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Abstract  

We present a method of predicting pedestrian route choice behavior and physical 

congestion during the evacuation of indoor areas with internal obstacles. Under the proposed 

method, a network is first constructed by discretizing the space into regular hexagonal cells 

and giving these cells potentials before a modified cell transmission model is employed to 

predict the evolution of pedestrian flow in the network over time and space. Several 

properties of this cell transmission model are explored. The method can be used to predict the 

evolution of pedestrian flow over time and space in indoor areas with internal obstacles and to 

investigate the collection, spillback, and dissipation behavior of pedestrians passing through a 

bottleneck. The cell transmission model is further extended to imitate the movements of 

multiple flows of pedestrians with different destinations. An algorithm based on generalized 

cell potential is also developed to assign the pedestrian flow.  

Keywords: pedestrian evacuation; evolutionary network; collection; spillback; dissipation 

 

1. Introduction 

Walking is a trip mode involved in most daily human activities such as crossing the road, 

shopping, and coming together for group activities. With population increases and rapid 

urbanization, there is increasing pressure on existing urban roads and the energy resources 
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required for vehicular transport are becoming scarcer. As a result, walking is coming to play 

an increasingly important role in the development of successful sustainable transportation 

(Cervero et al., 2009; Walton and Sunseri, 2010). Research on pedestrians has recently 

attracted a significant level of interest in transport-planning societies.  

Pedestrian evacuation is a strategy commonly used to handle emergency situations. If the 

internal condition of a building evacuated in an emergency is not suitable for the evacuation 

process or if pedestrian behavior cannot be controlled or guided effectively, then the 

ramifications of the emergency situation cannot be alleviated and additional losses are likely 

to ensue. Thus, it is essential that formal scientific analysis of the pedestrian evacuation 

process, and of pedestrian evacuation behavior in particular, be carried out to reduce and 

avoid losses in emergency situations.  

Several computer models have been developed to simulate the evacuation patterns of 

pedestrians and predict evacuation performance with a view to generating valuable 

information for the assessment, evaluation, and design of building evacuation systems. These 

models can generally be divided into two categories according to mode of implementation.  

All network-based models can be placed in the first category (e.g., Cepolina , 2005, 2009; 

Asano et al., 2007; Lin et al., 2008; Chen and Feng, 2009; Yuan et al., 2009; Pursals and 

Garzón, 2009). In this class of models, the spatial layout of a building is represented by a 

network based on the building’s actual structure. Accordingly, each node in the network may 

represent a room, lobby, or section of corridor irrespective of its physical dimensions. These 

nodes are connected by arcs that represent the actual openings between separate components. 

This class of models is generally used to calculate evacuation plan performance measures. 

Another application of these models is in the formulation of solutions to optimization 

problems. Solutions to these problems aim to minimize the evacuation time of pedestrians 

leaving the building last or the total time taken to evacuate all pedestrians from a building, or 

to maximize the number of pedestrians leaving the building in a certain time interval.  

The second category comprises the area-based models. These models simulate pedestrian 

dynamics in closed areas such as rooms, corridors, and supermarkets. In this class of models, 

either a crowd is regarded as a fluid or continuum that responds to local influences (e.g., 
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Thompson and Marchant, 1995; Hughes, 2002; Xia et al., 2008, 2009; Huang et al., 2009) or 

pedestrians are treated as discrete individuals (e.g., Helbing and Molnár, 1995; Helbing et al., 

2000; Burstedde et al., 2001; Kirchner and Schadschneider, 2002; Langston et al., 2006; Guo 

et al., 2010). There is no doubt that the area-based models give more accurate predictions and 

more detailed information on evacuation processes than the network-based models. However, 

this class of models is unsuitable for tall, large, or complex buildings due to their complex 

internal construction and the large amount of computing time required. 

Both categories of models involve two tasks that are relatively difficult to accomplish. 

The first is the construction of a plausible framework for pedestrian movement route choice 

behavior when pedestrians attempt to leave closed areas with internal obstacles. The second is 

the formulation of physical congestion and interaction among pedestrians. The purpose of this 

paper is to design and develop a method that reproduces the pedestrian evacuation process in 

areas with internal obstacles and predicts the collection, spillback, and dissipation behavior of 

pedestrians near exits or obstacles. This work is challenging because the two tasks must be 

resolved simultaneously, it is difficult to generate a good space representation in the presence 

of internal obstacles, and pedestrian movement is flexible in two-dimensional space.  

In the proposed method, the pedestrian evacuation space is represented by a network 

using the so-called potential distribution of the space. A number of existing dynamic traffic 

assignment methods can then be applied directly to solve the pedestrian evacuation problem. 

In this paper, a cell transmission model is devised to formulate the movements of the flow of 

pedestrians in the network. Simulation results indicate that our method can mimic the 

pedestrian evacuation process in areas with internal obstacles and can model the collection, 

spillback, and dissipation behavior of pedestrians near exits. Furthermore, the cell 

transmission model is extended to formulate the collection, dissipation, and propagation 

behavior of multiple flows of pedestrians targeting different exits in a closed area with 

multiple exits during evacuation. An algorithm based on generalized cell potential that 

considers both the route distance to the destination and the congestion of pedestrians in front 

routes is also developed to assign pedestrian flow in space.  

The remainder of this paper is organized as follows. Section 2 introduces the method 
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proposed for converting the pedestrian evacuation problem into a network problem and the 

flow propagation model developed to formulate pedestrian movement. In this section, we also 

introduce the method used to predict the evolution of pedestrian flow over time and space in 

indoor areas with internal obstacles and to model the collection, spillback, and dissipation 

behavior of pedestrians passing through bottlenecks. In Section 3, a modified cell 

transmission model is proposed to formulate the movement of multiple flows of pedestrians 

targeting different exits. Section 4 describes the algorithm developed on the basis of 

generalized cell potential. Section 5 concludes the paper. The properties of the propagation 

model are presented in the Appendix.  

 

2. Method  

2.1 Network representation of the pedestrian evacuation problem 

Consider an indoor area with internal obstacles such as furniture, shelves, devices, and 

electrical appliances. Regardless of the size and position of the obstacles, the entire space in 

the indoor area is discretized into regular hexagonal cells with a side length s  (see Fig. 1). 

The cell structure is isotropic, allowing for the pedestrian flow into neighboring cells to be 

defined in identical terms. If square cells were adopted, formulating the pedestrian flow into 

diagonal neighboring cells would become difficult. Each cell can accommodate a certain 

maximum number of pedestrians in proportion to the area of free space in the cell, and 

pedestrians in each cell may move into six neighboring cells. The states of the pedestrians are 

updated at each time interval t∆ . Note that the distance d  ( 3s= ) between the centers of 

two cells is set so that 0d v t= ∆ , where 0v  is the free-flow velocity of the pedestrians.  

Non-connective and connective cells are defined. If there are obstacles at the boundary 

between two neighboring cells and pedestrian movement between these two cells is 

completely blocked, then the two cells are referred to as non-connective cells. Fig. 1 

illustrates a pedestrian space with three cells and an obstacle. Cells 1 and 3 are 

non-connective and cells 1 and 2 are connective.  
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Fig. 1. A pedestrian space with three cells (the shaded rectangle denotes an obstacle). 

 

The potential of each cell is defined and used to approximate the route distance to the 

target exit and to reflect the number of minimal movements to the target exit (Huang and Guo, 

2008; Guo and Huang, 2010). The potential increases with the distance to the exit. It is 

assumed that pedestrians select target cells at the next time step to reduce the potential to their 

destination at each time step. This means that pedestrians consider the route distance to each 

exit in selecting their movement routes. Empirical evidence indicates that although 

pedestrians frequently choose the shortest route, they are seldom aware that they are 

minimizing the distance as a primary strategy in route choice (Senevarante and Morall, 1985; 

Hoogendoorn and Bovy, 2004a). It is sufficient for a pedestrian model based on this 

assumption to provide valuable information for designing and adjusting the internal layout 

and exit position of buildings.  

Let C  be the set of cells in the entire pedestrian space, eC  the set of cells near exit e , 

nC  the set of cells that are non-connective with all six neighboring cells, and e
iP  the 

potential of cell i  corresponding to exit e . The potentials of the cells are computed by the 

following algorithm.  

Step 1: For all cells i \ eC C∈ , set 0e
iP = ; for all cells j eC∈ , set 1e

jP = . Set 1l = ; 

Step 2: For each cell i C∈  with e
iP l= , check its adjacent cell j  in all six directions. If 

0e
jP =  and cells i  and j  are connective, then let 1e

jP l= + ; 

Step 3: If 0e
iP >  holds for any one cell i \ nC C∈ , then go to step 4; otherwise set 

1l l← +  and go to step 2; 

Step 4: For each cell i C∈  with 1e
iP = , set 1e

iP = . Set 2l = ; 
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Step 5: For each cell i C∈  with e
iP l= , check its adjacent cells in all six directions. If 

| | 1e
iΩ =  and e

ij∈Ω , then set 1e e
i jP P= + ; if | | 1e

iΩ > , then set 

| |e
i

e e e
i j ij

P P θ
∈Ω

= Ω +∑ . Here, { | cells  and  are connective, and 1}e e
i jj j i P lΩ = = −  

and (0,1]θ ∈ ; 

Step 6: If max{ | }e
il P i C= ∈ , stop; otherwise set 1l l← +  and go to step 5. 

In the foregoing computation, parameter e
iP  measures the number of minimal 

movements along the cells to exit e . It is used to determine the sequence in which the 

potentials of cells are obtained. The potential of a cell is computed using the potentials of one 

or more cells for which the potentials were computed in the previous step. To approximate the 

route distance from a cell to the target exit according to the potential of the cell with a higher 

degree of connectivity, the potential of the cell is computed in two cases. These cases are 

differentiated by the number of cells for which the potentials were computed in the previous 

step. If the number is one, that is, | | 1e
iΩ = , the potential of the cell increases for one; if the 

number is more than one, that is, | | 1e
iΩ > , the potential of the cell increases for a θ  value 

of not more than one. The value of the parameter θ  can be calibrated by using the least 

square method so that the potentials of the cells approximate the route distance to each target 

exit from cells with a higher degree of connectivity. In addition, this parameter can also be 

calibrated by formulating the shape of the crowd near an exit. The shape of the crowd is 

approximately semicircular, reflecting a commonly observed scenario (see numerical 

simulations in Section 2.3). 

 

 Exit
1 2
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Fig. 2. A room with one exit and two internal obstacles denoted by shaded rectangles and the 
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potentials of all cells corresponding to the exit when 0.8θ = . The number in each cell is the 

potential of the cell.  

 

Fig. 2 gives the potentials of all of the cells in a room with one exit and two internal 

obstacles when 0.8θ = . It can be seen that the cells closest to the exit have a lower potential. 

Thus, their potential can be used to determine pedestrian routes during evacuation.  

Once the potentials of the cells have been determined, the cells in set \ nC C  can be 

regarded as nodes in a network. Each pair of connective cells are linked by a directed arc in 

which the cell with the larger potential is at one end and the cell with the smaller potential is 

at the other end. The direction of the arc indicates the movement of pedestrians from a cell 

with a larger potential to a connective cell with a smaller potential. All nodes corresponding to 

cells near an exit are linked to a virtual destination node. In this way, the pedestrian space is 

converted into a network. For instance, the room in Fig. 2 can be represented by the network 

shown in Fig. 3. 

 

 0

1

22 2

3 3 3

4

3 2.8

3.8 4

5 4.8 4.8

3.7

4.65

6 5.8 5.8 5.65

6.8 6.656.7
 

Fig. 3. Network representation of the room shown in Fig. 2. The number in each node is the 

potential of the corresponding cell and the node with a potential of 0 is a virtual destination 

node. 
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Using this network representation, some existing models and solution methods 

developed for the study of static or dynamic vehicle traffic assignment (e.g., Huang and Lam, 

2002; Lo and Szeto, 2002; Szeto and Lo, 2004, 2006) can be applied directly to pedestrian 

evacuation problems. The cell transmission model developed by Daganzo (1994, 1995) has 

been used to load traffic flow on dynamic networks and has been shown to be capable of 

capturing traffic dynamics such as shockwaves, queue formation, and queue dissipation. The 

following section proposes a cell transmission model for pedestrian movement that captures 

the pedestrian dynamics in the aforementioned network. 

 

2.2 Pedestrian propagation model 

A cell transmission model is proposed to formulate pedestrian propagation in indoor 

areas. First, the maximum flows of the arcs and the capacities of the nodes in the evacuation 

network must be defined. Let ( )ijQ t  denote the maximum number of pedestrians who move 

to node j  from node i  in interval t∆  between time steps t  and 1t + . For a destination 

node 0j  and the upstream linked node 0i , the maximum number 
0 0

( )i jQ t  is regarded as the 

number of pedestrians passing through the exit in interval t∆  between time steps t  and 

1t + . For two nodes i  and j , which correspond to two neighboring cells, it is assumed that 

the maximum number ( )ijQ t  is proportional to the size ( )ijr t  of the opening available 

between the two cells in interval t∆  between time steps t  and 1t + , that is,  
( )

( ) ij
ij

r t
Q t Q

s
= , (1) 

where s  is the side length of the regular hexagonal cells and Q  is the maximum number of 

pedestrians exiting through the opening between the two cells in interval t∆ . The size of the 

opening available between two cells is illustrated in Fig. 1. For instance, 23r r=  for cells 2 

and 3 in the figure, whereas 13 0r =  for cells 1 and 3. 

Let ( )iN t  denote the maximum number of pedestrians present at node i  at time step 

t . For each destination node 0i , set 
0
( )iN t = +∞ . For node i , which corresponds to a cell, 

the maximum number ( )iN t  is proportional to the area ( )ia t  of the space in the cell 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V99-49Y3FR6-1&_user=1141578&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_rerunOrigin=scholar.google&_acct=C000051774&_version=1&_urlVersion=0&_userid=1141578&md5=ecdbd64ff5f0fa90c86cc662f3dce601#bbib14#bbib14
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unoccupied by obstacles at time step t , or 
( )( ) i

i
a tN t N

c
= , (2) 

where ( ) 23 3 2c s=  is the area of the cell and N  is the maximum capacity of an empty 

cell to accommodate pedestrians. 

Several other variables are used in the propagation model. Let ( )in t  be the number of 

pedestrians at node i  at time step t  and let ( )ijD t  be the proportion of pedestrians at node 

i  who can move to the adjacent downstream node j  in interval t∆  between time steps t  

and 1t + . It is assumed that ( )ijD t  is positively proportional to the product of the number of 

pedestrians accommodated by the empty space at node j  at time step t , ( ) ( )j jN t n t− , and 

the difference between the potentials of the two cells corresponding to nodes i  and j , 

i jP P− . We therefore have 

( )
( )[ ]{ }

( ) ( )
( )

( ) ( )
i

i j j j
ij

i k k k
k R

P P N t n t
D t

P P N t n t
∈

 − − =
− −∑

, (3) 

where iR  is the set of neighboring nodes downstream of node i . Hill (1982) concludes that 

like most walking processes, the route selection strategies of pedestrians are largely 

subconscious. Our model assumes that pedestrians select target nodes at the next time step by 

considering not only the movement distance, but also by taking into account the degree of 

local congestion in the front nodes. Let ( )ijw t  be the number of pedestrians who can be sent 

to node j  from the adjacent upstream node i  in interval t∆  between time steps t  and 

1t + . This gives  

{ }( ) min ( ) ( ), ( )ij ij i ijw t D t n t Q t= .  (4) 

It is unlikely that the empty space at a node can accommodate all of the pedestrians can 

be sent to the node from adjacent upstream nodes. It is therefore assumed that the proportion 

of empty space at a node that can receive pedestrians from an adjacent upstream node is 

partly related to the number of pedestrians who can be sent to the node from upstream nodes. 

The number of pedestrians who move from node i  to the adjacent downstream node j  in 

interval t∆  between time steps t  and 1t + , ( )ijy t , is then given by 
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( ), ( ) ( ) ( ),

( ) ( ) ( )
( ), otherwise,

( )

j

j

ij kj j j
k S

ij j j
ij

kj
k S

w t w t N t n t

y t N t n t
w t

w t

∈

∈

 ≤ −

= −




∑

∑
 (5) 

where jS  is the set of neighboring nodes upstream of node j . Eq. (5) can be rewritten as 

( ) ( )
( ) min ( ), ( )

( )
j

j j
ij ij ij

kj
k S

N t n t
y t w t w t

w t
∈

 
− 

=  
 
 

∑
. (6) 

Based on the foregoing definitions, the propagation of pedestrian flow in the evacuation 

network can be described by the following equation for all nodes and time steps. 

( 1) ( ) ( ) ( )
i i

i i ki ij
k S j R

n t n t y t y t
∈ ∈

+ = + −∑ ∑ . (7) 

Several properties of the above propagation model are provided in the Appendix.  

 

2.3 Numerical Simulations 

The proposed modeling approach is applied to the two simulation scenarios shown in Fig. 

4 (a) and (b). These two scenarios are the same in terms of size and exits, but have different 

internal configurations. There are no obstacles in scenario (a), whereas there are six obstacles 

in scenario (b). For both scenarios, the indoor areas are discretized into 19× 6+20× 5 cells and 

an exit is placed in the north wall. The following parameters are used in the experiments: the 

time interval 1.2t∆ = , the width of the cells 1.0s = , the maximum number of pedestrians 

passing through the opening between two cells in a time interval 10Q = , the maximum 

capacity of an empty cell to accommodate pedestrians 16N = , and the maximum number of 

pedestrians moving from an upstream linked node 0i  to a destination node 0j  in each time 

interval (i.e., the maximum number of pedestrians passing through the exit in one time 

interval) 
0 0

( ) 15i jQ t = .  

One of the most remarkable characteristics of animal groups such as flocks of birds, 

schools of fish, and swarms of locusts is how they behave in forming such groups (e.g., 

Parrish and Edelstein-Keshet, 1999; Couzin et al., 2002, 2005; Cucker and Smale, 2007). 

Some types of collective behavior exhibited by animal groups can be regarded as the result of 
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competition among group members for limited resources. When a large number of pedestrians 

pass through a bottleneck together, an irregular succession of arch-like crowds can be 

observed near the bottleneck. This type of collective behavior has been reproduced in 

microscopic pedestrian models such as the social force model (Helbing et al., 2000) and the 

cellular automata model (Kirchner and Schadschneider, 2002). We use our proposed method 

to investigate the collective behavior of pedestrians near exits during evacuation. 
 

 

(a)

ExitLine 1 Line 4Line 3Line 2  

(b)

ExitLine 5 Line 8Line 7Line 6

 

 

 

(c)

Exit 1Line 9 Line 12Line 11Line 10

Exit 2Exit 4 Exit 3

 

(d)

ExitLine 14Line 13 route 1 route 2

 

Fig. 4. Four simulation scenarios identical in size but with different exits and internal 

configurations. For all scenarios, the indoor areas are discretized into 19× 6+20× 5 cells. (a) 

An exit in the north wall and no obstacles in the indoor area. (b) An exit in the north wall and 

six obstacles denoted by the shaded rectangles in the indoor area. (c) Four exits and no 

obstacles in the indoor area. (d) An exit in the north wall and two obstacles in the indoor area.  

 

Fig. 5 shows pseudo-color plots delineating the ratio of the number of pedestrians in 

each cell to the capacity of the cell in scenario (a) at time steps 10, 40, and 80 in the 

simulation. The ratio of the number of pedestrians in each cell to the capacity of the cell at the 

initial time is 0.35, and the parameter θ  in the algorithm used to compute the potential of 

each cell takes the values of 0.5, 0.7, 0.9, 0.95, and 1.0, respectively. Although our 
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network-based model needs less computation time than most microscopic pedestrian models, 

the appearance and disappearance of arching crowds near the exit is clearly discernible in the 

figure for each θ  value.  
 

 

 

 

 

 

  

Fig. 5. Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the 

capacity of the cell at time steps 10, 40, and 80 during an evacuation process in scenario (a) 

when (0) 0.35 (0)i in N=  (where i  is any node) and the parameter θ  = 0.5, 0.7, 0.9, 0.95, 

and 1.0.  

 

It can also be seen that when 0.5θ = , the vertical and diagonal dimensions of the crowd 

are relatively large and the horizontal dimension is relatively small. As the θ  value increases, 

the vertical and diagonal dimensions of the crowd decrease and the horizontal dimension 

increases. When 0.9θ =  and 0.95 , the shape of the crowd is approximately semicircular, 



 13 

reflecting a commonly observed scenario. When the θ  value increases to 1.0, an 

unreasonable crowd shape with larger horizontal and oblique dimensions and a smaller 

vertical dimension emerges. When 1θ = , the potentials of the cells are equal to the number 

of minimal movements along the cells to the exits. Among cells equally distant from an exit, 

those in the horizontal and oblique directions have smaller potential. As a result, most 

pedestrians gather in the horizontal and oblique directions and an odd-shaped crowd forms. 

Thus, it is suggested that the θ  value should be within the range [0.9,0.99] .  

We now investigate the collective behavior of pedestrians near the exit in an indoor area 

with internal obstacles during evacuation. Fig. 6 displays pseudo-color plots delineating the 

ratio of the number of pedestrians in each cell to the capacity of the cell in scenario (b) at time 

steps 5, 20, 40, 60, 80, and 100 during an evacuation process. The number of pedestrians at 

each node at the initial time step is 0.35 of the capacity and the parameter θ  takes the value 

of 0.9. The figure shows that in the process of evacuation, pedestrians bypass these obstacles 

to move forward to the exit and collective behavior occurs near the exit. This indicates that 

our method can be applied to model the evacuation of pedestrians from indoor areas with 

internal obstacles. 
 

 

 

  

Fig. 6. Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to the 

capacity of the cell at time steps 5, 20, 40, 60, 80, and 100 during evacuation in scenario (b) 

when (0) 0.35 (0)i in N=  (where i  is any node) and 0.9θ = .  

 

It can also be seen that two of the obstacles close to the exit block the oblique paths to 
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the exit and that pedestrians approaching the exit can move along the horizontal and vertical 

paths only. Because the number of pedestrians accumulating on the vertical paths is greater 

than the number of pedestrians coming together on the horizontal paths, the pedestrians on the 

vertical paths take more time to leave the area due to congestion. Pedestrians gather in the 

cells near the exit along the horizontal and vertical paths simultaneously before a certain time 

step. After that time step, pedestrians on the horizontal paths have already left the indoor area, 

whereas those on the vertical paths have not. This means that the specific bottleneck space in 

the room has been identified.  

 

 

 

  

Fig. 7. Time-space diagrams delineating the ratio of the number of pedestrians in each cell to 

the capacity of the cell on lines (a) 1, (b) 2, (c) 3, and (d) 4 in Fig. 4 when 0.9θ =  and 

(0) 0.25 (0)i in N=  (where i  is any node). h  denotes the horizontal coordinates of the cells 

on lines 1-4.  

 

We now investigate spillback and dissipation among pedestrians on lines 1-8 (see Fig. 4) 

as the final part of the initial analysis. At each time step, pedestrians not only move along the 
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queues on each line, but also move into or out of the queues. The spillback and dissipation 

behavior of these pedestrians is different from that of vehicle traffic on a single lane. Figs. 7 

(a)-(d) show time-space diagrams delineating the ratio of the number of pedestrians in each 

cell to the capacity of the cell on lines 1-4 when 0.9θ =  and (0) 0.25 (0)i in N=  (where i  

is any node). It can be seen that the evolution of the pedestrian flow on these lines over time 

is divided into three phases. In phase one, the ends of the free flow in the cells relatively 

distant from the exit dissipate and the congested flow in the cells relatively close to the exit 

propagates to both ends of the lines. As a result, the ends of the pedestrian queues move to the 

middle of the lines and pedestrians come together in the corresponding portions of the cells. 

In phase two, the cells occupied by pedestrians are saturated and the congested flow in these 

cells remains unchanged for some time. In phase three, the congested flow in the cell at the 

end of each queue eases and the length of the pedestrian queue decreases. Once phase one has 

occurred, phases two and three alternate until all of the pedestrians on these lines have 

dissipated. 

The queues on the lines close to the exit require more time to dissipate. In phase one, the 

congested flow on line 1, which is relatively distant from the exit, propagates to the two ends 

of the line at two positions deviating from the middle of the line, whereas the congested flow 

in each of lines 2-4, which are relatively close to the exit, propagates at one position in the 

middle of the line.  

Figs. 8 (a)-(d) are time-space diagrams delineating the ratio of the number of pedestrians 

in each cell to the capacity of the cell in lines 5-8 when 0.9θ =  and (0) 0.25 (0)i in N=  ( i  

is any node). The three phases already described can again be observed. However, there are 

two main differences between Figs. 7 and 8. On lines 5 and 6, which are relatively close to 

obstacles, the dissipation of the ends of the free flow and the propagation of the congested 

flow in phase one are irregular due to the obstacles. The time required to empty the cells on 

either side of the middle of these lines is different. The time required to empty the cell on the 

left-hand side is less than that required to empty the corresponding cell on the right-hand side 

due to the existence of obstacles and the geometry of the space. 
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Fig. 8. Time-space diagrams delineating the ratio of the number of pedestrians in each cell to 

the capacity of the cell on lines (a) 5, (b) 6, (c) 7, and (d) 8 in Fig. 4 when 0.9θ =  and 

(0) 0.25 (0)i in N=  ( i  is any node). h  denotes the horizontal coordinates of the cells on 

lines 5-8.  

 

3. Propagation model for multiple flows of pedestrians 

3.1 Model description 

The cell transmission model proposed in the previous section considers a flow of 

pedestrians with one destination, i.e., the model is used to predict the propagation of 

pedestrians in indoor areas with only one exit. In this section, the model is extended to 

formulate the propagation of multiple flows of pedestrians targeting different destinations or 

exits. The notations used for the potentials of cells corresponding to each exit, the maximum 

flows of the arcs, and the capacities of the nodes in the evacuation network are the same as 

those employed in Section 2.2. Other variables are notated as follows. Let E  denote the set 

of destination nodes corresponding to the exits, ( )e
in t  the number of pedestrians targeting 

destination node e  at node i  at time step t , and ( )e
ijD t  the proportion of pedestrians 

targeting destination node e  at node i  who can move to the adjacent node j  in interval 
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t∆  between time steps t  and 1t + .  

For the adjacent downstream node j , ( )e
ijD t  is assumed to be in proportion to the 

product of the number of pedestrians accommodated by the empty space at node j  at time 

step t , ( ) ( )m
j jm E

N t n t
∈

−∑ , and the difference between the potentials of the two nodes 

corresponding to destination node e , e e
i jP P− . It follows that 

( )
( ){ }

( ) ( )
, ,

( ) ( )( )

0, otherwise,

e
i

e e m
i j j jm E e

ie e me
i k k kij m E

k R

P P N t n t
j R

P P N t n tD t
∈

∈
∈

  − −  ∈  − −=   



∑
∑ ∑  (8) 

where e
iR  is the set of neighboring nodes downstream of node i  corresponding to 

destination node e .  

Let ( )e
ijw t  be the number of pedestrians targeting destination node e  who can be sent 

to node j  from node i  in interval t∆  between time steps t  and 1t + . It is assumed that 

the maximum number of pedestrians targeting destination node e  and moving to node j  

from node i  in interval t∆  between time steps t  and 1t +  is positively proportional to 

the number of pedestrians targeting destination node e  at node i  who can move to node j  

in the interval t∆ . ( )e
ijw t  is then formulated as 

( ) ( )
( ) min ( ) ( ), ( )

( ) ( ) ( ) ( )

e e
ij ie e e

ij ij i ij m m m m
ij i ji jm E

D t n t
w t D t n t Q t

D t n t D t n t
∈

  =  
 +   ∑

.  (9) 

Furthermore, it is assumed that the proportion of empty space at a node that can receive 

pedestrians from an adjacent upstream node is partly related to the number of pedestrians who 

can be sent to the node from upstream nodes. The number of pedestrians targeting destination 

node e  who move from node i  to node j  in interval t∆  between time steps t  and 

1t + , ( )e
ijy t , is then written as 

( ) ( )
( ) min ( ), ( )

( )m
j

m
j je e em E

ij ij ijm
kjm E k S

N t n t
y t w t w t

w t
∈

∈ ∈

 − =  
  

∑
∑ ∑

, (10) 

where e
jS  is the set of neighboring nodes upstream of node j  corresponding to destination 

node e .  

Based on the above definitions, the propagation of multiple flows of pedestrians 
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targeting different exits in the evacuation network with multiple destination nodes can be 

described by 

( 1) ( ) ( ) ( )
e e
i i

e e e e
i i ki ij

k S j R

n t n t y t y t
∈ ∈

+ = + −∑ ∑ , (11) 

for all nodes and time steps. 

In the following section, we apply the propagation model to a simulation scenario 

involving multiple exits. 

 

3.2 Numerical Simulations 

The propagation model for multiple flows of pedestrians is used to simulate pedestrian 

evacuation in the scenario shown in Fig. 4 (c). The indoor areas are discretized into 

19× 6+20× 5 cells, there are no obstacles in this scenario, and the four walls each house one 

exit. The following parameters take values the same as those used in the numerical 

simulations presented in Section 2.3. In other words, the time interval 1.2t∆ = , the width of 

the cells 1.0s = , the maximum number of pedestrians passing through the opening between 

two cells in a time interval 10Q = , the maximum capacity of an empty cell to accommodate 

pedestrians 16N = , and the maximum number of pedestrians moving to each destination 

node 0j  from upstream linked node 0i  in each time interval 
0 0

( ) 15i jQ t = .  

Fig. 9 displays pseudo-color plots delineating the ratio of the total number of pedestrians 

in each cell to the capacity of the cell in scenario (c) at time steps 10, 40, and 80 in the 

simulation. Here, the ratio of the number of pedestrians targeting each of the four exits in 

each cell to the capacity of the cell at the initial time is 0.15 and the parameter θ  in the 

algorithm used to compute the potentials is 0.9. Pedestrians targeting different exits affect 

each other and a number of pedestrians slow down due to confronting others targeting the 

other exits. As a result, crowds appear not only near the four exits, but also at the center of the 

room. Near each exit, pedestrians targeting the exit compete with each other for the limited 

space available to go through the exit. However, at the center of the room, pedestrians 

targeting different exits share the paths to each exit.  

The simulation results reveal the collective behavior of pedestrians targeting the same 
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exit. Fig. 10 shows pseudo-color plots delineating the ratio of the number of pedestrians 

targeting exit 1 in each cell to the capacity of the cell at time steps 10, 40, and 70 in this 

scenario. Comparison of Figs. 5 and 10 shows that for the same θ  value of 0.9, the crowd 

near the exit in the north wall takes a different shape in each of the two scenarios. This is 

understandable due to pedestrians on vertical paths approaching the exit at a slower speed 

than those on horizontal paths in scenario (c), leading to the horizontal dimension of the 

crowd being larger than the vertical dimension.  

 

 θ = 0.9, t = 10  θ = 0.9, t = 40  θ = 0.9, t = 80  
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Fig. 9. Pseudo-color plots delineating the ratio of the total number of pedestrians in each cell 

to the capacity of the cell at time steps 10, 40, and 80 during an evacuation process in 

scenario (c) when (0) 0.15 (0)e
i in N=  (where i  is any node and e E∈ ) and the parameter 

θ = 0.9.  
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Fig. 10. Pseudo-color plots delineating the ratio of the number of pedestrians targeting exit 1 

in each cell to the capacity of the cell at time steps 10, 40, and 70 during an evacuation 

process in scenario (c) when (0) 0.15 (0)e
i in N=  (where i  is any node and e E∈ ) and the 

parameter θ = 0.9.  

 

The spillback and dissipation of pedestrians in this scenario are also investigated. Fig. 11 

shows time-space diagrams delineating the ratio of the total number of pedestrians in each 

cell to the capacity of the cell on lines 9-12 (see Fig. 4). One can see that on line 9, two 

transition zones in which the pedestrian density level is relatively low emerge and become 
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larger as time elapses over the course of the evacuation process. As a result, the pedestrian 

queue on the line is divided into three short queues, two near each of the two exits and one in 

the middle of the line. When the queue in the middle of the line disappears, the two transition 

zones also disappear. For the other three lines, the three phases described in Section 2.3 can 

also be observed. Furthermore, the three phases become more obvious on the line adjacent to 

exit 1. 

 

 

 

Fig. 11. Time-space diagrams delineating the ratio of the total number of pedestrians in each 

cell to the capacity of the cell on lines (a) 9, (b) 10, (c) 11, and (d) 12 in Fig. 4 when  

and  (where  is any node and ).  denotes the horizontal 

coordinates of the cells on lines 9-12.  

 

4. Potential considering pedestrian congestion 

4.1 Computation process 
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The model proposed in Section 2 can be used to provide valuable information for 

designing and adjusting the internal layout of and the positions of exits in buildings. For a 

building with an existing layout of internal obstacles and exit positions, another model is 

required to assign pedestrian flow and determine pedestrian movement routes within the 

building space. In dynamic vehicle traffic assignment, it is generally assumed that vehicles 

choose travel routes on the basis of their comparative time-varying travel costs. Travel cost 

consists of free-flow cost and the cost due to vehicle congestion on the route. It is computed 

in a nested form (Huang and Lam, 2002) and the computational process is relatively complex. 

Here, the generalized potential of each cell is defined and used to measure the value of the 

respective weightings assigned to the route distance from the cell to the target exits and the 

congestion disutility caused by front pedestrians on the exit routes. Suppose all pedestrians 

select target cells at the next time step to reduce the generalized potential of each such cell 

toward the destination. This implies that in selecting movement routes to target exits, 

pedestrians consider not only route distances to different target exits, but also take into 

account the congestion costs caused by front pedestrians on such routes (Hoogendoorn and 

Bovy, 2004a,b; Kretz, 2009; Xia et al., 2009; Hartmann, 2010). 

An algorithm for computing the generalized potentials of cells is developed. Some of the 

notations for the algorithm are given as follows. Let C  denote the set of cells in the entire 

pedestrian space, eC  the set of cells near exit e , in  the number of pedestrians in cell i , 

and e
iP  the generalized potential of cell i  toward exit e . Let e

iU  represent whether cell 

i  is assigned the generalized potential toward exit e . It takes the value of 0 if cell i  is not 

assigned the potential; 1 if cell i  will be assigned the potential; and 2 if cell i  has been 

assigned the potential. Let m  denote the number of cells that will be assigned the potential. 

The generalized potentials are computed by the following algorithm.  

Step 1: For all cells i \ eC C∈ , set 0e
iU = ; for all cells j eC∈ , set 1e

jU =  and 1e
jP = . Set 

| |em C=  and 1l = ; 

Step 2: If 0m = , stop; otherwise go to step 3; 

Step 3: For each cell i eV∈ , set 2e
iU = , where { | ,  1 and }e e e

i iV i i C U P l= ∈ = ≤ . Set 

| |em m V← − ; 
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Step 4: For each cell i C∈  with the e
iU  value updated at step 3, check its adjacent cells in 

all six directions: for each cell j  that is connective with cell i  and 0e
jU = , set 

1e
jU = , 1m m← +  and, if | | 1e

jΨ = , let 1e e
j i jP P nτ= + +  ; if | | 1e

jΨ > , let 

| |e
j

e e e
j k j jk

P P nθ τ
∈Ψ

= Ψ + +∑  . Here, e
jΨ ={ }cells  and  are connective, and 2e

ii i j U = , 

(0,1]θ ∈ , and 0τ ≥ ;  

Step 5: Set 1l l← +  and go to step 2. 

In the algorithm, parameter θ  has the same meaning as in the algorithm presented in 

Section 2.1 and the meaning of set e
jΨ  is similar to that of set e

jΩ . Parameter τ  is used to 

weight the effect of the number of front pedestrians on exit routes on the potential value of a 

cell. A larger τ  value indicates that pedestrians pay more attention to the congestion 

disutility caused by front pedestrians on exit routes. In the following section, we use the 

algorithm developed to investigate pedestrian route choice behavior taking congestion 

disutility into account. 

 

4.2 Numerical simulations 

The algorithm used to compute generalized potential is applied to the simulation 

scenario shown in Fig. 4 (d). The indoor areas are discretized into 19× 6+20× 5 cells, there 

are two obstacles in the scenario, and one exit is located in the north wall. The input 

parameters take the same values as those used in previous numerical simulations, i.e., the time 

interval 1.2t∆ = , the width of the cells 1.0s = , the maximum number of pedestrians passing 

through the opening between two cells in a time interval 10Q = , the maximum capacity of 

an empty cell to accommodate pedestrians 16N = , and the maximum number of pedestrians 

moving from upstream linked node 0i  to the destination node 0j  in each time interval 

0 0
( ) 15i jQ t = .  

We now investigate how congestion disutility on front routes taken by pedestrians 

affects their route choice behavior. The ratio of the number of pedestrians in each cell to the 

capacity of the cell at the initial time is shown in Fig. 12 and θ  in the algorithm takes the 

value of 0.9. Fig. 13 shows pseudo-color plots delineating the ratio of the number of 
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pedestrians in each cell to the capacity of the cell at time step 20 where the value of τ  varies 

from 0 to 0.08 with an interval of 0.01.  

In this scenario, there are two routes approaching the exit, i.e., routes 1 and 2, running 

from the west and the east, respectively (see Fig. 4). At the initial time, most pedestrians 

congregate in cells on route 2. Fig. 13 shows that with an increase in τ , the number of 

pedestrians selecting route 1 increases and the number of pedestrians in the crowd on route 2 

declines. This phenomenon is analyzed further through Fig. 14. 
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Fig. 12. A class of initial pedestrian distributions in scenario (d) in Fig. 4. 
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Fig. 13. Pseudo-color plots delineating the ratio of the number of pedestrians in each cell to 

the capacity of the cell at time step 20 during an evacuation process in scenario (d) of Fig. 4 

when θ  takes the value of 0.9 and τ  varies from 0 to 0.08 with an interval of 0.01. The 

ratio of the number of pedestrians in each cell to the capacity of the cell at the initial time is 

shown in Fig. 12. 
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Fig. 14 displays the evolutionary process of the number of pedestrians selecting routes 1 

and 2, respectively, in the above simulations. One can see that as the τ  value increases, the 

number of pedestrians selecting route 1 increases and the time taken for all pedestrians to 

leave the room falls. In addition, an increasing τ  value affects the rate of decline in the 

number of pedestrians on route 2. When the τ  value is larger than 0.05, the time taken for 

all pedestrians to leave the room via each of the two routes is virtually the same and a state of 

equilibrium is reached.  
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Fig. 14. The evolutionary process of the number of pedestrians selecting routes 1 and 2, 

respectively, in each simulation in scenario (d) of Fig. 4 when θ  takes the value of 0.9 and 

τ  varies from 0 to 0.08 with an interval of 0.01. The ratio of the number of pedestrians in 

each cell to the capacity of the cell at the initial time is shown in Fig. 12. 

 

In the final part of the analysis, we investigate the spillback and dissipation of 

pedestrians on lines 13 and 14 (see Fig. 4). Fig. 15 shows time-space diagrams delineating the 
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ratio of the number of pedestrians in each cell to the capacity of the cell on lines 13 and 14 

when , , and the ratio of the number of pedestrians in each cell to the 

capacity of the cell at the initial time is the same as that shown in Fig. 12. It can be seen that 

the evolution of the pedestrian flow on line 13 over time is divided into two phases. In phase 

one, the dissipation and propagation of the pedestrian flow occur simultaneously and a 

congested group of pedestrians splits into two groups with mixed flows on routes 1 and 2. In 

phase two, the two groups of pedestrians with mixed flows gradually dissipate. The evolution 

of the pedestrian flow on line 14 over time is divided into four phases. Two pedestrian flows 

emerge in the first two phases, the first being a relatively dense group of pedestrians that 

dissipates and the second being a relatively low-density group that propagates. In phase three, 

the overall pedestrian flow continues to dissipate and propagate simultaneously and the two 

groups of mixed flows on routes 1 and 2 converge into one congested flow. The congested 

flow gradually dissipates in phase four.  

 

 

Fig. 15. Time-space diagrams delineating the ratio of the number of pedestrians in each cell to 

the capacity of the cell on lines (a) 13, and (b) 14 in Fig. 4 when , , and the 

ratio of the number of pedestrians in each cell to the capacity of the cell at the initial time is 

the same as that shown in Fig. 12.  denotes the horizontal coordinates of the cells on lines 

13 and 14. 

 

5. Conclusions 
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This paper presents an innovative method of constructing a plausible framework to study 

pedestrian movement route choice behavior and predict the physical congestion of pedestrians 

attempting to evacuate from a closed area with internal obstacles. This is achieved by 

converting the pedestrian evacuation problem into a network problem and applying the cell 

transmission model proposed to determine the propagation of pedestrian flow. In this way, 

most current dynamic traffic assignment techniques can be used directly to solve the 

pedestrian evacuation problem. The proposed method is extended to examine the collection, 

dissipation, and propagation behavior of multiple flows of pedestrians targeting different exits 

and to assign pedestrian flow in space during the evacuation process.  

The network-based model proposed in this paper differs from traditional network-based 

models in several aspects. First, because our model discretizes each room, lobby, and corridor 

in detail and uses multiple nodes to represent them, it allows for careful consideration of the 

internal obstacles in a building and the physical congestion of pedestrians. Second, the 

division of pedestrian space into isotropic hexagonal cells allows for the flow of pedestrians 

into neighboring cells to be defined in identical terms. Third, a novel feature of the model lies 

in the use of potential to determine route choice behavior among pedestrians. We developed 

two algorithms to compute the two classes of potential. One class measures the route distance 

to the target exit and the other reflects the value of the respective weightings assigned to the 

route distance to the target exit and the congested disutility caused by front pedestrians on exit 

routes.  

Hoogendoorn and Bovy (2004a, 2004b) propose a pedestrian model based on the 

concept of utility maximization that can be used to predict the route choices and activity 

scheduling of pedestrians. They developed an approach for the dynamic assignment of 

pedestrian flows in continuous time and space. Our model differs from theirs on several 

counts. First, their model treats pedestrians as discrete individuals, whereas pedestrians in a 

certain area can be regarded as an entity under our model. Second, their model relies on the 

optimal control theory in depicting the route choices and activity scheduling of pedestrians. In 

contrast, our model determines pedestrian route choice on the basis of potential, a measure 

reflecting both the route distance to the destination and pedestrian congestion. Third, the two 
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models are designed to serve different purposes. Their model is mainly used to assign 

pedestrian flow and predict route choice and activity scheduling among pedestrians, whereas 

the main application of our model is to investigate the collection, spillback, and dissipation 

behavior of pedestrians and assign pedestrian flow in space.  

The simulation results for the four scenarios examined in this paper show that the 

proposed method can be used to predict the evolution of pedestrian flow over time and space 

in indoor areas with internal obstacles. It can also be used to model collection, propagation, 

and dissipation behavior among pedestrians, and in particular to evaluate the shape and extent 

of congestion near exits. This allows for bottlenecks caused by obstacles on an evacuation 

route to be identified and for propagation-dissipation processes to be explored.  

Issues worthy of investigation in future research aimed at extending the method 

proposed in this paper include how the pedestrian evacuation process unfolds when 

conditions in indoor areas (e.g., the maximum number of pedestrians allowed in each cell and 

the maximum flow of pedestrians between cells) change over time and space. In addition, the 

proposed method could also be applied in studies of the emergence of collective states in 

systems such as flocks of birds, schools of fish, and swarms of locusts. 

 

Appendix 

Model Properties 

The pedestrian propagation model discussed in Section 2.2 has the following properties. 

Property 1. When ( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

≤ −∑ , then ( ) ( ) ( )
j

j j kj
k S

N t n t y t
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− ≥ ∑  holds; 
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kj j j
k S

w t N t n t
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j j kj
k S
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. � 

Property 1 indicates that when the empty space at a node at a given time step can 

accommodate all of the pedestrians sent from adjacent upstream nodes in the interval between 
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that time step and the next time step, the number of pedestrians accommodated by the empty 

space at the node at that time step is not less than the number of pedestrians moving into the 

node from upstream nodes in the time interval. When these empty spaces cannot 

accommodate these pedestrians, the two numbers of pedestrians are identical. 

Property 2. The relation ( ) ( )
i

i ij
j R

n t y t
∈

≥ ∑  holds; furthermore, when ∃ ij R∈ , s.t. 

( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

> −∑ , then ( ) ( )
i

i ik
k R

n t y t
∈

> ∑  holds.  

Proof. ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i i

ij ij ij i i ij i
j R j R j R j R

y t w t D t n t n t D t n t
∈ ∈ ∈ ∈

 ≤ ≤ = = ∑ ∑ ∑ ∑ . 

( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

> −∑  ⇒  ( ) ( )ij ijy t w t< .  

In similar fashion, ( ) ( )
i

ik i
k R

y t n t
∈

<∑ . � 

Property 2 means that the number of pedestrians at a node at a given time step is not less 

than the number of pedestrians moving away from the node to downstream nodes in the 

interval between that time step and the next time step. Furthermore, when there is at least one 

node downstream of the node with empty space at a given time step that cannot accommodate 

all of the pedestrians sent from adjacent upstream nodes in the time interval, the former 

number is greater than the latter number. 

Property 3. The equation ( 1) ( )i i
i C i C

n t n t
∈ ∈

+ =∑ ∑  holds, where C  is the set of all nodes 

in the evacuation network. 
Proof. ( 1) ( ) ( ) ( ) ( )

i i

i i ki ij i
i C i C i C k S i C j R i C

n t n t y t y t n t
∈ ∈ ∈ ∈ ∈ ∈ ∈

+ = + − =∑ ∑ ∑∑ ∑∑ ∑ . � 

Property 3 shows that the number of pedestrians in the entire space is conservatively 

estimated in the propagation process. 

Property 4. When ( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

≤ −∑ , then ( 1) ( ) ( )
j

j j jk
k R

n t N t y t
∈

+ ≤ − ∑  holds; 

when ( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

> −∑ , then ( 1) ( ) ( )
j

j j jk
k R

n t N t y t
∈

+ = − ∑  holds.  

Proof. These two results are directly deduced from Eq. (7) and Property 1. � 

Property 4 indicates that when the empty space at a node at a given time step can 

accommodate all of the pedestrians sent from adjacent upstream nodes in the interval between 

that time step and the next time step, the number of pedestrians at the node at the next time 
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step is not more than the difference between the maximum number of pedestrians at the node 

at the initial time step and the number of pedestrians moving away from the node to 

downstream nodes in the time interval. When these empty spaces cannot accommodate these 

pedestrians, the number of pedestrians is equal to this difference. 

Property 5. The relation ( 1) ( )
i

i ki
k S

n t y t
∈

+ ≥ ∑ holds. Furthermore, when ∃ ij R∈ , s.t. 

( ) ( ) ( )
j

kj j j
k S

w t N t n t
∈

> −∑ , then ( 1) ( )
i

i ki
k S

n t y t
∈

+ > ∑  holds.  

Proof. These results are directly deduced from Eq. (7) and Property 2. � 

Property 5 means that the number of pedestrians at a node at a given time step is not less 

than the number of pedestrians moving to the node from upstream nodes in the interval 

between the previous time step and that time step. Furthermore, when there is at least one 

node downstream of the node with empty space at that time step that cannot accommodate all 

of the pedestrians sent from adjacent upstream nodes in the time interval, the former number 

is greater than the latter number.  

Property 6. When ( ) 0in t ≥  and ∀ ij R∈ , ( ) ( )j jN t n t≥ , then ( 1) ( )i in t N t+ ≤  holds.  

Proof. ( ) 0in t ≥  and ∀ ij R∈ , ( ) ( )j jN t n t≥  ⇒  ∀ ij R∈ , ( ) 0ijy t ≥  ⇒   

( ) ( ) ( )
i

i ij i
j R

N t y t N t
∈

− ≤∑ . By Property 4, ( 1) ( )i in t N t+ ≤  holds. � 

Property 7. When ∀ ik S∈ , ( ) 0kn t ≥  and ∀ kj R∈ , ( ) ( )j jN t n t≥ , then 

( 1) 0in t + ≥  holds. 

Proof. ∀ ik S∈ , ( ) 0kn t ≥  and ∀ kj R∈ , ( ) ( )j jN t n t≥  ⇒  ∀ ik S∈ , ( ) 0kiy t ≥ . By 

Property 5, ( 1) 0in t + ≥  holds. � 

Properties 6 and 7 illustrate that if the number of pedestrians at any one node at a given 

time step is within a certain range, then the number of pedestrians at any one node in the 

subsequent time step is guaranteed to remain within that range.  

Empirical studies show that as pedestrian density increases, pedestrian flow increases 

from zero to over capacity and then returns to near zero. Clearly, this means a “Λ” 

flow-density relationship exists (Virkler and Elayadath, 1994; Daamen and Hoogendoorn, 
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2007). We now verify whether the model is consistent with a “Λ” flow-density relationship. 

The flow-density relationship formulated by the model for the corridor shown in Fig. 16 is 

then investigated. In the corridor discretized into 4× 2+5× 3 cells, pedestrians move from left 

to right. Let the set of neighboring cells upstream of the opening o  denoted by a zigzag line 

be Φ  and the set of downstream neighboring cells be Ω . The potential and maximum 

capacity of the cells in sets Φ  and Ω  and the number of pedestrians in these cells at time 

step t  are shown in Fig. 16. The maximum number of pedestrians moving into any one cell 

j∈Ω  from another cell ji S∈Φ  in the interval t∆  between time steps t  and 1t +  is 

( )ijQ t Q= .  

 

 
(P+1,N/2,

n/2)

(P+1,
N,n)

(P+1,
N/2,n/2)

(P+1,
N,n)

(P+1,
N,n)

(P,
N,n)

(P,
N,n)

(P,
N,n)

(P,
N,n)

o  

Fig. 16. A corridor discretized into 4× 2+5× 3 cells. The direction of the arrow indicates the 

movement direction of pedestrians. The three numbers in each pair of brackets denote the 

potential and maximal capacity of the corresponding cell and the number of pedestrians in the 

cell at time step t , respectively.  
 

The following equation can be deduced from Eqs. (3) and (4). 

{ }( ) min 2,ijw t n Q= , ∀  j∈Ω , and ji S∈Φ . (12) 

Thus, the number of pedestrians moving into cell j∈Ω  from cell ji S∈Φ  in the interval 

t∆  between time steps t  and 1t + , ( )ijy t , is written as 
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{ }( ) min 2, ,( ) 2ijy t n Q N n= − , j∈Ω , and ji S∈Φ . (13) 

Let the ratio of the total number of pedestrians in the region covering all of the cells in sets 

Φ  and Ω  at time t  to the capacity of the region be ρ , i.e., n Nρ = . Let the number of 

pedestrians passing through the opening o  in the interval t∆  between time steps t  and 

1t +  be ( )ρΓ . Clearly , we have 

{ }( ) min 4 ,8 ,4 (1 )N Q Nρ ρ ρΓ = − . (14) 

The model is thus consistent with a “Λ” flow-density relationship.  
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