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Wallace C. H. Choy, Senior Member, IEEE, Weng Cho Chew, Fellow, IEEE,
and Zaiping Nie, Senior Member, IEEE

Abstract—The superior ability of plasmonic structures to manip-
ulate light has propelled their extensive applications in nanopho-
tonics techniques and devices. Computational electromagnet-
ics plays a critical role in characterizing and optimizing the
nanometallic structures. In this paper, a general numerical algo-
rithm, which is different from the commonly used discrete dipole
approximation, the finite-difference time-domain, and the surface
integral equation (SIE) method, is proposed to model plasmonic
nanostructures. In this algorithm, the generalized impedance
boundary condition (GIBC) based on the finite element method
(FEM) is formulated and converted to the SIE. The plasmonic
nanostructures with arbitrary inhomogeneity and shapes are mod-
eled by the FEM. Their complex electromagnetic interactions are
accurately described by the SIE method. As a result, the near
field of plasmonic nanostructures can be accurately calculated.
The higher order basis functions, together with the multifrontal
massively parallel sparse direct solver, are involved to provide a
higher order accurate and fast solver.

Index Terms—Boundary integral equation (BIE), finite ele-
ment method (FEM), generalized impedance boundary condition
(GIBC), plasmonic nanostructures.

I. INTRODUCTION

PROGRESS in the field of nanotechnology has greatly pro-
pelled the experimental investigation and exploitation of

novel effects at the nanoscale. Due to the unique features of
plasmons, such as the tunable resonance and the near-field en-
hancement, it has wide applications in biosensing, clean en-
ergy, and spectroscopy [1]–[5]. Computational electromagnet-
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ics (CEM) plays a critical role in characterizing and optimiz-
ing plasmonic structures. An accurate, fast, and efficient CEM
solver can help to understand the working principles of the
plasmonic nanostructure better, reduce the experimental cost,
and shorten the development period [6], [7]. Full-wave elec-
tromagnetic solvers based on Maxwell’s equations are indis-
pensable to accurately predict the light–matter interaction in
nanostructures. Available numerical methods for modeling the
plasmonic effects can be mainly classified into three types:
1) semianalytical methods [such as T-matrix method and mul-
tiple multipole method (MMP)] [8], [9]; 2) the differential
equation (DE) methods [such as finite-difference time-domain
method and finite element method (FEM)] [10]–[12]; and 3) the
integral equation (IE) methods [such as volume IE and surface
IE (SIE)] [13]–[20].

T-matrix [8] is a powerful method for modeling well-
separated nanoparticles only if the solution of each particle is
known, and the MMP [9] depends on the fundamental multi-
pole expansion. They potentially yield an ill-conditioned system
when extended to model arbitrarily shaped nanostructures.

The DE method generates a sparse matrix. Hence, its cost of
the computer storage and CPU time is at O(N) per iteration in
iterative solvers, where N is the number of unknowns. Thanks
to the volumetric grids it employs, it is convenient for analyzing
the near-field responses. However, other than the scatterer, the
surrounding free-space volume also must be discretized for the
absorption boundary condition (ABC) setups [21], [22]. The
spurious reflections from the ABC will degrade the accuracy of
the simulation results. Furthermore, the dispersion error of both
FEM and FDTD methods and the staircased approximation of
the FDTD method all decrease the modeling accuracy for the
high-contrast plasmonic structures with strong evanescent wave
coupling.

Different from DE methods, IE methods only discretize the
scattering objects and can satisfy the radiation boundary con-
dition automatically. Hence, they usually have higher accuracy
compared with DE methods. Nevertheless, a full dense ma-
trix from them is costly for computer resources. Fortunately,
fast algorithms, such as the fast Fourier transform [23] and the
multilevel fast multipole algorithm (MLFMA) [24], have been
successfully developed to reduce the computational complex-
ity. As mentioned in the previous work [20], the discrete dipole
approximation (DDA) [15] breaks down in capturing the plas-
monic physics while the SIE (also named as boundary element

1536-125X/$26.00 © 2011 IEEE
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method (BEM) [16] or boundary IE (BIE) [17] in electromagnet-
ics) is recommended to model plasmonic nanostructures. Due
to the “surface” triangulation, the SIE method produces much
smaller unknowns. However, it can only be employed to sim-
ulate the homogenous or piecewise-constant targets. For the
arbitrary inhomogeneity or more complex environment encoun-
tered in plasmonic nanodevices, the numerical implementation
of the SIE method is essential but difficult. Particularly, the SIE
method is not efficient for the near-field calculation, which is
critical for understanding the fundamental physics or device-
related physics of plasmonic nanostructures. For each given
near-field point, one has to conduct a surface integration. If
the observation region is large or too many sample points are
required for resolving the near-field distribution, the relevant
calculations will be too expensive. In addition, the fast algo-
rithms cannot accelerate the “near-field” calculation due to the
singularity of the dyadic Green’s function.

All of the aforementioned algorithms have their pros and
cons in the plasmonic nanostructure simulation. In this paper,
we hybridize the SIE and FEM to avoid their drawbacks. Their
advantages are preserved while drawbacks are removed. A rig-
orous, efficient, and general electromagnetic method is thereby
developed to model the plasmonic nanostructures.

The equivalence principle [25] uses the equivalent or fictitious
sources to reproduce the same field within a region of interest.
Even for the inhomogeneous structures embedded in a homoge-
nous background, the SIE still can be employed for the exterior
field calculation by using the equivalent sources Js(=n̂ × H)
and Ms(= − n̂ × E). Here, Js (Ms) is the electric (magnetic)
current on the surfaces of inhomogeneous structures, and E (H)
is the related electric (magnetic) field. To guarantee the unique
solution of the SIE, a generalized impedance boundary condi-
tion (GIBC) [26] based on the FEM is derived to establish a
universal relation between the electric current and the magnetic
current, i.e., Ms(r) = Z(r, r′)Js(r′) using extended Einstein
notation. Then, a reduced SIE only involving the equivalent
electric current Js is obtained. Finally, the MLFMA [27] is used
to accelerate the solution of the SIE. In addition, the second-
order basis functions [28] and the multifrontal massively parallel
sparse direct solver (MUMPS) [29] are introduced in our algo-
rithm to achieve higher order accuracy and fast calculation of
the generalized impedance operator Z(r, r′).

Different from the conventional finite element-BIE [30]–[32]
method, the proposed method is applicable to multiregion elec-
tromagnetic (EM) problems. We only need to precompute the
inverse of several stiffness-mass submatrices, but not the whole
one. The proposed method also distinguishes from the FEM–
BEM in [33]–[35]. For our method, the tangential continuities
of E and H fields across the interfaces between FEM and BEM
regions are imposed directly. Furthermore, only equivalent elec-
tric current Js on the FEM–BEM interface is introduced. Due
to the GIBC (to be derived in Section II of this paper), a sparse
matrix with smaller size for each region is inverted to trans-
fer the original unknowns to the unknowns on the equivalent
surface. The dimension of the final impedance matrix becomes
much smaller than that in [35] as well. For very complicated
structures with strong coupling, the iteration methods are hard

Fig. 1. General arbitrary inhomogeneous problem.

Fig. 2. Love equivalence model for the exterior region.

to converge to an accurate solution. Reducing the dimension of
final matrix can greatly help the Krylov subspace iteration or the
direct LU decomposition [36]. As far as we know, it is the first
time that a hybrid GIBC-FEM method has been used to model
the plasmonic nanostructures.

The rest of this paper is organized as follows. In Section II, the
BIE will be established on the surface of each nanoparticle or
each fictitious surface. The finite-element-based GIBC is formu-
lated for arbitrary inhomogeneous and anisotropic mediums in
Section III. Section IV shows the numerical implementation to
solve the final BIE. Through numerical discretization, the math-
ematical representation of Maxwell’s equations is converted to
a set of matrix equations. The proposed method is applied to
model plasmonic nanostructures in Section V. Section VI sum-
marizes the contributions of this paper.

II. BIE

We consider several inhomogeneous structures embedded in
a homogeneous background. As illustrated in Fig. 1, each inho-
mogeneous region and its boundary are represented by domain
Ωi and boundary Si , i = 1, 2, . . . , N , where N is the number
of inhomogeneous regions. The homogenous background is de-
fined as Ω0 . Here, Si can be the geometric boundary of an object
or a fictitious boundary which encloses this object. According to
the Love equivalence principle [8], [25], [37] as shown in Fig. 2,
no matter what material it is, the inner inhomogeneity can be
removed and filled with the homogeneous background for the
exterior equivalence. Then, the EM field in Ω0 will be generated
by the radiation of equivalent sources Jsi and Msi located on
Si expressed by Jsi = n̂i × H0 and Msi = −n̂i × E0 . Here,
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E0 and H0 are the total field at Ω0 , and n̂i denotes the outward
unit normal vector.

The total field can be expressed as the summation of the
incident field and the scattered field

E0(r) = Einc
0 (r) + Esca

0 (r) (1)

H0(r) = Hinc
0 (r) + Hsca

0 (r) (2)

and

Esca
0 (r) = η0L

(
N∑

i=1

Jsi

)
− K

(
N∑

i=1

Msi

)
(3)

Hsca
0 (r) =

1
η0

L

(
N∑

i=1

Msi

)
+ K

(
N∑

i=1

Jsi

)
. (4)

Here, L(·) and K(·) are integral operators defined by (the time
convention e−iω t is assumed)

L(X) = ik0

∫
S

Ḡ(r, r′) • X(r′)dr′, r′ ∈ ∪Si (5)

K(X) =
∫

S

∇G(r, r′) × X(r′)dr′, r′ ∈ ∪Si (6)

G(r, r′) =
eik0 |r−r ′ |

4π |r − r′| (7)

Ḡ(r, r′) =
(
Ī +

∇∇
k2

0

)
G(r, r′). (8)

Here, G(r, r′) and Ḡ(r, r′) denote the scalar and dyadic Green’s
function in the homogeneous background, and k0 and η0 rep-
resent the wave number and wave impedance in the region Ω0 ,
respectively.

According to the extinction theorem, four fundamental BIEs
can be established at each boundary Si [18], [38]

TE formulation[
Einc

0 + η0L

(
N∑

i=1

Jsi

)
− K

(
N∑

i=1

Msi

)]
tan

= 0, r ∈ S−
i .

(9)
TH formulation[
Hinc

0 +
1
η0

L

(
N∑

i=1

Msi

)
+ K

(
N∑

i=1

Jsi

)]
tan

= 0, r ∈ S−
i .

(10)
NE formulation

n̂i ×
[
Einc

0 + η0L

(
N∑

i=1

Jsi

)
− K

(
N∑

i=1

Msi

)]
= 0, r ∈ S−

i .

(11)
NH formulation

n̂i ×
[
Hinc

0 +
1
η0

L

(
N∑

i=1

Msi

)
+ K

(
N∑

i=1

Jsi

)]
= 0, r ∈ S−

i .

(12)
where S−

i denotes the inner side of boundary Si(i =
1, 2, . . . , N ).

The four formulations indicate that given the field distribution
E0 and H0 in the exterior region, the equivalent sources Jsi and

Msi will generate the right field E0 and H0 if Jsi = n̂ × H0
and Msi = −n̂ × E0 . These four formulations and their linear
combinations give rise to a set of BIEs with unknowns Jsi and
Msi . However, at the boundary Si , four formulations depend
on each other. Hence, they are not sufficient to derive a unique
solution of Jsi and Msi . The field distribution or boundary
conditions within the inner regions should be taken into account.
A combined BIE can be written as

αi(9) + βi(10) + γi(11) + χi(12) = 0, r ∈ S−
i (13)

where αi , βi , γi , and χi are the combination coefficients; the
integer subscripts represent the left-hand side of (9)–(12). There
are many different forms for different coefficients. For example,
the well-known combined field IE [38] that can avoid the internal
resonance can be obtained by setting βi = 0, γi = 1 − αi , and
χi = 0, αi ∈ [0, 1].

Equation (13) has established a connection between the equiv-
alent magnetic current Msi and the equivalent electric current
Jsi implicitly. To uniquely determine the values of Jsi and Msi ,
another boundary condition between them is required. If a GIBC
is established as Msi(r) = Zi(r, r′)Jsi(r′), then it can be used
in (13) to get a reduced equation only involving unknown Jsi .
Consequently, the solution can be determined. In our previous
work, a GIBC based on the PMCHWT like SIE has been uti-
lized to simulate conductor with finite conductivity [26]. In the
following sections, we will demonstrate how to formulate the
GIBC based on the FEM for arbitrary inhomogeneous medium.

III. FINITE-ELEMENT-BASED GIBC

A. Finite Element Discretization

According to Maxwell’s curl equations

∇× Ei = iωμ0 μ̄ri • Hi (14)

∇× Hi = Ji − iωε0 ε̄ri • Ei (15)

one can get the vector wave equation in each region

∇× μ̄−1
ri • ∇ × Ei − k2

0 ε̄ri • Ei = ik0η0Ji , r ∈ Ωi (16)

where ε̄ri and μ̄ri are the permittivity and the permeability in Ωi ,
respectively, Ji represents the excitation source in this region,
and Ei and Hi are the electric and magnetic fields, respectively.

According to the uniqueness theorem, the field can be
uniquely determined by the governing equations and related
boundary conditions. The commonly used boundary conditions
are given by

n̂i × Ei = −Msi on Si (17)

or

n̂i × Hi = Jsi on Si. (18)

If Msi = 0, (17) gives a perfect electric conductor (PEC) bound-
ary condition. The PEC boundary condition can be implemented
easily by decreasing the number of unknowns at the boundary.
Since any object is penetrable in nanooptics, we mainly consider
the natural boundary condition shown in (18) in this paper.
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The FEM converts the boundary value problem (16)–(18) to
an optimization process of the functional

F (Ei)

=
1
2

∫
Ω i

[
(∇× Ei) • μ̄−1

ri • (∇× Ei) − k2
0Ei • ε̄ri • Ei

]
dV

− ik0η0

∫
Ω i

Ei • JidV + ik0η0

∫
si

Ei • JsidS. (19)

Here, subwavelength tetrahedrons and triangular patches are
utilized to discretize the domain Ωi and its boundary Si , re-
spectively. Then, the inner electric field Ei and the boundary
equivalent source Ui or Jsi are represented by the second-order
finite element basis functions [28] and RWG basis functions [39]

Ei =
Ni∑
j=1

eijNij = {Ni}T · {ei} (20)

Ui = ik0η0Jsi =
Li∑

j=1

uijSij = {Si}T · {ui} (21)

where {Ni} = (Ni1 ,Ni2 , . . . ,NiNi
)T , {Si} = (Si1 , Si2 , . . . ,

SiLi
)T , {ei} = (ei1 , ei2 , . . . eiNi

)T , and {ui} = (ui1 , ui2 , . . . ,
uiLi

)T . Nij is the jth finite element basis function in the domain
Ωi , and Sij is the jth RWG basis function. eij and uij denote
the weights of each basis function. Ni and Li are their numbers.
According to the variational principle, we can establish a linear
equation about {ei} and {ui} by minimizing the functional (19)
over the function space{Ni}

[Ki ]{ei} + [Bi ]{ui} = {Vi}. (22)

Here, [Ki ] is the stiffness-mass matrix in FEM, [Bi ] is a
boundary connection matrix, and {Vi} is the excitation vector.
Each element of them is calculated by

[Ki ]mn =
∫

Ω i

[(∇× Nim ) · μ̄−1
ri · (∇× Nin ) − k2

0Nim

· ε̄ri · Nin ]dV (23)

[Bi ]mn =
∫

Si

Nim · SindS , i.e., [Bi ] = {Ni} · {Si}T (24)

{Vi}j = ik0η0

∫
Ω i

Nij · JidV, i.e., {Vi} = ik0η0{Ni} · Ji .

(25)

Equation (22) gives a connection between the boundary equiv-
alent source Jsi and the inner field Ei in a discretized form.

B. GIBC

From (22), {ei} can be expressed as

{ei} = [Ki ]
−1 · ({Vi} − [Bi ] {ui}) . (26)

Hence

Ei = {Ni}T · {ei}

= {Ni}T · [Ki ]
−1 · ({Vi} − [Bi ] {ui})

= ik0η0 {Ni}T · [Ki ]
−1 · {Ni} · (Ji − Jsi) . (27)

There is a two-term summation in (27). The first term is called
the incident field while the second term is the scattered field.
They are represented as the following formats:

Einc
i (r) = ik0η0 {Ni}T · [Ki ]

−1 · {Ni} · Ji(r′) (28)

Esca
i (r) = −ik0η0 {Ni}T · [Ki ]

−1 · {Ni} · Jsi(r′). (29)

According to the definition of Msi , we have

Msi = −n̂i × Ei

= −n̂i × (ik0η0{Ni}T · [Ki ]−1 · {Ni} · (Ji − Jsi)).

(30)

The aforementioned equation has connected Msi with Jsi .
Equation (30) is essentially the GIBC. Thereby, the general-
ized impedance operator is defined as

Zi(r, r′) = ik0η0 n̂i × {Ni}T · [Ki ]−1 · {Ni} when Ji = 0.
(31)

We know that the scattered field Esca
i can be expressed by

the electric current Jsi in the IE according the Schelkunoff
equivalence principle [25]

Esca
i (r) = ik0η0

∫
s

Ḡi(r, r′) • [−Jsi(r′)] dr′ (32)

where Ḡi(r, r′) is the dyadic Green’s function in Ωi with the per-
fect magnetic conductor (PMC) boundary condition. Because
of the inhomogeneity in Ωi and arbitrary PMC boundary shape,
Ḡi(r, r′) does not have a closed-form expression. Hence, (29)
also provides a numerical approach to calculate Green’s function
operator Ḡi(r, r′).

IV. NUMERICAL IMPLEMENTATION

By substituting (30) into (9)–(12) or (13), we obtain a reduced
representation only involving unknown Jsi . Taking (9) as an
example, the reduced formulation is[

Einc
0 + η0L

(
N∑

i=1

Jsi

)
− K

(
N∑

i=1

Zi(r, r′) · Jsi

)]
tan

= 0.

(33)
Expanding ik0η0Jsi with the RWG basis function, we get

K(Zi(r, r′) · Jsi)

= K(−n̂i × {Ni}T · [Ki ]−1 · ({Vi} − [Bi ]{ui}))
= K({Si}) · [{Si} · {Si}T ]−1 · [{Si}T · (−n̂i × {Ni}T )]

· [Ki ]−1 · ({Vi} − [Bi ]{ui}). (34)

If we define

[Gi ] = {Si} · {Si}T , i.e., [Gi ]mn =
∫

Si

Sim · SindS (35)

[Hi ] = [n̂i × {Si}] · {Ni}T , i.e.,

[Hi ]mn =
∫

Si

(n̂i × Sim ) · NindS. (36)
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TABLE I
MEMORY REQUIREMENT OF EACH INTERNAL MATRIX

Then

K(Zi(r, r′) · Jsi) = K({Si}) · [Gi ]−1 · [Hi ] · [Ki ]−1

· ({Vi} − [Bi ]{ui}). (37)

Matching the boundary condition at all boundaries Si with
Galerkin method [40], a set of matrix equations are obtained as〈
{Sj},

N∑
i=1

η0L({Si}) + K({Si}) · [Gi]−1

· [Hi ] · [Ki ]−1 · [Bi ] · {ui}
〉

=

〈
{Sj},−Einc

0 +
N∑

i=1

K({Si}) · [Gi ]−1 · [Hi ] · [Ki ]−1 · {Vi}
〉

,

j = 1, 2, . . . , N. (38)

Finally, we get a full dense matrix equation

[Z] · {u} = {V }, {u} = ({u1}T , {u2}T , . . . {uN }T )T (39)

where

[Z] = [Q] + [P ] [T ] (40)

{V } = {V0} + [P ]
{

Ṽ
}

(41)

[Q] =

〈
{Sj} ,

N∑
i=1

η0L ({Si})
〉

(42)

[P ] =

〈
{Sj} ,

N∑
i=1

K ({Si})
〉

(43)

{V0} = −
〈
{Sj} ,Einc

0
〉

(44)

where [T ] is a block diagonal matrix and {Ṽ } is a block vector.
Each block of them is expressed by

[Ti ] = [Gi ]
−1 · [Hi ] · [Ki ]

−1 · [Bi ] (45)

{Ṽi} = [Gi ]
−1 · [Hi ] · [Ki ]

−1 {Vi} , i = 1, 2, . . . , N. (46)

The internal products in (42)–(44) are defined by 〈{Sj},
{Si}〉mn =

∫
S Sjm · SindS and 〈{Sj},Einc

0 〉m =
∫

S Sjm ·
Einc

0 dS, where subscripts m and n corresponds to the element
at mth row and nth column in each matrix or vector.

As a brief analysis, the memory requirement of each internal
matrix in (39) is shown in Table I. And Table II shows the
computational complexity (CPU time cost) of each step to solve
the final system matrix.

Matrices [Gi ], [Hi ], [Ki ], and [Bi ]are extremely sparse. The
memory cost of a sparse matrix with the bandwidth W and
dimension M is about O(WM). [Q] and [P ] are fully dense

TABLE II
COMPUTATIONAL COMPLEXITY OF EACH STEP TO SOLVE THE SYSTEM MATRIX

matrices. Their storage requirement is O(L2) for method of
moment and can be reduced to O(L log2 L) with the MLFMA
for electrically large objects, whereL =

∑N
i=1 Li .

The computational complexity for inversing a sparse matrix
with bandwidth W and dimension M is about O(W 2M). Usu-
ally, the bandwidth of a finite element matrix is quite small,
especial compared with its dimension. Thus, both the mem-
ory requirement and computational complexity of [Gi ]/[Ki ]can
be approximated to O(Li)/O(Ni). Therefore, by using the di-
rect LU decomposition provided in software packages such as
the MUMPS [29], it is very efficient to get the value of [X]
by solving a submatrix equation [A][X] = [Y ]. Since [Hi ] and
[Bi ] are sparse matrices, they are efficient for matrix–vector
multiplications. The computational cost for each matrix–vector
multiplication is about O(Li). Matrices [Q] and [P ] are fully
dense. To solve the final system matrix, the computational com-
plexity is at O(L3) and O(L2) for direct solution and iterative
solution, respectively. Fortunately, for electrically large objects,
the computational effort for matrix–vector multiplications can
be reduced to O(L log2 L) with the MLFMA as well. Even if the
iterative solver hardly converges for some special problem, (39)
still can be efficiently solved with LU decomposition because
the matrix dimension L is relative small owing to only surface
unknowns Jsi are involved. After getting {ui}, vector {ei} is
available by (26). Then, the calculation of near field is quite ef-
ficient by (20). The far field can be computed with source-field
transformation in integral (1)–(4).

V. PLASMONIC NANOSTRUCTURE SIMULATION

To demonstrate the validity and efficiency of our proposed
FEM-GIBC method for the plasmonic simulation, two plas-
monic nanostructures are modeled and investigated.

In the first benchmark, a system consisting of two gold
nanospheres is calculated to analyze the local surface plasmon
enhancement. Two nanospheres are closely packed along x-
direction in the free space. The diameter of each nanosphere is
15 nm and the spacing between them is 1.5 nm. An x-polarized
light along z-direction illuminates these spheres. The complex
permittivity (or refractive index) of gold is taken by the Brendel–
Bormann (BB) model that can capture both the free-electron and
interband parts of the dielectric response of metals in a wide
spectral range from 0.1 to 6 eV [41]. The bulk parameter of
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Fig. 3. TCS of single and double gold nanospheres with diameter of 15 nm.
The spacing of double spheres is 1.5 nm.

permittivity by the BB model validates for very small nanopar-
ticles until the size smaller than 5 nm, where quantum effects
arise. In the visible light frequency band, the total cross section
(TCS) is calculated by the optical theorem [42]

σtcs =
4π

k
Im[êi · F̄(k̂i , k̂i) · êi ] (47)

Esca(r) =
eik |r|

|r| F̄(k̂s , k̂i) · êi |Einc |. (48)

Here, σtcs represents the total cross section which indicates the
total energy loss from the incident wave due to the scattering and
absorption of a wave by the scatterer. F̄(k̂i , k̂i) is the scattering
dyad in the scattered direction k̂s for the incident wave in the
direction k̂i . Here, êi denotes the polarization of the incident
plane wave. We know that the lifetime of plasmon resonance
is fundamentally limited by its intrinsic loss including both the
scattering and absorption loss [43], [44]. On the basis of the
uncertainty principle ΔωΔt ≥ 1/2, the simulated half power
bandwidth of the TCS can be useful for estimating the lifetime
of plasmon resonance.

The simulation results are shown in Fig. 3. The reference
results of the single and double spheres are calculated with Mie
series and the T-matrix method, respectively. We can see that
the simulated results by FEM-GIBC almost coincide with the
references. Due to the evanescent wave coupling, the plasmonic
resonance of the close-packed double nanospheres is red shifted
in comparison to the single nanosphere and the value of σtcs
is even larger than two times that of the single sphere, which
is plotted in dashed line. Fig. 4(a) and (b) shows the near-field
profile of the single sphere and double spheres at resonance. The
field value is normalized and the logarithmic color is adopted.
Then, the value between −60 and 0 dB is scaled and shifted to
0–1 dB. As shown in Fig. 4, the single nanosphere is essentially
a dipole emitter and the dipole–dipole coupling between the
sphere dimer significantly enhances the near field in the sphere
gap.

Fig. 4. Near-field distribution at resonance. (a) Single sphere. (b) Double
spheres.

Fig. 5. Near-field enhancement factor at center point (0, 0, 0) as a function of
the frequency.

Fig. 6. Near-field distribution in the gap of two nanospheres at wavelength
520 nm.

Figs. 5 and 6 show the accuracy comparisons of near-field
simulation between FEM-GIBC and T-matrix methods. The
calculated near-field enhancement factor, which is defined by
Q = |E| /

∣∣Einc
0

∣∣, agrees well with the analytical ones. The
ability to accurately capture the near-field physics of the pro-
posed method is strongly confirmed. The convergence property
is shown in Fig. 7, where the relative error of near fields de-
fined by err = |E − Eref | / |Eref | is illustrated. Eref denotes
the analytical value by T-matrix method. As the average grid
size decrease from 1.5 to 0.5 nm, equivalently, the number of
unknowns increase from 1908 to 18324, the relative error goes
to smaller and smaller.
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Fig. 7. Convergence rate of relative error of near fields. T-matrix solution is
adopted as a reference solution.

For the wideband calculation (400 to 800 nm), we simulated
the nanostructures at 41 sampling frequency points with interval
10 nm. Due to the geometric similarity, we mesh the two spheres
with basic elements as a two-region problem. Only one GIBC
needs to be established at sphere’s interface, the GIBC at others
has the same expression. Hence, the setup time can be reduced
dramatically. Therefore, the proposed method is most efficient
for electromagnetic simulation of finite periodic structures. In
this benchmark, finite element discretization give rise to 28124
basis functions in each region, while the dimension of the final
system matrix is only 1908. With running our code on a work-
station with 32 threads and solving the system matrix with LU
decomposition, the peak value of memory occupation is about
240 M byte and the CPU time cost is less than 1 min for each
sampling point. After getting the solution of system matrix, (20)
is adopted in the internal regions, and surface integral formu-
lations are used at the exterior region to obtain the near-field
distribution with negligible efforts.

The second example simulates the thin-film plasmonic solar
cells. Figs. 8(a) and 9(a) illustrate the schematic patterns of the
bulk heterojunction organic solar cell (OSC). The active layer is
a blend polymer of P3HT(poly(3-hexylthiophene)) and PCBM
(methanofullerene). The hole conduction layer is PEDOT:
PSS(poly(3,4-ethyenedioxythiophene):poly(4-styrenesulfonic
acid)) which is chosen as an optical spacer between the
electrode and the active layer. Four Ag nanocubes are em-
bedded into the polymer layers as field concentrators. The
complex refraction index of polymers and silver are available
in literatures [41], [45]. The incident light with x polarization
is propagated from the spacer layer to the active layer. In this
benchmark, the absorption of active layer is investigated when
the concentrators are embedded in the spacer layer and the
active layer, respectively. The absorption can be calculated by

σabs =
∫

σ |E|2dV (49)

where σ is the optical conductivity of the active material. The
optical enhancement factor can be obtained by the ratio of the

Fig. 8. Schematic pattern and the near-field distribution of OSC nanostruc-
tures when the concentrators are embedded in the spacer layer. (a) Schematic
pattern. (b) Near-field distribution in the longitudinal profile. (c) Surface field
distribution for the Ag cube.

Fig. 9. Schematic pattern and the near-field distribution of OSC nanostruc-
tures when the concentrators are embedded in the active layer. (a) Schematic
pattern. (b) Near-field distribution in the longitudinal profile. (c) Surface field
distribution for the Ag cube.

absorption with concentrators over that without the concentra-
tors.

The FEM-GIBC method generates 326 012 finite element
basis functions and 4608 RWG basis functions which are utilized
to express the equivalent current. The memory requirement is
about 2 G byte and each sampling point takes about 4 min to
solve the system matrix with iteration method. Figs. 8(b) and
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Fig. 10. Average absorption energy and the absorption enhancement factor as
a function of wavelength when the nanocube concentrators are embedded in the
spacer layer.

Fig. 11. Average absorption energy and the absorption enhancement factor as
a function of wavelength when the nanocube concentrators are embedded in the
active layer.

9(b) show the near-field distributions in the OSC at the peaks of
the absorption enhancement.

The electric field is noticeably enhanced in the neighborhood
of each nanocube. Due to the significant difference of refraction
indices, the electric field has a jump at the interface between Ag
and background media. When the concentrators are embedded
in the spacer layer, the nanocubes block the light, and absorb
most of the energy. Only little light energy can penetrate into the
active medium. Hence, the optical absorption enhancement in
the active region is very small. However, when the Ag nanocubes
are embedded into the active layer, the optical absorption of the
active layer is substantially improved. The enhanced near E-field
by the plasmonic nanocubes can be directly and sufficiently
absorbed by the contiguous active medium. The electric field
distributions at the surfaces of nanocubes are shown in Figs. 8(c)
and 9(c). The field at the interface is very strong and decays
rapidly in the metal because of the high conductive loss.

Figs. 10 and 11 show the average absorption energy and ab-
sorption enhancement factor as a function of wavelength. When

the concentrators are embedded in the active layer, the energy
absorbed by silver cubes is also shown in Fig. 11. Although
silver cubes show large metallic loss, the absorption of the ac-
tive medium still can be significantly enhanced because of the
plasmon resonances, especially at the long wavelength region.
It was worth mentioning that the accuracy of our calculation
results has been verified by the h-adaptive scheme. That is, the
simulated result always converges to the same values when we
refine the mesh of geometry.

VI. CONCLUSION

This paper has proposed a novel GIBC based on the FEM to
simulate plasmonic nanostructures. At first, the scattering from
nanostructures is equivalent to the radiation from equivalent
sources on boundaries according to the equivalence principle.
The BIE is established using both electric equivalent currents
and magnetic equivalent currents. After that, to determine the
unique solution of the BIE, the GIBC is formulated based on
the FEM. A GIBC connecting magnetic equivalent currents and
electric equivalent currents is established. Hence, the BIE is re-
formatted to contain only unknown electric equivalent currents.
Then, it is converted to a matrix equation and solved through
the basis function expansion and the Galerkin testing method.

Subwavelength tetrahedrons and triangular patches are used
to mesh the nanostructures and their boundaries. The inner elec-
tric field and boundary equivalent sources are represented by
the second-order finite element basis functions and RWG basis
functions, respectively. The numerical matrices generated by the
FEM are extremely sparse. Hence, the MUMPS is adopted to
complete their inverse. Although the BIEs give rise to full dense
matrices, they can be efficiently solved with the MLFMA. Even
if the iterative solver hardly converges for some special prob-
lems, the final matrix still can efficiently be solved with LU
decomposition because the matrix dimension is relative small
owing to only electric equivalent currents are involved. Hence,
the proposed simulation method is very powerful and its com-
puter resource requirement is low. The proposed method has
significant advantages over commonly used DDA, finite differ-
ence method, SIE, etc.

Based on the proposed approach, several plasmonic nanos-
tructures are modeled and simulated. The plasmon enhancement
and their applications in OSC have been analyzed. This FEM-
GIBC is a general numerical approach, which can be utilized
to simulate any nanostructure with arbitrary inhomogeneity and
shapes. They can provide accurate and efficient near-field sim-
ulation for the plasmonic nanostructures.
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