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Weak localization of bulk channels in topological insulator thin films
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Weak antilocalization (WAL) is expected whenever strong spin-orbit coupling or scattering comes into play.
Spin-orbit coupling in the bulk states of a topological insulator is very strong, enough to result in the topological
phase transition. However, the recently observed WAL in topological insulators seems to have an ambiguous
origin from the bulk states. Starting from the effective model for three-dimensional topological insulators, we
find that the lowest two-dimensional (2D) bulk subbands of a topological insulator thin film can be described by
the modified massive Dirac model. We derive the magnetoconductivity formula for both the 2D bulk subbands
and surface bands. Because with relatively large gap, the 2D bulk subbands may lie in the regimes where the
unitary behavior or even weak localization (WL) is also expected, instead of always WAL. As a result, the bulk
states may contribute small magnetoconductivity or even compensate the WAL from the surface states. Inflection
in magnetoconductivity curves may appear when the bulk WL channels outnumber the surface WAL channels,
providing a signature of the weak localization from the bulk states.
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I. INTRODUCTION

Topological insulators are materials with gapped bulk
states but gapless surface states.1–3 Due to the topological
origin and Dirac fermion nature of the topological surface
states, the topological insulators are expected to have excel-
lent performance in transport.4,5 One of intriguing transport
features of topological insulators is the weak antilocaliza-
tion (WAL), appearing as the negative magnetoconductivity
with a sharp cusp in low fields.6–20 WAL is intrinsic to
topological insulators: (i) so far, most samples have low
mobility and long coherence length, making the quantum
interference an important correction to the diffusion transport;
(ii) due to the spin-momentum locking resulted from strong
spin-orbit coupling, the single gapless Dirac cone of the
topological surface states carries a π Berry phase,21,22 which
changes the interference of time-reversed scattering loops
from constructive to destructive. The destructive interference
will give the conductivity an enhancement, which can be
destroyed by applying a magnetic field that breaks the π Berry
phase, leading to the negative magnetoconductivity with the
cusp.

WAL is always expected in systems with either strong
spin-orbit scattering or coupling.23–30 Due to vacancies and
defects, most as-grown topological insulators have also bulk
band carriers, which actually dominate the transport.31,32 The
bulk bands of topological insulator possess strong spin-orbit
coupling, strong enough to invert the normal band structure
and give rise to the topological phase transition that defines the
nontrivial nature of topological insulators. One of the simplest
choices when considering the conduction bands of a band
insulator with spin-orbit coupling that respects time-reversal
symmetry is the Rashba model

HR = h̄2k2

2m∗ + λ(σxky − σykx), (1)

where h̄ is the Planck constant over 2π , (kx,ky) is the wave
vector, k2 = k2

x + k2
y , m∗ is the effective electron mass, and

σx,y are Pauli matrices that describe the electron spin. The

Rashba model describes two branches of conduction bands,
each band has spin locked to momentum, just like the gapless
surface states of topological insulator. As a result, the Berry
phase for each band of the Rashba model also gives exact
π .33 According to the π Berry phase argument, if the bulk
bands of a topological insulator were described by the Rashba
model, they should also have the weak antilocalization in
the quantum diffusion transport, just like the gapless surface
states.

Experimentally, the weak antilocalization is studied by
fitting the magnetoconductivity with the Hikami-Larkin-
Nagaoka formula,23

�σHLN(B) = α
e2

πh

[
�

( h̄

4eBL2
+ 1

2

)
− ln

( h̄

4eBL2

)]
,

(2)

where � is the digamma function, B is the magnetic field,
α and L are two fitting parameters, L is an effective phase
coherence length. α is a prefactor, each band that carries
a π Berry phase should give an α = −1/2 prefactor.21,50

In the weak interband coupling limit, multiple independent
bands with WAL should add up to give bigger negative α,
e.g., −1, and −1.5. The experimentally fitted α covers a
wide range between around −0.4 and −1.1, suggesting that
the observed WAL can be interpreted by considering only
one or two surface bands,6–16 despite of the coexistence of
multiple carrier channels from bulk and surface bands at the
Fermi surface. Even, the sharp WAL cusp can be completely
suppressed by doping magnetic impurities only on the top
surface of a topological insulator.10 Why the observed WAL
seems to be weakly tied to the bulk bands with strong spin-
orbit coupling still poses a mystery to both experimentalists
and theorists. Various interpretations were proposed, such as
electron-electron interaction12 and the mixture of the surface
states on the top and bottom surfaces of the topological thin
film.14
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In this work, we try to investigate the role played by the
bulk states in the quantum diffusion transport of a topological
insulator thin film. We find that the two-dimensional (2D)
modified Dirac model can provide a unified description for
both the surface bands and the lowest 2D bulk subbands of
a topological insulator thin film. We derive the magnetocon-
ductivity formula for the 2D modified Dirac model in the
weak interband scattering limit. In this unified description,
whether one has weak antilocalization or weak localization
(WL) is governed mainly by the mass (gap) term in the
modified Dirac model. In the massless limit, one has weak
antilocalization, while a finite gap can lead to the weak
localization or the unitary behavior. Contrast to the gapless
surface states, the bulk states of a topological insulator actually
have relatively large gap. Therefore, while the surface bands
probably exhibit weak antilocalization, we suggest that bulk
bands may reside in the weak localization or the unitary
regime. The experimentally observed “weak antilocalization”
may be a collective result from both the weak antilocalization
of the surface channels and weak localization (or unitary
behavior) of the bulk channels. This may help to explain why
the fitting parameters of the Hikami-Larkin-Nagaoka formula
cover a wide range in the experiments.6–16 The unitary behavior
(with small magnetoconductivity proportional to the square of
the magnetic filed) of bulk channels may help to understand
why the bulk states seem “missing” in the magnetoconductivity
although they actually dominate the transport.

The paper is organized as follows. In Sec. II, we introduce
the 2D modified Dirac model that describes both the surface
bands and the lowest 2D bulk subbands of a topological
insulator thin film. In Sec. III, the magnetoconductivity
formula is presented for the 2D modified Dirac model in the
quantum diffusion regime and the weak interband scattering
limit. In Sec. IV A, we show the crossover from WAL to WL for
a single channel of the modified Dirac model. In Secs. IV B
and IV C, we present the total magnetoconductivity of two
surface WAL channels and multiple bulk WL channels. Finally,
a summary is given in Sec. V.

II. UNIFIED DESCRIPTION OF BULK AND SURFACE OF
A TOPOLOGICAL INSULATOR

The minimal model to describe a three-dimensional (3D)
topological insulator is the modified Dirac model. It can be
derived with the help of k · p perturbation theory,34–36

H3D = εk + Ak · α + Mkβ, (3)

where k = (kx,ky,kz) are wave vectors, the 4 × 4 Dirac
matrices α = (αx,αy,αz), and β satisfy the relations

α2
i = β2 = 1, αiαj = −αjαi, αiβ = −βαi. (4)

εk = C + D(k2
z + k2), Mk = m − B(k2

z + k2), k± = kx ±
iky , and k2 = k2

x + k2
y . A, B, C, D, and m are model param-

eters. For simplicity, three-dimensional isotropy is assumed.
The modified Dirac model constitutes the minimal description
of the nontrivial topological nature of band insulators; for
mB > 0, the solution of d-dimensional topologically protected
in-gap boundary states (surface states, edge states) can be
found by solving the (d + 1)-dimensional modified Dirac
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FIG. 1. (Color online) (a) The gapped bulk (grey area) and
gapless surface (dashed lines) bands of a 3D topological insulator.
(b) The quantum confinement along the z direction splits the 3D
bulk bands into 2D subbands, while the hybridization of the top
and bottom surfaces opens a gap (�) for the gapless surface bands.
(c) In the ultrathin limit, the Fermi surface intersects with only one
pair of bulk subbands (with band gap M) and one pair of gapped
surface bands (each curve is two-fold degenerate). The horizontal dot
line marks the Fermi energy EF measured from the Dirac point.

model with open boundary conditions.34,37,38,41 Contrast to
it, we emphasize that the non-Dirac models with spin-orbit
coupling or scattering [e.g., the Rashba model in Eq. (1)]
are not enough to describe a topological insulator because
they can not give the topologically protected boundary states
solution. Therefore it is unconsidered to expect the bulk states
of topological insulator to have WAL by simply assuming them
as non-Dirac electron gases with strong spin-orbit coupling or
scattering.

With translational symmetry in all three dimensions, H3D

in Eq. (3) gives two energy bands [(grey area in Fig. 1(a)]:

E3D
±k = εk ±

√
M2

k + A2
(
k2
z + k2

)
, (5)

separated by the band gap 2m. Now we consider the film
geometry by imposing the open boundary conditions to
the top and bottom surfaces defined along the z direction,
topologically protected surface states will emerge in the gap
[red dashed lines in Fig. 1(a)]. For infinite thickness along
the z direction (the bulk limit), the surface bands are gapless.
Now if we consider finite thickness along the z direction, the
quantum confinement will split the 3D bulk bands E±k into
a series of 2D subbands [solid curves in Fig. 1(b)] as kz is
quantized into discrete values. Meanwhile, a finite-size gap
will open for the surface bands [dashed curves in Fig. 1(b)]
due to the hybridization of top and bottom surfaces.37–41 In the
ultrathin limit (e.g., three quintuple layers of Bi2Se3 or Bi2Te3

thin films11,13,42,43), the Fermi surface may intersect with up to
one pair of 2D bulk subbands [see Fig. 1(c)], and the gap � of
the surface bands becomes quite visible.42

A. Topological surface bands

For the gapped surface bands (dashed curves in Fig. 1),
their effective Hamiltonian can be derived from the 3D model
in Eq. (3),38,41

HS = D̃k2 + τz

(
�

2
− B̃k2

)
σz + Ã(σxky − σykx). (6)

125138-2



WEAK LOCALIZATION OF BULK CHANNELS IN . . . PHYSICAL REVIEW B 84, 125138 (2011)

It has two 2 × 2 blocks, with τz = ±1 the block index.
σx,y,z are the Pauli matrices. The model parameters C̃, D̃,
�, B̃, and Ã are functions of the thickness. The gap � for
the surface bands is opened at the Dirac point due to the
top-bottom surface hybridization. In general, � increases with
decreasing thickness, but could also vanish at some critical
thicknesses where there may be topological phase transitions
between the quantum spin Hall and normal states.38–41,44

� and B̃ become negligible for large enough thickness (e.g.,
tens of nanometers38). � can acquire extra correction in the
presence of magnetic doping45,46 � → � + τz�F , where �F

represents a mean-field from the exchange interaction with
magnetic impurities. Because block τz = +1 and −1 have
opposite spin definitions, the same magnetic doping will
increase the gap in one block while decrease in the other.47

B. 2D bulk subbands

The simplest way to consider the lowest 2D bulk subbands
in Figs. 1(b) and 1(c) is to replace 〈kz〉 = 0 and 〈k2

z 〉 =
(π/d)2, where d is the thickness of the film. After defining
C + D(π/d)2 = 0, M/2 ≡ m − B(π/d)2, the Hamiltonian of
the lowest 2D bulk subbands can be written as

H = Dk2 + τz

(
M

2
− Bk2

)
σz + A(σxkx + σyky). (7)

τz,σx,y,z have the same meanings as in Eq. (6). Hamiltoni-
ans (6), (7), and the BHZ model for the quantum spin Hall
effect of the HgTe quantum well48 can be classified as the
modified Dirac model in two dimensions.34 Comparing with
the original Dirac model, it has an extra Bk2σz term, which
helps to regulate the boundary properties as k → ∞ and give
well-defined integer Chern number38 and Z2 index.41 A set of
parameters for this model is given in Table I for 5 nm.

In the absence of the Dk2 and Bk2σz terms and for only
one block of the modified Dirac model, the quantum diffusion
transport is known.17,18 In the gapless limit (M = 0), there is
only weak antilocalization with negative magnetoconductivity
cusp.49,50 A finite gap M will lead to a crossover from
weak antilocalization to (i) the unitary regime with small
magnetoconductivity proportional to the square of magnetic
field for moderate gap/Fermi energy ratios, and to (ii) weak
localization with positive magnetoconductivity cusp for large
gap/Fermi energy ratios.17,18

In contrast to the surface bands with no or small gaps, the
2D bulk subbands of a 3D topological insulator have relatively
large band gaps (more than hundreds of meV, see Table I). As
a result, instead of always weak antilocalization, the unitary

TABLE I. The parameters in Eq. (7) for d = 5 nm, calculated
from the model parameters of the effective model for 3D topological
insulators.36 kC ≡ √

M/2B.

Bi2Se3 Bi2Te3 Sb2Te3

D (eVÅ2) 30.4 49.68 −10.78
M (eV) −0.5 −0.58 −0.28
B (eVÅ2) −44.5 −57.38 −48.51
A (eVÅ) 3.33 2.87 3.40
kC (Å−1) 0.075 0.071 0.054

behavior or weak localization is likely expected for the bulk
states of a topological insulators. Moreover, Dk2 and Bk2σz

will bring more scenarios.

III. MAGNETOCONDUCTIVITY FOR 2D MODIFIED
DIRAC MODEL

We have shown that the 2D modified Dirac model in Eq. (7)
provides a unified description for (i) the 2D bulk subbands due
to the quantum confinement, and (ii) the surface bands of a 3D
topological insulator. The quantum diffusion transport of the
bulk subbands and surface bands can be studied starting from
this model. It has two 2 × 2 blocks with block index τz = ±,
each block has a conduction band and a valence band, denoted
as |τz,c/v〉, with the band dispersions given by Ec/v = Dk2 ±√

(M/2 − Bk2)2 + A2k2, where c and v stand for conduction
and valence bands, respectively. Without loss of generality, we
assume that the transport is only contributed by the conduction
bands that cross the Fermi surface. Each band contributes one
channel. If we assume that the interband coupling by impurity
scattering is weak, the total conductivity is the summation
of that from each band intersecting the Fermi surface. The
conduction bands | + ,c〉 and | − ,c〉 should have the same
magnetoconductivity formula. The wavefunction of | + ,c〉 is
given by | + ,c〉 = (cos �

2 , sin �
2 eiϕ)T eik·r/

√
S, where tan ϕ ≡

ky/kx , and at the Fermi surface

cos � ≡ M/2 − Bk2
F

EF − Dk2
F

, (8)

where EF and kF are the Fermi energy and Fermi wave vector,
respectively.

The weak localization and weak antilocalization happen
in the quantum diffusion regime, where the mean free path
(e) due to elastic scattering is much shorter than the sample
size, but the phase coherence length (φ) due to inelastic
scattering is comparable with the sample size. The quantum
diffusion transport can be studied by the standard diagram-
matic technique.23,24,49,50,53 WL and WAL are most evident in
the magnetoconductivity, which is defined as the conductivity
change as a function of an applied magnetic field B. In this
work, we consider that the conductivity is measured along
the x direction and the magnetic field is applied only along
z direction. In the calculation, we consider the nonmagnetic
elastic scattering by static centers as well as random scattering
by magnetic impurities. The calculation is similar to that for
the topological surface states with a magnetically doped gap,18

where cos � ≡ �/2EF compared to Eq. (8), so we present
only the result here. For band | + ,c〉, the zero-temperature
magnetoconductivity is found as

�σ (B) =
∑
i=0,1

αie
2

πh

[
�

(
2

B

2
φi

+ 1

2

)
− ln

(
2

B

2
φi

)]
, (9)

where � is the digamma function, 2
B ≡ h̄/(4e|B|) is the mag-

netic length, 1/2
φi ≡ 1/2

φ + 1/2
i , φ is the phase coherence

length when cos � = 0,

α0 = η2
v(1 + 2ηH )

2(1 + 1/g1)
, α1 = − η2

v(1 + 2ηH )

2(1 + 1/g0 + 1/g2)
,
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−2
0 = g0

22(1 + 1/g1)
−2

1 = g1

22(1 + 1/g0 + 1/g2)
,

g0 ≡ 2

[
a4 + b4

a4

1/2(
1/2

e + 1/2
z

) − 1

]
,

g1 ≡ 2

[
1/2(

1/2
e − 1/2

z

)
(2a2b2)/(a4 + b4) − 2/2

x

− 1

]
,

g2 ≡ 2

[
a4 + b4

b4

1/2(
1/2

e + 1/2
z

) − 1

]
, (10)

a ≡ cos �
2 , b ≡ sin �

2 . Also, 1/2 ≡ 1/2
e + 1/2

m, where e

is the mean free path. The calculation assumes short mean
free path (e 	 B). A variable m is the magnetic scattering
length that characterizes the strength of the random scattering
by magnetic impurities, 1/2

m = 1/2
x + 1/2

y + 1/2
z , where

x,y,z are components along the x,y,z directions, respectively.
In-plane isotropy (x = y) is assumed in Eq. (9). Shorter
m means stronger magnetic scattering. In Eq. (9), ηv = [1 −
a2b2(2/2

e − 2/2
z)/(a4 + b4)]−1 comes from the correction

to velocity from the ladder diagrams,54 and ηH = −(1 −
1/ηv − 2/2

x)/2 comes from the dressed Hikami boxes.50 The
lengthes are related to characteristic times by 2

e = Dτe and
2

m = Dτm, where τe is the elastic scattering time, τm is the
magnetic scattering time. The defined diffusion coefficient
D = v2

F τ/2, where 1/τ ≡ 1/τe + 1/τm and the Fermi velocity
vF is given by

vF = 1

h̄
(2DkF + A sin � − 2BkF cos �). (11)

IV. RESULTS

A. Single channel

We have shown that for each channel contributed by
the modified Dirac model, the magnetoconductivity is given
by Eq. (9). Despite of many parameters in Eq. (10), the
most decisive one is cos � defined in Eq. (8). As shown in
Fig. 2, the magnetoconductivity formula describes a crossover
from weak antilocalization to weak localization, controlled
by cos �. In the limit cos � = 0, one has only WAL with
negative magnetoconductivity cusp. Increasing cos � will
drive the system first into the unitary regime with small
magnetoconductivity proportional to B2, and finally to WL
with positive magnetoconductivity cusp when cos � → 1. In
the limit cos � = 0, one has α0 = 0 and α1 = −1/2; in the
limit cos � → 1, one has α0 = 1/2 and α1 = 0, corresponding
to that the prefactor α in the Hikami-Larkin-Nagaoka formula
goes from −1/2 to 1/2.

The π Berry phase explained the weak antilocalization of
a single gapless Dirac cone,21 the crossover as the function of
cos � can be understood similarly. For the conduction band
| + ,c〉, the Berry phase at the Fermi surface is found as

−i

∫ 2π

0
dϕ〈+,c| ∂

∂ϕ
| + ,c〉 = π (1 − cos �), (12)

where cos � is given by Eq. (8). Therefore one has the π Berry
phase for WAL when cos � = 0 and 0 Berry phase for WL
when cos � → 1. Different from the Berry phase in absence
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0.1
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Weak antilocalization 
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0.904

0.78

0.55
0.336
0.22

0.105
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Δσ
(B

) 
[e

2 /h
]

B  [T]

cosΘ=0

Weak localization 

Unitary

(a)

M/2-Bk2
F = EF-Dk2

FM/2 > Bk2
FM/2 < Bk2

F M/2 = Bk2
F

FIG. 2. (Color online) (a) Magnetoconductivity of a single
channel of the 2D modified Dirac model. A crossover from weak
antilocalization to weak localization is expected when increasing
cos �. φ = 300 nm and e = 10 nm. Weak isotropic magnetic
scattering is assumed, x/

√
3 = z/

√
3 = m = 10000

√
3 nm. (b)–

(g) Possible pseudospin patterns of a conduction band of the modified
Dirac model.

of Bk2σz term,57 one may also have the π Berry phase as well
as the weak antilocalization at 2πρ = k2

F = M/2B, where ρ

is the sheet carrier density of investigated band.19 Moreover,
Dk2

F may effectively reduce EF to EF − Dk2
F , reminding that

the effective model for the gapless surface states also contains
the Dk2 term,41,58 this may explain the earlier crossover to
weak localization at relatively large EF .13 Because the Berry
phase depends on cos �, the crossover can also be understood
by the pseudospin orientation along z direction. Several typical
orientation cases are given in Figs. 2(b)–2(g). WAL with
α = −1/2 corresponds to purely in-plane polarization, as in
Figs. 2(c) and 2(e), WL with α = 1/2 corresponds to the
fully polarized along z, as in Figs. 2(b) and 2(g). Due to the
Bk2

F σz term, one may expect purely in-plane polarization at
kF = √

M/2B, and the pseudospin polarization can change
from z to −z direction as shown in Figs. 2(d)–2(f). Due to the
Dk2

F , one may expect the full polarization along z at finite kF

as shown in Fig. 2(g), instead of always at the bottom of the
band [see Fig. 2(b)].

The Berry phase of the valence bands is given by π (1 +
cos �). Therefore, if the sample is p type, i.e., the Fermi
surface is at the 2D valence subbands, the quantum diffusion
transport will give the similar competition between WL and
WAL, as long as the 2D valence subbands are also well
described by the massive Dirac model (situations in Bi2Se3

and Bi2Te3 may be more complicated because of their valence
band maxima away from the � point).

Recently the quantum diffusion transport was also the-
oretically studied for the HgTe quantum well,19 where
the suppression of weak antilocalization (corresponding
to the unitary behavior in this work) was also found for the BHZ
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model. Beyond the suppression of the weak antilocalization,
we also expect the weak localization in the HgTe quantum well
because the BHZ model can also be classified as the modified
Dirac model.

Because the two blocks of the modified Dirac model in
Eq. (7) are mutually time-reversal partners, the crossover
here does not break time-reversal symmetry, different from
those in the ferromagnetic semiconductors with spin-orbit
coupling55,56 and magnetically doped topological surface
states.13,18

B. Two surface channels and two bulk channels

Now we consider the case shown in Fig. 1(c), with
two channels of surface bands and two channels of bulk
subbands (note that each curve in Fig. 1 represents two
degenerate bands labeled by the block index τz). We have
shown that for each channel of the modified Dirac model, the
magnetoconductivity is given by Eq. (9), which describes a
crossover from weak antilocalization to weak localization with
increasing cos �. In the weak interband scattering limit, the
total magnetoconductivity is the summation of that from each
band. Similar to Eq. (8), we introduce two control parameters:

cos �B = M/2 − Bk2
F

EF − Dk2
F

,

(13)

cos �S = �/2 − B̃k2
F

ẼF − D̃k2
F

,

to characterize the bulk subbands and the surface bands,
respectively. The parameters in Eq. (13) were defined in
Hamiltonians (6) and (7). Note that the Fermi energies EF

and ẼF are measured from the Dirac points, which may be
defined differently for the bulk and surface bands. In absence
of magnetic impurities, two surface channels have the same
cos �S , and two bulk channels have the same cos �B . Except
in the ultra thin limit (usually less than 5 nm in thickness),
the surface states has ignorable � and B̃.11,38,42,43 It is fair
to expect small cos �S that gives weak antilocalization. On
the other hand, we expect relatively large cos θB that gives the
unitary behavior or weak localization. When the Fermi surface
is near the bottom of the band, the gap M and the Fermi energy
EF dominate cos �B . The bulk subbands have relatively large
gap, about 0.5 eV for Bi2Se3 and Bi2Te3 (note that this gap is
measured at the � point,36 not the smaller indirect gaps, which
are irrelevant to the topological nature35,51,52). The Fermi
surfaces of as-grown samples are usually less than 0.20 eV
measured from the bottom of the bulk conduction band (see
Table II), i.e., EF is about 0.25 to 0.5 eV measured from the
Dirac point. According to these data, cos �B ranges between
0.5 and 1, i.e., between the unitary and weak localization
regimes according to Fig. 2.

In Fig. 3(a), we show the total magnetoconductivity for
two surface and two bulk channels, with cos �S = 0 and
cos �B = 0.85. Although the surface and bulk channels
exhibit the weak antilocalization and the weak localization,
respectively, they collectively behave like the weak antilo-
calization. Therefore, in Fig. 3(b), we try to fit the total
magnetoconductivity by the Hikami-Larkin-Nagaoka formula.
Although widely exploited in fitting experiments, this formula

TABLE II. The Fermi energies of n-type as-grown bulk crystals
and thin films of topological insulators from the ARPES measure-
ments. The Fermi energies are measured from the bottom of the
conduction band.

Sample Thickness Fermi energies (eV)

Bi2Se3
a bulk 0.1

Bi2Se3
b bulk 0.05

Bi2Te3
c bulk 0.045

Bi2Se3
d bulk 0.15

Bi2Se3
e 2 ∼ 5 QL 0.1 ∼ 0.2

Bi2Te3
f 80 nm 0.03

2–5 QL 0.1 ∼ 0.2
Bi2Se3

g 3 QL 0.11

aReferences 51, 22, and 46.
bReference 31.
cReference 52.
dReference 45.
eReference 42.
fReference 43.
gReference 13.

may not be suitable for multiple channels, because the
magnetoconductivity consists of two competing terms even
for single channel of the modified Dirac model, not to mention
multiple channels. Therefore no ubiquitous fitting result of α

and L can be reached when changing the fitting range. For
B ∈ [−0.5,0.5], we obtain α = −0.316 and L = 941, and for
B ∈ [−0.05,0.05], α = −0.659 and L = 363. Both fittings
can not reproduce the magnetoconductivity well in the whole
range.

In Fig. 4, we show more general cases with cos �S ∈
{0,0.05,0.1} and cos �B ∈ {0.5,0.7,0.8,0.85,0.9}. They are
fitted by the Hikami-Larkin-Nagaoka formula in Eq. (2).
Note that the fitting results (Table III) and almost cover the
experimentally recorded α (∈ [−1.1, − 0.38], see Table IV).

-0.4 -0.2 0.0 0.2 0.4
-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Δ σ
(B

) 
[e

2 /h
]

B  [T]

(b)2 bulk 
channels
cosΘ

B
=0.85

2 surface 
channels 
cosΘ

S
=0

total
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FIG. 3. (Color online) (a) The magnetoconductivity of two
surface channels with cos �S = 0 (dotted line), two bulk channels
with cos �B = 0.85 (dashed line), and their summation (solid line).
(b) solid: the same as the solid line in (a). Dash line: fitting to solid
line between B ∈ [−0.5,0.5] with α = −0.316 and L = 941. Dotted
line: fitting to solid line between B ∈ [−0.05,0.05] with α = −0.659
and L = 363. All the parameters are given in Fig. 2.
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TABLE III. Fitting the weak localization curves in Fig. 4 by the
Hikami-Larkin-Nagaoka formula in Eq. (2). α and L are two fitting
parameters. B are the perpendicular magnetic field in units of Tesla.

B ∈ [−0.5, 0.5] B ∈ [−0.05, 0.05]

cos �S cos �B α L (nm) α L (nm)

0 0.5 −0.883 341 −0.991 301
0 0.7 −0.650 468 −0.944 309
0 0.8 −0.444 683 −0.815 331
0 0.85 −0.316 941 −0.659 363
0 0.9 −0.184 1502 −0.419 433
0.05 0.5 −0.787 193 −0.945 169
0.05 0.7 −0.489 266 −0.830 175
0.05 0.7 −0.119 582 −0.315 221
0.1 0.5 −0.594 117 −0.829 98.5
0.1 0.7 −0.211 181 −0.505 108

These fitting results imply that one can approach to α ∼ −1/2
anyway, because of the freedom in choosing L and fitting
range. Therefore α ∼ −1/2 does not always mean that there
is only one surface channel of single massless Dirac cone.
It may happen to be the collective result of multiple surface
and bulk channels. In Figs. 4(b) and 4(c), one even has weak
localization, which is expected by us in some ultrathin films
though, so far, there was no such report.

C. Two surface channels and more than two bulk channels

Now we considered the case in Fig. 1(b), where more
than two bulk channels can participate in the transport, and
the surface channels have negligible gap. Without loss of
generality, we consider four bulk channels. It is fair to expect
the 2D bulk subbands higher than the lowest pair to have
similar descriptions as the modified Dirac model in Eq. (7) but
with different parameters. For simplicity, we assume that the
four bulk channels have the same cos �B .

Because now we have unequal numbers of weak antilocal-
ization channels from the surface bands and weak localization
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) [
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FIG. 4. (Color online) Total magnetoconductivity of two surface
channels in the weak antilocalization regime and two bulk channels
in the unitary or weak localization regime. All the parameters are
given in Fig. 2.

TABLE IV. The experimentally fitted prefactor α and phase coher-
ence length L in the Hikami-Larkin-Nagaoka magnetoconductivity
Eq. (2).

Sample Thickness T (K) α L (nm)

Bi2Se3
a 10 nm 1.8 −0.5 ∼ −0.38 106 ∼ 237 b

Bi2Se3
c 10 ∼ 20 nm 0.3 −0.38 ...

Bi2Te3
d 50 nm 2 −0.39 331

Bi2Se3
e 2 ∼ 6 QL 1.5 −0.39 75 ∼ 200

Bi2Se3
f 45 nm 0.5 −0.31 1100

(Bi,Pb)Se3 ... ... −0.35 640
Bi2Se3

g 5 ∼ 20 nm 0.01 ∼ 2 −1.1 ∼ −0.4 143 ∼ ∞
Bi2Se3

h 3 ∼ 100 QL 1.5 −0.63 ∼ −0.13 100 ∼ 1000
Bi2Se3

i 20 nm 0.3 ∼ 100 −1.1 ∼ −0.7 15 ∼ 300

aReference 8.
bCalculated from Bφ ≡ h̄/(4eL2).
cReference 9.
dReference 10.
eReference 11.
fReference 12. Electron-electron interaction was also considered in
the fitting.
gReference 14.
hReference 15.
iReference 16.

channels from the bulk subbands, the weak localization
behavior of the bulk channels may be hidden by the weak
antilocalization of the surface channels at small magnetic field,
but the superiority in channel number of the bulk band will
eventually change the trend at some finite magnetic field. As
shown in Fig. 5, inflections in magnetoconductivity appear
at finite magnetic fields, and even change the magnetocon-
ductivity from negative to positive. These inflections will be
evident signatures indicating that the bulk states could have
weak localization instead of always weak antilocalization.
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FIG. 5. (Color online) (a) The magnetoconductivity of two
surface channels with cos �S = 0 (dotted line) and four bulk channels
with cos �B = 0.85 (dashed line), and their summation (solid
line). (b) Total magnetoconductivity of two surface channels with
cos �S = 0 and four bulk channels in the unitary or weak localization
regime. All the other parameters are given in Fig. 2.
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V. SUMMARY AND DISCUSSION

Starting with the modified Dirac model as a unified starting
point, we derive the magnetoconductivity formula for both the
lowest 2D bulk subbands and surface bands of a topological
insulator thin film. A crossover from the weak antilocalization
to weak localization is expected, controlled by the pseudospin
polarization defined by the parameters in the modified Dirac
model. Unlike those in the ferromagnetic semiconductor, this
crossover does not break time-reversal symmetry. Due to
their relatively large gap, we suggest that the bulk states
may lie in the regimes where the unitary behavior or even
the weak localization is also expected, instead of the ex-
pected weak antilocalization. As a result, the experimentally
observed weak antilocalization may be a collective result
of the weak antilocalization of the surface bands and weak
localization of the bulk bands. It may explain the deviation of
the fitting prefactor of the Hikami-Larkin-Nagaoka formula
from the expected −1/2 in the experiments, as well as
the insensitive response of the bulk states to magnetic field
or doping. When the bulk channels outnumber the surface
channels, inflection in the magnetoconductivity may appear
at some finite magnetic field. The inflection will give a
signature that the bulk states of a topological insulator can

give weak localization, although they have strong spin-orbit
coupling.

In this work, we consider only the ultrathin limit of a
3D topological insulator. In the bulk limit, because a large
number of 2D bulk subbands will contribute to the transport,
the direct coupling [by the kz terms in Hamiltonian (3)]
and scattering via impurities among them become inevitable.
In this limit, we argue that the intersubband coupling and
scattering will give extra “Cooperon gaps” to all the vertex
corrections from the maximally crossed diagrams for the 2D
bulk bands. These Cooperon gaps will reduce effectively the
phase coherence length, and drive the transport via each 2D
bulk subband out of the quantum diffusion regime. As a result,
we expect the 3D bulk states to have neither weak localization
nor weak antilocalization, but the unitary behavior with small
magnetoconductivity proportional to B2.
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