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Production and Insurance under Regret Aversion

Abstract

This paper examines the behavior of a regret-averse producer facing revenue risk. To

insure against the revenue risk, the producer can purchase a coinsurance contract with an

endogenously chosen coinsurance rate. Regret-averse preferences are characterized by a

utility function that includes disutility from having chosen ex-post suboptimal alternatives.

We show that the regret-averse producer never fully insures against the revenue risk even

though the coinsurance contract is actuarially fair. When the producer is sufficiently regret

averse and the loss probability is high, we further show that the regret-averse producer

chooses not to purchase the actuarially fair coinsurance contract. Even when purchasing

the actuarially fair coinsurance contract is optimal, we derive sufficient conditions under

which the regret-averse producer reduces the optimal output level as compared to that

without the coinsurance contract. These results are distinct from those under pure risk

aversion, thereby making the consideration of regret aversion crucial.

JEL classification: D21; D24; D81; G22

Keywords: Insurance; Production; Regret theory; Revenue Risk

1. Introduction

Revenue insurance, such as multiple peril crop insurance (Mahul and Vermersch, 2000)

and livestock revenue insurance (Hart et al., 2001), has been introduced for many agricul-

tural products, which serves as a risk-sharing mechanism between farmers and insurers. The

literature that examines the effect of revenue insurance on the behavior of a risk-averse pro-

ducer is largely conducted within the von Neumann-Morgenstern expected utility context

(see, e.g., Machnes, 1995; Ford et al., 1996; Wong, 2000; Machnes and Wong, 2003; Hau,

2006; to name just a few). Such an approach rules out the situation that the producer may

have a desire to avoid consequences wherein the producer appears to have made ex-post
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suboptimal decisions, which are de facto optimal ex ante based on the information available

at that time. To account for this consideration, Bell (1982, 1983) and Loomes and Sugden

(1982) propose regret theory that defines regret as the disutility arising from not having

chosen the ex-post optimal alternative, which is later axiomatized by Quiggin (1994) and

Sugden (1993). Regret theory is supported by a large body of experimental literature that

documents regret-averse preferences among individuals (see, e.g., Loomes, 1988; Loomes et

al., 1992; Loomes and Sugden, 1987; Starmer and Sugden, 1993).

The purposes of this paper are to incorporate regret theory into the behavior of a pro-

ducer under uncertainty in general, and examine how regret aversion affects the producer’s

production and insurance decisions in particular. We model uncertainty as a shock to the

producer’s revenue, which can be insured against by purchasing a coinsurance contract that

the producer can choose a coinsurance rate. Following the seminal work of Braun and

Muermann (2004) and Wong (2011), we characterize the producer’s regret-averse prefer-

ences by a utility function that includes disutility from having chosen ex-post suboptimal

alternatives. The extent of regret depends on the difference between the utility level of the

actual profit and that of the maximum profit attained by making the optimal production

and insurance decisions had the producer learned the true outcome of the revenue risk in

advance.

In the absence of insurance against the revenue risk, we show that introducing regret

aversion to the producer can induce the producer to produce more or less than the optimal

output level that would have been chosen if the producer were purely risk averse. Since the

regret-averse producer has to take into account the impact of regret, the optimal output

level becomes less extreme as compared to that of the purely risk-averse producer. The

global effect of regret aversion on the producer’s production decision is therefore to reduce

the sensitivity of the optimal output level to changes in the probability distribution of the

revenue risk. We further show that the optimal output level is less sensitive to changes in

the probability distribution of the revenue risk with an increase in the producer’s degree of

regret aversion, and becomes completely insensitive in the limiting case when the producer

is infinitely regret averse.
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When the regret-averse producer can purchase the coinsurance contract that is actuar-

ially fair, we show that full insurance against the revenue risk is never optimal because the

producer would regret to a great extent when no loss actually occurs (see also Braun and

Muermann, 2004). We further show two novel results. First, the regret-averse producer

may not purchase the actuarially fair coinsurance contract. While risk aversion induces the

producer to purchase insurance so as to reduce the variation of his/her profit, regret aversion

gives rise to a countervailing incentive that induces the producer to purchase no insurance

when the loss probability is high so as to minimize regret. We show that the incentive to

opt for no insurance due to regret aversion dominates the incentive to opt for insurance

due to risk aversion if the producer is sufficiently regret averse and the loss probability is

high. Second, even when purchasing the actuarially fair coinsurance contract is optimal, the

regret-averse producer does not necessarily produce more with than without the coinsur-

ance contract. In the presence of insurance against the revenue risk, it is well-known from

the literature that the risk-averse producer would like to produce more. Regret aversion,

however, creates a countervailing incentive that induces the producer to produce less so as

to minimize regret. When the producer is sufficiently regret averse and the loss probability

is high, we show that the incentive to lower output due to regret aversion dominates the

incentive to raise output due to risk aversion, thereby rendering the output-reducing effect

of insurance that exists under regret aversion but not under risk aversion.

The rest of this paper is organized as follows. Section 2 delineates the model of a regret-

averse producer facing revenue risk. Section 3 examines the global and marginal effects of

regret aversion on the producer’s production decision in the absence of insurance against

the revenue risk. Section 4 characterizes the optimal production and insurance decisions of

the regret-averse producer. The final section concludes.

2. The model

Consider a producer who produces a single commodity according to a deterministic
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cost function, C(Q), where Q ≥ 0 is the output level chosen, C(0) = C′(0) = 0, and

C′(Q) > 0 and C′′(Q) > 0 for all Q > 0. The output price is exogenously fixed at P > 0

per unit. There is a shock such that a fraction, γ ∈ (0, 1], of the producer’s revenue,

PQ, is lost with probability p ∈ (0, 1). Given that a loss occurs, the producer’s actual

revenue is only (1−γ)PQ. To insure against such revenue risk, the producer can purchase a

coinsurance contract with an endogenously chosen coinsurance rate, α ∈ [0, 1].1 Specifically,

the producer pays an insurance premium, (1+m)pγαPQ, and receives an indemnity, γαPQ,

in case of a loss, where m ≥ 0 is the loading factor such that (1 + m)p < 1.2 To focus on

the pure effect of insurance on the behavior of the producer, we restrict our attention to

the case that the coinsurance contract is actuarially fair, i.e., we set m = 0.

For a given output level, Q, and a given coinsurance rate, α, the producer’s profit,

Πi(Q, α), is given by

Πi(Q, α) =











(1− γ)PQ− C(Q) + (1 − p)γαPQ if i = 1,

PQ − C(Q) − pγαPQ if i = 0.

(1)

where i = 1 or 0, indicating whether a loss occurs or not, respectively. The producer

purchases no insurance if α = 0, and opts for full insurance if α = 1. In the latter full-

insurance case, the producer’s profit becomes Πi(Q, 1) = (1 − pγ)PQ − C(Q), which is

non-stochastic and thus is unaffected by the revenue risk.

Following Braun and Muermann (2004) and Wong (2011), we define the producer to

be regret averse if his/her preferences are represented by the following “modified” utility

function that includes some compensation for regret:

V (Π) = U(Π) − βG[U(Πmax) − U(Π)], (2)

where U(Π) is a von Neumann-Morgenstern utility function with U ′(Π) > 0 and U ′′(Π) < 0,

β ≥ 0 is a constant regret coefficient, and G(·) is a regret function with G(0) = 0, G′(·) > 0,

1The qualitative results are unaffected if we replace the coinsurance contract by a deductible insurance
contract.

2If (1 + m)p ≥ 1, the indemnity would not exceed the insurance premium when the loss occurs. In this
case, the producer has no incentive to purchase any insurance.
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and G′′(·) > 0. The regret function, G(·), depends on the difference between the utility levels

of the actual profit, Π, and the maximum profit, Πmax, that the producer could have earned

by making the optimal production and insurance decisions had the producer observed the

realized value of the revenue shock. Since Π cannot exceed Πmax, the producer experiences

disutility from forgoing the possibility of doing better due to the ignorance of the realized

revenue shock. If β = 0, the producer becomes a traditional risk-averse expected utility

maximizer. It is evident from Eq. (2) that the producer is always risk averse and is also

regret averse when β > 0.

To characterize the regret-averse producer’s optimal production and insurance decisions,

we have to first derive the maximum profit, Πmax. Suppose that a loss occurs. Using Eq.

(1) with i = 1, we have

Πmax
1 = max

Q≥0,α∈[0,1]
(1− γ)PQ− C(Q) + (1 − p)γαPQ

= (1 − pγ)PQ1 − C(Q1), (3)

where Q1 solves C′(Q1) = (1− pγ)P . On the other hand, if there is no loss, we use Eq. (1)

with i = 0 to derive

Πmax
0 = max

Q≥0,α∈[0,1]
PQ − C(Q) − pγαPQ

= PQ0 − C(Q0), (4)

where Q0 solves C′(Q0) = P . It follows from C′′(Q) > 0 that Q1 < Q0.

The ex-ante decision problem of the regret-averse producer is to choose an output level,

Q, and a coinsurance rate, α, so as to maximize the expected value of his/her regret-

theoretical utility function:

max
Q≥0,α∈[0,1]

p

{

U [Π1(Q, α)− βG{U(Πmax
1 )− U [Π1(Q, α)]}

}

+(1− p)

{

U [Π0(Q, α)− βG{U(Πmax
0 ) − U [Π0(Q, α)]}

}

, (5)
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where Πi(Q, α) is given by Eq. (1) for i = 0 and 1, and Πmax
1 and Πmax

0 are given by Eqs.

(3) and (4), respectively. The first-order conditions for program (5) are given by

p

{

1 + βG′{U(Πmax
1 )− U [Π1(Q

∗, α∗)]}

}

×U ′[Π1(Q
∗, α∗)][(1− γ)P − C′(Q∗) + (1 − p)γα∗P ]

+(1− p)

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

∗, α∗)]}

}

×U ′[Π0(Q
∗, α∗)][P − C′(Q∗) − pγα∗P ] = 0, (6)

and

p

{

1 + βG′{U(Πmax
1 )− U [Π1(Q

∗, α∗)]}

}

U ′[Π1(Q
∗, α∗)](1− p)γPQ∗

−(1− p)

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

∗, α∗)]}

}

U ′[Π0(Q
∗, α∗)]pγPQ∗ ≤ 0, (7)

where an asterisk (∗) indicates an optimal level, and condition (7) holds with equality

if α∗ > 0. The second-order conditions for program (5) are satisfied given the assumed

properties of U(Π), C(Q), and G(·).

3. Optimal production decision in the absence of insurance

In this section, we consider the case that the producer is prohibited from insuring against

the revenue risk, i.e., α ≡ 0. To characterize the regret-averse producer’s optimal production

decision, we have to first derive the maximum profit, Πmax. Suppose that a loss occurs.

Using Eq. (1) with i = 1 and α = 0, we have

Πmax
2 = max

Q≥0
(1− γ)PQ− C(Q)

= (1 − γ)PQ2 − C(Q2), (8)
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where Q2 solves C′(Q2) = (1 − γ)P . On the other hand, if there is no loss, the maximum

profit, Πmax
0 , is given by Eq. (4) since the producer purchases no insurance even when the

coinsurance contract is available. It follows from C′′(Q) > 0 that Q2 < Q1 < Q0.

The ex-ante decision problem of the regret-averse producer is to choose an output level,

Q, to maximize the expected value of his/her regret-theoretical utility function:

max
Q≥0

p

{

U [Π1(Q, 0)]− βG{U(Πmax
2 ) − U [Π1(Q, 0)]}

}

+(1− p)

{

U [Π0(Q, 0)]− βG{U(Πmax
0 )− U [Π0(Q, 0)]}

}

, (9)

where Πi(Q, 0) is given by Eq. (1) for i = 0 and 1 with α = 0, and Πmax
2 and Πmax

0 are

given by Eqs. (4) and (8), respectively. The first-order condition for program (9) is given

by

p

{

1 + βG′{U(Πmax
2 )− U [Π1(Q

◦, 0)]}

}

U ′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]

+(1− p)

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)][P − C′(Q◦)] = 0, (10)

where Q◦ is the optimal output level. It is evident from Eq. (10) that (1−γ)P < C′(Q◦) <

P . Since C′′(Q) > 0, it follows that Q2 < Q◦ < Q0.

To examine the global effect of regret aversion on the behavior of the producer, we derive

the optimal output level should the producer be purely risk averse, i.e., β = 0. In this case,

the first-order condition, Eq. (10), reduces to

pU ′[Π1(Q
†, 0)][(1− γ)P − C′(Q†)] + (1 − p)U ′[Π0(Q

†, 0)][P − C′(Q†)] = 0, (11)

where Q† is the purely risk-averse producer’s optimal output level. Using Eqs. (10) and (11),

we compare Q◦ with Q† to establish the following proposition. All proofs of propositions

are relegated to Appendix A.
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Proposition 1. There exists a critical value, p◦ ∈ (0, 1), of the loss probability, p, given

by

p◦ =
U ′[Π0(Q̄, 0)][P − C′(Q̄)]

U ′[Π0(Q̄, 0)][P − C′(Q̄)] − U ′[Π1(Q̄, 0)][(1− γ)P − C′(Q̄)]
, (12)

where Q̄ is the output level that solves

U(Πmax
0 ) − U [Π0(Q̄, 0)] = U(Πmax

2 ) − U [Π1(Q̄, 0)]. (13)

In the absence of insurance against the revenue risk, if p < (>) p◦, the regret-averse producer

optimally chooses a lower (higher) output level than the purely risk-averse producer, i.e.,

Q◦ < (>) Q†. If p = p◦, then Q◦ = Q† = Q̄.

Eq. (13) defines the output level, Q̄, at which the extent of regret in the no-loss state,

U(Πmax
0 ) − U [Π0(Q̄, 0)], is equal to that in the loss state, U(Πmax

2 ) − U [Π1(Q̄, 0)]. To see

the intuition underlying Proposition 1, suppose that the producer is purely risk averse.

When the loss probability, p, is small, the producer optimally chooses the output level, Q†,

closer to the optimal output level without a loss, Q0, and further way from the one with

a loss, Q2, so as to minimize the variability of his/her profit. Introducing regret aversion

to the producer makes the producer take into account the substantial disutility from the

large discrepancy of the output level, Q† − Q2, when a loss occurs. To avoid regret, the

regret-averse producer optimally adjusts the output level downward from Q† to move a bit

closer to Q2 so that Q◦ < Q†. On the other hand, in the case that p is large, Q† is closer

to Q2 and further away from Q0. The regret-averse producer as such optimally adjusts the

output level upward from Q† to reduce the discrepancy of the output level, Q0 −Q◦, when

a loss does not occur. Hence, we have Q◦ > Q†.3

An immediate implication of Proposition 1 is that the production decision of the regret-

averse producer is less sensitive to changes in the probability distribution of the revenue

risk than that of the purely risk-averse producer. The following proposition shows that

3Wong (2011) derives similar results in the context of a regret-averse banking firm.
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this result extends to a marginal increase in the degree of regret aversion as gauged by the

constant regret coefficient, β.

Proposition 2. In the absence of insurance against the revenue risk, the regret-averse

producer’s optimal output level, Q◦, increases (decreases) with an increase in the constant

regret coefficient, β, i.e., dQ◦/dβ > (<) 0, if the loss probability, p, is smaller (larger) than

the critical value, p◦.

As the producer becomes more regret averse, the sensitivity of his/her optimal output

level to changes in the probability distribution of the revenue risk goes down. In the limit

when the producer is infinitely regret averse, the optimal output level, Q̄, is the one that

solves Eq. (13), rendering the compensation for regret to be independent of the revenue

risk. It is evident from Eq. (13) that the infinitely regret-averse producer’s optimal output

level, Q̄, is indeed completely insensitive to changes in the probability distribution of the

revenue risk.

4. Optimal production and insurance decisions

In this section, we resume the original case that the producer can insure against the

revenue risk. As a benchmark, we first consider that the producer is purely risk averse, i.e.,

β = 0. Solving Eq. (6) and condition (7) with β = 0 yields the following proposition.

Proposition 3. The purely risk-averse producer uses the actuarially fair coinsurance

contract to fully insure against the revenue risk. The producer’s optimal output level, Q1,

solves C′(Q1) = (1 − pγ), which is larger than the one without insurance, Q†, for all

p ∈ (0, 1).

Since the coinsurance contract is actuarially fair, the purely risk-averse producer opti-

mally opts for full insurance. The producer’s profit becomes Πi(Q, 1) = (1−pγ)PQ−C(Q),
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which is non-stochastic. Hence, the producer optimally produces at the output level, Q1,

that solves C′(Q1) = (1− pγ)P , which is also the optimal output level should the producer

be risk neutral. By fully insuring against the revenue risk, the risk-averse producer is in-

duced to produce more so that Q1 exceeds the output level without insurance, Q† (see, e.g.,

Machnes, 1995; Ford et al., 1996; Wong, 2000; Machnes and Wong, 2003; Hau, 2006).

To examine the production and insurance decisions of the regret-averse producer, we

define the following function:

H(p) =

{

1 + βG′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}

}

U ′[Π1(Q
◦, 0)]

−

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)], (14)

where Q◦ is the optimal output level in the absence of insurance against the revenue risk.

Solving Eq. (6) and condition (7) yields the following proposition.

Proposition 4. Given that the following condition holds:

1 + βG′(0)

1 + βG′{U(Πmax
0 )− U [Π0(Q2, 0)]}

<
U ′[Π0(Q2, 0)]

U ′[Π1(Q2, 0)]
, (15)

there exists a critical value, p∗ ∈ (0, 1), of the loss probability, p, at which H(p∗) = 0. For

all p ∈ (0, p∗), the regret-averse producer chooses the optimal output level, Q1, that solves

C′(Q1) = (1 − pγ)P , and uses the actuarially fair coinsurance contract to partially insure

against the revenue risk such that the optimal coinsurance rate, α∗ ∈ (0, 1), solves

{

1 + βG′{U(Πmax
1 ) − U [Π1(Q1, α

∗)]}

}

U ′[Π1(Q1, α
∗)]

−

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q1, α

∗)]}

}

U ′[Π0(Q1, α
∗)] = 0. (16)

For all p ∈ [p∗, 1), the producer purchases no insurance and chooses the optimal output level,

Q◦, that solves Eq. (10). If condition (15) does not hold, the producer’s optimal coinsurance

rate, α∗ ∈ (0, 1), solves Eq. (16) and the optimal output level is Q1 for all p ∈ (0, 1).
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To see the intuition for Proposition 4, we write Eq. (1) as

Πi(Q, α) =











(1− pγ)PQ− C(Q) − (1− p)(1− α)γPQ if i = 1,

(1− pγ)PQ− C(Q) + p(1− α)γPQ if i = 0.
(17)

As is evident from Eq. (17), the producer’s production decision affects his/her exposure

to the revenue risk through the last term on the right-hand side of Eq. (17). This term

could have been completely eliminated had the producer chosen full insurance, i.e., α = 1,

within his/her own discretion. As such, the revenue risk should not affect the producer’s

production decision as long as the producer finds it optimal to insure against the revenue

risk. The optimal output level is then solely determined by maximizing (1−pγ)PQ−C(Q),

thereby giving rise to the optimality condition, C′(Q1) = (1− pγ)P .

Proposition 4 shows that the regret-averse producer never opts for full insurance against

the revenue risk even though the coinsurance contract is actuarially fair, which is consistent

with the findings of Braun and Muermann (2004). To see the intuition, suppose that the

regret-averse producer fully insures against the revenue risk. While the producer’s profit

is non-stochastic under full insurance, the extent of regret is not. Specifically, there is no

regret only when a loss occurs, and a lot of regret otherwise. Since the regret function,

G(·), is convex, the regret-averse producer is induced to lower the coinsurance rate below

unity so as to reduce the variation of regret between the loss and no-loss states. Such

incentive, however, is absent for the purely risk-averse producer, thereby making the results

of Propositions 3 and 4 distinct from each other.

A novel result of Proposition 4 is that there are reasonable conditions under which the

regret-averse producer has no incentive to purchase the actuarially fair coinsurance contract.

Suppose that

G′(0)

G′{U(Πmax
0 ) − U [Π0(Q2, 0)]}

<
U ′[Π0(Q2, 0)]

U ′[Π1(Q2, 0)]
, (18)

which holds if G(·) is sufficiently convex in general, and if G′(0) = 0 in particular. In this
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case, we can write condition (15) as

β >
U ′[Π1(Q2, 0)]− U ′[Π0(Q2, 0)]

G′{U(Πmax
0 ) − U [Π0(Q2, 0)]}U ′[Π0(Q2, 0)]− G′(0)U ′[Π1(Q2, 0)]

, (19)

where the expression on the right-hand side of condition (19) is positive given condition

(18). Hence, if the producer is sufficiently regret averse such that condition (19) holds, it

follows from Proposition 4 that purchasing the actuarially fair coinsurance contract is no

longer optimal when the loss probability, p, is high, i.e., p ∈ [p∗, 1), where p∗ ∈ (0, 1) is the

critical loss probability that solves H(p∗) = 0.4

To see the underlying intuition, suppose that the regret-averse producer purchases no

insurance against the revenue risk. As such, the producer’s profit in the no-loss state is

higher than that in the loss state. Risk aversion induces the producer to purchase insurance

so as to reduce the variation of his/her profit between the two states. However, there is a

countervailing incentive that comes from regret aversion. Under no insurance, the extent

of regret in the loss state is given by U(Πmax
1 ) − U [Π1(Q

◦, 0)], while that in the no-loss

state is given by U(Πmax
0 ) − U [Π0(Q

◦, 0)]. Since both Q◦ and Q1 approach Q2 as the loss

probability, p, goes to unity, there is no regret in the loss state and the extent of regret in

the no-loss state is minimized in this extreme case wherein the producer does not insure

against the revenue risk. Hence, when the producer is sufficiently regret averse and the loss

probability is high, the incentive to opt for no insurance due to regret aversion dominates

the incentive to opt for insurance due to risk aversion. The regret-averse producer as such

optimally refrains from insuring against the revenue risk.

Define the following function:

K(p) =

{

1 + βG′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}

}

U ′[Π1(Q
◦, 0)]

−

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)], (20)

4In Braun and Muermann (2004), the loss is exogenously determined, which is tantamount to fixing the
output level in our model. In this case, U(Πmax

0 ) = U [Π0(Q2, 0)] since Q0 = Q2. Condition (15) as such
never holds, thereby making the purchase of the actuarially fair coinsurance contract always optimal in the
context of Braun and Muermann (2004).



Production and Insurance under Regret Aversion 13

where Q◦ is the optimal output level in the absence of insurance against the revenue risk.

Since Πmax
1 > Πmax

2 and G′′(·) > 0, it follows from Eqs. (14) and (20) that H(p) > K(p)

for all p ∈ (0, 1). We show in the following proposition that the regret-averse producer who

optimally purchases the actuarially fair coinsurance contract does not necessarily produce

more than Q◦, in sharp contrast to what Proposition 3 would have suggested.

Proposition 5. Given that condition (15) holds, there exists a critical value, p∗∗ ∈ (0, p∗),

of the loss probability, p, at which K(p∗∗) = 0. For all p ∈ (0, p∗), the regret-averse producer

purchases the actuarially fair coinsurance contract and produces at the optimal output level,

Q1, that is larger than, equal to, or smaller than the one without insurance, Q◦, depending

on whether p ∈ (0, p∗∗), p = p∗∗, or p ∈ (p∗∗, p∗), respectively. If condition (15) does not

hold, the producer always produces more with than without insurance, i.e., Q1 > Q◦, for all

p ∈ (0, 1).

The intuition for Proposition 5 is as follows. In the absence of insurance against the

revenue risk, the producer’s profit in the no-loss state is higher than that in the loss state.

The extent of regret in the loss state is given by U(Πmax
2 )−U [Π1(Q

◦, 0)], while that in the

no-loss state is given by U(Πmax
0 )−U [Π0(Q

◦, 0)]. If the producer is allowed to purchase the

actuarially fair coinsurance contract, risk aversion induces the producer to produce more

than Q◦. Regret aversion, on the other hand, creates a countervailing incentive that induces

the producer to produce less. To see this, suppose that the loss probability, p, is sufficiently

close to p∗ so that the optimal coinsurance rate, α∗, is very close to zero (see Proposition

4). If the producer still produces at Q◦ in the presence of insurance, the extent of regret in

the no-loss state remains unchanged but that in the loss state increases since Πmax
1 > Πmax

2 .

Given that the regret function, G(·), is convex, the regret-averse producer has incentive to

produce less than Q◦ so as to reduce the variation of regret between the two states. Hence,

when the producer is sufficiently regret averse and the loss probability is high, the incentive

to lower output due to regret aversion dominates the incentive to raise output due to risk

aversion. The regret-averse producer as such optimally produces less with than without the
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actuarially fair coinsurance contract.

5. Conclusion

This paper examines the behavior of a regret-averse producer facing revenue risk. To

insure against the revenue risk, the producer can purchase a coinsurance contract with an

endogenously chosen coinsurance rate. Following the regret-theoretical approach of Braun

and Muermann (2004) and Wong (2011), we characterize the producer’s regret-averse pref-

erences by a utility function that includes disutility from having chosen ex-post suboptimal

alternatives. We show that the regret-averse producer never opts for full insurance against

the revenue risk even though the coinsurance contract is actuarially fair. When the pro-

ducer is sufficiently regret averse and the loss probability is high, we further show that the

regret-averse producer dose not purchase the actuarially fair coinsurance contract. Even

when purchasing the actuarially fair coinsurance contract is optimal, the regret-averse pro-

ducer does not necessarily produce more with than without the coinsurance contract. These

results are in sharp contrast to those under pure risk aversion, suggesting that regret aver-

sion plays a distinctive role in shaping the optimal production and insurance decisions in

the presence of revenue risk.

Appendix A

Proof of Proposition 1. The second-order condition for program (9) is given by

SOC◦ = −p

{

1 + βG′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}

}

U ′[Π1(Q
◦, 0)]C′′(Q◦)

−(1− p)

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)]C′′(Q◦)

+p

{

1 + βG′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}

}

U ′′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]2
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+(1− p)

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

◦, 0)]}

}

U ′′[Π0(Q
◦, 0)][P − C′(Q◦)]2

−pβG′′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}U ′[Π1(Q
◦, 0)]2[(1 − γ)P − C′(Q◦)]2

−(1− p)βG′′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}U ′[Π0(Q
◦, 0)]2[P − C′(Q◦)]2

< 0, (A.1)

which is satisfied given U ′′(Π) < 0, C′′(Q) > 0, G′(·) > 0, and G′′(·) > 0. Hence, Q◦ that

solves Eq. (10) is the unique maximum solution. Similarly, when β = 0, the second-order

condition is given by SOC† < 0, which is given by Eq. (A.1) with β = 0 and Q◦ replaced

by Q†. Hence, Q† that solves Eq. (11) is the unique maximum solution in the case of pure

risk aversion.

Evaluating the left-hand side of Eq. (10) at Q◦ = Q† yields

β(1− p)U ′[Π1(Q
†, 0)][P − C′(Q†)]

×

{

G′{U(Πmax
0 ) − U [Π0(Q

†, 0)]}− G′{U(Πmax
2 ) − U [Π1(Q

†, 0)]}

}

, (A.2)

where we have used Eq. (11). Define the following function:

F (p) = U(Πmax
0 )− U [Π0(Q

†, 0)]− {U(Πmax
2 )− U [Π1(Q

†, 0)]}. (A.3)

Since G′′(·) > 0, expression (A.2) is positive or negative, depending on whether F (p) is

positive or negative, respectively. Differentiating Eq. (A.3) with respect to p yields

F ′(p) = {U ′[Π1(Q
†, 0)][(1− γ)P − C′(Q†)] − U ′[Π0(Q

†, 0)][P − C′(Q†)]}
dQ†

dp
. (A.4)

From Eq. (11), we have (1− γ)P < C′(Q†) < P . Eq. (A.4) then implies that F ′(p) has the

opposite sign to that of dQ†/dp. Totally differentiating Eq. (11) with respect to p yields

dQ†

dp
= −

1

SOC†
{U ′[Π1(Q

†, 0)][(1− γ)P − C′(Q†)]− U ′[Π0(Q
†, 0)][P − C′(Q†)]}
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=
1

pSOC†
U ′[Π0(Q

†, 0)][P − C′(Q†)] < 0, (A.5)

where the second equality follows from Eq. (11), and the inequality follows from SOC† < 0

and C′(Q†) < P . Hence, Eqs. (A.4) and (A.5) imply that F ′(p) > 0.

When p approaches zero, we have Q† approaches Q0. Since Πmax
2 > Π1(Q0, 0), Eq.

(A.3) implies that F (0) = U [Π1(Q0, 0)] − U(Πmax
2 ) < 0. On the other hand, when p

approaches one, we have Q† approaches Q2. Since Πmax
0 > Π0(Q2, 0), Eq. (A.3) implies

that F (1) = U(Πmax
0 )−U [Π0(Q2, 0)] > 0. Hence, there must exist a unique point, p◦ ∈ (0, 1),

that solves F (p◦) = 0. Solving F (p◦) = 0 for Q̄ yields Eq. (13). Fixing Q† = Q̄ in Eq. (11)

and solving for p◦ yields Eq. (12).

For all p ∈ (0, p◦), we have F (p) < 0 and thus expression (A.2) is negative. On the

other hand, for all p ∈ (p◦, 1), we have F (p) > 0 and thus expression (A.2) is positive.

It then follows from Eqs. (10) and (A.1) that Q̄ < Q◦ < Q† for all p ∈ (0, p◦) and that

Q̄ > Q◦ > Q† for all p ∈ (p◦, 1). If p = p◦, then Q◦ = Q† = Q̄.

Proof of Proposition 2. Totally differentiating Eq. (10) with respect to β yields

dQ◦

dβ
= −

1

SOC◦

{

pG′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}U ′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]

+(1− p)G′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}U ′[Π0(Q
◦, 0)][P − C′(Q◦)]

}

=
1

βSOC◦
{pU ′[Π1(Q

◦)][(1− γ)P − C′(Q◦)] + (1− p)U ′[Π0(Q
◦)][P − C′(Q◦)]}, (A.6)

where the second equality follows from Eq. (10). From Proposition 1, we know that Q◦ < Q†

for all p ∈ (0, p◦). Hence, it follows from Eqs. (11) and SOC† < 0 that the expression inside

the curly brackets on the right-hand side of Eq. (A.6) is negative. Thus, Eqs. (A.1) and

(A.6) imply that dQ◦/dβ > 0 for all p ∈ (0, p◦). On the other hand, for all p ∈ (p◦, 1) we

have Q◦ > Q† from Proposition 1. Hence, it follows from Eq. (11) and SOC† < 0 that the

expression inside the curly brackets on the right-hand side of Eq. (A.6) is positive. Thus,

Eqs. (A.1) and (A.6) imply that dQ◦/dβ < 0 for all p ∈ (p◦, 1). If p = p◦, then dQ̄/dβ = 0.
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Proof of Proposition 3. Condition (7) with β = 0 can be written as U ′[Π1(Q
∗, α∗)] −

U ′[Π0(Q
∗, α∗)] ≤ 0. Since Π0(Q

∗, 0) − Π1(Q
∗, 0) = γPQ∗ > 0, risk aversion implies that

U ′[Π1(Q
∗, 0)] − U ′[Π0(Q

∗, 0)] > 0 and thus α∗ > 0. Since Π0(Q
∗, 1) = Π1(Q

∗, 1) = (1 −

pγ)PQ∗−C(Q∗), we have U ′[Π1(Q
∗, 1)] = U ′[Π0(Q

∗, 1)]. The producer as such fully insures

against the revenue risk by choosing α∗ = 1. Eq. (6) with β = 0 and α∗ = 1 implies that

Q∗ = Q1 that solves C′(Q1) = (1− pγ)P . Rewrite Eq. (11) as

(1− pγ)P − C′(Q†) = (1 − p)

{

1 −
U ′[Π0(Q

†, 0)]

U ′[Π1(Q†, 0)]

}

[P − C′(Q†)]. (A.7)

Since U ′[Π0(Q
†, 0)] < U ′[Π1(Q

†, 0)] given risk aversion, it follows from Eq. (A.7) and

C′′(Q) > 0 that Q† < Q1 for all p ∈ (0, 1).

Proof of Proposition 4. Condition (7) and Eq. (14) implies that α∗ = 0 if H(p) ≤ 0.

Differentiating Eq. (14) with respect to p yields

H ′(p) = −βG′′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}U ′[Π1(Q
◦, 0)]U ′(Πmax

1 )γPQ1

+

{{

1 + βG′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}

}

U ′′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]

−βG′′{U(Πmax
1 ) − U [Π1(Q

◦, 0)]}U ′[Π1(Q
◦, 0)]2[(1− γ)P − C′(Q◦)]

−

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

◦, 0)]}

}

U ′′[Π0(Q
◦, 0)][P − C′(Q◦)]

+βG′′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}U ′[Π0(Q
◦, 0)]2[P − C′(Q◦)]

}

dQ◦

dp
, (A.8)

where Q1 solves C′(Q1) = (1−pγ)P . Since G′′(·) > 0, U ′′(Π) < 0, and (1−γ)P < C′(Q◦) <

P , Eq. (A.8) implies that H ′(p) < 0 if dQ◦/dp < 0. Totally differentiating Eq. (10) with

respect to p yields

dQ◦

dp
=

1

SOC◦

{{

1 + βG′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)][P − C′(Q◦)]

−

{

1 + βG′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}

}

U ′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]

}
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=
1

pSOC◦

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}

}

U ′[Π0(Q
◦, 0)][P − C′(Q◦)] < 0, (A.9)

where the second equality follows from Eq. (10), and the inequality follows from Eq. (A.1)

and C′(Q◦) < P . Hence, Eqs. (A.8) and (A.9) imply that H ′(p) > 0.

When p approaches zero, Q◦ approaches Q0. Hence, we have

H(0) =

{

1 + βG′{U(Πmax
1 ) − U [Π1(Q0, 0)]}

}

U ′[Π1(Q0, 0)]

−[1 + βG′(0)]U ′[Π0(Q0, 0)]. (A.10)

Since G′′(·) > 0 and U ′[Π1(Q2, 0)] > U ′[Π0(Q2, 0)], Eq. (A.10) implies that H(0) > 0.

When p approaches one, both Q◦ and Q1 approach Q2. Hence, we have

H(1) = [1 + βG′(0)]U ′[Π1(Q2, 0)]

−

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q2, 0)]}

}

U ′[Π0(Q2, 0)]. (A.11)

It follows from condition (15) and Eq. (A.11) that H(1) < 0. Since H ′(p) < 0, there must

exist a unique point, p∗ ∈ (0, 1), that solves H(p∗) = 0.

For all p ∈ (0, p∗), we have H(p) > 0 so that α∗ > 0. In this case, condition (7) holds

with equality. Substituting this equation into Eq. (6) yields

{

1 + βG′{U(Πmax
1 )− U [Π1(Q

∗, α∗)]}

}

U ′[Π1(Q
∗, α∗)][(1− pγ)P −C′(Q∗)] = 0.(A.12)

Hence, Eq. (A.12) implies that Q∗ = Q1 that solves C′(Q1) = (1 − pγ)P . Evaluating the

left-hand side of Eq. (16) at α∗ = 1 yields

β

{

G′(0)− G′{U(Πmax
0 )− U [Π0(Q1, 1)]}

}

U ′[Π1(Q1, 1)] < 0, (A.13)

where we have used the fact that Π0(Q1, 1) = Π1(Q1, 1) = (1 − pγ)PQ1 − C(Q1), and the

inequality follows from G′′(·) > 0. Hence, we conclude that the optimal coinsurance rate,
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α∗ ∈ (0, 1), solves Eq. (16). For all p ∈ [p∗, 1), we have H(p) ≤ 0 so that α∗ = 0. In this

case, the producer’s optimal output level is Q◦ that solves Eq. (10).

If condition (15) does not hold, Eq. (A.11) implies that H(1) ≥ 0. Hence, we have

H(p) > 0 for all p ∈ (0, 1). In this case, α∗ ∈ (0, 1) solves Eq. (16) and the optimal output

level is Q1 for all p ∈ (0, 1).

Proof of Proposition 5. Rewrite Eq. (10) as

(1− pγ)P − C′(Q◦) = (1 − p)[P − C′(Q◦)]

×

{

1 −
{1 + βG′{U(Πmax

0 ) − U [Π0(Q
◦, 0)]}}U ′[Π0(Q

◦, 0)]

{1 + βG′{U(Πmax
2 ) − U [Π1(Q◦, 0)]}}U ′[Π1(Q◦, 0)]

}

. (A.14)

Eqs. (20) and (A.14) imply that Q1 < (>) Q◦ if K(p) < (>) 0. Differentiating Eq. (20)

with respect to p yields

K ′(p) =

{{

1 + βG′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}

}

U ′′[Π1(Q
◦, 0)][(1− γ)P − C′(Q◦)]

−βG′′{U(Πmax
2 ) − U [Π1(Q

◦, 0)]}U ′[Π1(Q
◦, 0)]2[(1− γ)P − C′(Q◦)]

−

{

1 + βG′{U(Πmax
0 )− U [Π0(Q

◦, 0)]}

}

U ′′[Π0(Q
◦, 0)][P − C′(Q◦)]

+βG′′{U(Πmax
0 ) − U [Π0(Q

◦, 0)]}U ′[Π0(Q
◦, 0)]2[P − C′(Q◦)]

}

dQ◦

dp
. (A.15)

Since G′′(·) > 0, U ′′(Π) < 0, (1− γ)P < C′(Q◦) < P , and dQ◦/dp < 0, it follows from Eq.

(A.15) that K ′(p) < 0.

When p approaches zero, Q◦ approaches Q0. Hence, we have

K(0) =

{

1 + βG′{U(Πmax
2 ) − U [Π1(Q0, 0)]}

}

U ′[Π1(Q0, 0)]

−[1 + βG′(0)]U ′[Π0(Q0, 0)]. (A.16)
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Since G′′(·) > 0 and U ′[Π1(Q2, 0)] > U ′[Π0(Q2, 0)], Eqs. (A.10) and (A.16) imply that

H(0) > K(0) > 0. When p approaches one, Q◦ approaches Q2. Hence, we have

K(1) = [1 + βG′(0)]U ′[Π1(Q2, 0)]

−

{

1 + βG′{U(Πmax
0 ) − U [Π0(Q2, 0)]}

}

U ′[Π0(Q2, 0)]. (A.17)

It follows from condition (15) and Eqs. (A.11) and (A.17) that H(1) = K(1) < 0. Since

K ′(p) < 0, there must exist a unique point, p∗∗ ∈ (0, p∗), at which K(p∗∗) = 0. Since

H(p) > K(p) for all p ∈ (0, 1), we must have p∗∗ < p∗. For all p ∈ (0, p∗), the producer

purchases the coinsurance contract. If p ∈ (0, p∗∗), we have K(p) > 0 so that Q1 > Q◦. If

p ∈ (p∗∗, p∗), we have K(p) < 0 so that Q1 < Q◦. If p = p∗∗, then Q1 = Q◦.

If condition (15) does not hold, Eqs. (A.11) and (A.17) imply that H(1) = K(1) ≥ 0.

Hence, we have H(p) > 0 and K(p) > 0 for all p ∈ (0, 1). In this case, α∗ ∈ (0, 1) and

Q1 > Q◦ for all p ∈ (0, 1).
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