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A B S T R A C T   

Coastal meadows provide a wide range of ecosystem services worldwide. In order to better target conservation 
efforts in these ecosystems, it is necessary to develop highly accurate models that account for the spatial nature of 
ecosystem structure, processes and functions. In this study, above-ground biomass was predicted at very high 
spatial resolution in nine study sites in Estonia. A combination of UAV-derived datasets were used to produce 
vegetation indices and micro topographic models. A random forest algorithm was used to generate above-ground 
biomass maps and assess the contribution of each predictor variable. The model successfully predicted above- 
ground biomass at very high accuracies. Additionally, grassland structural heterogeneity was assessed using 
UAV-derived datasets and vegetation indices. The results were subsequently related to management history at 
each study site, showing that continuous, monospecific grazing management tends to simplify grassland struc
ture, which could in turn reduce the supply of a key regulation and maintenance ecosystem services: nursery and 
reproduction habitat for waders. These results also indicate that UAV-based surveys can serve as reliable 
grassland monitoring tools and could aid in the development of site-specific management strategies.   

1. Introduction 

Coastal meadows are wetlands with an abundance of grasses subject 
to high water levels or flooding (Joyce et al., 2016). These valuable 
ecosystems have been recognized for the provision of a wide range of 
ecosystem services (ES) worldwide (Barbier et al., 2011; Salomidi et al., 
2012). Primary production in coastal meadows is a key ecosystem 
function that drives the supply of ES such as carbon (C) sequestration as 
well as food provision for livestock. Vegetated coastal environments are 
well-noted for their capacity to retain carbon both from allochthonous 
sources and through absorbing atmospheric CO2 through primary pro
ductivity, which exceeds respiration rates (Duarte et al., 2013; Ward, 
2020a). The authors of the previous study estimated that an average of 
4.8–87.3 Tg/yr of C are sequestered globally in saltmarshes, and 0.4–6.5 
Pg of C are stored in saltmarsh soils. Moreover, coastal meadows are 
characterized by long-term C burial due to low decomposition rates as a 
result of anoxic conditions in their soils (Enríquez et al., 1993; Mcleod 
et al., 2011). 

Beyond their role as carbon sinks, coastal meadows maintain nursery 
populations and habitats for waders (Rhymer et al., 2010), which con
stitutes another essential regulation and maintenance ecosystem service 

(Haines-Young and Potschin, 2018) supplied by these ecosystems. The 
high species diversity and complex structure of coastal meadow land
scapes comprise an important habitat for populations of wildfowl, 
waders, amphibians (Rannap et al., 2017), and arthropods (Torma et al., 
2019). The structural heterogeneity of swards in coastal meadows is 
mostly determined by low intensity grazing (Verhulst et al., 2011), 
which simultaneously maintains high levels of plant species richness 
(Burnside et al., 2007; Ward et al., 2016b). Extensive grazing maintains 
heterogeneous patches of vegetation, providing nesting and feeding 
areas for a variety of species (Leito et al., 2014; Aldabe et al., 2019) such 
as Common Redshank (Tringa totanus) (Sharps et al., 2016), Lapwing 
(Vanellus vanellus) and Eurasian curlew (Numenius arquata) (Tichit et al., 
2005; Żmihorski et al., 2018). In addition to the increased habitat 
availability, long term grazing in coastal wetlands also limits rates of 
denitrification and increases microbial immobilization of C in soils, 
therefore enhancing nutrient availability and the capacity of soils to 
store C (Olsen et al., 2011). 

Coastal meadows supply a wide array of other essential ecosystem 
services. Among these, wave attenuation, sediment bio-stabilization, 
water regulation and filtration and storage of nutrients and contami
nants (Barbier, 2013) have been identified as fundamental elements of 
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coastal landscapes. Recreation, cultural heritage, aesthetic values and 
educational values have also been listed as cultural ecosystem services 
highly valued by societies (Martin et al., 2016). Despite their multi
functional character, coastal wetlands, including meadows, have been 
identified as a particularly sensitive ecosystem to Global Change, mainly 
due to increased sea level (Ward et al., 2016b; Ward, 2020b), increased 
sea and ocean temperatures and altered atmospheric circulation pat
terns (Ward et al., 2016c) resulting in increased frequency of storms 
(Thorne et al., 2012; Spalding et al., 2014; Ward et al., 2014; Lima et al., 
2020). In addition to the threats posed by altered climate patterns, 
coastal meadows have undergone degradation in the form of agricul
tural intensification in many areas and abandonment in others (Henle 
et al., 2008). In the absence of management, coastal meadows become 
dominated by tall-sward communities (Clausen et al., 2013), which in 
turn leads to decreased availability of adequate habitat for waterbirds 
(Vulink et al., 2010). Moreover, abandoned coastal meadows are char
acterized by a higher presence of less digestible plants (Summers et al., 
1993), which hinders the reintroduction of grazing activities. In this 
regard, Clausen et al. (2013) point out that adequate grassland man
agement may counteract the effects of climate change by balancing the 
expected areal loss of coastal meadows due to sea level rise. 

The complex dynamics of coastal wetlands and their sensitivity to 
Global Change call for robust monitoring techniques, able to account for 
the spatial dimension of ecosystems structures, processes and functions. 
For instance, it is essential to understand how the patterns of biomass 
production change spatially in coastal wetlands, as this may provide a 
better understanding of responses to global change (Doughty and Cav
anaugh, 2019). In addition, spatially explicit monitoring schemes could 
provide valuable insights on the combined effects of Climate Change and 
grassland abandonment and their impacts on the availability and quality 
of habitat for wader populations. Some initiatives such as GEOBON have 
highlighted the need to integrate Earth Observation (EO) with in-situ 
observations in order to adequately model the status and trends of 
essential biodiversity variables like net primary productivity, distur
bance regimes, habitat structure or ecosystem extent and fragmentation 
(Vihervaara et al., 2017). In this regard, the rapid development of EO 
platforms and sensors has led to an unprecedented availability of high 
quality remotely sensed data. For instance, several studies have used 
passive remote sensing data derived from satellite sensors to map salt
marsh plant communities (Akumu et al., 2010; Kumar and Sinha, 2014), 
mangroves extent (Giri et al., 2010) and biomass production in coastal 
wetlands (O’Donnell and Schalles, 2016; Mafi-Gholami et al., 2018). 
However, satellite-derived EO data may not provide the spatial resolu
tion required to account for the fine scale patterns and heterogeneous 
structure of grassland swards (Ward et al., 2013; Villoslada et al., 2020). 
This could in turn hamper the operationalization of remote sensing 
techniques for grassland management and conservation purposes. On 
the other hand, the emergence of UAVs and lightweight sensors in the 
last decade has revolutionized ecological and environmental monitoring 
(Baena et al, 2018; Baxter and Hamilton, 2018). While providing very 
high spatial detail, UAVs are also able to survey large areas repeatedly. 
This has resulted in a wide variety of applications including nature 
conservation, forestry, ecology and precision agriculture (Adão et al., 
2017). Several authors have demonstrated the successful use of UAVs as 
a tool for nature management and conservation. For instance, UAV- 
based vegetation monitoring has been used to target restoration ef
forts in Algarrobo forests in Peru (Baena et al., 2018). Similarly, UAVs 
have been used to detect and quantify invasive knotweed species 
(Martin et al., 2018). Efforts to monitor habitat degradation in protected 
areas have also befitted from the use of UAVs (López and Mulero- 
Pázmány, 2019). Specifically in the field of grassland and coastal 
wetland ecology, UAVs combined with multispectral sensors have been 
used to map plant communities (Villoslada et al., 2020), quantify 
biomass production (Doughty and Cavanaugh, 2019), monitor tidal 
morphodynamics (Taddia et al., 2019) and monitor long-term ecological 
integrity (Díaz-Delgado et al., 2018). 

These approaches commonly utilize the spectral properties of vege
tation in order to predict plant communities’ spatial distribution pat
terns and structure (Veettil et al., 2020). In addition to multispectral 
data, aerial photogrammetry has been used to map hydrological features 
and plant community structure in saltmarshes (Kalacska et al., 2017; 
Meng et al., 2017). These increasingly diverse sources of remotely 
sensed data call for processing and analysis frameworks able to handle 
highly dimensional datasets and unveil complex ecosystem patterns. In 
this regard, machine and deep learning techniques offer an efficient 
solution to process large spatial datasets (Lary et al., 2016). For instance, 
random forest (RF) is a supervised algorithm that has been increasingly 
to map and predict both discrete clusters such as plant communities 
(Villoslada et al., 2020) as well as continuous variables such as biomass 
(Mutanga et al., 2012) and tree attributes (Yu et al., 2011). 

Despite all the recent advances in earth observation tools and tech
niques, there still is a lack of highly detailed, spatially explicit data on 
the structural patterns and primary productivity of coastal meadow in 
relation to management (Villoslada et al., 2020). While current moni
toring schemes in grasslands rely on in situ data collection and frequent 
field surveys (Ali et al., 2016), the fusion of the former with UAV-based 
assessments could provide valuable new knowledge for grassland 
restoration, management and conservation. Some authors (Baena et al., 
2017) have highlighted the need to combine traditional plot-based 
vegetation survey methods with UAV surveys to acquire deeper 
knowledge on ecosystem structure and dynamics. 

In order to develop adequate monitoring strategies and improve 
targeted management actions, this study develops a methodology to 
operationalize UAVs as tools to monitor vegetation and ecosystem 
functioning in coastal meadows. By utilizing multiple UAV-derived 
remote sensing products, the study addresses fine-scale patterns and 
dynamics of ecosystem functioning in coastal meadows. More specif
ically, the aims of the present study are:.  

1. To generate very high spatial resolution maps of standing above- 
ground biomass in Boreal Baltic coastal meadows in Estonia based 
on UAV multispectral imagery and aerial photogrammetry.  

2. To assess the grassland sward structure in Boreal Baltic coastal 
meadows in Estonia based on UAV multispectral imagery and aerial 
photogrammetry.  

3. To assess the effect of the duration and type of management regime 
on coastal meadows sward structure. 

2. Methods 

2.1. Study sites 

Coastal landscapes in the Baltic Sea region are variable and exhibit 
considerable geographical differences. The northern Baltic Sea consists 
of erosion-resistant crystalline rock outcrops, while the southern section 
consists of sedimentary rocks superimposed on crystalline rocks (Rivis et 
al., 2016). Estonia is located between these two distinct zones. The 
narrow connection with the Atlantic Ocean through the Danish Straits 
and the resultant isolation of the Baltic Sea means sea water salinity is 
classified as brackish (Kont et al., 2003). Coastal wetlands in Estonia are 
characterized by a very low tidal range (~0.02 m range), and flooding is 
predominantly driven by atmospheric pressure and fluctuating meteo
rological conditions across the North Atlantic and Fennoscandia (Suur
saar and Sooäär, 2007). As a result, the rate and magnitude of 
inundation is irregular and varies throughout the coastal landscape 
(Rivis et al., 2016). Coastal wetlands in Estonia include many plant 
communities with rare and protected species and considerable biodi
versity, supporting breeding and migratory fauna (Berg et al., 2012; 
Rivis et al., 2016). These wetlands are maintained by regular manage
ment, usually in the form of low intensity grazing or mowing (Berg et al., 
2012). 

The study was undertaken in nine study sites located across the 

M. Villoslada Peciña et al.                                                                                                                                                                                                                    



Ecological Indicators 122 (2021) 107227

3

Western coast of Estonia: In the Silma Nature Reserve (3 sites: Tahu 
North (TN), Tahu South (TS) and Kudani (Kd)), Matsalu National Park (2 
sites: Matsalu1 (M1) and Matsalu2 (M2)) and Vormsi Island (4 sites: 
Rumpo East (RE), Rumpo West (RW), Hosby (Hb), and Rälby (Rb)). 
Fig. 1 represents the location of all study sites within Silma Nature 
Reserve and Vormi Island (A) and Matsalu National Park (B). The choice 
of sites responds to the need of assessing the widest possible range of 
management options, considering livestock species, grazing load and 
management duration. Moreover, all sites constitute strategic locations 
along the East Atlantic bird migratory route (Palm et al., 2017) and are 
located within protected areas of national and regional relevance. 

2.2. Data processing and analysis 

Fig. 2 outlines the methodological steps undertaken to achieve the 
three objectives of the study. The workflow is divided into three general 
steps including data collection, pre-processing and processing. Data 
collection includes the acquisition of both UAV-based remotely sensed 
data and above-ground biomass samples in the field. Pre-processing 
comprises all the steps needed to transform raw remotely sensed prod
ucts into georeferenced and interpretable datasets. Ultimately, the 
processing section encompasses all the algorithms required to model 
above-ground biomass, describe grassland sward structure and assess 
the effects of grassland management in sward complexity. 

2.3. Field data collection 

2.3.1. Plant communities and biomass sampling 
Field sampling was undertaken in July 2019 during a period of two 

weeks. The sampling methodology follows the phytosociological clas
sification developed by Burnside et al. (2007). The authors identified 
seven main plant communities considering the indicator species for 

Estonian coastal wetlands: Reed swamp, Clubrush swamp, Lower shore 
meadow, Upper shore meadow, Open pioneer, Tall grass and Scrub and 
developing Woodland. Because of their peripheral occurrence in coastal 
meadows, the present study excludes Reed Swamp, Clubrush Swamp 
and Scrub and developing Woodland from the analysis. Table 1 de
scribes the communities under study, their occurrence and key species. 

Following a stratified random approach, twenty above-ground 
biomass samples per community type per site were collected. The 
above-ground biomass samples were subsequently divided into two 
datasets: a training dataset (10 samples per site per community type) 
and a validation dataset (ten samples per site per community type). 
These two datasets constitute an essential component of the supervised 
modelling and mapping process (Fig. 2). Due to different site charac
teristics and management regimes, not all communities are present in all 
sites. The aboveground sampling of plant communities at the study sites 
(TN: 3 communities, TS: 3 communities, Kd: 4 communities, M1: 4 
communities, M2: 4 communities, Rb: 4 communities, Hb: 2 commu
nities, RW: 2 communities, RE: 3 communities). This resulted in a total 
of 520 aboveground biomass samples collected using a 30 × 30 cm 
quadrat. 

X, Y and Z coordinates were recorded within all quadrats using a 
Sokkia GSR2700 ISX dGPS. Points were recorded in the corners and 
centre of all quadrats, five points per quadrat (Ward et al., 2013). 
Biomass was cut at ground level and samples were subsequently dried at 
70 ◦C for 48 h and weighed. 

2.3.2. Image acquisition 
Multispectral images covering the extent of each study site were 

collected using a Sensefly Ebee UAV equipped with a Parrot Sequoia 1.2 
megapixel monochromatic multi-spectral sensor. Images were collected 
in four spectral bands: Green (530–570 nm), red (640–680 nm), red edge 
(730–740 nm) and near infrared (770–810 nm). Images were captured 

Fig. 1. Location of the study sites within the Silma Nature Reserve (A), Vormsi Island (A) and Matsalu National Park (B) in West Estonia. M1: Matsalu 1; M2: Matsalu 
2; TN: Tahu North; TS: Tahu South; Kd: Kudani; RE: Rumpo East; RW: Rupo West; Rb: Rälby; Hb: Hosby. 
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at a flight height of 120 m, with a 10 cm pixel resolution and prior to 
each flight an Airinov calibration panel was used to radiometrically 
correct images. 

Each multispectral flight was followed by a photogrammetric flight. 
RGB images were captured using a senseFly S.O.D.A camera at a flight 
height of 123 m with a resolution of 3.5 cm per pixel. The datasets 
derived from both multispectral and RGB images were subsequently 
used as prediction covariates within the modelling process (Fig. 2). 

2.4. Image processing and analysis 

All collected images underwent a post-processed kinematic (PPK) 
correction process in eMotion 3®. RINEX observation and navigation 
files from the ESTPOS Estonian GNSS-RTK permanent stations network 

were used to increase positional accuracy of the multispectral and rgb 
images (Tadrowski, 2014). The positional accuracy achieved after this 
process is under 7 cm, as tested by Villoslada et al. (2020). After posi
tional corrections, multispectral and rgb orthomosaics were constructed 
in Pix4D v.4.3.31®. A total of five orthomosaics were obtained for each 
study site. 

2.5. Vegetation indices 

The multispectral orthomosaics were used to compute 13 vegetation 
indices (Table 2). Vegetation indices convey spectral information 
related to photosynthetic activity, vegetation vigour, status and 
coverage (Filho et al., 2020) and therefore constitute valuable predictors 
for modelling essential ecosystem functions. In the present study, the 

Fig. 2. Flowchart illustrating the methodological steps undertaken in this study.  
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selection of indices was based on their ability to detect changes in 
vegetation status, pigment content and plant productivity. Among the 
selected indices, Green Red Difference Index (GRDI) and Green Differ
ence Index (GDI) have been previously used due to their ability to pre
dict the percentage of green herbage (Gianelle and Vescovo, 2007, 
Villoslada et al., 2020). Indices incorporating the red-edge band 
(NDVIre, SRre, RTVIcore and Datt4 in this study) have been used to 
produce highly accurate predictions of biomass due to their ability to 
overcome saturation (Mutanga and Skidmore, 2004). Similarly, Differ
ence Vegetation Index (DVI) has been used to discern the large amount 
of variance in biomass predictions (Maguigan et al., 2016). Soil Adjusted 
Vegetation Index (SAVI) and Modified Soil Adjusted Vegetation Index 
(MSAVI) were chosen due to their ability to compensate for the effect of 
soil in sparsely vegetated areas (Ren et al., 2011). Band ratios like Green 
Ratio Vegetation Index (GRVI) are known to correlate well with wetland 
vegetation biomass (Naidoo et al., 2019). Normalized Difference Vege
tation Index (NDVI), Green Normalized Vegetation Index (GNDVI) and 
2-band Enhanced Vegetation Index (EVI2) have shown high correlations 
with grassland biomass in previous studies (Jing et al., 2014; Naidoo 
et al., 2019). 

2.6. Microtopography 3D models 

In coastal meadows, microtopography plays a key role in the distri
bution of soil moisture gradients and availability of nutrients (Ward 
et al., 2016a). In order to test and improve above-ground biomass pre
diction accuracies, microtopography was included in the ensemble of 
explanatory variables. In order to obtain microtopography models at 
each study site, a Structure-from Motion (SfM) algorithm was imple
mented. SfM generates 3D point clouds from a set of photographs. As 
described by Westoby et al. (2012), the SfM process encompasses three 

essential steps. The first steps requires the detection of common key 
points across a set of images using the Scale Invariant Feature Transform 
(SIFT). Secondly, a low-density 3D point cloud is extracted based on 
camera locations and orientations. The point cloud is subsequently 
densified based on triangulation and incremental reconstruction. The 
third step involves the transformation from a relative to an absolute 3D 
coordinate system, post-processing of the dense point clouds and 
transformation into a raster DEM. 

The three-step process described by Westoby et al. (2012) was 
implemented in this study utilizing Pix4Dmapper in combination with 
CloudCompare. Pix4Dmapper was used to detect matching points be
tween all RGB images at each study site and subsequently generate a 
dense 3D point cloud. Pix4Dmapper combines the SfM algorithm with 
the Multi-View stereo photogrammetry (SfM-MVS) (Smith et al., 2015) 
to detect common features in the images and construct a 3D scene based 
on bundle adjustment (Smith et al., 2015). The dense point clouds were 
then imported into CloudCompare in order to classify points into ground 
and non-ground classes. Within CloudCompare, the Cloth Simulation 
Filtering (CSF) algorithm allows for an efficient computation of the 
ground surface and separation of vegetation from soil (Zhang et al., 
2016). The CSF algorithm uses a cloth simulation technique (Zhang 
et al., 2016) and the inversion of the original point cloud. By modifying 
two parameters, namely an integer parameter “rigidness” and a Boolean 
parameter “ST”, the user defines the way the simulated cloth lies over 
the inverted point cloud and ultimately determines the way points are 
classified. Compared to other point classification techniques, the CSF 
algorithm offers reliable classification results with few parameters 

Table 1 
Plant communities under study and their indicator species. M1: Matsalu 1; M2: 
Matsalu 2; TN: Tahu North; TS: Tahu South; Kd: Kudani; RE: Rumpo East; RW: 
Rupo West; Rb: Rälby; Hb: Hosby.  

Community Key Species Sites Description 

Open 
Pioneer 

Salicornia 
europaea, Suaeda 
maritima 

M1, M2, Kd The open pioneer community is 
found in localised depressions 
and is characterized by a high 
frequency and abundance of 
bare ground and high salt 
concentration due the 
evaporite accumulation. 

Lower 
Shore 

Juncus gerardii, 
Plantago 
maritima 

M1, M2, 
TN, TS, Kd, 
RE, RW, Rb, 
Hb 

The lower shore community 
tends to establish on low-lying 
land where periodic flooding is 
influential (Ward et al., 2013) 
and it is indicated by dominant 
Juncus gerardii with frequent 
Festuca rubra, Glaux maritima, 
Plantago maritima, Triglochin 
maritimum, bare ground and 
litter. 

Upper 
Shore 

Festuca rubra, 
Leontodon 
autumnalis 

M1, M2, 
TN, TS, Kd, 
RE, RW, Rb 

The upper shore community is 
denser than Lower Shore 
vegetation and relatively more 
species-rich. Festuca rubra is 
dominant with frequent 
Leontodon autumnalis and 
Triglochin maritimum. 

Tall Grass Elytrigia repens, 
Festuca 
arundinacea 

M1, M2, TS, 
Kd, RE, RW, 
Rb, Hb 

Tall grass vegetation is located 
at a higher elevation than 
upper shore where flooding is 
less pronounced (Ward et al., 
2013) and it is one of the most 
species-rich Estonian wetland 
plant communities with an 
abundance of Elytrigia repens, 
Festuca spp. and plant litter ( 
Burnside et al., 2007).  

Table 2 
List of vegetation indices selected in the present study to predict standing above- 
ground biomass.  

Vegetation index Equation Reference 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

(NIR-R)/(NIR + R) Rouse et al. (1974) 

Soil Adjusted 
Vegetation Index 
(SAVI) 

[(NIR-R)/(NIR + R + L)](1 +
L) 
L (soil adjustment factor) = 0.5 

Huete (1988); Ullah 
et al. (2012) 

Modified Soil 
Adjusted 
Vegetation Index 
(MSAVI) 

0.5[2NIR + 2- 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2NIR + 1)2
√

− 8(NIR − R)]  

Qui et al. (1994); Jing 
et al. (2014)) 

2-band Enhanced 
Vegetation Index 
(EVI2) 

2.5[(NIR-R)/(NIR + 2.4R + 1)] Jiang et al. (2008); Jing 
et al. (2014) 

Difference Vegetation 
Index (DVI) 

NIR-αR 
α = 0.96916 

Richardson & Everitt 
(1992); Maguigan et al. 
(2016) 

Green Normalized 
Vegetation Index 
(GNDVI) 

(NIR-G)/(NIR + G) Gitelson et al. (1996); 
Naidoo et al. (2019) 

Green Ratio 
Vegetation Index 
(GRVI) 

NIR/G Sripada et al. (2006); 
Naidoo et al. (2019) 

Green Difference 
Index(GDI) 

NIR-R + G Gianelle and Vescovo 
(2007) 

Green Red Difference 
Index (GRDI) 

(G-R)/(G + R) Gianelle and Vescovo 
(2007) 

Red edge normalized 
difference 
vegetation index 
(NDVIre) 

(NIR-Rededge)/(NIR +
Rededge) 

Gitelson and Merzlyak 
(1994); Kross et al. 
(2015) 

Red edge simple ratio 
(SRre) 

NIR/Rededge Gitelson and Merzlyak 
(1994); Kross et al. 
(2015); Naidoo et al. 
(2019) 

Red edge triangular 
vegetation index 
(core only) 
(RTVIcore) 

100(NIR-Rededge)-10(NIR-G) Kross et al. (2015);  
Clausen et al. (2013) 

Datt4 R/G*Rededge Datt (1998)  
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(Zhang et al., 2016). 
A raster digital terrain model (DTM) was computed at each study site 

by selecting and interpolating the points classified as ground by the CSF 
algorithm. Point interpolations and rasterization were undertaken in 
CloudCompare. 

2.7. Supervised above-ground biomass prediction 

In order to predict aboveground biomass in coastal meadows at the 
study sites, a RF machine learning classifier for the prediction of 
continuous variables was implemented in R (v3.5.1). 

The R packages used to perform RF were:  

• ModelMap package: used to generate prediction maps based on 
training datasets and validate the models with independent test sets 
and Out Of Bag (OOB) predictions (Freeman et al., 2009).  

• raster package: used to enable reading, manipulating, analysing and 
modelling gridded spatial datasets (Hijmans and van Etten, 2012).  

• randomForest package: used to build random forest models for 
regression based on a forest of decision trees using random inputs 
(Liaw and Wiener, 2002).  

• ROCR package: used to transform the input data into a standardized 
format (Sing et al., 2005). 

For each study site, two separate random forest models were run: a 
model including only vegetation indices as explanatory variables and a 
model combining vegetation indices with microtopography DTMs. All 
pixels falling within each of the 260 sampling quadrats were assigned to 
the corresponding above-ground value recorded at each quadrat and 
utilized as the training dataset. Additionally, 260 duplicates were used 
as a validation dataset. 

2.8. Validation and accuracy assessment 

Explained variance (R2) and root mean square error (RMSE) were 
used to test the accuracy of RF biomass predictions over the nine study 
sites. All accuracy tests were run using the validation dataset and a 95% 
confidence interval of RMSE. In addition, the prediction performance of 
each explanatory variable was assessed using percent increase in Mean 
Squared Error (MSE) (Breiman, 2001; Mutanga et al., 2012). 

The percent increase in MSE is calculated as the increase in the OOB 
when one variable is permuted (Mutanga et al., 2012). This estimate of 
accuracy represents the degradation of the model predictive perfor
mance when one variable is permuted. The percent increase in MSE 
enables a ranking of the predictor variables to be conducted according to 
their contribution to the model performance. 

2.9. Sward structure assessment 

Grassland sward structure was evaluated using a combination of data 
clustering and landscape indices. In this study, sward structure is 
defined following the description by Laca and Lemaire (2000), as the 
distribution and arrangement of above ground plant material. In order 
to facilitate the characterization of grass swards, each above-ground 
biomass map was clustered into discrete grass units using a Mean-Shift 
segmentation algorithm (Comaniciu and Meer, 2002). The Mean-Shift 
segmentation algorithm groups together adjacent pixels with similar 
values by iteratively assigning each pixel with a peak of the image 
probability density (Zhou et al., 2011). Mean-Shift clustering routine is 
an unsupervised segmentation technique and does not require a priori 
knowledge of the number of output clusters (Comaniciu and Meer, 
2002). The Mean-Shift clustering routine was implemented in QGIS v 
3.12. 

The clustered above-ground biomass maps were further analysed 
using a set of five landscape indices that characterize different compo
nents of landscape configuration, patch size and heterogeneity (table 3). 

The landscape indices were calculated using the landscape-metrics 
package in R (Hesselbarth et al., 2019). In order to allow for statistical 
comparisons of grassland structure between study sites, each above- 
ground biomass cluster map was subsampled using fifteen 50 m diam
eter circular plots randomly located within each monitoring site map. 
Subsequently, landscape indices were calculated for each circular plot. A 
similar sampling procedure has been utilized by Plexida et al. (2014) at 
the landscape scale. 

The clustering and landscape complexity approach used in this study 
facilitates the interpretation of continuous biomass data and enables 
descriptive assessments at the grassland plot level. 

2.10. Effects of management history on sward complexity 

In order to unveil the effects of management type, duration and intensity 
on coastal meadow sward structure, information on the management his
tory corresponding to each study site was collected (table 4). Although 
coastal meadows are sometimes mown as well as grazed, the selected sites in 
this study have only undergone grazing. During a series of interviews, land 
owners provided detailed information on the following parameters:  

- Duration of continuous management after management was re- 
instated or grassland was restored  

- Grazing load (Livestock Units (LU)/ha) during the last two years  
- Livestock species present in the grassland during all management 

history (cattle, sheep, horses or mixed)  
- Livestock species present during the last two years of management 

(cattle, sheep or horses) 

Kudani was excluded from the analysis due to lack of information on 
management. 

In order to assess the effects of management on sward structure, a 
Generalized Linear Model (GLM) with gaussian distribution was applied 
using the GLM base function in R. GLM was chosen due to its ability to fit 
linear models to datasets that represent counts (e.g. grazing loads) or 
percentages (e.g. largest patch index), as well as assess the simultaneous 
effect of continuous and categorical variables (Zuur et al., 2009). The 
model distribution was selected following the criteria of minimizing the 
Akaike’s information criterion (AIC) (Nolte et al., 2014). The five 
landscape indices described in section 2.8 were included as response 
variables, and years of management, present grazing load and livestock 
species (both past and present) included as explanatory variables. 
Two-way interaction functions were also included in the model. Addi
tionally, Mann Whitney U-tests were implemented in R in order to 
compare the values of landscape indices between meadows with 
different herbivore species. 

3. Results 

3.1. Above-ground biomass prediction maps 

Above-ground biomass was modelled in nine high resolution maps 

Table 3 
Landscape indices used to describe grassland structure at each study site.  

Landscape index Description 

Patch average area 
(area_mn) 

Mean area of all patches in the landscape under assessment 

Patch density (pd) Number of patches per area unit. Describes landscape 
fragmentation and heterogeneity 

Edge density (ed) Length of all edges in the landscape per area unit. Describes 
landscape fragmentation and heterogeneity 

Landscape shape 
index (lsi) 

Ratio between total edge length and the hypothetical 
minimum edge length. LSI is a landscape aggregation 
metric 

Largest patch index 
(lpi) 

Percentage of the landscape covered by the largest patch 
within the landscape under assessment  
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corresponding to the nine study sites (Fig. 3). Both RMSE and R2 

revealed high prediction accuracies for the random forest algorithm for 
all nine biomass prediction maps. RMSE ranged from 64.36 gr/m2 in 
Matsalu 2 to 6.2 gr/m2 in Rumpo E (Table 5), whereas R2 ranged from 
0.63 in Kudani to 0.98 in Hosby. The incorporation of digital terrain 
models in the explanatory variables dataset improved the prediction 
accuracy at all sites except Tahu N. Due to a failure during the survey 
flight, the digital terrain model could not be computed for Rälby. 

SfM-derived digital terrain models were tested for accuracy before 

being used as input variables in the random forest model. The elevations 
computed from the 3D point clouds were compared with elevation 
values recorded with dGPS at each sampling quadrat point. The analysis 
yielded RMSE values between 5 cm for Tahu N and 18 cm for Hosby. 

The contribution of each explanatory variable to the overall random 
forest model performance was assessed using percent increase in Mean 
Squared Error (MSE) test. The results of the predictor variables impor
tance tests (Table 6) are very site-specific, although some trends can be 
observed. Digital terrain models show the highest contribution to the 
random forest model in Hosby, Matsalu 2, RumpoE and RumpoW. This 
result confirms the trend already highlighted by the RMSE and R2 tests. 
Green Red Difference Index (GRDI) and some red-edge based indices 
(Red edge simple ratio (SRre), Red edge normalized difference vegeta
tion index (NDVIre), DATT4) also contributed noticeably to the esti
mation of above-ground biomass. 

3.2. Grassland sward structure 

The Mean-Shift image segmentation procedure generated sward 
cluster maps corresponding to the nine study sites (Tahu S is shown in 
Fig. 4). Each individual cluster in the resulting maps represents a unit 
with homogeneous distribution and arrangement of above-ground 
biomass. Consequently, each cluster represents grassland structure 
heterogeneity in terms of distribution and size of vegetation patches and 
tussocks. 

The results of the landscape index analysis at each study site are 

Table 4 
Parameters describing grazing management history at each study site.  

Site Duration of 
management 
(years) 

LU/ha 
(during the 
last two 
years) 

Livestock species 
(management 
history) 

Herbivore 
species (last 
two years) 

Tahu N 9 1 Cattle Cattle 
Tahu S 9 1 Cattle Cattle 
Matsalu 

1 
39 0.8 Cattle Cattle 

Matsalu 
2 

39 0.72 Cattle Cattle 

Rumpo 
W 

19 0.55 Mixed Cattle 

Rumpo 
E 

15 1 Mixed Cattle 

Hosby 15 0.38 Mixed Horses 
Rälby 15 1.13 Mixed Cattle  

Fig. 3. Above-ground biomass predicted using a random forest algorithm with vegetation indices and SfM-derived microtopography. Four out of nine study sites are 
represented in this figure, 1: Tahu N; 2: Matsalu 2; 3: Rumpo E; 4: Hosby. All values are expressed as gr/m2. Maps corresponding to all study sites are shown in 
Supplementary figures S1. 
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presented in Table 7 and reflect the differences in sward complexity 
between sites. Large values of largest patch index and patch average area 
indicate structurally homogeneous and uniform swards, whereas large 
values of patch density, edge density and landscape shape index point out at 
complex and heterogeneous sward structures. Study sites in Silma Na
ture Reserve and Vormsi Island show a higher degree of heterogeneity 
than those in Matsalu National Park, with very noticeable differences in 
largest patch index and patch density. 

3.3. Effects of management on grassland structure 

The GLM highlighted the effect of management type and history on 

some landscape indices (Table 8). The number of years of uninterrupted 
grazing management had a significant positive effect (p < 0.0001) on 
patch average area and largest patch index, and a significant negative 
effect (p < 0.0001) on edge density, landscape shape index and patch 
density. These results indicate larger patches and grassland structure 
homogenization as the duration of management increases. Similarly, 
grazing management intensity had a significant positive (p < 0.0001) 
effect on largest patch index. Regarding livestock, the type of species 
present during the last two years had a significant effect on edge density, 
landscape shape index and largest patch index, whereas species present 
throughout the management history had a significant effect on edge 
density, largest patch index and edge density. No significant interactions 
were found between the management descriptors. 

Mann-Whitney U tests further revealed the effects of livestock spe
cies on coastal meadow structure. The values for edge density, landscape 
shape index and patch density were significantly lower in cattle-grazed 
meadows than in those with a mixture of livestock throughout the 
management history (p < 0.001). Largest patch index and patch average 
area showed significantly higher values in cattle-grazed meadows than 
in those with a mixture of livestock during all management history (p <
0.001) (Fig. 5). No significant differences were found between cattle and 
horse grazed meadows during the last two years. 

4. Discussion and conclusions 

This study proposes a methodology to utilize UAVs as a tool to 
monitor the production of above-ground biomass (AGB) in coastal 
meadows and assess their structural complexity in relation to manage
ment history. In coastal meadows, management simultaneously drives 
the supply of multiple ecosystem services and affects the quality of 
habitat of wader species (Rhymer et al., 2010). As a result, conservation 
measures and agri-environmental schemes that target these valuable 
ecosystems must ensure the supply of ecosystem services whilst main
taining adequate habitat status. However, unveiling the complex bal
ance between management, ecosystem structure, processes, functions 

Table 5 
RMSE and R2 classification accuracies for predicted above-ground biomass at 
each study site. Prediction accuracies were calculated for two separate sets of 
explanatory variables: vegetation indices only and vegetation indices combined 
with SfM microtopography.  

Test site RMSE (gr/m2) R2 

Tahu N (Veg. indices)  24.48  0.9 
Tahu N (Veg. indices + DTM)  26.24  0.9 
Tahu S (Veg. indices)  35.12  0.89 
Tahu S (Veg. indices + DTM)  31.76  0.91 
Kudani (Veg. indices)  36.8  0.63 
Kudani (Veg. indices + DTM)  34.57  0.849 
Matsalu 1 (Veg. indices)  65.6  0.937 
Matsalu 1 (Veg. indices + DTM)  57.44  0.95 
Matsalu 2 (Veg. indices)  64.36  0.84 
Matsalu 2 (Veg. indices + DTM)  47.29  0.91 
Rälby (Veg. indices)  21.29  0.92 
Rälby (Veg. indices + DTM)  –  – 
Hosby (Veg. indices)  48.8  0.92 
Hosby (Veg. indices + DTM)  24.2  0.981 
Rumpo W (Veg. indices)  57.46  0.75 
Rumpo W (Veg. indices + DTM)  43.57  0.861 
Rumpo E (Veg. indices)  7.59  0.96 
Rumpo E (Veg. indices + DTM)  6.2  0.975  

Table 6 
Contribution of each variable to the overall performance of the Random Forest algorithm estimated by using percent increase in Mean Squared Error. Numbers 
represent the percent increase in mean squared error once a variable is permuted. Values below 5% are not represented in the table. Colour gradients represent the 
contribution of each variable to the overall performance.  
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and habitat quality requires timely and accurate spatially-explicit data 
(Bunce et al., 2008; Nagendra et al., 2013). In this regard, the emergence 
of UAVs as a tool for environmental monitoring (Ventura et al., 2017) 
has led to an unprecedented availability of data at ecologically relevant 
spatial and temporal scales (Pajares, 2015). These novel tools and 
datasets bring new opportunities for assessing and monitoring 

ecosystem structure and functions, but entail high data volumes (Chi 
et al., 2016). This study demonstrates that UAVs can be coupled with 
plot-based vegetation surveys in order to reveal spatial patterns of 
coastal meadow structure and functions. However, further de
velopments are needed in order to fully operationalize UAVs as moni
toring tools. 

4.1. High spatial resolution maps of standing above-ground biomass 

A key aspect of the present study was the combination of multiple 
sensors in order to achieve reliable results. The Random Forest algo
rithm yielded better predictions of AGB when the combination of mul
tispectral information with SfM-derived DTMs were used as explanatory 
variables. The increase in prediction accuracy is especially noticeable at 
the Hosby study site, where the RMSE shifted from 48.8 gr/m2 to 24.2 
gr/m2. In coastal meadows, microtopography is strongly associated with 
soil moisture gradients, spatio-temporal fluctuations of flood levels and 
availability of nutrients (Ward et al., 2016a). These gradients, in turn, 
drive the distribution of plant communities in coastal wetlands (Ward 
et al., 2013) and the ecosystem functions underlying the supply of 
ecosystem services such as C sequestration, weathering processes and 
soil fertility, fodder for cattle and habitat for waders nursery and 
reproduction. The results achieved in this study suggest that combining 
multiple sensors enhances the capability to measure ecosystem charac
teristics that may be otherwise overlooked when relying solely on 

Fig. 4. Results of Mean-Shift image segmentation at Tahu S study site. “A” corresponds to the predicted above-ground biomass map whereas “B” shows the ho
mogeneous biomass clusters. The red circles in “B” represent the sample units at which landscape indices were calculated. Values are expressed as gr/m2. The results 
of the segmentation procedure in all study sites are presented in the Annex. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.). Cluster maps corresponding to all study sites are shown in Supplementary figures S2. 

Table 7 
Values of five landscape indices calculated at each study site.  

Study 
site 

Patch 
average 
area 
(m2) 

Patch density 
(nr 
patches*ha− 1) 

Edge 
density 
(m*ha− 1) 

Landscape 
shape index 
(unitless) 

Largest 
patch 
index 
(%) 

Tahu 
North  

5.16  1937.86  9127.06  73.70  25.72 

Tahu 
South  

3.89  2569.58  12716.32  109.85  9.59 

Kudani  4.91  2037.12  9092.50  125.97  13.06 
Matsalu1  16.71  598.47  3114.61  39.30  80.97 
Matsalu2  10.85  921.90  3716.48  59.94  77.94 
Rumpo 

East  
6.15  1625.79  9322.24  63.79  12.10 

Rumpo 
West  

5.42  1846.68  9630.13  41.89  14.61 

Rälby  3.54  2825.67  10026.96  79.95  13.67 
Hosby  7.47  1338.32  7610.38  76.32  33.85  

Table 8 
GLM analysis results (t and Pr(>|t|) for the effects of management on grassland structure (landscape indices). Significance codes: p < 0.0001 “***”, p < 0.001 “**”, p <
0.01 “*”, p < 0,05 “+”. Only significant results are shown.   

Edge density Landscape shape index Patch density Largest patch index Patch average area  

t value Pr(>|t|) t value Pr(>|t|) t value Pr(>|t|) t value Pr(>|t|) t value Pr(>|t|) 

Management duration − 8.203 3.79e-13 
*** 

− 8.204 3.76e-13 
*** 

− 5.993 2.42e-08 
***  

8.410 1.27e-13 ***  5.747 7.58e-08 
*** 

Management intensity − 1.786 0.767 + 3.931 0.000145 ***   
Herbivore species (management 

history) 
2.277 0.0246 * 1.705 0.0909 + 2.874 0.00483 **  − 3.602 0.000468 ***  − 1.868 0.0644 +

Herbivore species (last two years) − 2.450 0.0158 * − 2.019 0.0459 *    3.866 0.000184 ***    
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spectral information. Previous studies have shown that sensor fusion 
improves prediction and classification accuracies. For instance, Moeckel 
et al. (2017) improved the prediction accuracies of pasture biomass 
using a combination of data measured with ground-based ultrasonic 
distance sensors and spectral sensors. De Alban et al. (2018) combined 
Landsat multispectral data with L-band Synthetic Aperture Radar to 
enhance landuse/landocover change detection in tropical landscapes. 
Latifi et al. (2012) achieved improved models of above ground biomass 
and stem density in temperate forests in Germany using LiDAR metrics 
in combination with hyperspectral data. In the field of UAV remote 
sensing, some studies have used aerial photogrammetry (Zhang et al., 
2018) or multispectral data (Grüner et al., 2020) to estimate grassland 
AGB, however only few have explored the possibilities of UAV-based 
sensor fusion to improve predictions. 

Regarding prediction accuracies at different study sites, RMSE and 
R2 values for predicted AGB ranged from 6.2 gr/m2 in Rumpo E to 57.44 
gr/m2 in Matsalu1 and from 0.975 in Rumpo E to 0.85 in Kudani. These 
differences can be attributed to the characteristics of each study site in 
terms of plant communities and vegetation height. Very similar trends in 
modelling accuracies were found by Villoslada et al. (2020), where sites 
characterized by the presence of more productive communities or a 
higher herbage yield (such as Matsalu 1 and 2 in this study) show lower 
prediction accuracies than short-sward sites (such as Rumpo E, Tahu N 
and Tahu S in this study). It has been previously shown that the 
complexity of sward structures, vegetation height and plant species 
richness affect the spectral characteristics of training samples (Villoslada 
et al., 2020). This, in turn, has an effect on the overall prediction 
accuracy. 

Together with overall accuracy estimations, predictor importance 
metrics provide a deeper insight into the performance of the random 
forest algorithm. The percent increase in MSE shows highly variable 
results between all study sites. However, within most site prediction 
models, DTMs exhibited a high prediction importance. These results are 
in accordance with the consistent increase in overall classification ac
curacy observed at most sites, with the exception of Tahu N, where DTM 
did not improve the model. The key role of remotely sensed micro
topographic data in the classification reinforces the idea that often, 
vegetation spectral information needs to be enhanced with ancillary 
data in order to obtain robust estimates (Sluiter and Pebesma, 2010). 
The Green-Red Difference Index (GRDI) also proved to be a relevant 
predictor. GRDI is known for its sensitivity to leaf density and its ability 
to predict the percentage of green herbage (Gianelle and Vescovo, 
2007). The variability of results between sites reflects the wide range of 
characteristics at each site in terms of soil moisture, proportion of bare 
soil and vegetation height. These findings indicate that there is no 
optimal combination of vegetation indices or spectral bands when 
monitoring habitats at very detailed spatial resolutions. Using a wide 
spectrum of indices provides the flexibility needed to obtain robust re
sults in variable environmental conditions. 

4.2. Sward characterization 

Based on the high spatial resolution biomass prediction maps, a 
grassland structure characterization was undertaken. A Mean-Shift 
segmentation routine was used to unveil sward structures from the 
continuous biomass data. Clustering techniques are commonly used to 
reveal vegetation structures and characteristics that remain otherwise 
hidden in continuous and multidimensional datasets (Kwak et al., 2010; 
Schirrmann et al., 2016). The Mean-Shift segmentation routine was 
chosen for its ability to process one-dimensional continuous data. The 
clustered data were analysed using five landscape indices, revealing 
distinct patterns of sward structure at each site. This clustering analysis 
and characterization constitutes a step forward in UAV-based vegetation 
assessments, as it expands the potential applications of UAVs towards 
ecosystem integrity and status assessments. Wetland and grassland 
habitats characterized by high spatial heterogeneity at micro scales can 
be surveyed following this approach, therefore expanding the scope of 
assessment beyond coastal meadows. 

4.3. Effect of the duration and type of management regime 

The potential linkages between sward structure data and manage
ment regime were analysed using a GLM, which highlighted the pivotal 
role of grazing intensity and duration on grassland heterogeneity. Un
interrupted grazing for longer periods resulted in meadows with larger 
and more homogeneous patches (higher values of largest patch index 
and patch average area and lower values of edge density, landscape 
shape index and patch density). This reveals the homogenizing effect 
that continuous, monospecific grazing may have on sward structure. In 
Estonian coastal meadows, cattle breeds have a limited selective grazing 
behaviour (Kuresoo and Mägi, 2004), which could lead to homogeni
zation in the long term. This also suggests that grazing type, intensity 
and duration are likely to have an impact on rates of carbon seques
tration through biomass inputs during seasonal dieback, as well as on 
total carbon stored, which is a suggested object of further study. 

The effect of livestock species was also tested using GLM analysis and 
Mann-Whitney U tests. A mix of livestock species for management over 
time led to more structurally diverse coastal meadows than those grazed 
by cattle alone. This can be explained by the fact that different livestock 
species have different grazing behaviours that lead to distinct spatial and 
temporal grazing patterns (Loucougaray et al., 2004). Although bovines 
are regarded as suitable grazers for coastal meadow management 
(Kuresoo and Mägi, 2004), a mixture of livestock species may have 
additive effects on the structural characteristics of the meadow (Lou
cougaray et al., 2004), leading to more complex swards as opposed to 
monospecific grazing. Fine-tunning management strategies in coastal 
meadows is of key importance, as grassland structural characteristics 
and complexity are strongly associated with the nesting, breeding and 
foraging habitat quality for wader species (Smart et al., 2006). As an 
example, Common Redshank (Tringa totanus) prefers short grass areas 

Fig. 5. Differences between the mean values of five landscape indices in cattle-grazed and mixed livestock-grazed grasslands. All differences were significant (p <
0.001). ↑indicates values out of the graph: 0.0654, 0.0981, 0.1962. 

M. Villoslada Peciña et al.                                                                                                                                                                                                                    



Ecological Indicators 122 (2021) 107227

11

with patches of taller grass as breeding habitat (Rannap et al., 2017). 
Heterogeneous sward structures also widen the availability of micro
habitats for invertebrates (Sanderson et al., 1995), which play an 
essential role in the supply of soil-related ecosystem services (Lavelle 
et al., 2006) such as nutrient cycling and carbon sequestration and 
storage. 

4.4. UAVs as a tool for grassland monitoring 

The approach presented in this study was successful in predicting 
AGB and characterizing sward complexity in relation to management, 
however, there are still certain methodological aspects that require 
improvement. Further research should directly couple UAV sward 
structure surveys with nest surveys in order to fully address the effects of 
sward structure in bird nesting and breeding success. Several UAV sur
veys should be conducted throughout the growing season to unveil the 
temporal dynamics of grassland sward complexity. Furthermore, UAV 
surveys are still constrained by flight duration and area coverage, thus 
limiting the areas to be monitored. In this regard, recent advances in the 
fusion of UAV and satellite data (Alvarez-Vanhard et al., 2020) set a 
promising path towards remote sensing-based monitoring. 

The results achieved in this study demonstrate the use of UAVs in 
coastal meadow monitoring. The multifunctional role of coastal 
meadows as suppliers of a range of ecosystems services for society (e.g. 
sediment trapping, carbon sequestration, nutrient recycling, reared an
imals, pollination, habitat for waders) depends upon balanced site- 
specific management strategies. Continuous biomass monitoring with 
UAVs can support tailored management options aimed at finding 
optimal balances between livestock production, carbon sequestration 
and accumulation, and habitat conservation. In this regard, sensor 
fusion and a broad range of remotely sensed predictor variables ensure 
higher prediction accuracies and adaptability to study site conditions. 

This study also sets the path to UAV-based assessments of ecosystem 
services supply and blue carbon sequestration estimations. Future 
research should explore the use of UAV-based data to quantify a broader 
range of habitat quality parameters in coastal meadows as well as 
explore the use of UAV-based data and machine learning algorithm 
techniques to evaluate carbon storage. Specifically in coastal meadows, 
the accuracy of estimations of carbon stocks and storage rates directly 
depends on accurate quantifications of the spatial variation of above- 
ground biomass (Owers et al., 2018). 
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development of Estonian coastal land cover and landscapes caused by natural 

M. Villoslada Peciña et al.                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1470-160X(20)31166-3/optSjSFFo5Kom
http://refhub.elsevier.com/S1470-160X(20)31166-3/optSjSFFo5Kom
http://refhub.elsevier.com/S1470-160X(20)31166-3/optSjSFFo5Kom
https://doi.org/10.1080/0143116050019639
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/s0176-1617(11)81633-0
https://doi.org/10.1371/journal.pone.0234703
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0140
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0140
https://doi.org/10.1016/j.agee.2007.09.005
https://doi.org/10.1016/j.agee.2007.09.005
https://doi.org/10.1111/ecog.04617
http://CRAN.R-project.org/package=raster
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.3390/rs6021496
https://doi.org/10.3390/rs6021496
https://doi.org/10.1002/ehs2.1240
https://doi.org/10.1002/ehs2.1240
https://doi.org/10.1016/j.rse.2017.06.023
https://doi.org/10.1016/S0921-8181(02)00149-2
https://doi.org/10.1016/S0921-8181(02)00149-2
https://doi.org/10.1016/j.jag.2014.08.002
https://doi.org/10.1016/j.jag.2014.08.002
https://doi.org/10.1080/15481603.2014.947838
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0190
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0190
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0190
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0190
https://doi.org/10.1007/s10265-010-0310-0
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1109/igarss.2016.7729922
https://doi.org/10.1109/igarss.2016.7729922
https://doi.org/10.1016/j.ejsobi.2006.10.002
https://doi.org/10.1016/j.ejsobi.2006.10.002
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0220
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0220
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0220
http://cran.r-project.org/web/packages/randomForest
https://doi.org/10.1007/s10750-019-04153-5
https://doi.org/10.1016/S0006-3207(03)00177-0
https://doi.org/10.3390/drones3010010
https://doi.org/10.1016/j.scitotenv.2018.11.462
https://doi.org/10.1016/j.scitotenv.2018.11.462
https://doi.org/10.4236/ars.2016.52010
https://doi.org/10.1016/j.marpol.2016.09.004
https://doi.org/10.1016/j.marpol.2016.09.004
https://doi.org/10.3390/rs10101662
https://doi.org/10.3390/rs10101662
https://doi.org/10.1890/110004
https://doi.org/10.3390/rs9111187
https://doi.org/10.3390/rs9010098
https://doi.org/10.3390/rs9010098
https://doi.org/10.1080/01431160310001654923
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.1016/j.ecolind.2012.09.014
https://doi.org/10.1016/j.jag.2019.01.021
https://doi.org/10.1016/j.agee.2013.12.010
https://doi.org/10.3390/rs8060477
https://doi.org/10.3390/rs8060477
https://doi.org/10.1016/j.soilbio.2010.11.018
https://doi.org/10.1016/j.ecss.2018.06.002
https://doi.org/10.1016/j.ecss.2018.06.002
https://doi.org/10.14358/PERS.81.4.281
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0325
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0325
http://refhub.elsevier.com/S1470-160X(20)31166-3/h0325
https://doi.org/10.1016/j.jag.2013.05.001
https://doi.org/10.1016/j.jag.2013.05.001
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/j.jnc.2016.12.004
https://doi.org/10.1016/j.jnc.2016.12.004
https://doi.org/10.1016/j.biosystemseng.2011.05.004
https://doi.org/10.1111/j.1474-919X.2010.01049.x
https://doi.org/10.1111/j.1474-919X.2010.01049.x
https://doi.org/10.1080/10106049209354353
https://doi.org/10.1080/10106049209354353


Ecological Indicators 122 (2021) 107227

13

changes and human impact. J. Coastal Conserv. 20 (3), 199–209. https://doi.org/ 
10.1007/s11852-016-0430-3. 

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation 
systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309. 

Salomidi, M., Katsanevakis, S., Borja, A., Braeckman, U., Damalas, D., Galparsoro, I., 
et al., 2012. Assessment of goods and services, vulnerability, and conservation status 
of European seabed biotopes: a stepping stone towards ecosystem-based marine 
spatial management. Mediterr. Mar. Sci. 13 (1), 49. https://doi.org/10.12681/ 
mms.23. 

Sanderson, R.A., Rushton, S.P., Cherrill, A.J., Byrne, J.P., 1995. Soil, vegetation and 
space: an analysis of their effects on the invertebrate communities of a Moorland in 
North-East England. J. Appl. Ecol. 32 (3), 506. https://doi.org/10.2307/2404648. 

Schirrmann, M., Hamdorf, A., Garz, A., Ustyuzhanin, A., Dammer, K.-H., 2016. 
Estimating wheat biomass by combining image clustering with crop height. Comput. 
Electron. Agric. 121, 374–384. https://doi.org/10.1016/j.compag.2016.01.007. 

Sharps, E., Garbutt, A., Hiddink, J.G., Smart, J., Skov, M.W., 2016. Light grazing of 
saltmarshes increases the availability of nest sites for Common Redshank Tringa 
totanus, but reduces their quality. Agric. Ecosyst. Environ. 221, 71–78. https://doi. 
org/10.1016/j.agee.2016.01.030. 

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing classifier 
performance in R. Bioinformatics 21 (20), 7881. https://cran.r-project.or 
g/web/packages/ROCR. 

Sluiter, R., Pebesma, E.J., 2010. Comparing techniques for vegetation classification using 
multi- and hyperspectral images and ancillary environmental data. Int. J. Remote 
Sens. 31 (23), 6143–6161. https://doi.org/10.1080/01431160903401379. 

Smart, J., Gill, J.A., Sutherland, W.J., Watkinson, A.R., 2006. Grassland-breeding 
waders: identifying key habitat requirements for management. J. Appl. Ecol. 43 (3), 
454–463. https://doi.org/10.1111/j.1365-2664.2006.01166.x. 

Smith, M.W., Carrivick, J.L., Quincey, D.J., 2015. Structure from motion 
photogrammetry in physical geography. Prog. Phys. Geogr.: Earth Environ. 40 (2), 
247–275. https://doi.org/10.1177/0309133315615805. 

Spalding, M.D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L.Z., Shepard, C.C., Beck, M. 
W., 2014. The role of ecosystems in coastal protection: Adapting to climate change 
and coastal hazards. Ocean Coast. Manag. 90, 50–57. https://doi.org/10.1016/j. 
ocecoaman.2013.09.007. 

Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D., 2006. Aerial color infrared 
photography for determining early in-season nitrogen requirements in corn. Agron. 
J. 98 (4), 968–977. https://doi.org/10.2134/agronj2005.0200. 

Summers, R.W., Stansfield, J., Perry, S., Atkins, C., Bishop, J., 1993. Utilization, diet and 
diet selection by brent geeseBranta bernicla berniclaon salt-marshes in Norfolk. 
J. Zool. 231 (2), 249–273. https://doi.org/10.1111/j.1469-7998.1993.tb01916.x. 
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