

conservation of TFBS with armadillo orthologs, the classifier gave high AUC values 

>0.90.  The mean sensitivity was 93.9%, although the mean specificity was lower at 

71.3%. The addition of another feature, phylogenetic conservation with cat, improved 

both mean specificity and sensitivity scores (Figure 3.11).  However the variation 

between ROC curves increased considerably with the addition of this extra feature 

(Figure 3.11).  This variation made it difficult to determine whether the added feature 

improved the performance of the classifier.  Ideally more datasets would be used to find 

a consensus for the performance of the classifier.  Although it is difficult to see if there 
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was an increase in classification performance using the ROC curves, the sensitivity and 

specificity showed an improvement in performance so the third feature, phylogenetic 

conservation with cat was retained.  The fourth features were included in the classifier 

to determine if this would further improve the classification. 

 

Figure 3.11. ROC curve showing the performance of the classifier using distance and 

armadillo orthologs as features (solid) and using distance, armadillo orthologs and cat 

orthologs as features (dotted).  Each feature set is trained and tested using each of the 

three ProfessionalTFBS_230 datasets and the resulting ROC curves are plotted 

separately. 

 

Three possible fourth features were selected by the feature selection algorithms.  The 

three options were conservation with horse orthologs, guinea pig orthologs or 

stickleback orthologs.  All features selected by these algorithms as possible fourth 

features were used in the classifier to determine which gave the optimum performance.  
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The conservation with hedgehog orthologs feature was the fourth feature when 

calculated by mean rankings, however it was not the fourth feature for any given feature 

selection algorithm so was not included in this analysis. Figure 3.14 shows the mean 

sensitivity, specificity and accuracy observed when using each of the possible fourth 

features, along with the three features previously chosen, in the Naïve Bayes classifier.  

In each case conservation with horse orthologs gave higher scores than with guinea pig 

orthologs or stickleback orthologs.  However, this was only a slight increase in 

performance, particularly when the standard deviation, shown as error bars on Figure 

3.12, was taken into account.  

 

 

Figure 3.12. Mean sensitivity, specificity and accuracy scores for the classified dataset 

when using distance, armadillo and cat orthologs as features plus one of the fourth 

features identified by the feature selection algorithms.  Error bars represent one standard 

deviation from the mean. 
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Figure 3.13. ROC curves showing the classification performance using distance and 

armadillo and cat ortholog features, plus one of the fourth features chosen by the feature 

selection algorithms.  The fourth features analysed are: guinea pig orthologs, 

stickleback orthologs and horse orthologs.  The ROC curves created by using each of 

the ProfessionalTFBS_230a datasets are plotted individually. 

 

The ROC curves describing the performance of the classifier when using each of the 

different possible fourth features did not show a consensus hierarchy of possibilities for 

the fourth feature.  One of the ‘conservation with horse orthologs’ datasets had the 

highest AUC: however, another of the ‘conservation with horse orthologs’ datasets had 

the lowest AUC. The average AUC for the ROC curves was the highest when using 

‘conservation with guinea pig orthologs’ as the fourth feature.  Although the 

‘conservation with horse orthologs’ gave the highest sensitivity and specificity values, 

the difference between these results and the results obtained using the other possible 
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features was very small and no greater than the error limits for the other two orthologs.  

Therefore, ‘conservation with guinea pig orthologs’ was taken as the fourth feature for 

the classifier. 

 

The addition of ‘conservation with stickleback orthologs’ as the fifth feature did not 

alter the classification of the data.  However, the addition of the ‘conservation with 

horse orthologs’ feature improved the mean sensitivity and specificity scores for the 

classifier (Figure 3.14). The size of the standard deviations of the sensitivity and 

specificity results showed that the difference in means between using four or five 

features was not a significant result.  The AUC values were not improved using either 

fifth feature. 

 

As the addition of an extra feature added to the training and running time of the 

classifier, it was decided to stop adding features at this point. The optimum feature set 

was taken to be; ‘P’, ‘conservation with armadillo orthologs’, ‘conservation with cat 

orthologs’ and ‘conservation with guinea pig orthologs’.  
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Figure 3.14. Mean Sensitivity, Specificity and Accuracy scores achieved by the Naïve 

Bayes classifier when using 2, 3, 4 or 5 features.  Error bars show 1 standard deviation 

from the mean. 1st feature = distance, 2nd feature = Armadillo orthologs, 3rd feature = 

Cat orthologs, 4th feature = guinea pig orthologs, 5th feature = Horse orthologs. 

 

3.6.4. PPMNB Naïve Bayes method comparison 

There was no significant difference found between using the positive Naïve Bayes 

methods, PNB and PTAN, and the classic Naïve Bayes method in the PPMNB classifier 

(Figure 3.15). This was the case when assessment was made based on sensitivity and 

specificity values at 0.5 or using AUC. Significant differences between the methods 

were calculated using z statistics as described in Hanley and McNeil’s work for 

comparing related ROC curves (Hanley & McNeil, 1983; McNeil & Hanley, 1984). The 

three Bayesian methods had significantly higher AUC values than the AUC for 

predictions made using ConSite with mouse orthologs.   
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Figure 3.15. Empirical AUC values (derived from ROC curves) for the 3 best 

performing naive bayes methods using ConSite scores with ortholgues from 3 species 

(Armadillo, Cat and Guinea Pig) and distance from the TSS as features. The AUC value 

for ConSite (using mouse orthologues only) is shown for comparison.  AUC values are 

shown as a bar chart rather than a ROC curve due to the similarity between NB, PNB 

and PTAN curves. 

 

3.7. Applying the methods to the genes from the IFN-γ genetic linkage study 

Both the PMANB and the PPMNB classifiers were used to predict TFBSs for the genes 

in the gene set from the IFN-γ linkage study.  The PMANB method predicted at least 

one transcription factor binding site for 523 of the 532 genes.  The PPMNB method 

predicted only 35 genes with TFBSs.  The discrepancy between the numbers of genes 

predicted by each method was due to the limitations imposed by using phylogenetic 

features as described in section 3.3.1. 
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75 different transcription factors had TFBS predictions made by the PMANB classifier 

in genes from all three regions of interest (chromosomes 8, 10 & 11).  53 transcription 

factors were predicted by the PPMNB classifier to bind to genes in each of the three 

regions.  In each case there were too many combinations to successfully search for co-

regulated genes without recourse to computational clustering methods. 

 

Although the PPMNB classifier predicted a smaller range of transcription factors than 

did the PMANB classifier, a small number of transcription factors were predicted using 

the PPMNB classifier that were not predicted using the PMANB classifier e.g. Pax4 and 

Pax6 (Figure 3.16).  However, there were far more transcription factors which are 

predicted to bind by the PMANB classifier which were not predicted by the PPMNB 

classifier.  Examples of these transcription factors were the EGR family of transcription 

factors, the GATA family of transcription factors and SP1. 

 

Binding sites for the majority transcription factors which were predicted by the PPMNB 

classifier were found in high numbers of genes across the dataset.  In some cases the 

transcription factor was predicted to bind every gene in the set.  By contrast, the 

PMANB classifier predicted that each transcription factor bound to a much smaller 

percentage of the genes.  This was most likely to be due to the different lengths of 

sequence across which the transcription factors were predicted.  The algorithm based 

classifier searched a sequence of length 1400b while the phylogenetic classifier 

searched sequences of length 9.5Kb.  It would be much more likely for a transcription 

factor binding site to occur by chance in the longer sequences used by the PPMNB 

classifier.   
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Figure 3.16. Chart showing the percentage of genes in each the relevant dataset with 

binding site occurrence for specific transcription factors.  Transcription factors were 

predicted either through the Phylogenetic Pattern Matching Naïve Bayes classifier 

(PPMNB) or the Pattern Matching Algorithm Naïve Bayes classifier (PMANB). 
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3.8. Conclusions 

3.8.1. Comparison of Naïve Bayes methods 

PMANB and PPMNB, while both high performing classifiers, had different strengths in 

the classification of TFBS predictions.  The PMANB classifier had a better performance 

as measured by AUC but the distance from the transcription start site at which TFBSs 

can be found was small.  The classifier could not be trained with longer sequences 

because of the limits imposed by some of the algorithms used as features.  PPMNB, 

therefore, had an advantage when searching for TFBSs further from the TSS, as it was 

trained and tested using much longer sequences.   

 

The PMANB classifier had an advantage in the number of transcription factors it was 

able to predict. The variety in algorithms used to train the model allowed for a greater 

number of TFBSs and, therefore, regulatory transcription factors, while the use of Naïve 

Bayes to train the model overcame the problem of some algorithms being unable to 

predict the TF in questions.  PPMNB, in its current version, was restricted to the TFBSs 

which are searched for by ConSite.  This resulted in the identification of a much smaller 

number of possible regulatory TFBSs (Figure 3.16).  However, as PPMNB was built 

using the extremely versatile TFBS Perl modules (Lenhard & Wasserman, 2002), it 

would be possible to increase the number of TFBSs searched for with the method.  Any 

new TFBS matrices added to the PMANB classifier could have different orthologous 

conservation profiles than those currently used by the classifier.  Therefore, if adding in 

additional TFBS matrices, it would be prudent to re-test the classifier to ensure the high 

level of performance was retained and that the current features chosen are still the 

optimum selection.  
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The comparison between PPMNB using the classic Naïve Bayes algorithm and PPMNB 

using either PNB or PTAN, the positive Naïve Bayes algorithms, showed no significant 

difference in performance. The positive Naïve Bayes classification methods had been 

included due to the lack of experimentally verified negative training examples for use in 

the Naïve Bayes classifier.  The negative examples which were used in the classic Naïve 

Bayes classifier were defined by their lack of a positive label, not by experimental 

evidence showing that the prediction was not a functional TFBS.  PNB and PTAN, the 

positive Naïve Bayes methods, did not, however, have a higher AUC than the classic 

naive Bayes classification.  Although the problem appears to be an example where the 

positive naive Bayes methods would be useful, the PNB and PTAN classifiers did not 

have a higher performance than the classic Naïve Bayes classifier; neither did they 

perform any worse. 

 

If there were a clear distinction between the characteristics which define the positive 

examples and the negative examples, the difference between the classic and positive 

classifiers would be expected to be small.  In this case it would not matter whether the 

classifier works by assigning a high probability that an example was positive and a low 

probability that the example was negative, as in the classic Naïve Bayes classifier, or 

simply a high probability of the example being positive as in the positive Naïve Bayes 

classifier.  Using either classifier the example would be predicted as a positive 

datapoint.  It is only when the negative and positive classifications overlap in their 

feature space that the classifiers would perform differently.  If an example was to fit the 

criteria for being a positive example and for being a negative example the classic Naïve 

Bayes classifier would assign the example a probability of approximately 0.5.  If the 

probability was just less than 0.5 the example would be pushed into the negative 
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predictions, if just over 0.5 it would be included in the positive predictions.  The 

positive Naïve Bayes classifiers would categorise this example as positive because it fit 

the criteria for a positive example (table 3.2). 

 

Example Class Positive 
probability

Negative 
probability 

NB result PNB/PTAN 
result 

1 1 High Low 1 (TP) 1 (TP) 
2 1 High High 0 (FN) or 1 (TP) 1 (TP) 
3 0 Low High 0 (TN) 0 (TN) 
4 0 Low Low 0 (TN) or 1 (FP) 0 (TN) 

Table 3.2. Examples of the different classification of data by PNB or PTAN and classic 

NB. 

 

When the example fits the positive criteria, giving a high positive probability, the PNB 

and PTAN classifiers will predict it as a functional binding site, however for the NB 

classifier it also depends on the fit of the negative data.  When the example does not fit 

the positive criteria, giving a low positive probability, the PNB and PTAN classifier will 

predict it as a non-functional binding site, the prediction made by the classic Naïve 

Bayes classifier again depends on the fit of the negative data. 

 

3.8.2. Application to the genes from the genetic linkage IFN-γ study  

In the results from the simple combinations of programs, in Chapter 2, genes which 

shared predicted regulatory transcription factors could be identified.  The methods of 

TFBS prediction outlined here predicted many more TFBSs, and therefore, regulatory 

transcription factors, for each gene than the analysis in chapter 2.  For the prediction 

made by the phylogenetic classifier, it was not feasible to group the genes by single 

transcription factor.  This was due to the fact that many transcription factors have 

binding sites occurring on all or most of the genes for which predictions were made. 
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The PMANB classifier found a number of genes associated with a larger number of 

transcription factors.  This would still give a large number of genes which may be co-

regulated by each transcription factor.  Gene regulation is more likely to be reliant on 

groups of transcription factors than on single transcription factors.  Therefore it is a 

more useful and accurate analysis to look at all of the transcription factors predicted to 

regulate the gene in concert rather than singly.  This was investigated further in chapter 

4. 
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4. Predicting function from regulation 

4.1. Introduction 

The TFBS predictions from the consensus method in Chapter 2 were used to find genes 

which may be co-regulated by a single transcription factor.  Although a number of 

candidate genes were found, only a small number of transcription factors could be 

analysed using this method.  This is because each single prediction method scores 

motifs against only those TFBS matrices in its database.  The method of combining 

these algorithms reduced the number of possible TFs still further to only those TFs 

which multiple algorithms are able to predict.  Conversely, the TFBS prediction 

machine learning methods developed in Chapter 3 predicted a large number of TFBS in 

a large number of genes.  In the case of PMNB this is because the combining of 

algorithms is much less restrictive, still allowing the prediction of TFBS which are 

predicted by only one algorithm. The PPMNB method only uses one algorithm, with a 

large database of TFBS matrices and so is not restricted in the same way.  The large 

number of TFBS matrices for which predictions can be made makes the space in which 

to search for co-regulated genes very large.  Using these predictions it would be difficult 

to predict co-regulation by analysing the co-occurrence of single TFs.  To address this 

issue two approaches can be taken; the inclusion of additional experimental data, and 

the identification of and search for groups of TFs that work co-operatively. 

 

4.1.1. The use of experimental data to aid the prediction of co-regulated genes 

The addition of experimental data would significantly aid the discovery of functionally 

similar genes in the IFN-related gene dataset. Many methods have been developed 

which use experimental evidence to improve the prediction of functionally similar 

groups of genes.  For example, the combination of in-silico prediction techniques with 
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large-scale genetic screening has been used as a tool for functional gene discovery in 

Drosophila (Aerts et al., 2009) and a combination of genome-wide expression data, 

TFBS predictions and ChIP-Chip data were used to identify a PU.1 regulatory network 

in macrophages (Weigelt et al., 2009). 

 

Several publically available databases exist which contain data from microarray 

experiments.  Examples of these are the NCBI database, Gene Expression Omnibus 

(GEO) (Barrett, T. et al., 2007), and the EBI database, ArrayExpress (Parkinson et al., 

2009).   However, we were unable to obtain a complete set of data suitable for this 

analysis – ideally this would be an analysis of the expression of the genes in the IFN-γ 

linked gene regions in BCG vaccinated naïve individuals from the Gambia.  Additional 

microarray experiments would need to be conducted if the methods were to be applied 

to the genes from the regions linked to the IFN-γ response.  Therefore, within the 

limitations of this thesis, the addition of experimental data was not possible. 

 

4.1.2. Cis-Regulatory modules 

Transcription factors rarely act autonomously in the regulation of a gene.  A much more 

common situation involves groups of TFs working co-operatively or antagonistically 

(Lee et al., 2008; Santalucía et al., 2001; Takahashi, et al., 2002).  Cis-regulatory 

modules (CRMs), also known as composite regulatory modules, are groups of two or 

more closely situated TFBSs which enable multiple TFs to regulate a gene.  The 

analysis of genes with correlated expression, measured using experimental techniques 

such as microarrays, has allowed for the identification of many CRMs (Baldwin et al., 

2005; Kim & Jung, 2006).  Recent analysis (Danko et al., 2009) into degenerative heart 

disease identified a CRM consisting of a TATA-box followed by a CACC-box.  This 
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motif was found in 9 genes involved in myocardial contraction.  A second CRM was 

found in 20 genes involved in translation.  This module consisted of a pyrimidine-rich 

initiator, Elk1, Sp1, and a novel motif with a GCGC core (Danko et al., 2009). 

 

Known CRMs can be found in TRANSFAC’s sister database TRANSCompel (Kel-

Margoulis et al., 2002) and in other databases such as PReMod (Ferretti et al., 2007) or 

CisRed (Robertson et al., 2006).  Some of these CRMs are experimentally verified, such 

as those in TRANSCompel, others, such as those in CisRed are statistically inferred 

from either known or predicted TFBS.  The annotation of CRMs is progressing at a 

slower rate than that of the transcriptome (Van Loo & Marynen, 2009), hence the need 

for the statistically inferred modules.  However, even with the statistically inferred 

modules the number of known CRMs is still small.  A search of TRANSCompel public 

found only one CRM known to be involved with the immune response (ZIP$REL_004).  

The module consisted of a C/EBPbeta site at -179 to -168 and a NFκB or NFκB p65 site 

at -91 to -82 (Xia et al., 1997).  Both of these TFBS are able to be predicted using the 

PMNB classifier; however no genes were found with predictions at positions similar to 

the reported CRM.  It does not appear likely from the annotations associated with other 

known CRMs found in TRANSCompel that our system is regulated by one of these 

known modules.  

 

4.1.3. CRM prediction algorithms 

A number of CRM prediction algorithms have been recently developed. The majority of 

these algorithms search for statistically over represented groups of TFs.  The search for 

CRMs is usually carried out by comparing groups of TFBS in sets of co-regulated genes 

(Zeng et al., 2008). Ab-inito methods of CRM discovery, involving the search for 
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statistically over-represented motifs within groups of co-expressed genes, have been 

successful in a number of studies.  The results from one such study are described in 

Section 4.1.2 (Danko et al., 2009) and many other CRMs have been discovered using 

such methods (Choi, D. et al., 2008; Niida et al., 2009; Tuteja et al., 2008).  Methods 

which search for groups of over-represented motifs rely on the existence of a set of 

genes which exhibit similar expression profiles.  These methods are not applicable to 

the set of genes from the regions linked to the IFN-γ immune response because we are 

trying to find a subset of co-regulated genes within a data set of genes that are unlikely 

to have similar expression profiles.  

 

The ab-initio methods described above are not suitable for the identification of co-

expressed IFN-γ linked genes in the set of genes in the IFN-γ linked regions.  These 

methods aim to find CRMs from genes which are known to be co-expressed, while this 

analysis aims to identify a subset of co-regulated genes within the IFNγ-linked dataset.  

Another challenge is that our set of TFBS is predicted.  With the use of predicted TFBS 

it must be assumed that some TFBSs are false positive results and that other TFBSs are 

not predicted by the method.  This is problematic when searching for similar clusters of 

TFBS.  In this chapter, we analyse the presence of multiple TFs, but not their positions.  

Three approaches have been taken in this chapter (a) a Principal Coordinate Analysis 

(PCO), (b) a Naïve Bayes classifier (described in Section 3.1.1) and (c) a simple graph 

analysis.  These approaches will be used to look for groups of shared TFs that 

correspond to genes with similar functions.  
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4.1.4. Principal Coordinate Analysis  

PCO is a multidimensional scaling method (Gower, 1966) which allows for data points 

to be clustered using a smaller set of features than they were originally described with.  

The new features which are used to describe the data are entirely new, unlike the 

features in Principal component analysis which are a combination of existing features.  

The new features in PCO are created by representing the data in multidimensional 

Euclidean space and determining the smallest set of axes to use to accurately describe 

this data.  The data is described as a distance matrix; this is the representation in 

Euclidean space. PCO determines the number of axes on which to plot the data from the 

distance matrix in order to minimise a loss function referred to as stress (Borg & 

Groenen, 2005). When stress is at a minimum level this implies that the data is correctly 

described using the current number of axes.  The axes represent the new features with 

which the data is described.  The level of stress declines as the number of axis increases, 

however the aim of the PCO analysis is to reduce the data to a smaller number of 

features, represented by the axis.  Therefore a compromise must be reached.   

 

A screeplot can be used to describe the level of stress occurring in the model.  

Screeplots give a measure of the variance described by each axis given by the PCO.  

The level of variance is measured using the eigenvalues of the matrix.  Eigenvalues are 

properties of a matrix, used in matrix arithmetic.  When a matrix acts upon a vector it 

affects both the magnitude and direction of the vector.  However when a matrix acts 

upon certain vectors, eigenvectors, the magnitude is altered, but not the direction. The 

factor by which the magnitude is altered is the eigenvalue.  The optimum number of 

axes used to describe the data is given by the ‘elbow’ of the screeplot (Steyvers, 2002; 

Zhu & Ghodsi, 2005).  The elbow can be seen between the 3rd and 4th axes on the 
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example screeplot shown in Figure 4.1.  The optimum number of axes in this case 

would be 3.   
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Figure 4.1. Example screeplot showing an elbow in the data between the 3rd and 4th 

axes. 

 

PCO has not been used to cluster genes according to TF occurrence before.  However 

the method has been used in numerous biological problems to allow for the clustering of 

data by a smaller number of features than the original representation contained.  One 

use of PCO has been the clustering of genomes and assessment of variance.  The data in 

these studies was originally described using polymorphisms as markers (Sobral et al., 

2009; Lam et al., 2009; Perumal et al., 2008; Su et al., 2009; Zhang et al., 2009).  A 

second use has been in the categorisation of protein structures and folding states 

(Palyanov et al., 2007; Manson et al., 2009; Yang et al., 2006) 
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4.2. Methods 

4.2.1. Dataset 

Biological process GO (BP GO) annotations (Ashburner et al., 2000) were retrieved 

using BioMart (Smedley et al., 2009) for the 532 genes in the regions genetically linked 

to an IFN-γ immune response to TB.  The BP GO annotations were available for 392 

genes in this dataset.  These genes were used as the dataset for the co-regulation 

analysis, designated as the IFNγ-regions dataset.  A path specific relative similarity 

statistic (PSRSS) score based on the BP GO annotations was calculated between each 

possible pair of genes in the IFNγ-regions dataset using a set of Java modules developed 

by D. Damerell (personal communication).  The PSRSS score denotes the level of 

functional similarity between pairs of genes; the smaller the score the more similar the 

functions of the genes.   

 

TFBS predictions were made for each of the 392 genes in the IFN-γ-regions dataset 

using the PMNB method described in sections 3.2.2 and 3.5.2.  The PMNB method, 

rather than the PPMNB method, was used to predict TFBS because binding sites could 

be predicted for the greatest range of transcription factors.  

 

4.2.2.  Principle co-ordinate analysis 

A matrix was constructed containing the transcription factors predicted to bind to each 

gene sequence in the IFNγregions dataset.  The rows in the matrix represented genes 

(392 genes) and the columns represented transcription factors (84 TFs).  The matrices 

represented the TFBS predictions in two ways: a binary representation and a frequency 

representation (Figure 4.2).   The binary matrix represented only whether at least one 

 
 



 135  

TFBS for each TF was predicted (1) or not predicted (0) for each gene. The frequency 

matrix contained the number of TFBS predicted for each TF in each gene.   

 

 

Figure 4.2. Figure describing the processes of clustering genes by frequency or binary 

TF matrix.  Matrices are first created describing the number or occurrence of each type 

of TF in each gene.  The matrices are converted to a distance matrix to which a 

clustering algorithm (cmdscale) was applied. 

 

Both types of matrices (binary and frequency), were converted into distance matrices 

using the R (dist) function (http://cran.r-project.org/). The dist function is used to 

calculate the dissimilarities between the rows of a numeric data matrix using a specified 

the distance.  In this analysis we have used the Euclidean distance (Equation 4.1).  

 

√((x1 - x2)² + (y1 - y2)²))    (4.1) 

 

PCO was used to cluster the genes based on the distance matrices (Gower, 1966).  The 

implementation of PCO was conducted using the R (cmdscale) algorithm.  Screeplots 

were calculated for both the binary and frequency matrices to determine the number of 

axis needed to represent the data.  The optimum number of axes was identified using the 

elbow technique (section 4.1.4). Euclidean distances were calculated between the points 

 
 

http://cran.r-project.org/
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plotted using the co-ordinates given by the PCO analysis, for each gene pair.  These 

distances were compared to the PSRSS scores.  The correlation between these two 

scores was measured by Pearson’s correlation coefficient.   

 

The PCO analysis carried out on the frequency matrix identified a problem with the 

scaling of the TF features (Section 4.3.1).  Due to a large range of frequencies 

associated with some TFs, and a small range of frequencies associated with other TFs, 

the TFs were analysed according to different scales.  PCO analysis relies on the features 

being described using the same scale.  This problem was solved by removing the TFs 

which had a range of frequencies greater than 1 times the standard deviation from the 

mean.  This is a stringent criterion for removal of values.  However, the criterion was 

used because the ranges of frequencies observed were substantially skewed towards 1 

(Figure 4.7). Although this is a simplistic method of solving the problem it has been 

used successfully in other studies which search for patterns in TFBS occurrence to 

reduce the impact of frequently occurring TFBS (Hatanaka et al., 2008). 

  

4.2.3. Naïve Bayes 

A Naive Bayes classifier has also been used to classify gene pairs as functionally 

related, based on the TFs found to bind each of the genes.  In this classifier the data 

points for classification were pairs of genes and the features were TFs.  The classes into 

which the datapoints were classified were: functionally related, as measured by a 

PSRSS score below a given threshold (denoted by 1), and not functionally related, 

measure by a PSRSS score above a given threshold (denoted by 0).  The Naive Bayes 

classifier was implemented using Weka interface as described in section 3.2.2 (Witten et 

al., 1999).   
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Figure 4.3. Diagram showing the inputs and outputs for the naïve Bayes classifier.  The 

raw input contains a frequency matrix of genes and transcription factors (TF) binding to 

predicted sites within the gene or promoter sequence.  The naïve Bayes input consists of 

an array for each gene pair, either a binary encoding or a frequency encoding.  The 

output of the classifier is a probability score representing a gene pair which is very 

functionally similar at 1 and a gene pair is which is very functionally different at 0.   

 

The features for the classifier were encoded in two ways, but each used individual TFs 

as features (Figure 4.3).  For each gene pair, the specific TFs for each TFBS predicted 

by PMNB were compared.  The first coding, (a), was a binary representation.  An array 

was created for each pair of genes where each element in the array represented one of 

the 84 TFs predicted using the PMNB method.  If both genes contained predicted 

binding sites for the TF in question the array position was set to 1, otherwise the 

position was set to 0.  In the second coding, (b), the feature was encoded with the 

number of TFBS both genes contained, e.g. if one gene contained 12 TFBS for a 

transcription factor and the other gene contained 8, the array element for that position 

would contain 8, as both genes contain at least 8 TFBS for that transcription factor.  The 
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class (functionally related or not functionally related) was defined by the PSRSS 

threshold value. A varying threshold of PSRSS scores was used to determine the 

classifier’s performance at different levels of similarity. 

 

The proportion of functional and non-functional pairs in the dataset is altered as the 

PSRSS threshold score changes.  When the threshold is set at a low level most pairs of 

genes are classified as not-functionally similar.  As the threshold level is raised, the 

number of gene pairs classified as functionally similar increases.  The Weka 

implementation of the naïve Bayes classifier calculates the a priori values from the 

number of data points in the training set classified as positive (functional) or negative 

(non-functional).  When using a 5 fold cross validation method, as described in sections 

3.2.2 and 3.3.4, 80% of the data is used for training and 20% for testing.  If the entire 

dataset was used with each analysis, when the threshold level was changed, the a priori 

values would also change.  Some bias in the a priori value may be useful, for example, 

with the PSRSS score set at 0.9 it can be assumed that most gene pairs should be 

classified as functionally similar.  However, it was shown in Sections 3.5.1 and 3.6.1 

that the classifier was unable to overcome a large bias in a priori value, classifying 

every data point according to the bias.   

 

A smaller subset of data was created for each threshold, artificially setting the a priori 

value to 0.5.  Datasets were created by taking a randomly sampled set of data points so 

that the set of functional and non-functional data points were the same size, and of the 

largest size possible.  The datasets created this way were used to train and test the 

classifier using 5 fold cross validation.  This process of creating datasets with a priori 

values of 0.5 produced datasets of different sizes for each threshold value.  This meant 
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that the datasets for the threshold values in the middle of the scale were much larger 

than those at the extremes i.e. thresholds of 0.1 or 0.9.  These datasets had a larger 

number of training examples and as a consequence were more likely to accurately train 

the classifier than the smaller datasets used for the extreme threshold values.  For the 

task of classifying gene pairs as functionally or non-functionally related, we were most 

interested in threshold values in the middle of the range (0.40 - 0.60).  Very low 

thresholds would only allow for the identification of very similar gene pairs and very 

high thresholds would only allow for the exclusion of very different gene pairs.  

Therefore it was decided to tolerate this bias in classification accuracy. 

 

Chi squared feature selection (Liu and Setiono, 1995) was used to rank the features for 

the Naïve Bayes classifier.  Feature selection was carried out for each of the coding type 

(binary (a) and frequency (b)), and for each of the PSRSS thresholds.  After the 

classifier had been trained using all TF features, an analysis of the optimum features 

needed to train the classifier was carried out.  The optimum number of features needed 

was identified by training the classifier on a dataset with features removed 

incrementally.  Features were removed from the dataset in the reverse order selected by 

the Chi squared feature selection rankings. 

 

4.2.4. Graph analysis 

The use of graph theory to examine gene expression networks is a common one 

(Brustolini et al., 2009; Janky et al., 2009; Yanashima et al, 2009).  It allows for the 

visualisation of interactions between genes and transcription factors and therefore the 

discovery of previously unknown relationships between biological entities.  Often in 

these analyses both gene and TF will be represented as nodes (Janky et al., 2009), 
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however to simplify matters only the gene are represented as nodes in this analysis and 

the possible co-regulation of two genes via at least one TF is represented as an edge.  

 

The TFBS predictions made in Chapter 2 were used to create graphs representing 

possible co-regulated genes (Section 2.3.3).  A similar approach was used to determine 

possible co-regulated genes from the PMNB predictions made in Chapter 3.  The 

analysis carried out in Section 2.3.3 created edges between genes which both contained 

a TFBS for a certain TF and which had a PSRSS ≤0.40.  In this analysis the criteria is 

widened to allow edges between genes which share any TF.  Initially for two genes to 

have an edge connecting them, both genes must contain at least one TFBS for the same 

TF.  Subsequent analyses were carried out where the number of TFs in common 

between a pair of genes was increased.  The largest number of TFs, for which both 

genes must have a predicted TFBS, used in the analysis was 6 because no genes were 

found with a larger number of TFs in common. 

 

For each of the graphs created, the edges were annotated with the relevant PSRSS score.  

The number of known functionally related pairs (≤0.40) and the number of known non-

functionally related pairs (>0.40) was analysed for each graph.  The rate, at which the 

size of the graph decreased, as the number of TFs in common increased, was analysed.  

The size of the graph was calculated in two ways; the number of nodes and the number 

of edges.  This was compared between the graphs where edges were determined by TFs 

in common and the graphs where the edges were determined both by TFs in common 

and by PSRSS score.  This was to assess whether graphs with more stringent conditions 

produced more edges with a PSRSS score ≤0.4, therefore determining if the smaller 

graphs contained more accurate results. 
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Candidate genes retrieved from the graphs were analysed for possible CRM motifs.  A 

search was carried out for TFBS with similar distances from each other and from the 

TSS in genes linked in the network graphs.  

 

4.3. Results 

4.3.1. Principal co-ordinate analysis 

The screeplot calculated for the binary matrix showed a gradual decline in variance 

(measuring the level of stress).  An elbow could be seen after the 5th axis (Figure 4.4).  

The elbow was not very pronounced, but it was assumed that this was the optimum 

number of axes.  The elbow is small; this may imply that further axes are needed to 

describe the data.  A large number of axes needed to describe the data can imply that 

either the original features do not combine easily to describe the data, or that the data is 

noisy (Zhu & Ghodsi, 2006).  Is it likely that the data was noisy due to its predicted 

nature; therefore we shall assume that this was the main reason for the small elbow. 
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Figure 4.4.  Screeplot showing the variances of the Eigenvectors in the binary PCO 

clustering for each axis.  An elbow in the plot can be seen between axes 5 and 6.  

The PSRSS score and the Euclidean distance, measured using the PCO coordinates, for 

each pair of genes was compared by Pearson’s correlation coefficient.  No correlation 

was found.  Several sets of guidelines have been suggested for interpreting the size of a 

correlation given by the Pearson’s correlation coefficient (Cohen, 1977).  A general 

guideline, used for this analysis, is shown in table 4.1.   

 

Correlation Negative Positive 
Small -0.3 to -0.1 0.1 to 0.3 
Medium -0.5 to -0.3 0.3 to 0.5 
Large -1.0 to -0.5 0.5 to 1.0 

Table 4.1. Guidelines for interpreting the Pearson’s Correlation Coefficient (Cohen, 

1977). 
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When using the binary PCO clustering with 5 axes, the correlation was <0.1. According 

to the guidelines described in table 4.1, this shows that there was no correlation between 

the PSRSS score and the distances between genes as measure on the PCO axes.  

 

When PCO was used with the frequency matrix the screeplot showed an elbow after the 

first axis.  A strong bias towards only one axis is often a sign that the features used 

originally to describe the data, transcription factors in this case, are not all scaled 

equivalently.  The bias towards the first axis in this analysis was caused by a small 

number of transcription factors which had a very high variation in the number of TFBS 

present in each gene.  This meant that the data was clustered using only a small number 

of the transcription factors predicted.  

 

 

Figure 4.5. Screeplot showing the variances of the Eigenvectors in the frequency 

cmdscale clustering for each component.  Axis 1 has a much higher variance than other 

axes. 
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Figure 4.6. Chart showing the ranges of frequency of TFBS prediction shown for each 

TF.  The threshold above which TFs were removed from the analysis (mean+standard 

deviation) is shown by the red line. 

 

Three TFs were found above the threshold value of 1 times the standard deviation from 

the mean; Sp1, GATA1 and CREB (Figure 4.6).  The most prominent example was Sp1 

for which some genes were found to have 238 TFBS while other genes were found to 

have none.  This created a different scale for the frequency of Sp1 TFBS than for other 

TFs.  An example of this can be seen in the case of two genes, one with 2 TFBS for a 

certain TF and one with 4 TFBS for the same TF.  If the TF was Sp1, this would be a 

negligible difference in TFBS frequencies between the two genes, however if this TF 

was one where 4 was the largest number of TFBS found in any gene, the difference in 

frequencies between the two genes would be large.  In order to measure all TFs using 
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the same scale, the 3 TFs with a larger range of frequencies were removed from the 

analysis. 

 

The screeplot for the frequency matrix without Sp1, GATA1 and CREB TFs (Figure 

4.8) still showed an elbow after the first axis.  However, the amount of stress present 

was much lower than in the screeplot for the frequency matrix containing all TFs 

(Figure 4.6).   

 

Figure 4.7.  Screeplot showing the variances of the Eigenvectors in the frequency PCO 

clustering (without the Sp1, GATA1 and CREB transcription factors) for each axis.  

The most obvious elbow in the plot can be seen between axes 1 and 2.   

 

The correlation coefficients for the comparison of PCO co-ordinates and PSRSS score, 

using the frequency clustering, are <0.1, this signifies that there was no correlation.  The 
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coefficients are smaller than those achieved using the binary matrix, however this is not 

a significant result (p>0.05).   

  

In summary, the correlation coefficients, for either the binary matrix or the frequency 

matrix, (Table 4.2) between PSRSS score and distance between genes calculated by 

PCO, do not show a correlation.   

 

4.3.2. Naïve Bayes 

The classification of gene pairs into functionally similar and non-similar pairs was not 

successful when using the naïve Bayes method with either the binary or frequency 

encodings of the feature set (Figure 4.8).  For the binary encoding the predictions made 

by the naïve Bayes classifier gave AUC values <0.55 for all threshold values.  The 

frequency encoding gave AUC values <0.55 for threshold values between 0.10 and 

0.70.  The AUC value increased to between 0.55 and 0.60 (Figure 4.9) a threshold value 

of 0.80 or 0.90.  Despite this slight increase, the AUC values are <0.70 and the classifier 

cannot be considered successful. 

    

Reducing the number of TFs used as features in the classifier did not significantly affect 

the AUC values.  A slight drop in AUC values can be seen when using only 20 features 

at the extreme threshold values of 0.90 and 0.20.   
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Figure 4.8 AUC values for the five fold cross validation of naïve bayes using the 

IFNγregions dataset and the frequency encoded feature set.  AUC values were recorded 

for 100, 50, 20 and 10 features as chosen by the χ2 feature selection ranking. PSRSS 

threshold value between 0.2 and 0.9 were used for each of the numbers of features.  The 

a priori values were set to 0.5. 

 

4.3.3. Graph analysis 

The number of nodes and edges present in the graph, where an edge represents at least 1 

TF in common, was very high.  94% of the genes from the IFNγ-regions dataset were 

found to have an edge connecting it to at least one other gene (Figure 4.9, resulting in 

38985 edges (Figure 4.10. The inclusion of the PSRSS score ≤0.4 criteria, reduced the 

number of nodes to 86% of the total, and reduced the number of edges by a much 

greater amount to 6650.  
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Figure 4.9 Histogram showing the number of nodes present on graphs created from the 

genes in the IFNγ-regions dataset.  Black bars represent the number of nodes (genes) 

connected by at least one edge where edges represent a certain number of TFs in 

common between genes. Grey bars represent the number of nodes connected by at least 

one edge where edges represent a certain number of TFs in common and a PSRSS score 

≤0.4 between the genes. 
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Figure 4.10 A semi-log histogram showing the number of edges present in the graphs 

when the criteria is either; a number of TFs in common (x axis) between a pair of genes 

(black), or both a number of TFs in common between a pair of genes and a PSRSS 

score ≤0.4 (grey).   

 

The graph constructed using a criteria of 6 TFs in common, contained only 2 genes, 

COPS5 (COP9 constitutive photomorphogenic homolog subunit 5) from chromosome 8 

and glutamate receptor, GRM5 (metabotropic 5) from chromosome 11.  COPS5 is a 

subunit of the cop9 signalosome and is involved in the degredation of CDKN1B 

(cyclin-dependent kinase inhibitor 1B), a protein which controls the cell cycle 

progression at G1 (Tomoda et al., 2005).  The COP9 signalosome involved in the 

regulation of multiple signalling pathways (Huang et al., 2007; Liu, X. et al., 2008; 

Wang et al., 2008) and has recently been implicated in T cell development (Panattoni et 
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al., 2008).  GRM5 is a glutamate receptor which has been shown to activate 

phospholipase C, a major component in calcium signalling pathways involved in 

diverse functions such as apoptosis (Giorgi et al., 2008; Pinton et al., 2008) and 

metabolism (Murgia et al., 2009).  Calcium signalling has been shown to be crucial for 

the development and function of regulatory T-cells (Vig & Kinet, 2009), responsible for 

the secretion of IFN-γ.  It is possible that GRM5 is linked to IFN-γ through this 

pathway.  

 

Using the the criteria for an edge to represent 5 TFs in common, a graph containing 18 

nodes and 17 edges is produced (Figure 4.11).  Only one complete 3 node subgraph, 

containing nodes representing genes from one of each of the IFN-γ linked regions, was 

found.  This contained both genes found to contain 6 TFs in common, GRM5 and 

COPS5, and also HPSE2 (heparanese 2).  Heparanase is secreted by T cells to promote 

T cell adhesion to the extracellular matrix (Sotnikov et al., 2004).  Although little is 

known of the exact mechanisms of HPSE2, a known interaction with T cells increases 

the likelihood of a functional relationship between these three genes and the likelihood 

of the genes being linked to the IFN-γ response. 

 

The TFs found in common between the genes were; AP1 (activator protein 1), CREB 

(cAMP response element binding protein), GATA1 (globin transcription factor 1), 

GATA2 (globin transcription factor 2) and USF (upstream transcription factor).  NRF2 

(Nuclear factor (erythroid-derived 2)-like 2) was shared by both COPS5 and GRM5 but 

not HPSE2. 
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Figure 4.11 The graph produced from the genes in the IFN-γ linked regions when the 

criteria for an edge is defined by the genes (nodes) containing TFBSs for at least 5 TFs 

in common. Cyan nodes represent genes from chromosome 11, green nodes represent 

genes from chromosome 10 and red nodes represent genes from chromosome 8. 

 

A possible cis-regulatory region has been discovered in each of the candidate genes 

from this analysis (Figure 4.12).  The region is found between -300 and -250 

nucleotides from the TSS.  The region contains a GATA1 motif followed by an AP1 

motif with a distance of between 34 and 36 base pairs between the TFBS.  The small 
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conserved distance between TFBS and the occurrence of the motif at a similar distance 

from the TSS in all genes are indicators that these genes could be co-regulated by this 

motif. 

 

-300 +100-100
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Distance from TSS
 

Figure 4.12 Diagram describing the positions, predicted by PMNB, of the binding sites 

for those TFs found in common between COPS5, HPSE2 and GRM5. Red points = AP1 

TFBS, blue points = CREB TFBS, green points = GATA1 TFBS, purple 

points=GATA2 TFBS and black points = USF TFBS. The shaded region indicates a 

possible Cis regulatory region containing a putative CRM consiting of a GATA1 and an 

AP1 motif separated by 34-36 nucleotides. 

 

A search of all genes in the IFNγ-regions dataset found only three other genes which 

contained possible examples of this CRM.  These genes were RUNX1T1 (runt-related 

transcription factor 1), MYBL1 (v-myb myeloblastosis viral oncogene homolog (avian)-

like 1) from chromosome 8 and RPS28 (ribosomal protein S28) from chromosome 11.  
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4.4.  Discussion 

Neither the PCO nor naïve Bayes analyses were successful in predicting genes with 

functional similarities; this may be due to a number of factors: the simplicity of the 

methods, the predicted nature of the TFBS (which will include a large number of false 

positive results) and the definition of function for the purposes of the analysis.  These 

factors are explored further in Chapter 6. 

 

The candidate genes suggested by the graph analysis had not been detected in the 

Section 2.3.3 analysis. This was despite all three genes containing binding sites for two 

of the TFs analysed in Chapter 2; CREB and USF.  It was expected, however, that the 

analysis in Section 2.3.3 would only identify a subset of candidate genes.  The known 

functions of the three genes suggest an involvement in immune response processes 

involving T cells, two in development of T cells and one in the adhesion of the cells to 

the extracellular matrix.  This lends weight to the hypothesis that these genes are linked 

to the INF-γ immune response.  A further factor is the identification of a possible CRM 

containing AP1 and GATA1.  AP1 has been shown to regulate gene expression in 

response to a number of different stimuli including bacterial and viral infections (Shen 

et al., 2006; Tu et al., 2009).  The GATA family of transcription factors are known to 

regulate cells involved in hematopoiesis (Harigae, 2006; Shimizu & Yamamoto, 2005).  

GATA1 is usually involved in erythropoiesis, the formation of red blood cells, however 

GATA2 is expressed in a wider range of hamatopoietic progenitors (Lowry & Mackay, 

2006; Ohneda & Yamamoto, 2002), and GATA3 is restricted almost exclusively to T 

cells (Ho et al., 2009; Rothenburg & Scripture-Adams, 2008).  The GATA family of 

transcription factors bind to similar motifs, therefore it is possible the GATA1 motif 

actually binds to GATA2 or GATA3.   
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5. Analysis of Epstein Barr Virus ZRE3 TFBSs in the 

human genome (Flower et al., 2010) 

5.1. Introduction 

The Epstein Barr virus (EBV) is a member of the gamma-Herpes virus family, and 

infects 90% of humans by adulthood.  In the majority, infection is sub-clinical or results 

in a self-limiting illness from which there is full recovery.  However, the virus remains 

latent, i.e. it is never cleared by the host immune system; and EBV is associated with a 

number of malignant diseases including lymphoma and nasopharyngeal carcinoma 

(Young & Rickinson, 2004).  EBV can affect the growth of infected cells, and is used in 

vitro to transform B lymphocytes such that they are capable of indefinite growth.  It has 

been postulated that the probability of developing cancer is increased by viral 

replication and a number of EBV genes that may regulate these processes have been 

investigated (Thorley-Lawson & Allday, 2008).  In particular, interest has focused on 

the transcription factor Zta, given its role in the switch from latent to lytic phases of the 

EBV cycle. The aim of this work was to apply TFBS prediction methods to identify Zta 

binding sites in the human genome, thereby identify genes that could be involved in 

activation of the EBV lytic cycle. 

 

Zta, an Epstein Barr transcription factor, binds to Zta response elements (ZREs) in order 

to activate the EBV lytic gene promoters.  This starts a cascade of over 50 genes 

involved in the lytic life cycle of the virus (Petosa et al., 2006).  Although there are a 

number of ZREs which have been discovered (Lehman et al., 1998), we have 

investigated ZRE3, a binding site with a conserved 7 base nucleotide sequence; 

TCGCGAA. Zta binds to ZRE3 primarily in a methylated state (El Guindy et al., 2006).   
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Zta has been is known to bind to human promoter regions and interact with cellular 

factors.  This can activate genes in a manner which is beyond the control of the human 

host.  An example of this is the up-regulation of TRK-related tyrosine kinase in Zta 

transfected cells, but not in control cells (Lu et al., 2000).  The up-regulation of a kinase 

suggests that host signalling cascades could be initiated by Zta.  Zta is also able to 

regulate AP1 protein expression and to compete with Fos-Jun heterodimers for AP1 

sites.  This suggests that Zta has the potential to interfere with AP1-mediated cell 

proliferation and differentiation (Speck et al., 1997).  It has also been shown that Zta is 

able to induce cell cycle arrest in the G0/G1 phase of epithelial tumour cell lines 

through the activation of p53, p21 and p27 (Cayrol & Flemington, 1996). A further 

effect of the Zta protein is an inhibition of the IFN-γ signalling pathway, altering host 

immune responses and suggesting a mechanism through which EBV may avoid host 

responses during initial infection (Morrison et al., 2001).  

 

The identification of the ZRE3 motifs in the human genome would be a useful step in 

the elucidation of the Zta mode of action.  By determining which genes contain a ZRE3 

motif we will identify which human genes Zta may bind and activate; thus yielding 

information about the functional mechanisms of Zta. 

 

5.1.1. ZRE3 Motif Prediction Methods 

Two methods of TFBS prediction were used to predict the binding of ZRE3 motifs in 

this analysis.  Firstly a simple pattern matching technique was used, implemented using 

perl scripts, searching for the exact 7 base ZRE3 sequence.  Exact pattern matching was 

used because the starting point for the analysis was a single ZRE3 motif.   As additional 

ZRE3 motifs were identified, PWMs were created and used to search the promoter 
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sequences.  A number of methods evaluated and developed in Chapters 2 and 3 could 

not be used for this analysis due to one of two limitations: (a) they do not allow for user 

defined PWMs to be used and (b) they assume TFBS are conserved. The ZRE3 motif 

does not appear to be well conserved evolutionarily; preliminary research showed that 

the PPMNB method did not predict any binding sites for the ZRE3 motif.  Hence the 

TFBS perl modules were used in the current analysis, as this method allows for user 

defined PWMs, and was found to be the most successful TFBS prediction algorithm in 

the analysis carried out in Chapter 2.  

 

5.1.2. Methods for the analysis of ZRE3 binding site function 

Identification of a ZRE3 motif using computational methods gives no indication of 

whether the site is a functional one. Here, we have used the location of CpG islands to 

infer a functional site. Sixty percent of all promoters are found to co-localise with CpG 

islands (Antequera, 2003), therefore the occurrence of a ZRE3 motif in a CpG island 

lends weight to the hypothesis that the ZRE3 motif is occurring in a functional 

promoter.  Many of the CpG dependent promoters regulate constitutively expressed 

housekeeping genes.  These genes are expressed throughout all tissues and are involved 

in core processes, such as the cell cycle (Rozenberg, 2008; Zhu et al., 2008).  The 

occurrence of ZRE3 motifs in these housekeeping genes is of particular interest, 

signalling that Zta may be able to disrupt the regulation of these core processes.  

Finally, the presence of ZRE3 motifs in CpG islands is particularly interesting because 

of the preferential binding of Zta to methylated ZRE3 motifs.  CpG islands in the 

human genome are normally un-methylated; however it is known that in cancer cells 

these regions can become hypermethylated, altering normal gene expression (Li, M. et 
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al, 2008).  It is possible that the tumourigenic properties of EBV are linked to this 

process. 

 

In addition to the identification of CpG islands, we have used GO term annotations to 

analyse the functions of genes containing ZRE3 motifs in their promoters. Comparisons 

of the GO term annotations associated with a group of genes containing ZRE3 in their 

promoters, against the annotations of all known human genes, will lead to the 

identification of functions enriched in the group.   The hypothesis for this work assumes 

that the binding of ZRE3 by Zta is specific to certain functional processes and the 

identification of over represented GO terms may identify these processes.  Another 

method of identifying genes which are involved in similar processes is by comparing 

functional annotations using a statistical measure.  The measure we have used is 

PSRSS, a statistic introduced and discussed in Chapters 2 and 4.  The comparison of 

sets of GO term annotations using the PSRSS statistic allows for the identification of 

small groups of genes in related processes, which may not be over-represented in 

relation to the annotations of all genes, but which may still be interesting.  

 

5.1.3. Methylation dependent Zta binding 

Methylation of ZRE3 influences the ability of Zta to bind.  Two amino acid residues 

(Cys-189 and Ser-186) in Zta are found to be crucial for methylated binding to ZRE3, 

although not ZRE1 or ZRE2 (Karlsson et al., 2008a).  These residues interact with 

methyl cytosines in the ZRE3 motif. A cysteine to serine substitution (C189S) within 

the Zta protein motif abolishes ZRE3 binding (Karlsson et al., 2008a).  This preferential 

binding to methylated motifs is an integral part of the involvement of Zta in switching 

EBV from a latent to a lytic phase (Karlsson et al., 2008b).  In the latent phase the EBV 
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genome is silenced by host driven methylation of CpG motifs.  Zta preferentially binds 

to methylated sites and is therefore able to start the cascade leading to the lytic phase. 

 

In this chapter, we have analysed the methylation-dependent binding of Zta by 

analysing the occurrence of ZRE3 motifs in CpG islands, and by determining, through 

Electrophoretic mobility shift assay (EMSA) analysis, whether motifs in selected 

candidate genes are preferentially bound when methylated.  The EMSA analysis was 

carried out by Kirsty Flower, in the laboratory of Dr Alison Sinclair (unpublished data).  

 

5.2. Methods 

5.2.1. Exact Pattern Match and First Round electrophoretic mobility shift assays 

(EMSAs) 

An exact pattern search was carried out for the 7 nucleotide sequence of ZRE3; 

TCGCGAA.  The search was conducted in sequences consisting of 500bp upstream of 

the transcription start site in all 22,740 protein coding genes retrieved from Ensemble 

49 (Hubbard et al., 2007). Five of the genes predicted to contain a ZRE3 motif were 

chosen to be tested for binding ability using electrophoretic mobility shift assays 

(EMSAs).  These genes were: max-binding protein (MNT), histone deacetylase 2 

(HDAC2), Zinc finger CCCH domain-containing protein 8 (ZC3H8), cyclin L2 

(CCNL2) and xeroderma pigmentosum, complementation group C (XPC).  These genes 

were chosen because they were likely to be involved in transcriptional processes, and 

therefore were the most interesting of the genes found.   Both methylated and 

unmethylated motifs were tested for binding ability.  
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5.2.2. Creation of PWMs and ZRE3 Motif Prediction 

The pattern match search described in section 5.2.1 was repeated using all human 

protein coding genes from Ensembl version 50 (Flicek et al., 2008).  Ensembl 50 was 

used rather than Ensembl 49 as used in section 5.2.1 to ensure that the promoter 

information represented the most recent knowledge.  This analysis gave the total 

possible number of ZRE3s, given the assumption that the motif is exactly conserved in 

all ZRE3s.  This set of ZRE3 results is designated total_ZRE3.  

 

Two position weight matrices (PWM) were created from genes shown to bind ZRE3 in 

the preliminary EMSA experiments (Figure 5.1). Both the PWMs were 27 nucleotides 

in length, the same length as the DNA sequences which had been tested by EMSA 

(section 5.2.1).  The sequence consisted of the seven base conserved motif with the 10 

residues found either side in each of the ZRE3 containing genes. The first PWM was 

created using sequences from all the genes found to bind Zta (ZRE3_A), five from 

human genes and one from EBV (RpZRE3). In the second PWM (ZRE_B), XPC was 

removed due to aberrant behaviour, weak binding of Zta when unmethylated as well as 

when methylated.  ZRE3_B, therefore, consisted of motifs from four human genes plus 

RpZRE3.   
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Figure 5.1. Position weight matrices ZRE3_A (top) and ZRE3_B (below).  ZRE3_A 

consists of 5 human sequences plus RpZRE3 from EBV, ZRE3_B consists of 4 human 

sequences, where one binding sequence, not conforming to the behaviour of the other 

binding sequences, has been removed, plus RpZRE3 from EBV. PWMs were created 

using the TFBS perl modules (Lenhard & Wasserman, 2002). 

 

The 500bp upstream region of all human protein coding genes was searched with both 

PWMs using the TFBS perl modules (Lenhard & Wasserman, 2002), with a threshold 

of 80% conservation.  The use of PWMs alone would allow for the central motif to 

contain mismatches, even though the positions in the PWM are completely conserved, 

due to the statistical nature of the search method.  Therefore, to ensure the integrity of 

the ZRE3 conserved motif, the results were further parsed to allow only predictions 

containing the exact core motif into the final analysis (Figure 5.2).  Using this procedure 

the PWM search was only able to predict a subset of the total_ZRE3 dataset.  These 
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genes were assumed to be more likely to be TP matches because the flanking sequences 

were similar to those in the ZRE3 motifs known to bind to Zta. 

 

 

Figure 5.2. The procedure used to search for ZRE3 motifs.  All protein coding genes in 

Ensembl 50 were searched using three methods: PWM search using ZRE3_A 

(PWM_A_search), PWM search using ZRE3_B (PWM_B_search) and the pattern 

search for TCGCGAA (Pattern_search).  The result of these searches was three sets of 

ZRE3 predictions; ZRE3_A_pre, ZRE3_B_pre and Pattern_search results.  The PWM 

based sets (ZRE3_A_pre and ZRE3_B_pre) were further parsed to retain only those 

motifs which contained the core 7 base motif: TCGCGAA.  This resulted in a further 

two sets of ZRE3 predictions ZRE3_A results and ZRE_B results. 
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5.2.3. Analysis of ZRE3 binding sites 

The first method used to predict whether ZRE3 sites were functional, was the prediction 

of CpG islands.  CpG islands were predicted in each promoter sequence using the 

EMBOSS program CpGPlot (Rice et al., 2000). CpGPlot was used with the default 

options: a window size of 100; a step of 1; a minimum average observed to expected 

ration of C plus G to CpG in a set of 10 windows of 0.6; a minimum average percentage 

of G plus C in a set of 10 windows of 50% and a minimum length of CpG island of 200 

nucleotides. The positions of the putative CpG islands were compared to the positions 

of the ZRE3 motifs predicted, and the number of motifs found inside predicted CpG 

islands was compared for each of the search methods.   

 

The Biological Process and Molecular Function Gene Ontology (GO) term annotations, 

from Ensembl 50, were retrieved for each of the genes predicted to contain a ZRE3 

motif using BioMart (Durinck et al., 2005; Smedley et al., 2009).  The GO annotations 

were filtered to contain only those annotations which were manually curated or 

experimentally verified.  The number of genes retrieved for each GO term was 

compared against the total number of human genes in Ensembl with the same 

annotation.  Significance was measure using Chi-squared with Yates correction (Yates, 

1934), reducing overestimation of statistical significance when using small amounts of 

data.  Terms which occurred with a significantly higher frequency (p<0.05) in the ZRE3 

containing datasets than in Ensembl, were retrieved and analysed. Genes that were not 

annotated with the over-represented terms were removed from the datasets to reduce the 

number of candidate genes for EMSA tetsing.  However, it was noted that genes with 

no, or sparse, GO annotations may be functional Zta binding genes, but would be 

excluded from the analysis. 
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An alternative method of analysing the GO annotations associated with the genes 

predicted to contain ZRE3 motifs was to create graphs showing genes connected by 

similar annotations (See section 2.2.4. and 4.3.3). Graphs were created using graphviz 

v2.20 (www.graphviz.org) and coded in the dot language. Nodes represented genes 

containing ZRE3 motifs and edges represented a PSRSS score of ≤0.4 between the 

Biological Process annotations of two genes. A PSRSS score of 0 denotes two genes 

which are exactly the same, a score of 1 denotes two genes which are completely 

different. A score of ≤0.4 ensured that only connections between genes with similar 

functions were retained.  Of the three types of GO annotation, only Biological Process 

annotations were used as these contained the most relevant information about processes 

in which Zta may be involved.   The resulting graphs were analysed to identify for their 

largest complete subgraphs.  For each node, all the nodes to which it had edges were 

determined.  Nodes which did not have edges to all other genes in this set were 

removed, starting with the node with the least relevant edges.  This process was 

continued until the set of nodes had edges to all other nodes in the set, i.e. it was a 

complete graph.   The subgraphs were annotated with the most specific GO term which 

was relevant to all nodes in the subgraph. 

 

Text mining was also used as an alternative to GO annotations, as a means of searching 

for known information about the functions and interactions between genes predicted to 

contain ZRE3 motifs.  PubGene was used to mine for associations in the literature 

between the ZRE3 containing genes and EBV.  The organisms option in PubGene was 

set to Homo sapiens, each gene in turn was used as the search gene and EBV was used 

as the biological search term.  ZRE3 and Zta were not used as biological search terms 

because they could not be found in the PubGene structured vocabulary.  Genes found to 

 
 

http://www.graphviz.org/
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have co-occurrences both with EBV and at least one of the genes shown by EMSA to 

bind Zta (Section 5.2.1) were analysed to look for possible pathways. 

 

5.2.4. Analysis of un-methylated binding 

In all previously cases where the Zta transcription factor has been experimentally shown 

to bind to the ZRE3 binding site the binding has occurred when the site was methylated.  

However, in a preliminary EMSA experiment (see section 5.2.1) one gene, XPC, was 

also shown to bind to an unmethylated site.  This was unexpected and does not occur in 

the other ZRE3 binding sites. The phenomenon of Zta binding to certain ZRE3 motifs 

when unmethylated has been further analysed by the Sinclair group (unpublished data).  

Further EMSA analysis has indicated three nucleotide positions (Left4G, Left7T or 

Left10A) to be important for the unmethylated binding of Zta by ZRE3.  By 

determining which genes contain these important nucleotides in the flanking region of 

the ZRE3 motifs, information about the function of the unmethylated binding of ZRE3 

motifs by Zta may be elucidated. 

 

   XXXGXXTXXATCGCGAAXXXXXXXXXX 

Figure 5.3. The XPC ZRE3 motif, highlighting the nucleotides (black) hypothesised to 

be important for non-methylated binding to the ZRE3 motif.  The ZRE3 motif is 

included in grey, other positions have been represented with X. 

 

All of the ZRE3 motifs predicted by the PWMs were collated and analysed to find 

motifs which contained at least one of the three nucleotides (Left4G, Left7T or 

Left10A) predicted to be important for unmethylated binding.  The set of gene 

containing at least one of these nucleotides was designated as the putative_non-
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methylated dataset. The location of CpG islands in the the genes found to contain at 

least one of the nucleotides were identified,  and the occurrence of ‘unmethylated 

binding nucleotide’ containing motifs found in CpG islands was compared to that of the 

total set of ZRE3 motifs. 

 

The genes in the putative_non-methylated dataset were analysed for functional 

similarities using Biological Process GO terms.  Graphs were created with genes 

containing ZRE3 motifs as nodes, and edges representing a PSRSS score ≤0.4 between 

the two genes as described in section 5.2.3.  

 

5.2.5. Second Round EMSA 

12 genes were chosen to be tested for Zta binding using EMSAs, analysing both 

methylated and unmethylated binding.  The criteria for choosing the genes were that 

they were found using both ZRE3_A and ZRE3_B PWMs, were annotated with an 

over-represented GO term and were positioned within a CpG island.  The EMSA 

experiments were carried out by Kirsty Flower in the laboratory of Dr Alison Sinclair, 

University of Sussex.  

 

5.2.6. Analysis of results from the second round of EMSAs 

New PWMs were created by adding the ZRE3 sequences shown to bind Zta in the 

second round of EMSA experiments (section 5.2.7) to the existing PWMs; ZRE3_A and 

ZRE3_B.  The first new PWM created, ZRE3_A2, contained all motifs shown to bind to 

Zta, including the EBV promoter ZRE3, RpZRE3.  The second new PWM contained all 

motifs found to bind Zta when methylated but not when unmethylated i.e. XPC was 

excluded from the PWM. 
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The genes which were found to contain motifs, when the searched with the ZRE3_A2 

and ZRE3_B2 PWMs, were analysed using the CpG analysis, GO term analysis 

(Section 5.2.3). 

 

5.3. Results 

5.3.1. Exact Pattern Match and First Round EMSA 

A total of 114 genes were found to have ZRE3 motifs in the 500bp upstream promoter 

regions found in the Ensembl 49 version of the human genome.  This was out of a total 

of 21,541 protein coding genes in Ensembl 49.  Of these genes 5 were chosen for 

binding analysis carried out by EMSA; MNT, HDAC2, ZC3H8, CCNL2, XPC.  All five 

genes chosen were found to bind to Zta at the ZRE3 motif.  Four of the five genes only 

bound when the ZRE3 motif was methylated, showing no unmethylated binding 

behaviour.  One gene, XPC, showed both methylated and un-methylated binding 

behaviour.  This was not expected and as such the XPC motif will be treated as a 

possible, but not a definite ZRE3 motif. 

 

5.3.2. ZRE3 motif occurrence 

273 genes were found to have ZRE3 motifs in the 500bp promoter regions retrieved 

from Ensembl v.50 (Figure 5.4), these numbers were reduced even further when using 

the PWM_A to search with and further still with PWM_B.  
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43 218210
TCGCGAA ZRE3_A ZRE3_B

 

Figure 5.4 Venn diagram showing the numbers of genes found using the TCGCGAA 

pattern, ZRE3_A PWM and ZRE3_B PWM. 

 

A small number of genes were found to have more than one ZRE3 motif present in the 

500bp promoter region (Figure 5.5).  Two genes were predicted to have two ZRE3 

motifs using both ZRE3_A and ZRE3_B to search; the first, DNAJB6, coded for a heat 

shock protein and was found on chromosome 7, the second was an uncharacterised 

gene, AC007731.16, located on chromosome 22.  The pattern match search for the 

conserved motif retrieved 48 genes with multiple motifs.   

 

There was a large number of matches where the 7 base motif was found through the 

pattern matching search, but the flanking sequences did not allow for a prediction to 

occur using either PWM.  ZRE3_A found motifs in 18 genes which were not found 

using ZRE3_B, these motifs may be more likely to bind Zta when unmethylated, as well 

as methylated; the only difference between the two PWMs being the inclusion of the 

XPC motif in ZRE3_A which binds when both methylated and un-methylated.   
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Figure 5.5. The frequency of genes and motifs per gene found by searching using the 

pattern search, ZRE3_A PWM or ZRE3_B PWM and filtering for only those results 

containing the exact conserved motif.  The proportion of genes containing one, two, 

three or four motifs in the 500bp promoter region is represented by the shading on the 

bars. 

 

Of the five known human ZRE3 motifs originally used to construct the PWMs, only 

two, MNT and HDAC2, were found in the 500 nucleotide promoter region according to 

Ensembl 50.  Another two of the ZRE3 motifs, ZC3H8 and XPC, were now found to be 

located inside the coding region of the gene due to changes between Ensembl versions 

49 and 50. A third gene, CCNL2, had been retired from Ensembl and did not appear to 

have a new stable mapping in Ensembl 50. CCNL2 was reintroduced to Ensembl 51. 
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5.3.3. CpG Islands 

142 of the 273 genes were found by searching for the 7 base conserved motif were 

found in a putative CpG island.  A significantly higher percentage of the motifs found 

using ZRE3_A or ZRE3_B were located inside putative CpG islands than those found 

using by only the pattern matching of the conserved motif (p<0.05; χ2 with Yates 

correction).  The difference between the number of motifs found in CpG islands by 

ZRE3_A and ZRE3_B was not shown to be significant. 
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Figure 5.6. Chart showing the number of genes with a ZRE3 motif as predicted by the 

three search methods that all contained a putative CpG island in the 500bp promoter 

region.  

 

5.3.4. Statistical over representation of GO terms 

The GO terms found to be over-represented in genes with motifs found using both 

ZRE3_A and ZRE3_B were mainly associated with either gene regulation, e.g. 

transcription or chromatin processes, or with the cell cycle.  This is particularly 
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interesting as Zta involvement in either of these processes could certainly contribute to 

the tumourogenic properties of EBV. 

 

Over represented GO term GO term ID Search method  

Chromatin remodelling  

Mitosis  

Mitotic cell cycle checkpoint  

Oxidation reduction 

Transcription regulator activity 

Transcription coactivator activity 

Transcription corepressor activity 

Chromatin binding 

Satellite DNA binding 

GO:0006338 

GO:0007067 

GO:0007093 

GO:0055114 

GO:0003700 

GO:0003713 

GO:0003714 

GO:0003682 

GO:0003696 

ZRE3_A 

ZRE3_B 

 

Cell motion GO:0006928 ZRE3_A 

Chromatin modification 

Protein amino acid phosphorylation 

Taurine biosynthetic process 

Protein kinase C binding 

Histone deacetylase binding 

GO:0016568 

GO:0006468 

GO:0042412 

GO:0005080 

GO:0042826 

ZRE3_B 

Table 5.1. Biological Process and Molecular Function GO terms found to be over 

represented in the gene sets retrieved using ZRE3_A, ZRE3_B.   
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5.3.5. GO term graphs 

 

 

Figure 5.7. Graph created with genes as nodes and edges representing a PSRSS score ≤ 

0.4. All genes represented by nodes contain a ZRE3 motif, however of the genes with 

ZRE3 motifs, only those with a PSRSS ≤0.4 to another ZRE3 containing gene were 

included in the graph. Blue nodes represent genes with the GO term annotation 

‘transcription’, green nodes represent genes with the GO term annotation ‘protein amino 

acid phosphorylation’, red nodes represent all other genes without either of these two 

annotations. 
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The graph created using genes with ZRE3 motifs as nodes and a PSRSS score between 

the genes of ≤0.40 contained two separate regions of high interconnectivity.  The largest 

of these regions represented genes which are involved in transcription, mainly as 

transcription factors.  This is further evidence of the possible involvement of Zta in 

regulating or interfering with human transcription. The second group of genes contained 

protein amino acid phosphorylation genes: these genes are particularly interesting as 

they are likely to be involved in signalling cascades.  Examples are the 

Serine/threonine-protein kinases 10 and 25 (STK10, STK25); serine/threonine kinases 

are integral parts of many signalling cascades (Choi, H.S. et al., 2008; Craig et al., 

2008; Henmi et al., 2009) and have been recently introduced as targets for cancer 

therapies (Montagut & Settleman, 2009). 

 

5.3.6. Second Round EMSAs 

13 genes with ZRE3 motifs found by both ZRE3_A and ZRE3_B motifs, were found in 

CpG islands, and were annotated with overrepresented GO terms (Figure 5.8).  One of 

these genes, MNT, had already been tested in the prelimary EMSAs (section 5.2.1).  The 

12 remaining genes are: calpain 2, (m/II) large subunit (CAPN2), cysteine dioxygenase, 

type I (CDO1), bromodomain PHD finger transcription factor (FALZ), kinesin family 

member 1B (KIF1B), lethal giant larvae homolog 1 (LLGL1), LIM domain only 4 

(LMO4), methyl-CpG binding domain protein 4 (MBD4), pleckstrin homology domain 

containing, family J member 1 (PLEKHJ1), protein kinase D1 (PRKD1), SEC14-like 1 

(SEC14L1), transcriptional adaptor 3 (NGG1 homolog, yeast)-like (TADA3L), 

topoisomerase (DNA) II beta 180kDa (TOP2B).   
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Figure 5.8. Diagram describing the selction process for ZRE3 candidate genes.  Genes 

retrieved from the pattern matching search must be found by both ZRE3_A and 

ZRE3_B PWMs. Genes must also occur in a CpG island and be annotated with an over 

represented GO term.  

 

In the EMSAs performed by the Sinclair laboratory, the ZRE3 motifs from all 12 genes 

were shown to bind preferentially to the methylated versions of the motif (Figure 5.9).  

Two of the motifs, from the CDO1 and LMO4 genes, appear to also bind to the 

unmethylated form of the ZRE3; however this amount of binding is so reduced from the 

methylated binding that this may be noise caused by unspecific binding of the motif. 
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Figure 5.9. EMSA binding assay results for the 12 candidate genes predicted by 

ZRE_A and ZRE3_B PWMs.  In all genes Zta is shown to bind preferentially to the 

methylated form of ZRE3.  Two controls are shown (C), the 1st lane on the gel is the 

unmethylated control and the 3rd lane on the gel is the methylated control.  The 2nd lane 

shows the binding of Zta to the unmethylated ZRE3 motif. Lanes 4 – 7 show the 

binding of Zta to the methylated ZRE3 motif, the amount of binding should reduce in 

proportion to the reduction in the amount of protein shown by the gradient at the top of 

the gel. 
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5.3.7. Text Mining 

Candidate 

Gene 

PWM3_A PWM3_B CpG island Co-

occurrence 

Over-represented 

GO term 

BCL2L11  1 1 transcription 
coactivator activity 
 
transcription 
corepressor activity 

CAPN2 1 1 1 transcription 
coactivator activity 
 
transcription 
corepressor activity 

FRAP1   1  

GTF2A2     

HDAC2 1 1  Chromatin remodelling 
 
transcription regulator 
activity 
 
transcription 
coactivator activity 
 
transcription 
corepressor activity 

MAP3K7    transcription 
coactivator activity 
 
transcription 
corepressor activity 

PRKD1 1 1 1 transcription 
coactivator activity 
 
transcription 
corepressor activity 

Table 5.2. The candidate genes identified by the PubGene text mining search and the 

features from the bioinformatics analysis associated with each gene.  False positive 

results have been removed. 
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Of the 273 genes with the exact 7 base ZRE3 sequence, 11 genes were found by 

PubGene to have co-occurrences in the literature with the term ‘EBV’ (Table 5.2).  Of 

these, 4 genes were found due to false positive co-occurrences: CYCL1 (Countryman, 

1994), F2R (Suzuki et al., 2004), KCNA4 (Du et al., 2007), NAPB (Chung et al., 2000).  

False positive results arose due to gene names also representing other biological or 

scientific entities.  For example, the NAPB-EBV co-occurrence is derived from an 

experimental paper which uses Sodium phenylbutyrate (NAPB).  Two of the genes 

found by PubGene, CAPN2 and PRKD1, are in the group of candidate genes that were 

tested by EMSA.  PubGene was not able to use either Zta or ZRE3 as a co-occurrence 

search term so more specific interactions could not be mined for.  The candidate genes 

found through the text mining search were not tested for Zta binding ability using 

EMSAs, unless they conformed to the candidate gene criteria: motif predicted by 

ZRE3_A and ZRE3_B, motif found in a CpG island and gene annotated with a GO term 

found to be over-represented in the ZRE3 containing gene set. 

 

5.3.8. Analysis of un-methylated binding 

EMSA results, carried out by Kirsty Flower (University of Sussex), showed the flanking 

sequences of the conserved motif to have an important role in the unmethylated binding 

of Zta in the ZRE3 motif found in XPC.  When the ten nucleotides on the left flank of 

the motif were removed, all binding ability was lost.  Removal of the right flank only 

reduced the binding strength implying that while both flanks have some importance in 

the unmethylated binding of Zta, the positions on the left flank appear to be crucial.  

The important residues in the left flank have been ascertained by mutating each 

nucleotide in turn and performing EMSA analyses on the resulting sequence.  The 

residues on the left flank which have been found to lead to unmethylated binding in the 
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XPC ZRE3 motif are the G at position 4 (Left4G), the T at position 7 (Left7T) and the 

A at position 9 (Left9A).   
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7T9A
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7T9A
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33
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Figure 5.10. Venn diagram showing the number of genes found which contain a ZRE3 

motif, in the 500 nucleotide promoter region, with the nucleotides found to be important 

in non-methylated binding of Zta by ZRE3.  The 4G set includes all genes found to have 

a G at the 4th position on the left flank of the ZRE3 motif.  The 7T set includes all genes 

found to have a T at the 7th position on the left flank of the ZRE3 motif.  The 9A set 

includes all genes found to have an A at the 9th position on the left flank of the ZRE3 

motif. 

 

Only three genes, a gene coding for an uncharacterised protein (C1orf109), T-complex 

protein 1 subunit zeta-2 (CCT6B) and proteinase-activated receptor 1 Precursor (F2R), 

were found to contain all three of the nucleotides involved in unmethylated binding of 

the ZRE3 motif (Figure 5.10).  However, a larger number of genes were found with 
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some combination of the nucleotides as can be seen from Figure 5.8.  There were a 

larger number of genes found with the LeftG4 and the Left9A than there were with the 

LeftT7. 

 

No significant difference was found in the positioning of ZRE3 motifs in CpG islands 

when the non-methylated binding nucleotides were taken into account (Figure 5.11).  

This was the case when analysing the genes with nucleotides at each position singly and 

when analysing the entire group.  

 

 

Figure 5.11. Graph showing the percentage of motifs containing each important 

nucleotide occurring in a CpG island compared to the total percentages of ZRE3 

containing genes within or without a CpG island.  No significant difference is observed 

(Chi-squared; p>0.23).  

 

Graphs were created in which the nodes represented those genes which had a ZRE3 

motif containing a specific nucleotide, Left4G, Left7T or Left10A, and had a set of GO 

biological process term annotations.  The edges in the graph represented PSRSS scores 

between genes of ≤0.4.  In each of the graphs created from genes containing one of the 
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residues, Left4G, Left7T or Left10A, there is one larger subgraph which contains the 

majority of the nodes (Figure 5.12).  

 

In each of the three graphs the function annotating the largest group of nodes was 

‘transcription’.  This was to be expected as it is known from the general ZRE3 analysis 

that a large number of the genes which contain a ZRE3 motif are involved in 

transcription (Figure 5.5).  Chi squared tests show that in the Left4G graph the 

proportion of transcription related genes is significantly higher than in the total set of 

ZRE3 containing genes (p<0.05; χ2 with Yates correction).  The proportion of 

transcription related genes in the set of genes with Left7T or Left10A was not found to 

be significantly higher than in the general ZRE3 containing gene population (p>0.05; χ2 

with Yates correction). 

 

 

Figure 5.12. Graphs representing similarities between biological process annotations 

for genes with ZRE3 motifs containing Left4G, Left7T, Left10A.  Edges represent a 

PSRSS score between nodes ≤0.2.  Nodes coloured red represent genes involved in 

transcription, the blue nodes represent genes involved in other processes. 
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5.3.9. Analysis of results from the second round of EMSAs  

The new PWMs were built with larger numbers of example motifs than the original 

PWMs.  PWM_A2 contained all 18 motifs found to bind Zta in EMSA analysis; 

RpZRE3, 6 from the first round of EMSA analysis and 12 from the second round of 

analysis. PWM_B contained 17 motifs found to bind Zta in EMSA analysis: RpZRE3, 5 

from the first round of EMSA analysis, excluding XPC (see section 5.2.6) and 12 from 

the second round of analysis. This should have given a more accurate idea of the 

flanking regions found next to the ZRE3 motifs.  A visual analysis of the PWMs 

showed obvious differences between the two motifs in all flanking positions (Figure 

5.13, Figure 5.14). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

0.5

1

1.5

2

In
fo

rm
at

io
n 

co
nt

en
t

Position

 

 

Figure 5.13 Position Weight Matrices ZRE3_A (top) and ZRE3_A2 (bottom).  

ZRE3_A is created from the original 6 motifs used to search for ZRE3 motifs.  
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ZRE3_A2 is created from 18 motifs, the original 6 motifs and the 12 motifs found to 

bind Zta through further EMSA experiments. 
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Figure 5.14 Position Weight Matrices ZRE3_B (top) and ZRE3_B2 (bottom).  ZRE3_B 

is created from 5 of the original motifs used to search for ZRE3 motifs, XPC is not 

included due to aberrant behaviour.  ZRE3_A2 is created from 17 motifs, the original 

ZRE3_B 5 motifs and the 12 motifs found to bind Zta through further EMSA 

experiments. 

 

The new PWMs predicted more ZRE3 motifs than the original PWMs (Figure 5.15).  

This is most likely to be due to the PWMs becoming more general as a consequence of 

more diverse sequences being added to the PWM.  This implies that either the flanking 

regions of the ZRE3 motifs are not highly conserved, or that due to the small number of 

sequences included in the PWM, sequences which are more diverse are being predicted 

as ZRE3 motifs.   
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82 114176
TCGCGAA ZRE3_A2 ZRE3_B2

 

Figure 5.15. Venn diagram showing the genes with ZRE3 motifs predicted in the 

second round ZRE3 predictions using the TCGCGAA pattern matching, the ZRE3_A2 

PWM and the ZRE3_B2 PWM prediction methods.  

 

The ZRE3 predictions made with ZRE3_B2 were found significantly more often in 

CpG islands than in the set of ZRE3 prediction made by pattern matching (χ2 with Yates 

correction; p=0.0420) (Figure 5.16). There was no significant difference found between 

the number of motifs found in CpG islands in the ZRE3_A2 set and the pattern 

matching set (χ2 with Yates correction; p=0.1076). 
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Figure 5.16. Comparison of the number of motifs found in a CpG island against those 

not found in a CpG island.  Significantly more motifs are found in CpG islands in the 

results found by ZRE3_A2 than out of the total ZRE3 motifs (χ2 with Yates correction; 

p=0.0420).   

 

The GO terms which were overrepresented in both the PWM_A2 and PWM_B2 genes 

were the same as those found using PWM_A and PWM_B (Table 5.1) and no further 

PWM were created. 

 

5.4. Conclusions 

5.4.1. ZRE3 predictions 

Due to the small number of sequences included in the ZRE3_A and ZRE3_B PWM, it 

was to be expected that the inclusion of one more sequence in ZRE3_A would alter the 

set of genes predicted.  To determine whether there is a substantial difference between 

the flanking sequences of motifs which only bind when methylated and those which 

also bind when unmethylated, a larger number of experimentally verified sequences 
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would need to be analysed.  It would be interesting to test some ZRE3 motifs which 

were found only with the ZRE3_A PWM and not the ZRE3_B PWM to determine 

whether these motifs do bind Zta when unmethylated. 

 

If there are differences in the flanking sequences of the ZRE3 motif of methylated and 

unmethylated binding motifs, it would be beneficial to have more sequences of both 

types to enable the creation of two separate PWM, one to predict motifs with the 

classical behaviour and one to predict the motifs with the aberrant behaviour.  

Regardless of whether the differences in the genes predicted using ZRE3_A and those 

predicted using ZRE3_B are real, a larger number of sequences would be required to 

create a robust and representative PWM which predicts binding sites accurately.       

                

The CpG island predictions imply that the PWMs may be finding more functional 

motifs than the pattern matching search.  The presence of a CpG island at the same 

location as the motif was highly conserved in genes retrieved by both PWMs, indicating 

that there may be a larger number of housekeeping genes in these datasets than would 

be expected by chance.  Studies in EBV related gastric carcinoma (Chong et al., 2003; 

Kang et al., 2002; Vo et al., 2002) have shown that hypermethylation occurs frequently 

in tumour related genes, reducing gene expression in these genes.  The presence of 

ZRE3 in the promoters of genes with CpG islands implies that Zta may be able to 

activate these genes in a similar way to its involvement in the switch from latent to lytic 

EBV phases (Karlsson et al., 2008b).   

 

Out of the total number of GO terms, that were associated with the genes containing 

putative ZRE3 sites, only a small number were found to be over represented compared 
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to the annotations in Ensembl 50. Some of the GO terms retrieved provide likely 

processes with which Zta may be involved, in particular, transcription regulator and 

repressor activities, the cell cycle related terms and negative regulation of cell 

proliferation.   

 

5.4.2. Candidate genes 

Candidate genes were selected by combining the methods used in this analysis, PWM 

matches, CpG island co-localisation and annotation with a GO term found to be 

enriched in the set of ZRE3 containing genes (Figure 5.8).  The genes which met these 

criteria consisted of motifs in 12 genes which had not been tested in the preliminary 

EMSAs and MNT, which had already been shown to bind Zta in Section 5.2.1.  These 

genes are further discussed in Section 5.4.2.1.  Further experiments (Section 5.3.6, 

Figure 5.9) have shown that ZRE3 motifs in all of these candidate genes bind to Zta 

when the motif is methylated.  An analysis of the GO term annotations of these 

candidate genes finds 5 genes which are related to transcription; BPTF (FALZ), LMO4, 

MBD4, SEC14L1 AND TADA3L.  A further 2 genes are annotated with the term 

‘negative regulation of cell proliferation’ PRKD1 and STI1.   

 

A text mining analysis of all genes predicted through the PWM analysis to bind to Zta, 

through a ZRE3 binding site, was carried out (Section 5.3.7).  A further 5 candidate 

genes have been identified through this analysis, the evidence found in the literature for 

an involvement between these genes and EBV is further described in Section 5.4.2.2. 
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5.4.2.1. Experimentally verified candidate genes 

(1) BPTF 

Bromodomain PHD finger transcription factor (BPTF or FALZ), is a bromodomain 

transcription factor with similarity to FAC1 (Jones et al., 2000).  The bromodomain is a 

conserved 110 amino acid structural region associated with signal dependent, but not 

basal, transcription regulators.  The bromodomain is associated with chromatin 

mediated transcription regulation and is also often associated with proteins which have 

histone acetyltransferase activity.  A number of other bromodomain proteins, although 

not BPTF, have implicated in tumorigenesis: RING3 (Denis & Green, 1996), 

HRX/ALL-1 (Tkachuk et al., 1992; Gu et al., 1992), TIF1 (Le Douarin et al., 1995), 

RGF7 (Klugbauer & Rabes, 1999), CBP (Lill et al., 1997), BRG1 (Dunaief et al., 1994) 

and P/CAF (Yang et al., 1996). 

 

(2) LMO4 

LMO4 encodes the nuclear Lim-only protein 4 (LMO4) which is up-regulated in breast 

cancer and experiments involving over expression in mice have shown LMO4 to cause 

hyperplasia and tumour formation.  It has been suggested that LMO4 regulated the 

expression of the bone morphogenic protein 7 (BMP7) through the inhibition of 

HDAC2 recruitment (Wang et al., 2007).  Interestingly, HDAC2 has a predicted ZRE3 

motif, found with both ZRE3_A and ZRE3_B, although it was not included in this list 

of candidate genes due to its lack of a CpG island surrounding the motif.  HDAC2 has 

been included in the list of candidate genes generated through the text mining analysis 

(Section 5.4.2.2.) where it has been shown to be linked to EBV processes. 
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(3) MBD4 

MBD4 encodes one of a family of methyl-CpG binding proteins which all contain a 

methyl-CpG binding domain.  MBD4 is a thymine glycosylase which recognises the 

product of de-amination at methyl CpG sites and has been shown to be mutated in 

human carcinomas with microsatellite instability (Bellacosa et al., 1999; Hendrich et 

al., 1999; Riccio et al., 1999).  The methyl-CpG binding properties of this protein are 

particularly interesting if one assumes that many genes involved in a cascade starting 

from ZRE3 are methylated in a similar way to the genes in the cascade causing the 

switch from latent to lytic states in EBV.  None of the other MBD family proteins were 

found to contain a ZRE3 motif by the PWMs or by the pattern matching search. 

 

(4) SEC14L1 

SEC14L1 has been mapped to a specific region of 17q25 which contains at least one 

putative breast and ovarian tumour suppressor gene.  SEC14L1 contains a CRAL/TRIO 

which is also found in cellular retinaldehyde-binding protein.  Loss of this domain may 

contribute to the formation of breast tumours as retinoids have previously been shown 

to inhibit the growth of cancerous breast tissue cells (Kalikin et al., 2001). 

 

(5) TADA3L 

TADA3L, encoding a homolog of the yeast ADA3 protein, has been shown to act as a 

cofactor for p53 activity through direct interaction between the N-termini of the two 

proteins while the c-terminus has been shown to bind to p300 and TADA2L, 

components of histone acetyltransferase complexes (Wang et al., 2001). 
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TADA3L has also been shown to bind to the E6 protein of human papillomavirus, 

although only in proteins with large numbers of cancer associated mutations, and not to 

E6 proteins which were associated with benign lesions (Kumar et al., 2002).  Co-

expression of TADA3L with E6 has been shown to inhibit TADA3L/p53-mediated 

transactivation. 

 

(6) PRKD1  

Serine/threonine protein kinase D1 (PRKD1), previously known as ‘Protein Kinase C, 

mu’, has been implicated in many processes including apoptosis, immune regulation 

and cell proliferation (Jaggi et al., 2007; Li et al., 2006).  PRKD1 is down-regulated in 

advanced prostate cancer and influences cell adhesion and motility of prostate cancer 

cells in vitro (Jaggi et al., 2007; Jaggi et al., 2003). The protein has also been shown to 

influence androgen receptor function in prostate cancer cells although the exact 

mechanism is yet to be elucidated (Mak et al., 2008).   

 

(7) CAPN2 

The CAPN2 gene codes for the calpain 2, (m/ll) large subunit, one subunit in the m-

calpain proteases.  Calpains are calcium activated neutral proteases, cysteine proteases 

which are intracellular and non-lysosomal (Hosfield et al., 1999).  Calpains have been 

shown to promote either apoptosis or survival signals in response to different stimuli 

(Tan et al., 2006).  Calpain has also been shown to be involved in caspase-independent 

cell death and necrosis (Goll et al., 2003). 
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(8) CDO1 

Cysteine dioxygenase type I, CDO1, initiates several important metabolic pathways 

related to pyruvate and several sulfurate compounds including sulfate, hypotaurine and 

taurine. CDO1 is a critical regulator of cellular cysteine concentrations and has an 

important role in maintaining the hepatic concentation of intracellular free cysteine 

(Joseph & Maroney, 2007; Stipanuk et al., 2009). 

 

There are no known interactions between EBV or EBV related genes and CDO1.  

However, CDO1 has been shown to be overexpressed in Sezary syndrome, a rare and 

aggressive CD4+ cutaneous T-cell lymphoma and therefore may be involved in 

tumourogenesis.  This is most likely to be through the inhibition of apoptosis through 

taurine which is catalysed by CDO1 (Booken et al., 2008). 

 

(9) KIF1B 

KIF1B, the kinesin family member 1B, encodes a motor protein involved in the 

transportation of mitochondria and synaptic vesicle precursors.  KIF1B has been shown 

to induce apoptotic cell death and may act as a haploinsufficient tumor suppressor gene 

(Munirajan et al., 2008). No direct relationship between KIF1B and EBV has been 

discovered. 

 

(10) LLGL1 

LLGL1 is a human homolog to the lethal giant larvae gene, a tumour suppressor gene, 

found in Drosophila.  Recent experiments (Lu et al., 2009) have indicated that 

mutations in LLGL1 are involved in hepatocellular carcinoma progression and that the 

gene has similar tumour suppressor properties as that sound in the Drosophila homolog.  
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Other experiments have shown that loss of LLGL1 expression in endometrial cancer 

patients may contribute to lymph node metastasis and may be one of the factors lead to 

a poor prognosis (Tsuruga et al., 2007). 

 

(11) MNT  

MNT was the only one of the original 5 genes for EMSA binding assays that was also 

found as one of the bioinformatics pipeline candidate genes. 

 

The Max binding protein (MNT) is though to be a transcriptional repressor of Myc 

dependent transcription activation and cell growth.  MNT is involved in repressing 

transcription by binding to DNA binding proteins at its N terminal Sin3-interaction 

domain.  Like CDO1, MNT has been shown to be involved in Sezary syndrome.  Loss 

of MNT was observed in 40-55% of patients and was associated with deregulated gene 

expression (Vermeer et al., 2008). 

 

(12) PLEKHJ1 

PLEKHJ1 encodes the pleckstrin homology domain containing family J member 1 also 

referred to as the guanine nucleotide releasing protein.  There does not appear to be any 

literature available on the function of PLEKHJ1.  Although Ensembl 50 has annotated 

this gene with the terms ‘transcription coactivator activity’ and ‘transcription 

corepressor activity’ it is unclear how this annotation was inferred. 

 

(13) TOP2B 

TOP2B encodes a DNA topoisomerase, an enzyme able to control and alter the 

topological state of DNA during transcription.  TOP2B involvement in the cell cycle has 
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been inferred through it modification by mitogens. It has also been suggested that 

TOP2B may be involved in an apoptotic response seen in response to doxorubicin in 

peripheral blood cells (Kersting et al., 2006). 

 

5.4.2.2. Text Mining candidate genes 

(1) BCL2L11 

BCL2L11 is a proapoptotic protein.  It has been shown that EBV infection leads to post 

transcriptional down-regulation of BCL2L11 by degradation through the proteasome 

pathway.  The signal for degredation is given by phosphoryation of BCL2L11 by the 

constitutive EBV-activated kinase ERK1/2.  EBV-mediated resistance to growth factor 

deprivation in human B lymphocytes has been shown to be dependent on BCL2L11, 

suggesting an important contribution to the oncogenic potential of EBV (Clybouw et 

al., 2005).  

 

BCL2L11 was not predicted to contain a ZRE3 motif by the ZRE3_A PWM, precluding 

it from being included in the candidate genes for EMSA analysis.  However, it was 

predicted to be contain a ZRE3 motif by ZRE3_B, ZRE3_B2 and by ZRE3_A2.  

BCL2L11 was also found to coincide with a predicted CpG island and was annotated 

with the over-represented GO terms: ‘transcription coactivator activity’ and 

‘transcription corepressor activity’.  This evidence coupled with the known link to EBV 

makes it an ideal candidate for further analysis.   

 

(2) FRAP1 

FRAP1, FK506 binding protein 12-rapamycin associated protein 1, also know as the 

mammalian target of papamycin (mTOR) is a serine/threonine protein kinase which 
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regulates cell growth, proliferation, motility, and survival as well as protein synthesis 

and transcription.  Expression of LMP2A by EBV activates phosphatidylinositol 3-

kinase/Akt located upstream of mTOR.  In carcinoma genes, LMP2A has been shown to 

activate mTOR, leading to wortmannin and rapamycin sensitive inhibition of 4E 

binding protein 1, a negative regulator of transcription, and increased c-Myc protein 

translation (Moody et al., 2005). 

 

Although a link through the literature has been discovered, this is a fairly tenous 

connection.  The bioinformatics analysis did not identify the ZRE3 motif in FRAP1 and 

a true motif when using any of the PWM and it was not annotated with any of the over-

represented GO terms.  Although it is entirely possible that FRAP1 is involved in the 

EBV-host interaction, it seems unlikely that it is through the mechanism of Zta binding 

to ZRE3. 

 

(3) GTF2A2 

GTF2A2 or TFIIA is an ubiquitous transcription factor involved in the formation of the 

RNA polymerase II pre-initiation complex.  Experiments into the functional binding of 

Zta to DNA have shown that the involvement of TFIIA is essential (Lieberman, 1994).  

Firstly the architectural proteins HMG-1 and HMG-2 mediate the formation of an 

enhanceosome (Panne, 2008), a protein complex binding to the enhancer region of a 

gene causing an acceleration of transcription, consisting of Zta and cellular Sp1.  

Following this the TFIIA and TFIID proteins are recruited to the promoter to form a 

complex (Ellwood et al., 1999). 
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Although GTF2A2 has been shown to be an essential component of the mechanism 

allowing the binding of Zta to DNA, it does not seem likely that it is itself regulated 

through a ZRE3 binding site.   The ZRE3 binding site found in GTF2A2 was only found 

through the pattern matching search and not using any of the PWMs.  GTF2A2 was not 

found to be annotated with any of the over-represented GO terms.  However, this 

literature search has shown a role for GTF2A2 in transcription, highlighting one of the 

limitations inherent in the reliance on GO term annotations. 

 

(4) HDAC2 

HDAC2 encodes histone deacetylase 2 which has been shown to interact with the EBV 

transcription factor EBNA3C (Epstein-Barr virus nuclear antigen 3C).  EBNA3C is one 

of the small number of gene expressed during the latent phase of the EBV life cycle 

(Bajaj et al., 2008; Saha et al., 2009; Subramanian et al., 2002; Yi et al., 2009).  It has 

been shown that a complex containing both HDAC1 and HDAC2 allows EBNA3C to 

recruit deacetylase activity (Knight et al., 2003).  HDAC2 may also be involved in the 

EBV DNA replication process at OriP through a complex with SNF2h and HDAC1 

which co-ordinated G1-specific chromatin remodelling (Zhou et al., 2005).  HDAC2 

has also been shown to interact with LMO4, another ZRE3 containing gene (Wang et 

al., 2007). 

 

HDAC2 was one of the original 5 ZRE3 containing genes confirmed to bind to Zta, it 

was not discovered as a candidate gene via the bioinformatics pipeline because it does 

not occur in a CpG island.  The occurrence of a ZRE3 in a CpG island as one of the 

criteria for a candidate gene was added to allow the possibilities to be restricted to those 

which were most likely to be of interested.  It is likely that this criteria has prevented the 
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method from identifying likely candidate genes such as HDAC2, however in the 

interests of practicality it was necessary to reduce the number of candidate genes in this 

way.   

 

(5) MAP3K7 

EBV protein LMP1 has been shown to activate the TRAF6, TAB1, MAP3K7, 

IKKalpha/IKKbeta/IKKgamma mediated NF-KB pathway (Soni, 2007).  The LMP1 

protein contains 6 transmembrane proteins, 2 C-terminal activation regions (CTAR1 

and CTAR2) and 2 transformation effector sites (TES1 and TES2).  LMP1 

TES2/CTAR2 has been shown to activate the TRAF6, TAB1, MAP3K7, 

IKKalpha/IKKbeta/IKKgamma mediated  NF-KB pathway. LMP1 TES1/CTAR1 has 

been shown to activate the TRAF2, NIK, IKKalpha and p52 mediated noncanonical 

NF-KB pathway (Soni, 2007).  Removal of MAP3K7 has been shown to result in the 

loss of LMP1-induced JNK activation.  It has been suggested that a LMP1-associated 

complex consisting of TRAF6, TAB2 and MAP3K7 has an essential role in the 

activation of JNK (Uemura, 2006).  The bioinformatics analysis of MAP3K7 showed an 

annotation of the gene with the GO terms ‘transcription coactivator activity’ and 

‘transcription corepressor activity’, these terms are confirmed by the literature search.  

However MAP3K7 is not a strong candidate for regulation by Zta as the ZRE3 motif 

was not identified by any of the PWMs. 

 

5.4.3. Future analysis 

The search for ZRE3 motifs using an exact pattern match, and both the PWMs was 

carried out in the 500bp upstream of the TSS.  Analyses carried out in Section 2.1, 

Section 3.9 of this thesis have shown that the position of a TFBS regulating a gene can 
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be both upstream and downstream and at a greater further distance from the TSS than 

500bp.  It would be interesting to do a whole genome search for ZRE3 and to compare 

the distances of the motifs found to the start sites of genes, both to discover more genes 

which may be regulated by ZRE3, and to assess the variation in the position of the 

ZRE3 motifs. 

 

Further experimental work is planned to confirm whether the bound ZRE3s are 

functional transcription factors.  Quantatative polymerase chain reactions (qPCR) can 

be used to amplify, as in classical PCR, and also quantify a target DNA/RNA molecule.  

Where classical PCR can be used to determine whether a gene is expressed by targeting 

the gene transcripts, qPCR can be used to quantify the level of expression (VanGuilder 

et al., 2008).  The use of small interfering RNA (siRNA) is another experimental 

technique which could be used.  SiRNA takes advantage of naturally occurring post-

transcriptional gene silencing which induces the degradation of homologous mRNA 

transcripts and hence causes the suppression of post-transcriptional gene expression 

(Hammond et al., 2001; Mello & Conte, 2004).  This technique could be used to knock 

down the ZRE3 candidate genes, to allow for the function of the genes to be 

determined. 
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6. Discussion 

6.1. TFBS prediction methods 

A number of methods for the prediction of TFBSs have been developed and analysed in 

this thesis. However, it is clear from both the current work and from recent publications 

in this field, that the problem of predicting functional TFBSs remains a complex and, as 

yet, unsolved problem (e.g. Hawkins et al, 2009).   

 

Methods using PWMs and more complex machine learning techniques all produce large 

numbers of false positive TFBS, and the problem lies in differentiating between 

functional and non-functional sites. Using consensus methods that combine predictions 

from more than one source (Chapter 2, Chapter 3), using measures of evolutionary 

conservation (Chapter 3), integrating epigenetic factors such as CpG island location 

(Chapter 5) and including known functional information (Chapter 2, Chapter 5) can all 

lead to a reduction in the number of false positive TFBSs.  

 

The success of the PPMNB method (Chapter 2) as well as numerous other phylogeny 

based TFBS prediction methods (Hu et al., 2007; Liu et al., 2008; Struckmann et al., 

2008) suggests that the inclusion of a measure of evolutionary conservation is useful in 

the prediction of TFBSs.  However, such methods assume that all TFBS follow the 

same pattern of evolutionary conservation which is likely to be a model that is too 

simplistic. A recent study into the function, expression and evolution of human 

transcription factors shows that while the majority of human TFs are vertebrate specific, 

some are found only in primate species, and others can be found in organisms as 

evolutionarily distant as Saccharomyces cerevisiae (Vaquerizas et al., 2009).  The 

PPMNB method presented in Chapter 3 does not account for this variability in 
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expression as the type of TF is not included as a feature in the classifier. Recent work 

has addressed this problem by using probabilistic models of loss and gain of TFBSs as a 

part of a CRM (He et al., 2009).  The issue of different rates of evolution is further 

complicated by the tissue specific nature of most TFs, which allows for differential 

expression to take place (Jiang et al., 2004; Johnston et al., 2007; Vaquerizas et al., 

2009).  The modelling of different rates of evolution of TFBS and the generation and 

use of tissue specific TFBS data will lead to more accurate prediction methods in the 

future.  

 

6.2. Identification of IFN-gamma linked gene targets 

Three regions on chromosomes 8, 10 and 11 were found to contain genes linked to the 

IFN-γ response to M. tuberculosis, as modelled by the response to the BCG vaccine 

(Newport et al., see appendix).  The genetic linkage studies located 3 large regions on 

each chromosome, comprising 532 genes in total, but only a small number of these were 

expected to be target genes actually linked to the IFN-γ response. The aim of the current 

work was to identify these target genes by identifying those that shared common 

TFBSs. The hypothesis was that the target genes linked to the response were likely to be 

co-regulated, and co-regulated genes are more likely to share TFs (Allocco et al., 2004; 

Marco et al., 2009).  

 

Analyses that compare the occurrence of shared TFs and the level of co-expression 

between genes almost exclusively concentrate on determining the TFs in common in 

genes already known to be co-expressed (Eisermann et al., 2008; Hatanaka et al., 2008; 

Sarkar & Maitra, 2008; Veerla et al., 2006; Zadissa et al., 2007).  A small number of 

studies have shown that the higher number of shared transcription factors indicates a 
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higher level of co-expression (Allocco et al., 2004; Marco et al., 2009).  However, these 

analyses also imply that in higher mammals this is a complex relationship.  In the 

Allocco et al. (2004) analysis, 100% of Sacharromyces cerevisae  genes which had an 

expression correlation of ≥0.9 were found to share at least one TF in common (Allocco 

et al., 2004).  Although genes which shared a TF were still shown to be significantly 

more likely to be co-expressed in the Drosphila melanogaster analysis carried out by 

Marco et al. (2009) than genes which did not share a TF, 76% of genes with expression 

correlations ≥0.9 did not share a TF in common (Marco et al., 2009).  In the current 

analysis we are searching for functionally linked genes in a large dataset of genes that 

were not known to be co-expressed.  Hence the relationship between co-expression and 

function needs to be considered. 

 

The definition of function is in itself a complex area.  In this thesis we have defined 

function using GO term annotations.   These methods rely on the accuracy and 

completeness of the annotations.  However, it is likely that the annotations are 

incomplete, with many proteins having multiple and as yet unknown functions.   A 

further problem, inherent in the use of GO terms to determine function, is that while 

some annotations may denote a function likely to involve co-regulated genes, other 

annotations may describe functions where the genes are less likely to be co-regulated. In 

the analyses by Marco et al. (2009) and Allocco et al. (2004), it is co-expression that is 

shown to be correlated with the number of TFs found in common, not function.  While 

the level of co-expression exhibited between genes is a good indicator of similar 

functions, many genes involved in similar functions are differentially expressed and 

equally many genes which are co-expressed are found to be involved in divergent 
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functions (Montaner et al., 2009).  Therefore, the relationship between co-expression, 

co-regulation and function requires further evaluation. 

  

The use of a consensus method in Chapter 2 identified 5 TFs and 21 candidate genes. 

The use of the PMANB or PPMNB classifiers (Chapter 3), revealed a total of 84 and 53 

TFs respectively and the percentage of genes in the dataset containing binding sites for 

the TFs ranged from less than 5% to 100%.  The consensus method (Chapter 2) results 

are likely to include a large number of false negatives, whilst the Bayes methods include 

a large number of false positives.  Both the consensus and Naïve Bayes methods use 

known PWM as the basis for the TFBS search.  This means that novel and 

uncharacterised TFBS will not be predicted. Using methods to identify novel TFBS 

(e.g. Siddharthan, 2008) would increase the complexity of the predictions still further. 

The use of such methods is a further area of study that could be addressed and could 

lead to the identification of additional and novel CRMs occurring in genes from the 

genetic linkage data.   

 

The graph analysis in Chapter 4 identified 3 likely candidate genes and a putative cis-

regulatory motif by which they are regulated.  These genes were GRM5 (metabotropic 

5), COPS5 (COP9 constitutive photomorphogenic homolog subunit 5) and HPSE2 

(heparanese 2).  The CRM consisted of a GATA1 motif followed by an AP1 motif with 

between 34 and 36 nucleotides between them.  The motifs were found within the region 

-300 and -250 nucleotides from the TSS.  The known functions of these genes and their 

link to T-cell processes, increases the likelihood of the genes being linked to the IFN-γ 

immune response.  The discovery of two TFBSs at similar distances from each other 

and from the TSS in each of the genes is likely to correspond to a cis-regulatory motif 
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(CRM).  This would suggest that the three genes are co-regulated, lending even more 

weight to the hypothesis that these are the IFN-γ linked genes. 

 

Other work has also shown a link between GATA-like and AP-1 TFs. A murine study 

(Roger et al., 2005) identified a cis regulatory region within 350bp upstream of the TSS 

critical for regulating the immune response gene tlr4 (toll-like receptor 4).  This region 

contains binding sites for: Ets, AP-1, Oct and GATA-like TFs.  The Ets and AP-1 

binding motifs were determined to be positive regulators of tlr4, the GATA-like and 

Oct motifs were determined to be negative regulators of tlr4 (Roger et al., 2005).  The 

possibility of the AP-1 and the GATA motifs acting antagonistically is an interesting 

proposition and should be analysed in the experimental confirmation of our putative 

CRM. Other studies, however, have shown AP-1 and members of the GATA family to 

act synergistically.  The endothelin 1 gene has been shown to contain a GATA-2 motif 

followed between 34 and 23 base pairs later by an AP-1 motif (Kawana et al., 1995).  

The CRM is closer to the TSS than that found in our genes but the distance between the 

motifs is comparable.  The study shows that the AP-1 and the GATA-2 motifs act co-

operatively to greatly enhance gene expression.  It was also shown that both GATA-1 

and GATA-3 are also able to co-operate with AP-1 (Kawana et al., 1995).     

 

Electrophoretic mobility shift assays (EMSA) were used to confirm Zta binding to 

ZRE3 motifs in Chapter 5.  This technique can be used to verify the binding of any 

protein to any DNA motif, provided that the protein can be obtained and that the DNA 

motif is suitable for the design of primers.  To analyse the entire set of TFBS 

predictions made by the methods developed in Chapters 2 and 3 would be extremely 

time consuming and expensive due to the large numbers of transcription factors and 
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DNA primers that the analysis would entail.  However, EMSA analysis would be a 

suitable technique for the confirmation of the constituent TFBSs in the putative CRM 

found in GRM5, COPS5 and HPSE2.   

 

The functionality of the Gata-1 / AP-1 CRM suggested by our analysis could be 

determined through experimental means.  Similar studies (Kawana et al., 1995; Roger et 

al., 2005) have used PCR-based site mutagenesis to alter the TFBS and hence knock out 

its ability to bind.  Quantitative real time polymerase chain reaction (qPCR) is one 

method which would allow for the prediction of the functional binding of a TF to a 

TFBS.  As with classical PCR, the method allows for the amplification of a DNA or 

RNA sequence through the use of specific primers.  However, the advantage to using 

qPCR is that the amount of amplification is quantified, from which the starting amount 

of DNA/RNA of that sequence can be calculated.  This is particularly useful for 

determining the amount of mRNA present for a specific gene.  The amount of mRNA 

present can be used to infer the level expression exhibited by the gene.   

 

6.3. Prediction of EBV transcription factor, Zta, regulated host genes 

A combination of PWM and exact pattern matches revealed an initial 273 ZRE3 genes 

of which 18 were shown experimentally to bind Zta.  The EMSAs showed Zta to bind 

strongly to all the ZRE3 sites selected when methylated, and less strongly when un-

methylated.  This is the expected behaviour, although XPC was shown to bind strongly 

when un-methylated as well as when methylated.  Some un-methylated binding was 

seen in two of the other genes tested by EMSA (CDO1 and LMO4); however, this was 

not strong and may have been due to unspecific binding.   
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The binding of Zta to all the ZRE3 sites suggests one of two possibilities.  The first is 

that the methods used successfully removed non functional ZRE3 sites from the 

analysis.  The second is that all ZRE3 sites bind Zta in vivo through the strong 

consensus binding site, and the flanking regions make very little difference to the 

binding ability.  If this second hypothesis is correct, further experimentation to 

determine the functionality of the candidate genes is required.  The Sinclair group plan 

to carry out qPCR experiments to determine the level of gene expression reliant on the 

ZRE3 motifs 

 

An alternative method which could be used to confirm the binding of TFBSs is 

chromatin immunoprecipitation sequencing (ChIP-Seq).  ChIP-Seq consists of two 

parts; a chromatin precipitation step (ChIP) and a sequencing step (Seq). The ChIP step 

first cross-links a DNA binding protein, e.g. a transcription factor, to the DNA motif 

using an agent such as formaldehyde or DTBP (Di-tert-butyl peroxide).  The DNA 

bound to the proteins is then lysed and broken up in pieces 0.2-1 kb in length via 

sonication.  Purification of the protein-DNA complexes is carried out by 

immunoprecipitation; the cross-linking of the protein-DNA complex is reversed, 

allowing the molecules to be separated.  At this point the second step, sequencing, is 

used to determine the sequence of the protein binding DNA motifs.   

 

The ChIP-Seq method is preferential to the more traditional ChIP-chip method which 

requires large sets of tiling arrays to determine the binding sequence and has a much 

lower resolution.  ChIP-Seq is a particularly useful technique when looking for binding 

sites for only one or a small number of transcription factors.  For this reason it may be 

useful for the IFN-γ linked genes regions if a small number of TFs were chosen for 
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analysis; AP1 and GATA1 would be suitable candidate for this as they have been found 

in a putative CRM.  A particularly suitable application for this method would be to 

determine whether further putative ZRE3 binding sites from the analysis in Chapter 5 

are able to bind to the EBV Zta transcription factor.  This method would allow for all of 

the predicted ZRE3 sites to be analysed.      

 

6.4. Further development of computational methods 

Experimental analyses have shown that genetic regulation is dependent on co-operation 

between TFs with TFBSs clustered into CRMs (Berman et al., 2002; Clyde et al., 2003; 

Harbison et al., 2004).  In complex systems, such as the immune system, this can 

involve hundreds of genes and TFs.  In these cases a systems biology approach as 

applied in a number of recent papers (e.g. Janky et al., 2009; Ray et al., 2008; Segal et 

al, 2008)  is required to understand of the complex spatial and temporal relationships 

within the system.  

 

To enable the successful application of systems biology to the problem, additional 

information on TFBS and CRM occurrence will be required.  This information would 

include a) knowledge of the system in which the co-regulated genes are assumed to act, 

b) knowledge of the transcription factors or CRMs which are known to regulate the 

system; in our case the immune system. This knowledge would enable the creation of an 

immune specific network allowing for an analysis of how our predicted candidate genes 

fit into the whole system. 

 

To achieve this aim, a set of immune specific genes could be collated; but this in itself 

is a complex task.  The human immune system traverses many different organs and cell 

 
 



 204  

types, and responds to many different stimuli.  Some information is known about 

specific TFs which are known to express genes involved in the immune system (Pan et 

al., 2009; Yu et al., 2009; Zhou et al., 2009).  For example, the GATA family of genes 

are known to be involved in the differentiation of blood cells (Ho et al., 2009; Lowry & 

Mackay, 2006; Ohneda & Yamamoto, 2002; Rothenburg & Scripture-Adams, 2008).  

This and other information from the literature and from organism specific databases 

could be used as a starting point to collate a dataset of immune response genes.  

 

The use of experimental methods to determine genes which are up-regulated during an 

immune response would be useful in the creation of an immune specific dataset.  

However, the generation of experimental data is expensive, and is often restricted to 

biological systems in model organisms.  One solution would be to use one model 

system to develop the methods, before applying them to human genes as in the recent 

work conducted using Drosophila microarray data compiled by Li et al. and used in the 

Marco et al. analysis of co-regulation (Li et al., 2008; Marco et al., 2009).  

 

One method for using human genes directly would be to use a database of co-expressed 

genes, such as COXPRESdb (Obayashi et al., 2008).  This database collates the 

GeneChip data found in NCBI GEO into sets of co-expressed genes.  The database 

consists of coexpressed gene networks for 19,777 human genes, 1820 GO terms and 62 

human tissues.  A large number of sets of co-expressed genes could be retrieved from 

the database, and used as training and testing datasets for predictions of co-regulation 

and functional similarity.  The COXPRES database has been used to carry out a large 

scale search for TFBS in co-expressed genes (Hatanaka et al., 2008); however no 

attempt has been made to predict other co-expressed genes from this information.   
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6.5. Conclusion 

This thesis has seen the analysis of existing, and the development of novel, methods for 

TFBS and functional similarity prediction. The, as yet unsolved problem, is the ability 

to differentiate between functional and non-functional binding sites. All current 

methods are currently limited by the availability of experimentally validated TFs and 

their binding sites. As new high-throughput techniques for experimental validation of 

TFBS become available, and the data is stored in public databases, then the 

computational methods in this area will advance significantly. 
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