
Title Conservation form of Helbing's fluid dynamic traffic flow model

Author(s) Li, SF; Zhang, P; Wong, SC

Citation Applied Mathematics And Mechanics (English Edition), 2011, v.
32 n. 9, p. 1109-1118

Issued Date 2011

URL http://hdl.handle.net/10722/150598

Rights The original publication is available at www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37971586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Conservation Form of Helbing’s Fluid Dynamic Traffic Flow Model ∗

Shu-feng Li(李书峰)1,3, Peng Zhang(张鹏)1,3, S.C. Wong(黄仕进)2

(1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University,

Shanghai, 200072, P.R. China)

(2. Department of Civil Engineering, The University of Hong Kong, Pokfulam Road,

Hong Kong SAR, P.R. China)

(3. Shanghai Key Laboratory of Mechanics in Energy Engineering)

Abstract A standard conservation form is derived in this paper. The hyperbolicity of
Helbing’s fluid dynamic traffic flow model is proved, which is essential to the general
analytical and numerical study of this model. On the basis of this conservation form, a
local discontinuous Galerkin scheme is designed to solve the resulting system efficiently.
The evolution of an unstable equilibrium traffic state leading to a stable stop-and-go trav-
eling wave is simulated. This simulation also verifies that the model is truly improved by
the introduction of the modified diffusion coefficients, and thus helps to protect vehicles
from collisions and avoide the appearance of the extremely large density.

Keywords. conservation form; hyperbolicity; local discontinuous Galerkin method; stop-
and-go wave.

1 Introduction

The fluid dynamic traffic flow model was first proposed independently by Lighthill and
Whitham [1] and Richards [2], and has thus become known in the literature as the LWR model.
In the theory underpinning the LWR model, traffic flow is viewed as a continuum that satisfies
the following mass conservation.

∂ρ

∂t
+

∂ρV

∂x
= 0, (1)

where ρ(x, t) is the density, and V (x, t) is the average velocity. To complete the equation, the
LWR model also assumes an equilibrium velocity-density relationship, V = Ve(ρ), which simply
suggests a fixed curve in the velocity-density (or flow-density) phase plane. However, in many
situations, this does not conform to the empirical data.

Hence, to improve the LWR model, many subsequent researchers have taken the traffic
acceleration into account, and most of their formulations generally take the following form.

∂V

∂t
+ V

∂V

∂x
=

Ve(ρ)− V

τ
− 1

ρ

∂P

∂x
, (2)

where the first and second terms on the right-hand side are called relaxation and anticipation,
respectively, with relaxation time τ and pressure P . The first term conveys a simple message:
a vehicle accelerates if its current speed, V , is less than the equilibrium speed, Ve(ρ); otherwise,
it decelerates. Because the pressure, P = P (ρ), is assumed to be an increasing function, with
P ′(ρ) > 0, the vehicle accelerates if the density in the downstream is decreasing with ρx < 0;
otherwise, it decelerates. Hence, whether the vehicle accelerates or decelerates depends on
interaction between relaxation and pressure.
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In the higher-order model first proposed by Payne [3] and Whitham [4] (the PW model),
pressure P = c20ρ, where the constant c0 > 0 is the sonic speed. Kerner and Konhäuser [5]
(KK) suggested that the pressure P = c20ρ − η0Vx, where the constant η0 > 0 is the diffusion
coefficient. Moreover, they significantly improved the PW model by adopting a non-convex
fundamental diagram that is defined as the function Qe(ρ) ≡ ρVe(ρ). Through the relaxation-
pressure interaction, the model is able to reproduce the stop-and-go wave, which is the most
important wave in traffic flow. See references [6–11] for other formulations or studies of the
higher-order traffic flow model.

In an attempt to reduce the complexity of the Boltzmann-like traffic flow models in [12–16]
(see also subsequent studies in [17–20]), and also based on the physics of gas kinetics, Helbing
[21] proposed the following formulation for traffic pressure.

P =
ρΘ

1− ρs(V )
− η0

1− ρs(V )

∂V

∂x
, (3)

where Θ(x, t) is the velocity variance, which is unknown and can be described by an equation
analogous to thermal conduction:

∂Θ

∂t
+ V

∂Θ

∂x
= −2P

ρ

∂V

∂x
− 1

ρ

∂J

∂x
+

2

τ
(Θe(ρ)−Θ), (4)

with

J = − κ0

1− ρs(V )

∂Θ

∂x
. (5)

Here, J describes the flux of velocity variance, Θe(ρ) is the desired or equilibrium state of
velocity invariance, and κ0 > 0 is constant. Similarly to Eq. (2), Eq. (4) includes such effects
as convection, diffusion, and relaxation, and the system of (1), (2), and (4) constitutes a fluid
dynamic model. Helbing [21] preliminarily set s(V ) = 0, by which we call the resulting system
the original model. However, he considered that it was more reasonable to set

s(V ) = l + V∆T, (6)

where l is the average vehicle length, ∆T is (the average of a driver’s) reaction time, and V∆T
therefore denotes a safe distance. Based on Eq. (6), we call the resultant system the improved
model. Helbing’s formulation can also be viewed as an improvement of the KK model, to which
the system is reduced by removing Eqs. (4) and (5) and setting Θ = c20 and s(V ) = 0 in Eq.
(3).

The present paper defines a standard conservation form, and proves the hyperbolicity, of
Helbing’s fluid dynamic traffic flow model. Doing so is essential to validate the model by
demonstrating finite propagation velocities, as is required for a description of traffic flow, and
to ensure a certain definition of the weak solution. Although momentum and energy do not
exist in traffic flow, a certain definition of conservation is mathematically required. Readers
are referred to [8], in which two different conservation forms of the PW model are defined and
shown to generate different solutions with different shock profiles. In this context, we note that,
to date, neither the hyperbolicity nor any conservation form of Helbing’s fluid dynamic model
has yet been attained in the literature (see the discussion in Section 2).

The conservation form is more practical for the design of numerical schemes, as it is based
on the weak solution theory of hyperbolic conservation laws [22]. The proper handling of the
dissipation matrix allows the local discontinuous Galerkin (LDG) method [23–25] to be applied
in solving the system. Although the system includes relaxation, which suggests complex cou-
pling effects with convection and diffusion and for which some nonlinear numerical stabilities
are unnecessarily ensured for the standard LDG method [23,24], the scheme is shown to be effi-
cient in generating stable and convergent solutions for considerably small diffusion coefficients.
These issues are discussed in Section 3, and we conclude the paper in Section 4.
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2 Conservation form and fundamental properties of the model equations

It is convenient to use dimensionless variables with the following scalings.

x → Lx, t → Lt/Vf , ρ → ρjamρ, V → VfV, Ve(ρ) → VfVe(ρ), Θ → Θ0Θ,
Θe(ρ) → Θ0Θe(ρ), η0 → LρjamVfη0, κ0 → LρjamVfκ0, τ → Lτ/Vf ,

where L is the length of the computational interval [0, L], Vf is the free-flow velocity, ρjam
(≡ l−1) is the maximal density, and Θ0 is the maximal velocity variance, which, together with
functions Ve(ρ) and Θe(ρ), are given in Section 2. Moreover, we define c0 =

√
Θ0/Vf and

s0 = ρjamVf∆T . Despite possible changes in their forms, the resultant equations of (1)–(6) are
still referred to in the following operations by the same serial numbers correspondingly.
2.1 Conservation of the system

Equation (1) refers to mass conservation. As is well known in fluid dynamics, the combina-
tion of (1)×V+(2)×ρ leads to

∂(ρV )

∂t
+

∂(ρV 2 + P )

∂x
=

ρ

τ
(Ve(ρ)− V ), (7)

which is similar to the conservation of momentum. However, it seems appropriate to proceed
to the combination of (1)×(V 2 + c20Θ)+(2)×2ρV+(4)×ρ, which yields

∂(ρV 2 + c20ρΘ)

∂t
+

∂(ρV 3 + c20ρVΘ+ 2PV )

∂x
=

2ρV (Ve(ρ)− V )

τ
− ∂J

∂x
+

2c20ρ

τ
(Θe(ρ)−Θ). (8)

Equation (8) is analogous to the conservation of energy. We now substitute Eqs. (3), (5), and
(6) into Eqs. (7) and (8); then, Eqs. (1), (7), and (8) give the following conservative system.

∂ρ

∂t
+

∂(ρV )

∂x
= 0,

∂(ρV )

∂t
+

∂
(
ρV 2 +

c20ρΘ
1−ρs(V )

)
∂x

=
ρ

τ
(Ve(ρ)− V ) +

∂

∂x

(
η0

1− ρs(V )

∂V

∂x

)
,

∂(ρV 2 + c20ρΘ)

∂t
+

∂
(
ρV 3 + c20ρVΘ+

2c20ρVΘ
1−ρs(V )

)
∂x

=
2ρV

τ
(Ve(ρ)− V )

+
2c20ρ

τ
(Θe(ρ)−Θ) +

∂

∂x

(
2η0V

1− ρs(V )

∂V

∂x

)
+

∂

∂x

(
c20κ0

1− ρs(V )

∂Θ

∂x

)
.

(9)

System (9) may be analogous to the Navier-Stokes equations in fluid dynamics, although we
still need to show clearly that the convection component of the system is hyperbolic.
2.2 Hyperbolicity of the system

Denote the conservative variables by u = (u1, u2, u3)
T = (ρ, ρV, ρV 2 + c20ρΘ)T. We rewrite

system (9) in the following vector form.

ut + f(u)x = S(u) + (ϵ(u)ux)x, (10)

with flux vector

f(u) = (f1(u), f2(u), f3(u))
T =

(
u2,

u2
2

u1
+

u1u3 − u2
2

u1(1− u1 − s0u2)
,
u2u3

u1
+

2(u1u2u3 − u3
2)

u2
1(1− u1 − s0u2)

)T

,

source vector

S(u) =

(
0,

u1Ve(u1)− u2

τ
,
2[u2Ve(u1) + c20u1Θe(u1)− u3]

τ

)T

,
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and diffusion matrix

ϵ(u) =

 0 0 0
−η0u2

u2
1(1−u1−s0u2)

η0

u1(1−u1−s0u2)
0

−κ0u1u3+2(κ0−η0)u
2
2

u3
1(1−u1−s0u2)

2(η0−κ0)u2

u2
1(1−u1−s0u2)

κ0

u1(1−u1−s0u2)

 ,

which is standard when referring to the hyperbolic conservation law with diffusion [22].
Solving the eigenpolynomial |∂f(u)/∂u− λI| = 0, where ∂f(u)/∂u is the Jacobian of f(u),

and I is the unit matrix, we derive the following eigenvalues.
λ1(ρ, V,Θ) = V +

s0c
2
0ρΘ−

√
(s0c20ρΘ)2+12c20Θ(1−ρs(V ))2

2(1−ρs(V ))2 ,

λ2(ρ, V,Θ) = V,

λ3(ρ, V,Θ) = V +
s0c

2
0ρΘ+

√
(s0c20ρΘ)2+12c20Θ(1−ρs(V ))2

2(1−ρs(V ))2 .

Because {λi}3i=1 are distinct, λ1 < λ2 < λ3, system (9) is strictly hyperbolic.

3 Numerical implementation

Only on the basis of the standard conservation form of (10) can appropriate numerical
schemes be designed to resolve weak solutions of the model. With proper handling of the diffu-
sion term, the LDG method is a good choice for achieving stable and convergent solutions that
are physically relevant. The insight here is that diffusion should be incorporated into convec-
tion, such that the system appears to incorporate standard conservation laws, and convection
and diffusion can be sufficiently well-balanced to achieve upwind effects. See references [23–25]
for a more detailed discussion.

We also incorporate the relaxation source term into convection in the model discussed here,
which may help to coordinate the interaction between all of the terms involved in a similar
fashion.
3.1 Numerical scheme for the system

We introduce two new vectors: q = ux and p =
∫ x

0
S(u(ξ, t))dξ. Thus, system (10) can be

rewritten as {
ut + F(u,q,p)x = 0,
q− ux = 0,

(11)

where

F(u,q,p) = f(u)− p− ϵ(u)q.

Given initial conditions u(x, 0) = u0(x), and applying proper boundary conditions, the
numerical solution uh(x, t) of system (11) can be derived through the LDG method. The
procedure can be summarized as follows.

1. For cell division Ij = [xj−1/2, xj+1/2] of computational interval [0, L] (or [0, 1] by scaling),
approximate u(x, t) on Ij by uh(x, t) ∈ u(Ij), where u(Ij) represents a polynomial space
of, at most, degree k on Ij .

2. Proceed to obtain the weak formation of (11) (and initial conditions u(x, 0) = u0(x))
on Ij , which gives a semi-discrete scheme that can be denoted by the following ordinary
differential equations (ODEs).

duh

dt
= L(uh), x ∈ Ij ; (12)

3. Apply TVD Runge-Kutta time discretization to solve the ODEs of (12).
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We note that the cell boundary values of F(u(xj+1/2, t), q(xj+1/2, t), p(xj+1/2, t)), and

u(xj+1/2, t) in Step 2 are approximated by numerical fluxes F̂ and û. For the model under
discussion here, these numerical flux functions are given by

F̂(u−,u+;q−,q+;p) = f̂(u−,u+)− ϵ(u−)q− + ϵ(u+)q+

2
− p,

û(u−,u+) =
u− + u+

2
,

and f̂(u−,u+) is taken to be the Lax-Friedrichs numerical flux:

f̂(u−,u+) =
1

2
[f(u−) + f(u+)− α(u+ − u−)], α = max

u
max

i∈{1,2,3}
|λi(u)|.

Here, superscripts “−” and “+” denote the discontinuous values of the vectors on the left- and
right-hand sides, respectively, of cell boundary x = xj+1/2. Moreover, a slope limiter is applied
to uh for each iteration in Step 3. We choose k = 1 in Steps 1 and 2, and apply third-order
accurate time discretization in Step 3.
3.2 Numerical simulation

The parameters are given as

τ = 0.5min, η0 = 600km/h, κ0 = 600km/h, l = 5m, ∆T = 0.75s, L = 10km.

Functions Ve(ρ) and Θe(ρ) in Eqs. (2)-(5) are given by

Ve(ρ) = Vf

{[
1 + exp

(
ρ/ρjam − 0.25

0.06

)]−1

− 3.72× 10−6

}
,

Θe(ρ) = Θ0

{[
1 + exp

(
ρ/ρjam − 0.25

0.06

)]−1

− 3.72× 10−6

}
,

with Vf = 120km/h, ρjam = 200/km, and Θ0 = (45km/h)2. We apply the periodic boundary
conditions and assume the following initial conditions.

ρ(x, 0) = 0.3ρjam,

V (x, 0) = Ve(ρ(x, 0))(1 + 0.01 sin(2πx/L)),

Θ(x, 0) = Θe(ρ(x, 0)).

(13)

All of these settings are the same as those in Helbing [21].
The initial values of (13) obviously suggest an equilibrium solution to the model if the term

0.01 sin(2πx/L) is removed. In other words, this term serves as a small perturbation to the
equilibrium solution. Because linear stability analysis of both the original and improved models
shows the equilibrium solution to be unstable [21], traffic flow is expected to be far from the
equilibrium state. Figure 1 shows the evolution of density for t ≤ 1h. Figure 2 shows that traffic
flow eventually evolves into a stable profile that closely resemble the traveling wave known as
the stop-and-go wave in the literature.

Comparison of these figures indicate that the improved model has a smaller maximal density
and smoother profile than the original model. This is due to the difference between the diffusion
coefficients in the conservation form of (9), which physics requires to be non-negative to ensure
the stability of the model. This requirement is self-evident for the original model. However, for
the improved model, it implies that

1− ρs(V ) ≥ 0, or ρ ≤ ρjam
1 + V∆Tρjam

,
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Fig. 1 Evolution of traffic flow under the perturbed equilibrium initial state of (13): (a) with s(V ) =
0, which corresponds to the original model; and (b) with s(V ) given by (6), which corresponds
to the improved model.
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Fig. 2 Density profiles indicating a stop-and-go traveling wave, simulated by (a) the original model
and (b) the improved model.

which sets an upper bound that is smaller than ρjam. By the inequality, it is also obvious that
the earlier a driver reacts to a change in the traffic flow ahead, the smaller the upper bound. In
this regard, the model is truly improved, as it avoids the appearance of extremely large density
and traffic collisions.

Figure 1(b) exhibits almost the same solution profile as that given by Helbing [21], who
adopted the same parameters, but based his model on the nonconservative system and applied
the classical Lax-Wendroff (LW) scheme. We believe the coincidence to be due to the large
coefficients η0 = κ0 = 600km/h, which represent the speed of the diffusions. It is well known
that a large diffusion helps to improve numerical stability of classical methods such as the
LW scheme. Moreover, large diffusion suggests a rather smooth solution profile, which greatly
reduces the difference between the numerical solutions generated by the nonconservative and
conservative systems. It is also well known that as the diffusion (η0 and κ0) decreases, a classical
finite difference scheme such as the LW scheme will generate non-physical oscillations or lose
its stability completely.

We note that η0 and κ0 are theoretical parameters, which should allow an extensive choice of
values for comparison with the observed data. The numerical scheme should thus accommodate
the variability of η0 and κ0, particularly for smaller values. The LDG scheme ensures some
nonlinear (e.g., L1 and TV) stabilities for standard convection-diffusion systems with sufficiently
small diffusion coefficients [23,24]. However, similar stabilities are not theoretically guaranteed
for the system under discussion here, which also includes relaxation source terms.
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Fig. 3 Density profiles at t = 3h, with smaller diffusion coefficients η0 = κ0 and simulated by (a) the
original model and (b) the improved model.

By setting the other parameters to be the same as those in Figures 1 and 2, we obtain the
numerical results for the three smaller η0 = κ0, as shown in Figure 3. For both the original
and improved models, as the diffusion decreases, we see a reasonable increase in the maximal
density. At the same time, the downstream front of the stop-and-go wave becomes steeper, and
is very close to a shock for the improved model, whereas the smoothness of this front changes
little for the original model.

Being sensitive to diffusion and moving backward, this front (particularly for the improved
model) is associated primarily with the λ1-characteristic field, of which the sonic speed, c1 ≡
V − λ1, is an increasing function of s(V ). We note that a larger sonic speed implies stronger
nonlinearity. Therefore, this characteristic field suggests stronger nonlinearity for the improved
model (with s(V ) > 0) than for the original model (with s(V ) = 0), which explains the difference
in the changes for the downstream front in Figure 3(a) and (b).

The choice of η0 = κ0 = 10km/h was made because it is sufficiently small for comparison
with the observed data. However, if we set η0 = κ0 = 5km/h or even smaller to test for
numerical stability, then we derive distorted or unstable solution profiles. A suggested improve-
ment is to include an “upwind” limiter that can also incorporate relaxation into convection and
diffusion, and it should be based on the system of (11).

4 Conclusion

We derive the standard conservation form, and prove the hyperbolicity, of Helbing’s dynamic
traffic flow model. We show that with the proper handling of the diffusion and relaxation terms,
a LDG scheme can be designed to solve the model. The numerical simulation reproduces the
stop-and-go wave that evolves from the unstable equilibrium traffic state. In comparison with
the original model, simulation of the improved model generates a smoother profile and a smaller
maximal density for the stop-and-go traveling wave. From the diffusion coefficients, we conclude
that the improved model suggests a smaller upper bound of density, which also implies that the
formulation is collision-free. Drawing on the conservation form and the scheme designed herein,
additional properties of the model may be discovered in future research.

The LDG scheme applied here ensures stable numerical solutions to the model for very small
diffusion coefficients. However, the scheme could be further improved by allowing a sufficiently
small degree of diffusion.
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