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Abstract: This paper simulates the pedestrian counter flow by adopting an optimal path-choice strategy

and a recently observed speed-density relationship. Although the whole system is symmetric, the simula-

tion demonstrates the segregation and formation of many walking lanes for two groups of pedestrians. The

symmetry breaking is most likely triggered by small numerical viscosity or “noise”, and the segregation is

associated with the minimization of travel time. The underlying physics can be compared with the “optimal

self-organization” mechanism in Helbing’s social force model, by which driven entities in an open system tend

to minimize their interaction to enable them to reach some ordering state.

PACS: 89.40.-a, 89.40.Bb, 02.60.Cb

The phenomenon of lane formation in pedestrian flows has been frequently observed through di-
rect observation or controlled experiments. Helbing et al. [4] presented photographs which showed
that pedestrians could form uniform walking lanes at sufficiently high densities. Theoretically, the
phenomenon was explained through an optimal self-organization mechanism [3, 6], namely, a pedes-
trian crowd constitutes an open system of driven entities that tends to minimize interaction and
dissipation and thus reach an optimal state. This differs from a closed system, which is governed by
the second law of thermodynamics and thus the entropy (or disorder) increases continuously.

In the literature, few models are found to reproduce the lane formation phenomenon even though
many models (e.g, in [8]) have been proposed to deal with pedestrian counter flow. The social force
model [5] is typical among these. Although this model looks completely symmetric with respect to
the right and left-hand sides, it could well simulate the phenomenon [3, 4, 6]. This was explained as
a symmetry-breaking phenomenon through a noise-induction effect [3, 6]. We comment that, with
small “noise”, which could be due to small numerical viscosity or errors in the computational scheme,
the shear stress has a crucial effect, such that two pedestrians walking in opposite directions will
turn aside (uniformly left or right) before making physical contact. Without numerical viscosity, as
that in a lattice gas or cellular automata model, the “noise” could also be due to the randomicity in
a symmetric lattice gas or cellular automata model, which helps destroy the symmetry of the system
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and thus reproduce the phenomenon [1]. This differs from some introduced turn-aside effect in the
model (e.g., see [10, 11]).

In this connection, the present paper adopts a macroscopic approach to reproduce the lane for-
mation phenomenon in pedestrian counter flow. Although the macroscopic approach is much more
computationally efficient than the microscopic many-particle and cellular automata models, it is at
a disadvantage in providing a detailed description of the complexity of pedestrian behavior and psy-
chology. Nevertheless, the physics for self-organization in our approach can be compared with that in
the social force model: it is symmetric, under an optimal principle, and with noise-induction through
the small numerical viscosity in the computational scheme, even though there are no apparent links
between the two types of formulations.

We consider two groups of pedestrians a and b who have different destinations or exits in a walking
facility Ω. The formulation includes three major components: (i) a recently proposed speed-density
relationship, which symmetrically takes into account the crossing effect (angle) between the two
pedestrian groups [14]; (ii) determination of the directions of motion of the two pedestrian groups at
the crossing (x, y, t), which is based on the aforementioned speed-density relationship; and (iii) the
mass conservations of the two pedestrian groups.

Let the density ρ(x, y, t) = {ρa(x, y, t), ρb(x, y, t)} (in ped/m2), and let ψ(x, y, t) ∈ [0, π] be the
intersecting angle between the two pedestrian streams at the crossing (x, y) ∈ Ω at time t. Then,
the speed of the pedestrian stream c is assumed to be [14]

vc(ρ, ψ) = vf exp(−α(ρa + ρb)2) exp(−β(1− cos(ψ))(ρc)2), (1)

where vf is the free-flow speed, α and β are two positive parameters. Obviously, vc → vf , for
ρa + ρb → 0, which implies ρc → 0; vc is very close to zero for ρa + ρb being sufficiently large.
If ψ = 0, the two streams are actually the same and formula (1) reduces to that in [2]. Because
cosψ = cos(−ψ), formula (1) is symmetric such that cosψ together with vc(ρ, ψ) would remain
unchanged if the two groups took an opposite direction of motion. For counter flow in a symmetric
facility, this means that the resulting system would be symmetric to the original system with respect
to the symmetric line of the walking facility, if the origins and destinations of the groups a and b
were exchanged. In this case, the new and original systems could be identical through a symmetric
transformation.

We also easily see the following properties: (i) va(ρ, ψ) ̸= vb(ρ, ψ), for ψ ̸= 0, unless ρa = ρb;
and (ii) va(ρ, ψ) = vb(ρ, ψ), if β = 0. By property (i), we note that formula (1) becomes symmetric
provided that ρa = ρb. By property (ii), however, the formula (with β = 0) would unreasonably
suggest that va = vb even though ρa ̸= ρb. According to formula (1), we define the cost distribution
of group c:

τ c(x, y, t) = τ(vc(ρ, ψ)) = 1/vc(ρ, ψ). (2)

Suppose that a pedestrian expects a steady flow state, which suggests that ρ and ψ (and thus τ c) are
independent of time t. Then, the cost of a pedestrian in a sufficiently small distance ds is expected
to be the travel time τ c(x, y, t)ds = ds/vc(ρ(x, y, t), ψ(x, y, t)), and the total travel time along a
trajectory l is expected to be∫

l
τ c(x, y, t)ds =

∫
l
τ c(x, y, t)

√
dx2 + dy2 ≥

∫
l
τ c(x, y, t) cos θdx+ τ c(x, y, t) sin θdy, (3)

where θ(x, y, t) is an arbitrarily given angle, and l starts from the current position P0 to the destina-
tion P c

d ∈ Γc
d. Assume that the pedestrian should minimize the expected total travel time. This can

be realized if and only if, (i) the integral on the right-hand side in Eq. (3) is constant; and (ii) there
exists a path l = l0, by which the equality between the two integrals is achieved. The requirement of
(i) implies that the integral is independent of the path l, which is ensured if and only if there exists a
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function ϕc(x, y, t), such that τ c cos θ = −ϕcx, and τ c sin θ = −ϕcy. This leads to the following Eikonal
equation: √

(ϕcx(x, y, t))
2 + (ϕcy(x, y, t))

2 = τ c(x, y, t). (4)

The required equality of (ii) is achieved if and only if dx = ds cos θ, and dy = ds sin θ. This means
that, given that ϕc can be properly solved by Eq. (4) for fixed t, the direction (dx/ds, dy/ds) of the
path l = l0 is chosen as

ec(x, y, t) := −∇ϕc(x, y, t)/τ c(x, y, t), (5)

where ∇ϕc = (ϕcx, ϕ
c
y) is the gradient of the function ϕc. In this case, by setting ϕc(P c

d , t) ≡ 0, the
expected minimal total travel time in Eq. (3) turns out to be ϕc(P0, t) ≡ ϕc(x, y, t), which is also
called the cost potential in an arbitrarily given location P0(x, y); the motion direction of a pedestrian
at P0 is also determined by Eq. (5), along which the potential ϕc decreases at the fastest speed.
Moreover, this helps to determine

cosψ(x, y, t) = ea(x, y, t) · eb(x, y, t). (6)

See also the discussion in [7, 9], which resulted in the same formulas.

Given the velocity vc(x, y, t) = vc(x, y, t)ec(x, y, t), the mass conservations of the two pedestrian
streams are easily written as

ρct(x, y, t) +∇ · Fc(x, y, t) = 0, (7)

where the flow Fc(x, y, t) = ρc(x, y, t)vc(ρ(x, y, t), ψ(x, y, t))ec(x, y, t). We assume the initial-boundary
conditions: ρc(x, y, 0) = ρc0(x, y), for (x, y) ∈ Ω, ϕc(x, y, t) = 0, for (x, y) ∈ Γc

d, F
c(x, y, t) · n(x, y) =

qc(x, y, t), for (x, y) ∈ Γc
o, and Fc(x, y, t) ·n(x, y) = 0, for (x, y) ∈ Γw. Here, Γc

o and Γc
d are the origin

and destination, Γw is the wall boundary, and n(x, y) is the unit vector pointing to Ω and vertical
to Γc

o or Γw.

Equations (1)-(2), and (4)-(7) constitute a complete system. For a grid division (xi, yj , t
n) in

Ω× [0, T ], we start from {ρni,j} to derive {ρn+1
i,j } by the following steps: (i) compute τ c(xi, yj , t

n) by
Eqs.(1)-(2), and (5)-(6); (ii) solve Eq.(4) through the first-order fast sweeping method [16] to derive
ϕc(xi, yj , t

n) and thus determine ec(xi, yj , t
n) by Eq. (5); and (iii) solve Eq.(7) through the third-

order WENO (weighted essentially non-oscillation) scheme and the third-order TVD (total variation
diminishing) Runge-Kutta time discretization [13] to derive ρn+1

i,j . See also [9, 15] for further relevant
discussion.

We now consider the pedestrian counter flow on a 100m × 50m platform, which is symmetric to
x = 50m and y = 25m, and is divided into small grids of the size 0.4m× 0.4m. The top and bottom
borders are walls, and the left and right borders are open. At t = 0, the domain is empty with
ρc0(x, y) = 0 for (x, y) ∈ Ω, and thus the direction of motion ec(x, y, 0) is preliminarily set to point
to the destination Γc

d. Then, pedestrian groups a and b begin to walk onto the platform from the
left and right borders towards the right and left borders, respectively. The flow rate qc = tqc/30, for
t ≤ 30, and qc = qc, for t > 30. We take vf = 1.034m/s and α = 0.075 in all test examples.

By setting qa = qb (= 0.4ped/m/s), the system is obviously symmetric to the centerline x = 50m
(see also discussions below Eq. (1)), by which one should expect a complete confrontation between
the two streams of pedestrians and thus a complete block at the centerline. However, this symmetric
solution to our macroscopic model is singular, hence unstable and cannot be obtained from any
numerical scheme containing small numerical viscosity. In our simulation, we clearly observe the
turn-aside behavior and merging after the encounter (Fig. 1(a)), as if the simulated pedestrians (as
particles) were truly smart. The turning aside behavior is not influenced by a specific walking habit
in that some pedestrians turn left and others in the same group turn right to avoid collision with
pedestrians of the other group. As a consequence, the two pedestrian streams automatically form
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multiple walking lanes (Figs. 1(b) and (c)). The simulation displays typical symmetry breaking and
self-organization phenomena.

There seems to have a grid convergence for the lane patterns when we refine the grid sufficiently.
While the numerical discretization would generate fewer and wider lanes with very coarse meshes
(not shown here to save space), when the refinement comes to a suitable grid size 0.4m×0.4m which
is comparable to that in the cellular automation for pedestrian flow [1], the number of lanes becomes
stable and does not change with further mesh refinement (compare Figs. 1(c) and 2(a)). Since the
mesh refinement suggests a process for the numerical viscosity to approach to zero, the convergence
implies high level sensitivity of the symmetry to break for numerical viscosity. We remark that the
symmetry breaking is inherent in the studied system, for which the underlying physics is analogous
to that in the social force model [3, 5, 6]), and that similar grid convergence for symmetric breaking
solutions is common in computational fluid dynamics (e.g. [12]).

The segregation of lanes is associated with the path-choice strategy (Eqs.(1)-(4)). Since each
pedestrian expects an optimal path, the two groups as interacting entities have to coordinate with
each other to reach an optimal system, which is referred to as the “optimal self-organization” [3].
As a consequence, the travel time of each pedestrian is minimized and the whole system reaches the
expected steady flow state (Figs. 1(c), 2(a) and 2(b)). The numerical experiment also indicates that
the second exponential term of Eq.(1) plays a key role in the process of lane formation. The number
of lanes (and thus the conflicting interaction between the two groups of pedestrians) increases as
β decreases (compare Figs. 1(c) and 2(b)). The formation of lanes takes longer when β is getting
smaller, which is not expected to reach when β=0. We conclude that a larger value of β suggests
a higher level instability of the symmetric system, or a higher level sensitivity of the symmetry to
break for a certain “noise” or numerical viscosity.
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(a) t = 60 s

(b) t = 120 s

(c) t = 1800 s

Figure 1: Density plots for β = 0.019 and q1 = q2 = 0.4 with the mesh size: 250× 125.
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(a) t = 1800 s, β = 0.019, flow level: (0.4, 0.4). Mesh size: 500× 250.

(b) t = 1800 s, β = 0.009, flow level: (0.4, 0.4). Mesh size: 250× 125.

Figure 2: Density plots for (a) different mesh size; (b) different β, which are compared with Fig. 1.
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