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Abstract: This paper investigates the analytical and numerical solutions to wide moving jams in

traffic flow. Under the framework of the Lagrange coordinates, a semi-discrete model and a con-

tinuum model correlate with each other, in which the former model approaches the latter as the

increment ∆M in the former model vanishes. This implies that the solution to a wide moving jam in

the latter model, which can be analytically derived using the known theory, can be conceivably taken

as an approximation to that of the former model. These results were verified through numerical sim-

ulations. Because a detailed understanding of the traffic phase “wide moving jam” is very important

for the further development of Kerner’s three-phase traffic theory, this study helps to explain the

empirical features of traffic breakdown and resulting congested traffic patterns that are observed in

real traffic.

Keywords: Lagrange coordinates; semi-discrete model; car-following model; wide moving jam;

1 Introduction

Kerner [1, 2] introduced a “three-phase traffic theory” in which there are two phases in congested

traffic: 1. Synchronized flow and 2. Wide moving jam. This theory explains the traffic breakdown and

other empirical features of traffic flow that were observed on different highway in various countries.

In this three-phase theory, the traffic breakdown is described as a first-order phase transition from

∗Corresponding author. E-mail: pzhang@mail.shu.edu.cn.
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free flow to synchronized flow (F→S transition), whereas wide moving jams are formed through a

sequence of two phase transitions called F→S→J transitions: Firstly a F→S transition occurs and

later and usually at another road location a S→J transition is realized.

A wide moving jam with F→J transition was first discovered by Kerner [3] based on a numer-

ical and analytical study of a version of Payne’s model [4]. Later, the results of [3] about wide

moving jams have been incorporated and further developed in many traffic flow models, e.g., the

characteristic features of wide moving jam phase in cellular automaton models [5,6] and higher-order

models [7–13]. Although most of these studies cannot show synchronized flow, thus unable to predict

F→S→J transitions, they are important for the further development of traffic flow theory, because

the characteristic features of wide moving jams play a very important role in Kerner’s three-phase

traffic theory. On the other hand, most semi-discrete (car-following) models (e.g., in [14–16]) failed

to analytically show the characteristic features of a wide moving jam even through they are deter-

ministic. This could be probably due to the unavailability of analytical solutions to most non-linear

ordinary differential systems.

This paper studies the characteristic feature of wide moving jams in a semi-discrete model. Using

the concept of the Lagrange coordinates, the formulated semi-discrete model with an increment ∆M

could converge to a continuum higher-order model for ∆M → 0, where ∆M is the mass between

two adjacent particles. This implies consistency between the semi-discrete and continuum models.

Therefore, with the error of O(∆M) the characteristic parameters of a wide moving jam in the former

model can be well approximated by those in the latter model, which can be similarly derived through

application of the weak solution theory of hyperbolic conservation laws, as was shown in Zhang et

al. [11–13]. To verify the convergence, we numerically demonstrate that the semi-discrete model is

able to reproduce a regular wide moving jam, and that for the refinement of ∆M its characteristic

parameters do approach those that are analytically derived through the continuum model. Even

with a large value of ∆M = 1, in which the semi-discrete model reduces to a car-following model,

the approximation is also very good.

Here, we mention a similar establishment between the continuum and the car following models

in Aw et al. [17] and Greenberg [8, 18], in which the convergence of latter solution to the former

solution was generally and indirectly showed by “shrinking” the time and space coordinates such that

the length of a car approaches zero [17]. More relevantly, Greenberg’s analytical study of traveling

waves that was based on different assumptions should be suited more generally for a narrow and wide

moving jam [8]. However, he did not show convergence and compare between analytical and numerical

solutions. In this regard, the present paper also serves as a supplement to the aforementioned studies.

We should also note that the formulation under the Lagrange coordinate system mostly results in
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“anisotropic” models, which are related to those discussed under the Euler coordinate system, e.g.,

in [9, 10,19–22].

The remainder of the paper is organized as follows. In Section 2, we discuss the basic concepts

of one-dimensional fluid in relation to the Lagrange coordinates, based on which we formulate an

acceleration equation for traffic flow. In Section 3, the linear stability condition of the equilibrium

solution for the resulting continuum model is derived and an analytical wide moving jam solution is

constructed. In Section 4, the semi-discrete model is naturally formulated based on the discussion

in Section 2, and the aforementioned convergence of its solution for wide moving jam to that of the

continuum model is demonstrated through numerical simulations. We conclude the paper in Section

5.

2 General Discussion of Model Equations

In most studies, the initial position of a particle is more generally taken as the Lagrange coordinates

of the particle. However, for a one-dimensional continuum like traffic flow, the total mass upstream of

a particle also remains unchangeable and thus is more conveniently used as the Lagrange coordinate

to identify the particle. In this case, equations including the mass conservation and acceleration

are easily established, and it is straightforward to derive the motion equations of particles by direct

discretization of these equations.

2.1 Lagrange Coordinates and Mass Conservation

Let M(x, t) denote the total mass not passing through position x at time t in a one-dimensional

continuum. Then, the density of the fluid is defined as

ρ(x, t) = lim
∆x→0

M(x+∆x, t)−M(x, t)

∆x
= Mx(x, t), (1)

and the flow is defined as

q(x, t) = − lim
∆t→0

M(x, t+∆t)−M(x, t)

∆t
= −Mt(x, t). (2)

Here, the mass M measures the quantity of substance in the continuum, which is denoted as the

number of cars in traffic flow. Application of the identity Mxt = Mtx to Eqs. (1) and (2) in a smooth

solution region gives rise to the mass conservation:

ρt + qx = 0.

The formulation becomes the same as that in [23, 24] by replacing M(x, t) with −N(x, t), where

N(x, t) is the total mass passing through location x at time t.
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Under the continuum hypothesis, the total mass not passing through a specific particle remains a

constant in the motion or is independent of x and t because no overtaking is allowed. Moreover, for

fixed t, Eq. (1) implies that M is strictly increasing of x as the vacuum is not considered or would

be specially treated. Therefore, it is convenient to identify a specific particle in the motion by the

index M (instead of x) and time t, which constitutes the Lagrange coordinate system under Eqs. (1)

and (2). Accordingly, we rewrite Eq. (1) as

s(M, t) = xM (M, t), (3)

where s(M, t) = (ρ(x, t))−1 is called the specific volume at (x, t) or (M, t), and x(M, t) is the position

of particle M at time t. The motion speed of particle M at time t is defined as

u(M, t) = lim
∆t→0

x(M, t+∆t)− x(M, t)

∆t
= xt(M, t). (4)

In this coordinate, the mass conservation in a smooth solution region can be similarly derived from

the identity xtM = xMt, which leads to

st − uM = 0. (5)

Moreover, by the Lagrange coordinate transformation (1)-(2), the partial derivative xt(M, t) of the

implicit function x = x(M, t) can be derived from M = M(x, t) as

xt(M, t) = −Mt(x, t)

Mx(x, t)
= q(x, t)/ρ(x, t),

which together with Eq. (4) gives the relation q(x, t) = ρ(x, t)u(x, t). Here, the speed u(x, t) of fluid

at (x, t) is defined as the motion speed u(M, t) of particle M(x, t).

2.2 Acceleration in Fluid Dynamics

The acceleration of particle M at time t is naturally defined as

ut(M, t) = lim
∆t→0

u(M, t+∆t)− u(M, t)

∆t
. (6)

Recall that the speed of fluid at (x, t) is defined as the speed of the corresponding particle M at time

t, i.e., u(M, t) = u(x, t). Then, taking the derivative of this equation with respect to t gives

ut(M, t) = ut(x, t) + ux(x, t)xt(M, t) = ut(x, t) + u(x, t)ux(x, t),

where the function x = x(M, t) is implied. Therefore, we can further define the acceleration of fluid

at (x, t) as the acceleration of particle M at time t, and the expression on the right-hand side is

under the Euler x-t coordinate.
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2.3 Acceleration of Traffic Flow

Traffic flow acceleration is mainly associated with the anticipation and relaxation effects, and the

acceleration under the Euler coordinate could be described according to the same or similar physical

mechanisms as those in the literature (e.g., see [?, 3, 4, 25]). However, it is also straightforward to

formulate under the Lagrange coordinate system. We assume that the velocity of particle M at time

t+τϵ is determined by the velocity u(M+∆M, t) of particle M+∆M (∆M > 0) and an equilibrium

velocity ue(s(M, t)), which are weighted by α and 1− α, respectively. This suggests

u(M, t+ τϵ) = αu(M +∆M, t) + (1− α)ue(s(M, t)),

which, using the Taylor expansion, gives

ut(M, t) = α
∆M

τϵ
uM (M, t) + (1− α)

ue(s(M, t))− u(M, t)

τϵ
. (7)

In general, one could always derive a so-called “anisotropic” acceleration through proper assumptions

using the parameters ∆M , τϵ and α. See [26] and the references therein for the debates on the issue

whether traffic flow should be “anisotropic” or “isotropic”.

We formulate the anticipation term of Eq. (7) by assuming that τϵ is proportional to the difference

between s(M + ∆M, t)∆M and s(M, t)∆M , which approximately measure the distance between

the particles M + ∆M and M + 2∆M , and the distance between the particles M and M + ∆M ,

respectively. However, τϵ should be inversely proportional to the difference between the speeds of

particles M + ∆M and M , which are approximated by the equilibrium speeds ue(s(M + ∆M, t))

and ue(s(M, t)). Accordingly, we assume

τϵ = β∆M
s(M +∆M, t)− s(M, t)

ue(s(M +∆M, t))− ue(s(M, t))

.
=

β∆M

u′e(s(m, t))
,

where β > 0 is the proportional coefficient. By replacement, Eq. (7) is rewritten as

ut = µu′e(s)uM +
ue(s)− u

τ
, (8)

where µ = αβ−1 > 0, and we denote by (1 − α)−1τϵ = τ . We note that neither the weight α nor

the coefficient β could be taken as constants; at least they should depend on the specific volume s

(or the density ρ), thus we assume µ = µ(s). This appears to lead to a complex dependency of the

parameter τ .

However, the resultant formulations would demonstrate little difference in solution properties

when assuming that τ is bounded by two positive constants. Therefore, we take τ as a positive

constant for simplicity in the forthcoming studies. In this case, τ is more commonly referred to

as the relaxation time, and Eq. (8) is essentially the Aw-Rascle model [19, 20] under the Lagrange

coordinate system, which was discussed in [8, 17,18].
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3 Solution Properties of the Continuum Model

Equations (5) and (8) constitute a complete system for solving the specific volume s(M, t) and

the speed u(M, t). The characteristic speeds or eigenvalues of the system are easily indicated as

λ1(s, u) = −µ(s)u′e(s) < 0, and λ2(s, u) = 0, by which the propagations are respectively slower than

and synchronistic with the motion of particle M . This implies that the model is “anisotropic”.

3.1 Linear stability condition

The system of (5) and (8) has an equilibrium solution (s, u) = (s0, ue(s0)), which corresponds to a

kinetic speed −u′e(s0) < 0. The linear stability of this solution requires that the kinetic speed be

between the two characteristic speeds [?], which is equivalent to

u′e(s0) ≤ µ(s0)u
′
e(s0), or µ(s0) ≥ 1. (9)

It is commonly believed that the equilibrium solution is linearly stable for free and jam density

regions, but unstable for a congested density region [3, 11, 12]. Thus, the function µ(s) is well

qualified if µ(s) < 1, for s ∈ (sc1 , sc2), and µ(s) ≥ 1, otherwise. Here, µ(sc1) = µ(sc2) = 1; sc1 and

sc2 are the critical specific volumes.

3.2 Traveling wave and solution for a wide moving jam

Applying the weak solution theory as that discussed in [11–13], we firstly replace uM with st (see

Eq. (5)) in Eq. (8) to derive a conservative equation in the following form:

(u+ p(s))t =
ue(s)− u

τ
, (10)

where ue(s) is assumed to be non-convex, and “pressure” p(s) is related to the first characteristic

speed by setting p′(s) = λ1(s, u) = −µ(s)u′e(s). Then, we briefly indicate a smooth traveling wave

profile (transition layer) and a discontinuous traveling wave profile (shock) for the system of (5) and

(10) as follows.

By replacing s = s(N) and u = u(N) in Eqs. (5) and (10), where N = M − q0t, and q0 < 0 is

the traveling wave speed, we easily derive

ds

dN
=

ue(s)− u(s)

τq0(q0 − p′(s))
≡ ϕ(s), u(s) = C − q0s, (11)

where C is the integral constant. The second equation in (11) suggests a straight line in the (s, u)

phase space. We are interested in a segment solution which intersects with the curve u = ue(s) at

(sχ, uχ), for χ = A,B,C. See Fig. 1(a). This implies that

C = q0sχ + uχ, uχ = ue(sχ), for χ = A, B, C. (12)

6



It is assumed that sC = s(0) and uC = u(0). Then, by Eq. (11) we have

dN

ds
=

1

ϕ(s)
, or N(s) =

∫ s

sC

ds

ϕ(s)
. (13)

(a)

u

s ss CB A s0

C
u

u

uB

A

eu (s)

(b)

s

s

s

C

B

A

0 N

s
= s (         )+ 8

= s (        )- 8

Fig. 1. A traveling wave solution: (a) the phase plot (s, u) compared with the fundamental diagram u = ue(s); and

(b) the profile of the transition layer s = s(N).

To ensure the existence of the inverse function s = s(N), we assume the monotonicity of N(s),

namely, ϕ(s) is always non-negative or non-positive for s ∈ [sB, sA]. From Fig. 1(a) and Eq. (11),

this means that the denominator of ϕ(s) changes sign when s = sC with

p′(sC) = q0, and
ds

dN
|s=sc = lim

s→sC
ϕ(s) = −u′e(sC) + q0

τq0p′′(sC)
< ∞. (14)

It is physically sound that the characteristic speed p′(s) should be increasing by s (or decreasing by

ρ = 1/s). This implies that ϕ(s) > 0 or s = s(N) is monotonically increasing by N . Because

lim
s→sχ

ϕ(s)

s− sχ
=

u′e(sχ) + q0
τq0(q0 − p′(sχ))

̸= 0, for χ = A, B,

we have N(sA) = +∞, and N(sB) = −∞, according to the expression of N(s) in Eq. (13). This gives

sA = s(+∞), and sB = s(−∞). The profile of the traveling wave solution s = s(N) is illustrated in

Fig. 1(b), which corresponds to (and thus is also called) a transition layer in the literature [3].

(a)

s

sB

A

0 N

s

(b)

s

s

s

C

B

A

0N NU D

s

N

s

s(        )NU

(        )ND

Fig. 2. (a) the profile of a shock; and (b) the profile of the wide moving jam that is composed of a shock and a

transition layer.
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A discontinuous traveling wave or shock that connects two equilibrium states (Fig. 2(a)) is

determined by applying the Rankine-Hugoniot conditions to the system of (5) and (10), which read:

q0(sA − sB) = −(ue(sA)− ue(sB)), (15)

ue(sA) + p(sA) = ue(sB) + p(sB). (16)

Here, the two constant equilibria are also denoted by (sA, ue(sA)) and (sB, ue(sB)), which are re-

spectively on the left and right hand sides of the shock; the shock speed is also denoted by q0. We

note that the shock is associated with the first characteristic field; it is physically valid only when

λ1(sA, ue(sA)) > λ1(sB, ue(sB)), or sA > sB, according to the Lax-entropy condition [27].

Solution of a wide moving jam is composed of a shock (as the upstream front) and a transition

layer (as the downstream front), with the latter profile being well approximated by the two equilib-

rium constant states (sB, ue(sB)) and (sA, ue(sA)) respectively, in s ∈ (−∞, NU ] and s ∈ [ND,+∞)

for some NU and ND (Fig. 2(b)). For this solution, all parameters using the same denotations in Eqs.

(12)-(16) can be truly set as the same, and Eqs. (12), (14), (15) and (16) imply four independent

algebraic equations, by which the four characteristic parameters q0, sA, sB and sC could be uniquely

solved.

4 Semi-Discrete Model and Numerical Results

It is convenient to describe the motion of the particles under the Lagrange coordinate system. One

way is to numerically solve the partial differential conservation system of (5) and (10), and then to

derive x(M, t) through Eqs. (3)-(4). However, it is intuitive and straightforward to discretize Eq.

(3) by

sm(t) =
xm+1(t)− xm(t)

∆M
, (17)

and then rewrite Eq. (4) as
dxm(t)

dt
= um(t). (18)

Here and hereafter, we denote a solution variable A by Am(t) = A(M, t), and Am+1(t) = A(M +

∆M, t). Because the set of particles in discretization is enumerable for any fixed increment ∆M , m

is taken as an integer. Using Eq. (17), Eq. (10) is rewritten as

d

dt
[um(t) + p(

xm+1(t)− xm(t)

∆M
)] =

1

τ
[ue(

xm+1(t)− xm(t)

∆M
)− um(t)]. (19)

Equations (18)-(19) constitute a complete semi-discrete system for solution. Because it can be verified

that each equation of (3)-(5) is implied by the two others, the semi-discrete system can be shown to

be consistent with the continuum system of (5) and (10). This means that the former system will
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become the latter system for ∆M → 0, provided that the term on the right hand side of Eq. (17)

converges.

Recall that ∆M is the mass of the fluid between particles m and m + 1. Then, the position

xm(t) and the increment ∆M are related to the specific volume s(x, t) or density ρ(x, t) = (s(x, t))−1

through the formula:

∆M =

∫ xm+1(t)

xm(t)
(s(x, t))−1dx =

∫ xm+1(t)

xm(t)
ρ(x, t)dx. (20)

4.1 Linear stability of the equilibrium solution

Assume that (x0m(t), u0m(t)) is an equilibrium solution of system (18)-(19). We derive x0m+1(t) −

x0m(t) = s0∆M by setting s(x, t) = s0 in Eq. (20), where s0 is constant. Then, we substitute this

into Eq. (19) to derive an unique solution u0m(t) = ue(s0), which in turn gives x0m(t) = ue(s0)t +

m∆Ms0+C, where C is an arbitrary constant. This solution corresponds to the equilibrium solution

(s0, ue(s0)) of system (5) and (10) (see the discussion in Section 3.1).

To examine the linear stability of the aforementioned equilibrium solution, we assume a perturbed

solution: xm(t) = x0m(t) + ym(t), um(t) = x′m(t) = ue(s0) + y′m(t), where ym(t) is the perturbation.

Substitute the perturbed solution into Eq. (19) and apply the Taylor expansion to the functions

p′(s) and ue(s) at s = s0 in the resultant equation. Then, by omitting the nonlinear terms, we derive

the following linear ODE equation:

y′′m =
1

τ
[
u′e(s0)

∆M
(ym+1(t)− ym(t))− y′m]− p′(s0)

∆M
(y′m+1 − y′m). (21)

By substituting ym(t) with the Fourier mode exp(ikm∆M − ikσkt) in Eq. (21), where m∆M

represents the Lagrange coordinate M , σk = σ1 + σ2(ik), and σ1 is the wave speed of the small

perturbation, we derive a polynomial equation of k. In this case, we assume a small wave number

k ≪ 1 and thus leave only two lower order terms in the polynomial equation, which is balanced by

σ1 = −u′e(s0), σ2 = ∆M(u′e(s0) + p′(s0))−
∆M2

2τ
.

For stability, the amplitude exp(k2σ2) of the perturbation ym(t) = exp(ikm∆M − ikσkt) should not

be greater than 1, or σ2 should be non-positive. This suggests the following linear stability condition

of the equilibrium solution (x0m(t), u0m(t)):

u′e(s0) + p′(s0) ≤
∆M

2τ
. (22)

We note that Eq. (22) is consistent with that of Eq. (9). Precisely, Eq. (22) reduces to Eq. (9)

as ∆M → 0, where µ(s0) = −p′(s0)/u
′
e(s0). Also compare this discussion for consistency with that

below Eq. (19).
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4.2 A resultant car-following model

Let ∆M = 1, then Eq. (20) implies that the mass between two adjacent particles is unit. In this

case, the semi-discrete model is directly related to traffic flow in that all particles can be viewed as

cars and Eq. (20) actually implies that there is just one car between the heads of two adjacent cars.

Actually, the system of (18) and (19) reduces to a car-following model as follows:

dxm(t)

dt
= um(t), (23)

d

dt
[um(t) + p(xm+1(t)− xm(t))] =

1

τ
[ue(xm+1(t)− xm(t))− um(t)], (24)

which is exactly the same as that discussed in [8]. Moreover, the specific volume sm = xm+1(t)−xm(t)

turns out to be the headway, and an approximation of Eq. (20) retrieves the relation:

sm =
1

ρ
, (25)

which is well-known in the literature.

4.3 Comparison between numerical and analytical solutions

The foregoing discussion suggests a substantial relation between the semi-discrete model (Eqs. (18)-

(19)) and the continuum model (Eqs. (5) and (10)). Recall the discussions below Eqs. (19) and

(22) for consistency. The semi-discrete model should similarly suggest a solution for wide moving

jams. Moreover, the characteristic parameters of this solution should converge to those that are

analytically derived in Section 3.2, which is based on the continuum model. In the following, we

indicate this convergence through proper calibration of the model parameters.

By setting ∆M = 1 and s(x, t) (or ρ(x, t)) to be constant in Eq. (20), we have s(x, t) =

xm+1(t) − xm(t). In this case, particle M represents a car in traffic labeled by the integer m;

s(x, t) is actually the headway (see Eqs. (23)-(25)), which cannot be smaller than the car length

l. Therefore, l is taken as a characteristic parameter in general such that s ≥ l, or ρ ≤ ρjam,

where ρjam ≡ l−1 denotes the maximal density. Referring to [8] and [13], we respectively define the

fundamental diagram and the “pressure” as follows:

ue(s) = uf
tanh(s/l − r) + tanh(r − 1)

1 + tanh(r − 1)
, p(s) = αuf (l/s)

γ ,

where uf = 30m/s, r = 3, l = 4.5m, α = 2.5, and γ = 0.5. By these parameters and Eq. (9),

the critical specific volumes are determined as sc1 = 10.7170m, and sc2 = 18.7949m. Moreover, the

initial conditions of the semi-discrete model and the continuum model are related through

∆M =

∫ xm+1(0)

xm(0)
ρ(x, 0)dx, um(0) = u(xm(0), 0), (26)
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where ρ(x, 0) = (s(x, 0))−1 (see also Eq. (20)). Given ∆M and defined by x1(0) = 0, the initial

positions xm(0) of all particles can be (numerically) determined by the first equation in (26), and

thus all um(0) are determined by the second equation.

For numerical simulation of the semi-discrete model, we take a ring road [0, L] such that the

position of xm(t) (for t ̸= 0) is reset as xm(t)−L if xm(t) > L. Initially, the total number of particles

in the ring is identified as n, if xn(0) ≤ L and xn+1(0) > L. This usually gives rise to a small error,

but this vanishes as ∆M → 0. For the transformation of (26), the initial conditions are given by

ρ(x, 0) = ρ0 + δρ0sin(
2πx

L
), u(x, 0) = 10.5m/s,

which suggests a global perturbation to the equilibrium solution (s0, ue(s0)) (s0 = ρ−1
0 ). Here, ρ0

can be easily indicated as the integral average in the ring.

To derive the profile of a wide moving jam that is well approximated by the description in Section

3.2, s0 should be close to the middle of the unstable interval (sc1 , sc2), and we set s0 = 13.5m for the

simulation. Here, the physics is simply that, with a sufficiently large amount of mass in the ring, the

perturbed unstable equilibrium state (s0, ue(s0)) would inevitably evolve into a stable wide moving

jam. We note that the moving jam will become narrower if s0 increases, and that one would more

likely derive an “anti moving jam” that is comparable to an anti-cluster discussed in Kerner [3] if

s0 decreases. Moreover, the length of the “anti moving jam” decreases with the decrease in s0. See

also discussions in [7, 11–13].

Table 1 Comparison between the numerical solution of the semi-discrete model and the analytical solution

of the continuum model. With the refinement of ∆M , the characteristic parameters in the former solution

converge to those solved from Eqs. (12), (14), (15) and (16), which correspond to ∆M = 0.

∆M sB sA error in sA convergence order in sA

1 6.7056 21.6064 0.9536

1/3 6.5832 22.1982 0.3618 0.8822

1/9 6.5554 22.4495 0.1105 1.0796

1/27 6.5496 22.5150 0.0450 0.8177

1/81 6.5474 22.5469 0.0131 1.1233

0 6.5465 22.5600

We simply adopt the first-order Euler forward difference scheme for the time discretization of

system (18)-(19). With refinement of the increment ∆M , the characteristic parameters (the minimal

and maximal specific volumes sB and sA) are shown in Table 1, which approximately suggests a first

order convergence to those derived by solving the algebraic equations of (12), (14), (15) and (16).
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This agrees with a truncation error of O(∆M) between Eqs. (10) and (19), which can be easily

observed through a Taylor expansion in Eq. (19).

The profiles and phase plots of the numerical solutions for ∆M = 1 and ∆M = 1/81 are shown

in Fig. 3. Compare Fig. 3 with Figs. 1 and 2. The profile of the numerical solution (Fig. 3(a) versus

Fig. 2(b)) clearly includes a transition layer and a shock, which respectively constitute the upstream

and downstream fronts of the wide moving jam. Moreover, the phase plot of the numerical solution

(Fig. 3(b) versus Fig. 1(a)) is almost a straight line, which suggests that the solution is very close to

a travel wave. We note that the fold lines in Fig. 3(b) represent a smoothed shock path due to the

numerical viscosity. Combined with Table 1, Fig. 3 visualizes the comparison between the solutions

of the continuum model (represented by ∆M = 1/81) and the corresponding car-following model

(represented by ∆M = 1). This also shows that the analytical solution of the former model is an

adequate approximation of the latter.
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Fig. 3. Solution of a wide moving jam developed from a perturbed unstable equilibrium state, by solving the

semi-discrete model with ∆M = 1 (blue and starred) and ∆M = 1/81 (red and dotted). (a) the solution profile

((m− 1)∆M,∆xm/∆M), where ∆xm = xm+1 − xm, and m = 1, . . . , n; (b) The phase plot (∆xm/∆M,um) compared

with the fundamental diagram u = ue(s).

5 Conclusions

The basic concept of the Lagrange coordinates is exploited to establish the relationship between the

continuum model and the semi-discrete model. This provides a platform to study the characteristic

features of wide moving jams in both models, which is very important for the further development

of Kerner’s three-phase traffic theory.

The consistency between the two models more generally suggests that the theories for these two

types of models could be developed in parallel. On the one hand, the shortcomings of the existing

(semi-discrete) car-following models could be overcome by establishing similar correlations and then

by adopting the theoretical results (e.g., those in [8, 9, 12, 12, 13, 22]) generated in the study of the

12



continuum model. On the other hand, theoretical findings or simulations that significantly reflect

the characteristic features of real traffic in existing car following models could be incorporated into

the continuum models for development through the correlation.
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