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High order computational scheme for a dynamic continuum
model for bi-directional pedestrian flows

Tao Xiong!, Mengping Zhang?, Chi-Wang Shu?, S.C. Wong* and Peng Zhang®

Abstract

In this paper, we present a high-order weighted essentially non-oscillatory (WENO) scheme,
coupled with a high-order fast sweeping method, for solving a dynamic continuum model for bi-
directional pedestrian flows. We first review the dynamic continuum model for bi-directional pedes-
trian flows. This model is composed of a coupled system of a conservation law and an Eikonal
equation. Then we present the first-order Lax-Friedrichs difference scheme with first order Euler
forward time discretization, the third order WENO scheme with third order total variation dimin-
ishing (TVD) Runge-Kutta time discretization, and the fast sweeping method, and demonstrate how
to apply them to the model under study. We present a comparison of the numerical results of the
model from the first order and high-order methods, and conclude that the high-order methods are
more efficient than the first order one, and they both converge to the same solution of the physical
model.

keywords: dynamic continuum model, bi-directional flow, conservation law, Eikonal equation,
WENO method, fast sweeping method.

1 Introduction

The continuum model for steady-state user equilibrium problems, with route choice behavior considered,
has been developed [3, 25] which has a wide range of applications to, for example, the multi-commodity
cost-flow relationship [24, 28], market share determination [27], elastic market externalities [31], the
cordon-based congestion pricing problem [6], the combined multi-class, distribution and assignment
model [5], the combined discrete and continuum model [23], and the housing problem [4]. For the dy-
namic macroscopic modeling of pedestrian flow problems, Hughes [12] provided a systematic framework
without explicitly considering the user equilibrium concept and without providing a numerical solution
procedure. To address this issue, a predictive user equilibrium model has been developed for describing
the dynamic route choice behavior of pedestrians in which pedestrians were assumed to have perfect
information to make their route choice decisions over time [7, 8, 9]. In contrast to the predictive user
equilibrium model, the reactive dynamic user equilibrium model [1] describes the movement of pedes-
trians who do not have predictive information when they are changing their route and pedestrians have
to rely on the instantaneous information available to them and make their choices in a reactive manner
to minimize the walking cost to their destination. See [21] for the difference between predictive and
reactive dynamic user equilibrium principles.

In [10], a pedestrian flow model based on the reactive dynamic user equilibrium principle is de-
veloped, where pedestrian density is governed by the scalar two-dimensional conservation law and the
flow flux is implicitly dependent on the speed through an Eikonal equation. The weighted essentially
non-oscillatory (WENQO) scheme for the conservation law coupled with the fast sweeping method for
the Eikonal equation on rectangular meshes has been designed to solve that model. In [29], another
efficient method, the discontinuous Galerkin (DG) method for the conservation law coupled with the fast
sweeping method for the Eikonal equation, which works nicely on triangular meshes, has been developed
for the model.
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The investigation of the flux or density distribution and the impact factor of the speed effect and
path choices between two interactive streams of pedestrians, i.e., bi-directional pedestrian flows, has
been performed in [11, 15]. The model for bi-directional pedestrian flows consists of a two-dimensional
(2D) scalar hyperbolic conservation law equation coupled with an Eikonal equation for each group, which
is extended from a single pedestrian type reactive dynamic user equilibrium model [10]. In [11], the
model for two pedestrian flows walking in opposite directions in a continuous walking facility has been
developed and the look-ahead behavior in the model induces a viscosity effect on movement patterns,
hence the source term in the Eikonal equation is dependent on the solution of the equation and cannot
be seen as known input. The first order finite difference scheme for the conservation law coupled with
the pseudo time-marching approach for the Eikonal equation on rectangular meshes has been designed
to solve the model. In [15], two pedestrian flows walking in crossing paths have been considered but
without the look-ahead behavior, hence the source term in the Eikonal equation is only dependent on
the position and time, and supplied as a known input. The finite volume method for the conservation
law coupled with the fast marching method for the Eikonal equation on triangular meshes has been
designed to solve the model. We remark that both of these works used only low order methods.

In this paper, we design a high-order computational scheme for the model in [15], that is the third
order weighted essentially non-oscillatory (WENO) scheme for the conservation law with third order
total variation diminishing (TVD) time discretization, coupled with the third order fast sweeping method
for the Eikonal equation on rectangular meshes. We remark that for each component of the current
model (conservation law, Eikonal equation), many algorithms (e.g. [22, 17, 13]) have been developed
with different advantages and limitations. It is not the purpose of this paper to perform a comprehensive
comparison of all existing methods. Rather, we concentrate on a specific combination of third order
methods for different components of the model and study its accuracy and efficiency in relation to
the first order solver. For a high order method with complicated boundaries, appropriate numerical
boundary settings seems to be very important. It is also necessary to pay special attention to the fast
sweeping procedure in order to ensure its convergence and non-oscillatory property. We will compare the
results of the high order scheme with a first order Lax-Friedrichs difference scheme for the conservation
law coupled with a first order fast sweeping method for the Eikonal equation on rectangular meshes, and
demonstrate that with convergent solutions, the high-order scheme are more efficient than the low-order
one. We remark that high order accurate numerical methods can often save both computational time
and memory in achieving comparable precision than lower order methods. This is especially the case for
problems containing complex solutions. We have included a numerical example with a simplified setup
and known exact solutions, to verify the advantage of using the higher order scheme to reach higher
precision with less CPU time.

The rest of the paper is organized as follows. In Section 2, the model formulation of bi-directional
pedestrian flows is described. The computational schemes for solving these models are given in Section
3. Numerical examples are given in Section 4, including one with a simplified setup and with known
exact solutions to demonstrate the convergence and efficiency of the high order schemes. Section 5 gives
concluding remarks.

2 Model Formulation

We use the following nomenclature:

(1) Q represents a 2D continuous walking facility (in m?).

(2) Group c represents the c-th type of pedestrians marching toward the c-th destination of the walking
facility.

(3) T' is the boundary of  (in m), I'S the original segment from which Group c enters into the walking
facility (in m), I’ the destination segment from which Group ¢ leaves the walking facility (in m), and
I'? the wall segment from which nobody in Group c¢ is allowed to enter or leave the walking facility (in
(4) T is the time horizon (in s).

(5) ¢°(x,y,t) expresses the number of pedestrians who cross a unit width of I'S and describes the time-
varying demand of Group ¢ (in ped/m/s).

(6) p°(x,y,t) is a time-varying function that denotes the pedestrian density of Group ¢ (in ped/m?).
(7) Fe(z,y,t) :== (ff(z,y,t), fS(x,y,t)) represents the flow vector for Group ¢, where f¢(x,y,t) is the
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Figure 1: Angle ¥ between Streams a and b.

flow flux in the a-direction and f§(z,y,t) is the flow flux in the y-direction (in ped/m/s). By default,
F°(z,y,t) -n =0, where n denotes the unit outward normal of T'¢,.
(8) v°(z,y,t) is the local walking speed of Group ¢ (in m/s).
(9) 7¢(x,y,t) is the local cost per unit distance of movement experienced by a a Group ¢ pedestrian
at location (z,y) and time ¢(in /m). If this cost is represented by the travel time as the reciprocal of
speed, then the unit becomes s/m.
(10) ®°(z,y,t) is the instantancous walking time potential of Group ¢ from location (z,y) to I'G, at
which ®° = 0 (in s). This measures the total walking time along the instantaneous shortest path
between location (x,y) and destination based on the traffic condition at snapshot moment ¢.

Finally, I =T¢JTSUTY, ¢ € {a,b}, (z,y) € Qand t € T.

2.1 Flow Conservation Equation

The density, velocity and flow of pedestrians follow the physical principle of mass conservation, which
is given by
pf(x,y,t)—!—VFc(x,y,t) :Oa (1)

where p§(x,y,t) = W, and V- F¢(x,y,t) = aflcg;’y’t) + af;g;’y’t) for commodity ¢ € {a,b}.

2.2  Walking Speed Function

The local walking speeds of the two groups depend on the densities and traveling directions of the two
pedestrians in the walking facility and are determined by

V(5 W) = wpexp (—a(p” +p")?) exp (= B(1 = cos(¥))(p")?), (2)
(5, W) = vpexp (—alp” +p’)?) exp (= B(1 = cos(P))(p")?), (3)
where j := {p%(x,y,t),p"(z,y,t)}. Here, v; is the free-flow walking speed of pedestrians, a, 3, are the
model parameters, and ¥ := U(z,y, t) is the intersecting angle between the two pedestrian streams of

Group a and Group b at location (z,y), as shown in Figure 1 (see [26] for the empirical evidence of this
functional form for bi-directional pedestrian flow problems).

2.3 Local Cost Function
The local cost 7¢, as a function of location and time, is assumed to depend on walking speed alone and
can be specified as

1
(.0’
which describes the walking time per unit distance of movement incurred by a pedestrian in Group c in
the walking facility.

m(@,y,t) = T((p, V) = (4)



2.4 Flow Definition

For each Group ¢ € {a, b}, along the direction of the flow vector (or movement), flow intensity, which is
determined as the norm of the pedestrian flow, is equal to the product of speed and density,

” Fc(l‘,y,t) H: Uc(ﬁv \Il)pc(x, yat)v (5)

where || Fé(z,y,t) |= (f{(z,y,t)? + f§(z,y,t)?) 2.

2.5 Path Choice Constraints

It is assumed that a pedestrian in each group at location (z,y) € Q walks in a route choice to minimize
his or her travel cost to the destination, based on the instantaneous travel cost information that is
available at the time of making a decision [10, 15]. Then, we have

F(z,y,1)
TNz, y,t) —=———— + VO(z,y,t) =0, 6
TGy Y Y 0
where V®¢ = (‘96‘1;6 , %i;). From (4) - (6), we have
(& Uc(ﬁ7 W)pc(x7 y’ t) (&
F - 0]
('1:’ y) t) Tc($7y,t) V (x’ y’t)
= _pc(xv%t)(vc(ﬁv \I/))QV(I)C(.T,y,t), (7)
and
| VO (z, y,1) [|= 7z, y,1). (8)
From (7), we have
Fo(z,y,1)//(=V®(z,y,1)), (9)

with p¢(z,y,t) # 0, which means that the two vectors, F¢(x,y,t) and V®°(z,y,t), are parallel but
pointing in the opposite direction.
From (6) - (9), for any used path p and for an unused path p, we have the following property

To(w,y,t) = /Tc(x,y,t)ds = ®(x,y,t), (10)
P

@,y t) = /*@%ﬂﬁzﬁhwﬁ (11)
P

which means that the total instantaneous travel cost at time t € T is independent of the used paths,
and for any unused paths, the total instantaneous travel cost is greater than or equal to that of the used
paths. In this way, the model guarantees that pedestrians choose their paths in the walking facility in
a user-optimal manner with respect to the instantaneous travel information.

The model can now be formulated as the following set of differential equations.

pg(xvyvt)_Fv Fc(x Y, ) = 0,
FC( Y, ) = P( T, Y, )( ( )) vq)c( Y, )7 (12)
H VCI)C(xvy’ ) H = (xayv )v

where 7¢(z,y,t) are determined by equations (2), (3) and (4), respectively. The angle ¥ in (2) can be
obtained by two potential functions due to the formula (7), and we have

Vo(z,y,t)  VO(z,y,t)
I Ve (z,y. ) | || Ve (2,y.1) |

The system (12) is subject to the following initial boundary conditions:

cos(¥) =

F(z,y,t) -n(z,y) = ¢ (z,y,1),Y(z,y) €T, (13)
po(z,y,0) = pilz,y), Y(z,y) e, (14)
CI)c(mvy,t) = 07 V(l’7y)€ré, (15)

where n(z,y) is a unit outer normal vector that points out of the domain boundary, and p§(x,y) is the
initial pedestrian density for group c.



3 Computational Schemes

In this section, we describe an efficient method for solving the model of system (12), which includes the
third order weighted essentially non-oscillatory (WENO) scheme for the conservation law equation (1),
the fast sweeping method based on the third order WENO scheme for the Eikonal equation (8) and the
third order TVD Runge-Kutta time discretization for the coupled system of equations. The method is
similar to that in [10], however, additional difficulties arise for the bi-directional flow considered in this
work, especially for boundary treatments and for convergence of the fast sweeping iterations, which we
will address. In order to highlight the high order method, we will compare the results of the third order
method for all equations with the first order method for all equations. The first order method consists
of the first order Lax-Friedrichs difference scheme for the conservation law equation, the first order fast
sweeping method for the Eikonal equation and the Fuler forward time discretization for the coupled
system of equations, which will also be described here.

3.1 Schemes for the Conservation Law

For the 2D mass conservation equation (1) of the system, the semi-discrete scheme approximates the
point values pf ; &~ p°(x;,y;,t) through a conservative difference formula as follows. To simplify notation,
we drop the superscript ¢ where there is no confusion

d R N R R
s = e (s — (i) = e (i — (ol

; ) (16)

=

where Az and Ay are the mesh sizes in z and y, respectively, which are assumed to be uniform Az =
Ay = h for simplicity. (f1);41; and (f2); ;41 are the numerical fluxes in the = and y directions,

respectively. We describe the details of the definition for the = flux (f;); +1,; below. The definition for

the y flux (fg)i)j+% is analogous. When we are computing the z flux (fl)H%,j, the y index j is fixed.
Again, for simplicity of notation, we drop the y index j below.

3.1.1 The first order Lax-Friedrichs difference scheme

The first order Lax-Friedrichs difference scheme to approximate the numerical flux (f;); +1 in (16) can
be defined as

(f1)igs = %((fl)i + (f1)i+1 — a(piv1 — pi)) (17)

1
2

where a = |1(p)].

3.1.2 The third order WENO scheme

We summarize the third-order WENO scheme in this subsection [16, 14, 18]. The basic idea of the
WENO scheme is the locally adaptive choice of the approximation stencil, so that high order accuracy
is achieved in smooth regions and discontinuities are resolved in a sharp and non-oscillatory fashion.
Here we use the third order WENO scheme of [14] to approximate the numerical flux (f); +1 in (16).

We first assume f(p) > 0, namely, a positive wind direction, to simplify the description. The general
case is commented upon later. In this case, the numerical flux ( f1)i +1 is obtained through a one-point
upwind-biased stencil containing s; = fi(z,y;,t) for I =i —1,4,i + 1. The numerical flux (fl)H% is
given by the convex combination of two second-order fluxes as

; ~(0 (1
(F)ivy = wodfls +widls (18)

where the two second-order numerical fluxes are based on two different sub-stencils given by

~(0 1 1

Sy = gitgen (19)
NCO I S

Sivp = TSttt gsi (20)



and the nonlinear weights wg and wy in (18) are defined by

(7)) (651

wp=—", W =—"— 21

0 ap + o ! oo + o @)
where J J
0 1

==, Q=-—= 22

0 (6+50)2 1 (€+/31)2 ( )

€ is a parameter to prevent the denominator from becoming 0, and is taken as 10~® in our simulation.
dy and djy are the linear weights given by

do = d ==

37 3
and the smoothness indicators Sy and (1, which measure the smoothness of the approximation in the
substencils, are given by
Bo=(sis1—s:)%  Bi=(si —si1)°
For the general case where f](p) may change sign, first we form a flux splitting f1(p) = fi (p)+f1 (p),
such that %ff (p) > 0 and %f{ (p) < 0. We then perform the procedure above to obtain the numerical
flux corresponding to ffr (p), and use a mirror symmetric procedure, with respect to the location x, 1

to obtain the numerical flux corresponding to f; (p). These two numerical fluxes are then combined
to form the final numerical flux. Several flux splittings can be used in practice. We use the local
Lax-Friedrichs (LLF) splitting here, which is given by

F(0) = (7o) £ 0(p)p), where a(p) = max _[f{(p)]

pElp=,pT]

Here, the range to take the maximum value for computing a(p) depends on the stencil: if the stencil
S={i—2,i—1,4,44 1,4+ 2} is used, then

+:

p = min{pi—Q,P¢—1,Piapi+1,m+2}, P maX{Pi—Qapi—l,Piapi+1api+2}~

However, in solving the system (12), f1(p) is not an explicit function of p (see the second equation
of (12)). If we assume that the velocity v and the potential ¢ are not dependent on p, then we have
fi(p) = —v?¢g, and

2
= ma. — .
a(p) B T | — v (¢ )]

In our computation, we use

a(p) =3 EACHI

max
le{i—2,i—1,i,i+1,i+2}

which seems to be able to better control spurious oscillations.

3.2 The Fast Sweeping Method for the Eikonal Equation

The Eikonal equation is a special case of steady-state Hamilton-Jacobi equations. Solutions to Hamilton-
Jacobi equations are usually continuous but not everywhere differentiable and are usually not unique.
The viscosity solution [2] is the physically relevant solution and numerical solutions for approximating
the viscosity solutions of the Hamilton-Jacobi equations follow the lines similar to those for solving
conservation laws. Thus the WENO schemes for conservation laws are extended to WENO schemes
for Hamilton-Jacobi equations [13, 19]. For the steady-state equation (8), if we use the time-dependent
WENO scheme of [13, 19], we would need to introduce a pseudo-time and then march to a steady state
for each fixed t. The recently developed fast sweeping method [33] is much faster in computer time than
the pseudo-time marching. We use the fast sweeping method to solve the Eikonal equation (8) here.
The first and third order fast sweeping methods can be found in [32] and [33], respectively. Similarly,
we drop the superscript ¢ for simplicity of description.

The fast sweeping method starts with the following initialization. Based on the boundary condition
o(x,y) =0 for (z,y) € T'y, we assign the exact boundary values on T'y. For the first order fast sweeping



method, large values (for example 10°) is assigned as the initial guess at all other grid points. For the
third-order fast sweeping method, the solution from the first-order fast sweeping method is used as the
initial guess at all other grid points.

The following Gauss-Seidel iterations with four alternating direction sweepings are performed after
initialization

(1) i=1:N;, j=1:Ny (2) i=Ng:1, j=1:Ny; (23)

(3) i=Ny:1, j=N,:1; (4) t=1:N;, j=N,:1
where (4, j) is the grid index pair in (x,y) and N, and N, are the number of grid points in = and y,
respectively. When we loop to a point (4,7), the solutlon is updated as follows, using the Godunov
Hamiltonian

: Tmin ymm zmzn _ ymm
new __ mln( () K ) ;’_Tl »J h, ok if | | ST 2J h, (24)
7 Py ( ”’hz —(BRFT el , otherwise
where 7; ; = T(x;, y;, ).
For a first-order fast sweeping method, we define ¢77""" and qbymm in (24) as
{ T = min(gi-1,5, dis1,5) (25)
¢ = min(; j-1, @i j+1)
For a third-order fast sweeping method, we define ¢77" and d)%m" in (24) as

{ P = min (605 — h(¢e)i ;s 075 + h(0)i ;) (26)

¢{"" = min ( fle h(dy)i ;s f,ljd +h(dy)i;)

v biry — & 81 — 401y + &
- i+1,j — Qi1 ij — APi—1;+ Pi—2j
Giv1,j — Pi—1,5 =3¢ +4div1,; — dit2,y

R ] e R e (29)

1 % 2 i— i— 2
w_ = 7 r_ = + (¢_] ¢ 1,] + ¢ 2,])2, (29)

1+ 2r< + (¢i+1,] 29251,] + (bzfl j)

1 7 -2 7 7 2
wy = ———, Ty = €+ (¢i Piv1,j + Pit2,5) (30)

T+2r3 + (Git1,5 — 2005 + dim1,5)*

The nonlinear weights are the same as those in (21), as well as the meaning of €, only that they are
written in a different form as in [13] for easier implementation. The definitions for (¢y); ; and ((by):rj
are of course analogous.
Convergence is declared if
o7 — g <., @)

where § is a given convergence threshold value. § = 10~ and L' norm are used in our computation.
We can also obtain ¢, from solving (8). For the first-order fast sweeping method, (¢ ) ; is computed
according to (25)

(Bz)ij = 7%”'_,?71”} if 77 = i (32)
(¢a:)i7j — ¢i+1,2—¢i,j, if acmm — ¢i+17j ’

and for third-order fast sweeping method, (¢5); ; is computed from (27) and (28) according to (26),

that is
{ (¢2)ij = (¢2);, i if 7 = ¢ — h(¢n);;
(P)ij = (¢u)fy, i OTTP™ = 0+ h(da)];

the computation for (¢,); ; is analogous.

(33)



For the third order fast sweeping method, the nonlinear weights in (27) and (28) may cause non-
convergence for (31) in some time steps for solving the system (12) of our model. For such cases, the
iteration does converge if linear weights are used instead, however this would bring oscillatory results
without the advantage of choosing smooth stencils from the application of nonlinear weights, especially
around the boundary where discontinuities exist. We have therefore adopted the following strategy.
First, we use the nonlinear weights to iterate. After the iteration error stagnates for 50 consecutive
steps at the same error level, for example at 10~%, we switch to fixed values for the weights taken as
the average values of the nonlinear weights in those 50 iteration steps. These fixed weights are then
used in (27) and (28) instead of the nonlinear weights (29) and (30) afterwards, which leads to very fast
convergence according to (31).

3.3 The Third-order TVD Runge-Kutta Time Discretization

Finally, the semi-discrete scheme (16) must also be discretized in time. For the first order method, an
Euler forward time discretization is used. For the third order WENO method, we use the third-order
total-variation-diminishing (TVD) Runge-Kutta method [20, 18], which is the convex combination of
three Euler forward time discretization steps and can maintain the stability of the spatial discretization.
If we denote the right-hand side of the ordinary differential equation system (16) by L(p); ;, a first order
Euler forward time stepping is

P = p" + ALL(p") (34)

and a third-order TVD Runge-Kutta method is given by

pt = p"+ AtL(p") (35)
3 .1
1 2

pn+1 _ gpn + g(p@) + AtL(p(2))). (37)

Here, the time step At needs to satisfy the Courant-Friedrichs-Lewy (CFL) condition. We take the CFL
coefficient to be 0.1 in our computation.
3.4 Solution Procedure
Starting from the density p™ at time level n, we obtain the density p"*! by the following steps.
1. Obtain the cost function 7¢(x,y,t) by formula (2)-(4);
2. Solve the Eikonal equation (8) using the fast sweeping method to obtain ¢¢ and V¢°©;
3. Obtain the flux F¢ by using the formula (7); and

4. Use the first-order Lax-Friedrichs difference scheme with an Euler forward time discretization (34)
or the third-order LLF WENO scheme with the third-order TVD Runge-Kutta time discretization
(35)-(37) to obtain p"*! by solving the conservation law (1).

The procedure repeats until it marches to the end of the analysis period.

4 Numerical Experiment

In this section, we first design a numerical example to model (12) to demonstrate the convergence and
efficiency of the high order scheme. We then provide another numerical example with a simplified setup
to model (12) which has a known exact solution, to demonstrate quantitatively the advantage of higher
order schemes in reaching higher precision with less CPU time than the lower order scheme.
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Figure 2: Overview of the railway platform.

4.1 Example 1

We consider a railway platform that is 100m by 50m in size, as shown in Figure 2. Group c enters the
platform from segment I' with a width of 20m and leaves the platform from segment I'; with a width
of 20m.

The time horizontal is set to be 240s. Initially, the platform is empty. The inlet flow rate, ¢°(x, y, t),
on I'¢ represents time-varying demand and is given as follows.

L X g, t € [0,30],
a _ Mg, t € [30,90],
q (Oyyvt) - —myg X t—310207 t e [907 120]7 ) Vy € [15?35}7
0, t € [120, 300].
and
Ly, t € [0,30],
b _ mp, t € [30,90],
q ($7O,t) = —my ¥ 15,310207 te [90,120]7 5 Vr € [65785],
0, t € [120, 300].

where m, and m; denote, respectively, the peaks of the inlet flow rate at the two entrances and we take
mq = 1.0 and my, = 0.5 for the calculation. Then, the flow vector F* = (¢%,0) on I'* and F? = (0, ¢%)
on I'%. The free-flow walking speed v; is taken as 1.034m/s and two model parameters, o and 3 in (2)
and (3), are taken as 0.075 and 0.019, respectively (see [26]).

The numerical experiments on rectangular meshes are tested. The first order Lax-Friedrichs dif-
ference scheme for the conservation law coupled with the first order fast sweeping method (FSM) is
denoted by “b11”, and the third order WENO scheme for the conservation law coupled with the third
order FSM is denoted by “b33”.

For the high order scheme of this model, we have to assign values on ghost points, which are the
grid points of not more than 2k away from the boundary outside the computational domain. There
are several variables (more than three) in the computation and only three of them need ghost point
values for the scheme: density p, flux F = (f1, f2) and potential ¢. The boundary I" is composed of the
inlet T',, the outlet I'y and the wall 'y, that is ' = ', UT'y UT',. For the density p, the third order
extrapolation is used on I', and 'y, and p = 0 on I'y,. For the flux F' = (f1, f2), on T, it takes the exact
values, the third order extrapolation is used on I'y, and we take 0 on I'j,. For the potential ¢, ¢ = 0 on
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Figure 3: Cuts for p of Group a at t = 60s, 90s and 120s with three different mesh sizes . Left: cuts at
x = 50m; Right: cuts at y = 25m. (a) for “b11”, (b) for “b33”.

I'y is the exact solution, the third order extrapolation is used on I',, and equal value of ¢ from the first
point inside the computational domain is set on the wall T'y,.

4.1.1 Convergence of the Low-order and High-order Numerical Results

In this subsection, we show that the low-order scheme and the high-order scheme are both convergent,
where the low-order scheme is the first-order Lax-Friedrichs scheme for the conservation law coupled
with the first-order fast sweeping method for the Eikonal equation and the high-order scheme is the
third order WENO scheme for the conservation law coupled with the third order fast sweeping method
for the Eikonal equation. The results are consistent with those in [15].

We compare the density curves of Group a along the center line, x = 50m and y = 25m, of the
computational domain at several different mesh sizes for “b11” and ”b33” in Figure 3, which could
convince us the convergence for both of the schemes.

In Figure 4, we depict the flow vector F' = (f1, f2) for “b11” at the mesh size 800 x 400 and for “b33”
at the mesh size 200 x 100. High-density values would be seen near the two exits as the pedestrians
arrive there and have to decrease their speed as they line up to walk through the relatively narrow exits.

10
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Figure 4: Flow vector plots. Left: “b11” at the mesh size 800 x 400; Right: “b33” at the mesh size
200 x 100. Red: Group a; Green: Group b.
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4.1.2 Comparison of the Low-order and High-order Numerical Results

In this subsection, we show that the high-order method can obtain almost the same results at coarser
meshes and with less computational time.

We compare the contours of densities for Group a and Group b, at the mesh size 800 x 400 for “b11”
and the mesh size 200 x 100 for “b33” in Figure 5. We find that “b33” at the mesh size 200 x 100 can
bring almost the same resolution (in cuts and contours) as “b11” at the mesh size 800 x 400. If we refine
the meshes for both “b11” and ”b33”, the results in Figure 6 are almost the same as these in Figure
5, therefore we may be convinced that the results at the mesh size 800 x 400 for “b11” and the mesh
size 200 x 100 for “b33” are the converged physical solution. Of course, the CPU cost per grid point is
different for the first order and third order schemes. It is more meaningful to compare the total CPU
time. In our implementation on a PC, the total CPU time for “b33” at the mesh size of 200 x 100 is
128,099 seconds, which is less than 130, 358 seconds for “b11” at the mesh size of 800 x 400. The saving
of CPU time for this case is not significant, however we do save computer memory in using a much
coarser mesh for the higher order scheme. The saving of CPU time is more significant for solutions
with more complicated structure, or if wee need higher precision of the numerical solution, see the next
example, and also [30] for more examples.

4.2 Example 2

In this subsection, we design a numerical example, with a simplified setup for the model (12), which has
known exact solutions, to quantitatively demonstrate the advantage of using the higher order scheme
to reach higher precision with less CPU time than the lower order scheme.

We counsider a single group of the model (12), which can be reformulated as:

pt(l‘,y,t)+VF($,y,t) - S(J?,y,t),
Fla,yt) = —play,)u(p)*Ve(,y,1), (38)
| Vo yt) | = o

where s(z,y,t) is a source term, chosen so that an explicit exact solution is available, and the velocity
v(p) = vy exp(—ap?).

We solve the system (38) on a domain of Q = [-2, 0] x [—1, 1], subject to the following initial
boundary conditions:

F($7y7t) ’ n(x,y) = q(z,y,t),V(x,y) el,, (39)
p(m,y, 0) = po(x,y), V(x,y) S Q’ (40)
O(z,y,t) = 0, V(z,y) € Iy, (41)

with the inlet segment T', = {—2} x [—1, 1], and the outlet segment I'y = {0} x [—1, 1].
We denote

s7 = 367'rsint
sy = 12—-3y+y°
s3 = 92%(1 —¢?)?

sl
v = log | —F——
o glcfvf\/s;;Jrs%

where 7,cr,v¢ are given parameters, to write the exact solution as

3
b, (z,y,t) = cfe”‘“tx <—4—|—y—y3)
[ v
pe(xayat) = 7%
518
fle(xvyvt) = L52Pc

cp(ss +53)
3s12(=1 +y%)pe

fZe xay7t =
(#38) cp(s3 +s3)

12
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Figure 5: Contours of density p at ¢ = 60s, 90s and 120s. Left: Group a; Right: Group b. Mesh size:

200 x 100 for “b33” and 800 x 400 for “b11”. Green: “b33”; Red: “bl1”.
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with the source term given by

s(z,y,t) = S +7ry+ 1o
where
9s12(1 — y?)?s2(1 + 4viog)

T1 = 3P

2cra(ss + 53)2pc
ro1 = 3(1— 92)2(52 + 6:172y)
roo = A4(36 +9(—17 + 2%y — 6(—2 + 322)y> + 12y* + 9(—1 4+ 22)y° + 2y )vieg

- 381$(T21 —+ 7“22)

ro =

2cra(ss + $3)%pe
and the initial and boundary conditions are

Q<_2ay7t) = fle(_2ay7t)7 PO(%ZJ) = pe(m7y70)'

We solve the system with the two numerical methods of “b33” (third order) and “b11” (first order),
and we take the parameters to be r = 0.01, ¢y = 80, vy = 1.034. For “b33”, we use high order
extrapolation to obtain the values on ghost points at the numerical boundary. We set exact values on
the physical boundary, such as I', and Iy, and then use high order extrapolation to obtain the values of
other ghost points. We should mention that in this and the previous examples, the physical boundary
I', and T'y are located midway between two grid points, and the given values at the boundary is used
when doing the extrapolation. We compare the error and order of accuracy for “b33” and “b11” in
Table 1. We can find that the expected third order and first order accuracy with the L' norm have
been obtained, and the third order method has much smaller error than the first order method on the
same mesh. A more meaningful comparison is the CPU cost used to reach the same error tolerance.
We compare the computational efficiency for the third order method and the first order method in Fig.
7. Clearly, with low error tolerance, the high order method is vastly more efficient than the low order
method.

Table 1: Error and order of accuracy for density p and potential ®.
| b33 | L error of p [ order [ L' error of ® [ order |

10 4.36E-04 - 1.78E-01 -
20 8.64E-05 2.34 3.02E-02 2.56
40 1.13E-05 2.93 4.16E-03 2.86
80 1.27E-06 3.15 4.93E-04 3.08
160 1.29E-07 3.30 4.88E-05 3.34

’ b1l \ LT error of p \ order \ LT error of ® \ order ‘

20 1.20E-03 - 7.10E-01 -

40 6.27E-04 0.94 3.76E-01 0.92
80 3.36E-04 0.90 1.94E-01 0.95
160 1.77E-04 0.92 9.93E-02 0.97

5 Conclusions

In this work, a third order WENO scheme for the conservation law coupled with a third order fast
sweeping method for the Eikonal equation on rectangular meshes, similar to [10], has been designed
for a reactive dynamic user equilibrium model for bi-directional pedestrian flows. This model simulates
two groups of pedestrians walking in crossing directions in a continuous walking facility. Because of the
complication of the model arising from the bi-directional flow, special attention must be paid to the
boundary treatment and fast sweeping procedure for the high order scheme to ensure its convergence
and non-oscillatory property. We have compared the third order scheme with a first order Lax-Friedrichs
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Figure 7: L' error versus CPU time for p. Each symbol corresponds to one mesh size.

difference scheme for the conservation law coupled with a fast sweeping method for the Eikonal equation
on rectangular meshes, and have found that the high order scheme can obtain the same resolution
(measured by cuts and contours) on much coarser meshes and with less CPU time, compared with the
first order schemes. Another numerical example with known exact solutions quantitatively demonstrates
that the higher order scheme can reach higher precision with much less CPU time than the lower order
scheme.
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