

The HKU Scholars Hub

The University of Hong Kong

Title	Acid treatment biasing to C/N, 13C and 15N of organic matter: A Molecular insight
Author(s)	Brodie, CR; Leng, MJ; Casford, JSL; Heaton, THE; Kendrick, CP; Lloyd, JM; Zong, Y; Bird, MI
Citation	The 1st DIPPI-C Workshop, Durham, UK., 8-10 May 2012. In Abstract Bok of the 1st DIPPI-C Workshop, 2012, p. 13
Issued Date	2012
URL	http://hdl.handle.net/10722/149316
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Acid treatment biasing to C/N, δ^{13} C and δ^{15} N of organic matter: A Molecular insight

<u>Brodie, C.R.,</u>^a Leng, M.J.,^{b,d} Casford, J.S.L.,^cHeaton, T.H.E.,^dKendrick, C.K.,^d Lloyd, J.M.,^c Zong, Y.Q.,^a and Bird, M.I.^e

^aDepartment of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR ^bDepartment of Geology, University of Leicester, University Road, Leicester, UK ^cDepartment of Geography, Durham University, Durham, UK ^dNERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, UK ^eEarth and Environmental Sciences, James Cook University, Cairns Campus, Australia

It is known that acid treatment methods employed to remove inorganic carbon (IC) from sample material prior to analysis for C/N, δ^{13} C and δ^{15} N cause non-linear, unpredictable biasing to the organic matter (OM) fraction. Consequently, measured C/N, δ^{13} C and δ^{15} N have an uncertainty much greater than instrument precision: uncertainties for C/N are reported in the range of 1 - 100, for δ^{13} C in the range of 0.2 - 6.8 % and for δ^{15} N in the range of 0.2 - 1.5 %, in both modern and palaeo environmental materials. Brodie et al (2011) extended this investigation to a down-core lake sedimentary archive (Lake Tianyang, South China) and noted the potential for uncertainties to preclude "common" interpretations of the data (e.g., C/N values as an OM provenance tool; δ^{13} C as a proxy for changes in C₃ and C₄ vegetation). It is evident that the size of uncertainty between sample horizons varies considerably implying a differential relative reaction to acid treatment down-core (i.e., as the type, relative amount and physical state of organic and inorganic components change).

We are now investigating this biasing at the molecular level by employing ¹³C-NMR and GC-IRMS techniques on a suite of modern and palaeo environmental materials and on a lake sedimentary archive. This will provide an important insight into the effect of acid treatment on organic compounds (i.e. removal from the sample, breakdown of compounds and partial removal) and associated isotopic fractionation. From an improved understanding of the type of compounds most susceptible to alteration/removal during the acid treatment processes it will be possible to consider refinements to the acid pre-treatment process and provide information on the relative down-core changes in those compounds susceptible to change (which we may be able to glean environmental information from).

<u>Keywords</u>: Acid treatment; C/N, δ^{13} C, δ^{15} N, measurement uncertainty, palaeoclimate