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Abstract 

 Age-related neurodegeneration in the brain and retina is complicated. It comprises a 

series of events encompassing different modes of degeneration in neurons, as well as 

inflammation in glial cells. Systemic inflammation and risk factors can contribute to disease 

progression. Age-related conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD) 

and Age-related Macular Degeneration (AMD) affect patients for 5 to 20 years and are highly 

associated with risk factors such as hyperhomocysteinæmia, hypercholesterolæmia, hypertension, 

and symptoms of mood disorder. The long duration of the degeneration and the wide array of 

systemic factors provide the opportunity for nutraceutical intervention to prevent or delay disease 

progression.  

 Small molecules such as phenolic compounds are candidates for neuroprotection because 

they have anti-oxidant activities and can modulate intracellular signaling pathways. Bigger 

entities such as oligosaccharides and polysaccharides have often been neglected because of their 

complex structure. However, certain big molecules can provide neuroprotective effects. They 

may also have a wide spectrum of action against risk factors.  

 In this review we use an integrative approach to the potential uses of nutraceutical 

products to prevent age-related neurodegeneration. These include direct effects of phenolic 

compounds and polysaccharides on neurons to antagonize various neurodegenerative 

mechanisms in AD, PD and AMD, and indirect effects of these compounds on peripheral 

disease-related risk factors. 
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1.  INTRODUCTION 

 Aging is a major risk factor contributing to the onset and progression of many 

neurodegenerative diseases. Although the symptoms, pathological changes and even the regions 

being affected during the neurodegenerative process are diverse, it is certain that these diseases 

share many common factors. Numerous studies demonstrate that oxidative stress, chronic 

inflammation, impairment of protein processing and degradation, and alterations of cellular 

survival pathways are common features of age-associated neurodegenerative diseases. These 

stress factors are therefore potential targets for disease prevention and intervention.  

 Nutraceutical intervention may be an effective mean for the prevention of age-associated 

neurodegenerative diseases. Certain diets reportedly reduce the risk of neurodegenerative 

diseases [1-4]. In this paper we review the current concepts of three age-related 

neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease (PD), and Age-

related Macular Degeneration (AMD), and summarize common therapeutic strategies. We also 

discuss the feasibility of several small phenolic compounds or big molecules such as 

oligosaccharides, polysaccharides and glycoconjugates from plant and marine sources as agents 

to intervene with the above illnesses.  

2. AGE-RELATED NEURODEGENERATIONS: UNIQUE SYMPTOMS AND 

COMMON PATHOGENIC MECHANISMS 

2.1 Unique features in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Age-related 

Macular Degeneration (AMD) 

 AD is the leading cause of dementia. It is characterized by a decline in short-term 

memory and a slowly progressive loss of other cognitive functions. The unique pathological 

hallmarks of AD are the accumulation of extracellular senile plaques and intraneuronal 

neurofibrillary tangles (NFTs) in the hippocampus and cerebral cortex. Senile plaques and NFTs 
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are made up of aggregated amyloid- (A) peptide and hyperphosphorylated tau (p-tau) protein, 

respectively [5]. 

 PD is characterized by movement difficulties including tremor, bradykinesia, and rigidity 

at early stages. At late stages, cognitive and behavioral impairment may arise. The substantia 

nigra in the midbrain is the major area affected, with massive loss of dopaminergic neurons 

accompanied by intracellular Lewy body inclusions. α-Synuclein is the major component of 

Lewy bodies [6].  

 AMD is one of the leading causes to severe visual impairment in the elderly [7, 8] and is 

ranked as the third cause of blindness [9]. It is categorized into dry or wet forms, which are 

characterized by derangement and detachment of the retinal pigment epithelium and visible 

choriocapillaris [10, 11], or abnormal in-growth of blood vessels into the retina concomitant with 

subretinal hæmorrhage, respectively [12, 13]. AMD is a chronic degeneration of photoreceptors 

and retinal pigment epithelium of the macular region of the retina [14, 15]. Drusen in the macula 

are the major pathogenic factor. Drusen are yellow deposits containing oxidized products, 

immunoregulators, Aβ assemblies and cell debris [16]. 

 

2.4 Similarities in neurodegenerative mechanisms, risk factors and therapeutic strategies 

among AD, PD and AMD 

 The neurodegenerative mechanisms of AD, PD, AMD are found to be quite similar. 

Although debate continues on whether senile plaques, NFTs, Lewy bodies or drusen are 

responsible for the initiation of neurodegeneration in the diseases, large bodies of evidence from 

cell culture and animal studies show that these aggregated proteins are associated with 

neuroinflammation, oxidative stress and activation of stress or pro-apoptotic signaling pathways 

[17-19]. Targeting these common neurodegenerative mechanisms with the use of anti-oxidant, 
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anti-inflammatory drugs and specific stress signal inhibitors can therefore provide beneficial 

effects for disease prevention or treatment. Anti-oxidants are perhaps the most-investigated 

disease-modifying agents. In human subjects, anti-oxidant intervention with vitamin E is 

associated with better cognitive performance and may reduce the risk of AD [20-22]. For PD, 

anti-oxidants have shown protective effects in different experimental models [23-25]. Anti-

oxidants may also benefit AMD. A diet with a high content of carotenoids such as vitamin A, 

lutein, and zeaxanthin has been recommended [26]. Together with supplements of antioxidants 

such as vitamin C and E, a cocktail of antioxidants reportedly prevents progression of AMD to 

late stage [27]. The use of anti-inflammatory drugs has been investigated in various diseases. 

Epidemiological studies suggest that non-steroid anti-inflammatory drugs (NSAIDs) may reduce 

the risk of AD [28]. However, the use of NSAIDs in AD is now quite controversial as several 

clinical trials demonstrate the ineffectiveness of NSAIDs for slowing the progression of AD [29, 

30]. It is yet too early to conclude that anti-inflammatory drugs are ineffective for AD treatment 

or prevention as the dosage and duration of drug between epidemiological and clinical studies are 

different [31]. Nevertheless, down-regulation of cerebral inflammation is still a major target to 

retard disease progression [32, 33]. In PD, anti-inflammation has long been a major thrust in drug 

development [34]. In AMD, complement-mediated inflammation is involved in the pathogenesis, 

hence complement inhibition has been suggested as a potential pharmacological approach for 

disease treatment [35]. 

 Age-related neurodegenerative diseases are often multifactorial and are associated with a 

number of risk factors. For example, AD is associated with smoking [36], diabetes mellitus [37] 

and hypertension [38]. PD is associated with hyperhomocysteinaemia [39] and exposure to 

pesticides [40]. AMD is associated with smoking, excessive light exposure and other attributed 

causes [41]. There are lots of overlapping of factors leading to disease progression and 

pathogenesis among these three neurodegenerative diseases. For example, cognitive impairment 

can occur in the late stage of PD [42]. Risk factors for AMD and AD are very similar [43, 44]. 
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Aβ peptides have been found in AMD drusen [45, 46], and anti-Aβ therapy may be a strategy for 

AMD [47]. Some common risk factors for AD, PD and AMD are summarized in Table 1. In 

view of these, it is possible that some bioactive food compounds may reduce risk and modulate 

the pathogenesis of AD, PD and AMD indirectly. 

3. NUTRACEUTICAL INTERVENTION FOR AGE-RELATED 

NEURODEGENERATIVE DISEASES 

3.1 Polyphenols  

Polyphenols is a class of highly bioactive compounds characterized by multiple hydroxyl 

groups attached to aromatic rings. Based on the number of phenol rings, how the rings are 

connected, and the chemical groups attached, polyphenolic compounds can be categorized into 

flavonoids, stilbenes, phenolic acids, phenolic alcohols, and lignans [48, 49]. They can either be 

naturally occurring as plant secondary metabolites, or synthesized by chemical means [49]. A 

number of in vitro and in vivo studies have demonstrated that these small molecules are able to 

modulate many pathways for disease progression and cellular survival in addition to their strong 

antioxidant, anti-inflammatory, and vasodilatory effects [25, 50]. All these properties can 

potentially combat common stress factors in many neurodegenerative diseases and thus be 

neuroprotective. In this section we mainly focus on the flavonoids and stilbenes because they 

have been well studied for their neuroprotective roles. 

3.1.1 Flavonoids 

 Flavonoids are ubiquitous in plants and make up one of the largest subclasses of 

polyphenols [49]. They are characterized by a common structure (Figure 1a) formed by two 

benzene rings (rings A and B) interconnected by a 3-carbon oxygenated heterocycle (ring C) [48]. 

They can be further subdivided into flavonols, flavanols, flavones, isoflavones, flavanones, and 

anthocyanidins upon the saturation of ring C, the presence or absence of the 4-oxo-function, and 

the chemical substitutions on the B and C rings (Figure 1b) [51]. In food and beverages, 
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flavonoids are often glycosylated, linked to organic acids, and/or to one another [49]. The daily 

intake of flavonoids is highly variable among different ethnic groups, ranging from 20 to 1000 

mg per day [52].  

(A) Anti-oxidative effects of flavonoids and their structures 

 Many investigators have emphasized the antioxidant properties of flavonoids in relation 

to their neuroprotective effects. Accordingly, flavonoids can directly interact with reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) [53], chelate transition metals such as 

iron and copper to suppress metal-catalyzed oxidative stress via the Fenton reaction [54], boost 

intracellular antioxidant enzyme activities [55], and preserve endogenous antioxidants [56, 57]. 

For example, a flavanol abundantly found in green tea, epigallocatechin-3-gallate (EGCG; Figure 

2a), and a flavonol highly present in onions and apples, quercetin (Figure 2b), can directly 

quench singlet oxygen and scavenge hydroxyl radicals, superoxide radicals, and lipid peroxyl 

radicals by donating hydrogen [51, 53, 55].  

 An analysis of structure and antioxidant activity relationships among various flavonoid 

subclasses reveals that certain structural features give rise to better antioxidant capabilities, 

including (1) the presence of ortho-dihydroxy groups in ring B, (2) the combination of 2,3 

carbon-carbon double with the 4-oxo function in ring C, and (3) the possession of the 3-OH and 

5-OH groups with the 4-oxo function on the A and C rings [51, 53]. Quercetin (Figure 2b) bears 

all the above features and is thus a strong antioxidant. In general, these characteristics allow 

greater electron delocalization and stability after donation of hydrogen. Regarding iron and 

copper chelating properties, three structural sites have been proposed to be responsible for 

forming inactive complexes with metals. These are (1) the ortho-hydroxy groups in ring B, (2) 

the 4 oxo-function together with 3-OH or 5-OH in rings A and C [51], and (3) the ortho-hydroxy 

group in gallic side chain as in EGCG [55, 58]. In addition, EGCG up-regulates the activities of 

the antioxidant enzymes catalase (for H2O2) and superoxide dismutase (for superoxide) in the 
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striatum of experimental mice [59], whereas quercetin can prevent the oxidation of the 

endogenous antioxidant glutathione in neurons [56, 57], thereby indirectly combating oxidative 

stress. 

(B) Signaling pathways regulated by flavonoids 

 Besides antioxidant mechanisms, flavonoids function as regulators of many cellular 

pathways such as phosphoinositide-3-kinase (PI3K)-Akt/protein kinase B (Akt/PKB) and 

mitogen-activated protein kinase (MAPK) pathways for neuroinflammation, neuronal survival 

and vasodilation [50]. For instance, EGCG suppressed the expression of cyclooxygenase-2 

(COX-2) and inducible nitric oxide synthase (iNOS) and the release of nitric oxide (NO) and pro-

inflammatory cytokines from astrocytes and microglia by inhibiting MAPK signaling cascades 

[60]. EGCG-mediated phosphorylation of protein kinase C (PKC) promotes survival of human 

neuroblastoma SH-SY5Y cells from Aβ and 6-hydroxydopamine (6-OHDA)-induced 

neurotoxicity, increases proteasomal removal of pro-apoptotic Bad protein, and shifts amyloid 

precursor protein (APP) processing to the non-amyloidogenic α-secretase pathway [61]. On the 

other hand, quercetin protects neurons against hydrogen peroxide and tumor necrosis factor-α 

(TNF-α)-induced neuronal death by inhibiting c-Jun N-terminal kinase (JNK) [50]. Naringenin 

(Figure 2c), a flavanone with high abundance in citrus fruits, protects neurons against bacterial 

endotoxin lipopolysaccharides (LPS) in combination with -interferon (IFN-)-induced glial 

activation by suppressing p38 and signal transducers and activators of transcription family of 

transcription factor 1 (STAT1) [62]. As for vasodilatory effects, Sorond et al demonstrated that 

consumption of a flavanol-rich cocoa drink for 1-2 weeks increased cerebral blood flow in the 

middle cerebral artery in healthy elderly subjects, presumably by increasing NO availability [63]. 

This may provide therapeutic benefits to AD and PD patients, in which a reduction in cerebral 

blood flow had been reported. 

3.1.2 Stilbenes 
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The basic structure of stilbenes comprises a 1,2-diphenylethylene backbone with the two 

phenyl groups arranged in either cis or trans configuration (Figure 3). Both isomers can optically 

interconvert via a singlet-electron excited state, and the trans isomer is generally more stable [64]. 

Stilbenes exist as monomers, dimers, and oligomers [65]. Unlike flavonoids, in which the 

neuroprotective capacities of various subgroups have been investigated, research on stilbenes has 

mostly focused on resveratrol and its structural analogues.  

(A) Reservatrol as a naturally occur stilbene derivative 

 Reservatrol (Figure 4a) is a stilbene derivative naturally synthesized on the skins of 

grapes in response to fungal invasion, but is also present in wine, peanuts, and berries [66]. It has 

been considered to be the chief ingredient responsible for the health-promoting effects of red 

wine, and a great number of in vitro and animal models have shown that it could potentially elicit 

multiple benefits in retarding neurodegenerative processes [23, 67-70], diabetes [71, 72], cancer 

[73-75], and cardiovascular diseases [76, 77]. In addition, several interesting articles have been 

published on the pharmacokinetics of orally administered resveratrol in humans [78-83] 

(B) Anti-oxidative effects of resveratrol 

Like the flavonoids, resveratrol bears good antioxidant, anti-inflammatory, vasoactive, and 

pro-survival effects, making it a candidate to counteract the common stress factors for age-

related neurological disorders [25]. Resveratrol directly scavenges hydroxyl radicals, superoxide, 

and DPPH. radicals in cell-free systems [84, 85], and inhibits H2O2- or lipid peroxide-dependent 

peroxidation of membrane lipids in culture [86]. Based on a structural comparison of resveratrol 

and its analogues, it was deduced that the 4'OH served as the most important hydrogen donation 

site [85], and that monohydroxystilbenes such as piceatannol and oxyresveratrol, and 

polyhydroxystilbenes such as hexahydroxystilbene (also known as M8), were significantly more 

effective radical scavengers than resveratrol [66]. Since resveratrol is largely present in 

conjugated forms in the body [87], caution should be exercised when extrapolating such 
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structural relationship and radical scavenging activities in vivo. Intraperitoneal injection of 

resveratrol up-regulates endogenous antioxidant enzymes in the brain, including superoxide 

dismutase, peroxidase, and catalase [88].  

(C) Anti-inflammatory effects of resveratrol 

 Resveratrol is a non-specific COX-1 and COX-2 inhibitor [19, 87]. COX-1 is 

constitutively active for prostaglandin E synthesis and its inhibition has been regarded as 

unfavourable, whereas selective suppression of COX-2 activity is the target of many NSAIDs 

[89]. Attempts have been made to chemically modify resveratrol by adding one or more hydroxyl 

groups so that it will act as a selective COX-2 inhibitor. For example, both piceatannol (Figure 

4b) and hexahydroxystilbene (Figure 4c), which are monohydroxylated and polyhydroxylated 

stilbenes respectively, are selective COX-2 inhibitors and may be superior to resveratrol in 

fighting neuroinflammation [66].  

(D) Beneficial effects of resveratrol on neurons of AD and PD 

Resveratrol exhibits pro-survival effects both in vitro and in vivo. For example, it activates 

the sirtuin protein SIRT1, a NAD+-dependent histone deacetylase protein in vitro [90]. In mouse 

models of AD a calorie-restricted diet reduces AD pathogenesis via an increase in SIRT1 

activity [87]. In yeast, induction of a homologue of SIRT1 (SIR2) helps to prolong lifespan. 

These reports suggest that SIRT1 is a key factor to prolong survival of neurons [61]. SIRT1 

over-expression reduces Aβ pathology in APP-expressing neuronal cultures by hindering 

intracellular Aβ peptide synthesis [67, 91]. On the other hand, resveratrol stimulates the removal 

of intracellular Aβ in different cell lines through proteasomal degradation [24]. In models of PD, 

resveratrol inhibits dopamine-induced cell death in dopaminergic SH-SY5Y cells by up-

regulating anti-apoptotic Bcl-2 and down-regulating caspase 3 [69, 92], and oral administration 

of resveratrol attenuates 6-OHDA-induced dopamine depletion and loss of dopaminergic 

neurons in rats [23].  
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(E) Regulation of cerebrovascular functions by resveratrol 

In addition to its role in cardiovascular health resveratrol improves cerebral blood flow, 

which may alleviate complications in AD and PD. For example, Lu and colleagues have shown 

that a single intravenous injection of resveratrol (20 mg/kg) elevated hippocampal blood flow 

by NO-dependent mechanisms during cerebral ischemia induced by coronary artery ligation 

[93]. Oral administration of resveratrol to healthy human adults dose-dependently improved 

cerebral blood flow in the frontal cortex during specific cognitive performance tasks [94].  

3.2 Big molecules as potential neuroprotective agents for aged-related neurodegeneration 

  Increasing lines of evidence have shown that big molecules such as polysaccharides and 

glycoconjugates exhibit diverse biological activities [95-97]. It is now known that the 

progression of neurodegenerative disease can be influenced by systemic as well as CNS factors. 

In this section, we focus on polysaccharides that have potential neuroprotective effects. We also 

include some synthetic derivatives of polysaccharides. Since the structures of these ‘big 

molecules’ are more complicated than those of small molecules, it is sometimes difficult to 

correlate their biological actions with their specific structures. We summarize the data regarding 

their direct protective effects on neurons, indirect effects on disease-related risk factors, and 

immunomodulation properties. We use several examples to illustrate how these big molecules 

could modulate the progression of neurodegenerative diseases directly and indirectly. 

3.2.1 Direct effects on neurons 

(A) Chitosan and its derivatives – oligosaccharides from marine sources 

 Chitosan and its derivatives are polysaccharides or glycans that exhibit direct protective 

effects on neurons. Chitosan can be produced by deacetylation of chitin, a natural occurring 

polysaccharide which is abundant in the exoskeleton of marine organisms such as crabs [98]. It 

has poor solubility. Hydrolysis converts it to chito-oligosaccharides (COSs).  
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 COSs protect rat hippocampal neurons from glutamate-induced toxicity [99], which 

accelerates disease progression in different neurodegenerative diseases. COSs dose-dependently 

reduces the levels of apoptotic cell death-triggered by glutamate in cultured hippocampal neurons.  

COS treatment attenuates calcium influx and caspase-3 activation [99]. COSs might provide 

neuroprotection through their anti-oxidant actions. This is feasible because COSs have hydroxyl 

and superoxide radical scavenging properties [100]. They also reduce production of NO in a 

human melanoma cell line (B16F1) stimulated by LPS, and down-regulate the expression of the 

NF-κB gene in B16F1 cells exposed to hydrogen peroxide [101]. In copper-treated primary 

cultures of cortical neurons, COSs reduce the levels of ROS. Copper-induced toxicity has been 

implicated in a number of neurodegenerative diseases, including AD [102].    

 Neuroinflammation is involved in AD, PD and AMD, and attenuation of inflammatory 

responses is a potential therapeutic strategy. Neuroinflammation can be induced by agents such 

as A peptide and pro-inflammatory cytokines. Chitosan exhibits anti-inflammatory activities. 

Kim and colleagues reported that A peptide and the cytokine interleukin-1 (IL-1) could induce 

cultured astrocytes to secrete the pro-inflammatory cytokines TNF- and IL-6. This was 

attenuated by treatment with a water-soluble chitosan. The levels of iNOS were also attenuated in 

the chitosan-treatment groups [103].  

 Apart from non-specific actions against neurodegeneration (anti-oxidant, anti-

neuroinflammation and anti-glutamate-induced toxicity), COSs and chitosan exhibit specific 

effects in particular neurodegenerative diseases. COSs and chitosan derivatives may elicit 

protective effects against AD by affecting the production of A peptide and inhibiting 

acetylcholinesterase (AChE) activity. The production of A from its precursor APP heavily 

depends on the activity of -secretase, also known as -amyloid cleavage enzyme (BACE-1). In 

vitro data suggest that COSs and chitosan derivatives are BACE-1 inhibitors [104, 105]. Joe and 

colleagues modified the structure of chitosan by performing amino-alkylation on chitosan and 
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replaced the hydroxyl group by an amino-alkyl group, and tested the resultant water soluble 

chitosan derivatives for BACE-1 inhibitory activity. Among the three derivatives tested, 

aminoethyl-chitosan was the strongest BACE-1-inhibitor. After structural comparison of the 

derivatives, they suggested that the free amino group at the C-2 and C-6 positions played an 

important role in the BACE-1 inhibitory activity [105]. The same group also conducted studies 

on COSs. They found that a 90% deacetylated COSs derivative provided the strongest BACE-1 

inhibitory activity, and that deacetylation and sulfation at the C-2 position could affect the 

biological activities of COSs [104]. Lee and colleagues demonstrated the importance of 

deacetylation for anti-AChE activity. Acetylcholine (ACh) is an important neurotransmitter 

which is ablated in AD; ACh levels can be maintained by inhibiting its degrading enzyme AChE. 

COSs derivatives show different degrees of AChE inhibition. The degree of deacetylation had 

major effects on the anti-AChE properties, and can transform COS from a non-competitive to a 

competitive AChE inhibitor [106]. 

(B)  Lycium barbarum polysaccharide – the ‘sugar’ from berry  

 The fruits of Lycium barbarum, which are also called Wolfberry, are common herbs and 

foods in Asian countries. L. barbarum polysaccharides (LBP) are a group of heterogenous 

proteoglycans made up of monosaccharides. The carbohydrate content of LBP comprises 

arabinose, rhamnose, xylose, galactose, glucose, glucoronic acid, galacturonic acid, and mannose 

[107, 108].  LBP can be purified and sub-fractionated by solvents. Different LBP fractions can 

have diverse biological effects [109, 110], although structure-function analysis has yet to be 

performed. The amino acid content of LBP may be important for its biological activities. Yu and 

colleagues showed that its anti-A toxicity is lost when its amino acids are destroyed with strong 

acid [107]. 

 The neuroprotective effects of LBP are not specific to a particular disease. Three 

characteristics of LBP may explain its biological effects on neurons. Firstly, the ability of LBP to 
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suppress the activation of stress kinases under pathological conditions. In vitro data from our 

laboratory showed that LBP has potent inhibitory effects on pro-apoptotic stress kinases such as 

c-Jun N-terminal kinase (JNK), double-stranded RNA-dependent protein kinase (PKR) and 

extracellular signal-regulated kinase (ERK) [97, 110, 111]. Activation of stress kinases are 

common mechanisms leading to neurodegeneration in AD, PD and AMD [112-114]. Suppression 

of the activities of these kinases is responsible for the protective effects of LBP against 

glutamate, A peptide, dithiothreitol (DTT, an endoplasmic reticulum stress inducer), and 

homocysteine-induced toxicity of neurons [97, 110, 111, 115].  

 Secondly, the anti-oxidant properties of LBP may contribute to its neuroprotective 

effects. LBP can increase the activities of anti-oxidative enzymes in peripheral systems [116-

118]. There are few studies on the effects of LBP on neurons. Li and colleagues reported that oral 

administration of LBP reduced neuronal damage and oxidative stress in a retinal 

ischæmic/reperfusion injury model. The levels of lipid peroxidation in the retina were markedly 

reduced in the LBP-treated group [119]. Since this model involves the disruption of the blood-

retina barrier, it may not totally reflect the situation on human chronic neurodegenerative 

diseases. In chronic glaucoma experimental model which does not have leakage of blood-retina 

barrier, oral administration of LBP can rescue retinal cells from apoptotic cell death. It is 

uncertain if the protective effects of LBP in the chronic glaucoma model are through an anti-

oxidative mechanism [120]. Nevertheless, oxidative damage in the retina is a common aspect of 

ocular neurodegeneration, hence the anti-oxidant effects of LBP has the potential to play a 

neuroprotective role in AMD.   

 Up-regulation of survival pathways is the third neuroprotective mechanism. In a cell 

culture model of AD, an alkaline fraction of LBP was protective against A-induced toxicity 

through up-regulation of the Akt pathway [121]. In an ocular hypertension model which mimics 
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human glaucoma, oral administration of LBP to rats up-regulated the neuronal survival signal 

B2-crystallin and prevented neuronal cell loss [122]. 

3.2.2 Indirect effects of big molecules- modulation on the disease risk factors and the immunity 

 As shown in Table 1, age-related neurodegenerative diseases share a number of risk 

factors. Modulation of these risk factors can delay disease onset or slow down their progression. 

In this section, we discuss the use of polysaccharides to antagonize deleterious effects of risk 

factors for AD, PD and AMD. 

(A) Anti-depressive effects  

 Depression is common among AD and PD patients; it occurs in about 20 to 50% of AD 

patients and 45% of PD patients [123, 124]. Experimentally, daily injection of corticosterone 

elevates its plasma levels in rats and induces depression-like behaviors. Zhang et al. reported that 

oral administration of LBP attenuated the depression-like behavior, probably by promoting 

neurogenesis in the hippocampus [125]. Oligosaccharides from the medicinal herb Morinda 

officinalis also exhibit anti-depression properties. In a cell culture model of depression, 

polysaccharide from M. officinalis (MP-1) reduced the corticosterone-induced death of PC12 

cells. MP-1 attenuated the overload of intracellular calcium ion and down-regulated the 

expression of mRNA for nerve growth factor (NGF) [126, 127]. Chemical analysis reveals that 

MP-1 is an insulin-type  fructan with simple linear (2 → 1)-linked structure, and that its 

glucose/fructose ratio is 1:21 [128].  

(B) Hypoglycæmic effects  

 Elevated blood glucose levels in diabetes mellitus can accelerate the progression of 

neurodegeneration. The hypoglycæmic activities of tea polysaccharides have been reported. 

Diabetic mice treated with crude tea polysaccharides, or a tea polysaccharides fraction, had 

significantly lower fasting blood glucose and glycosylated serum protein than their control 
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counterparts. A 100-120 kDa fraction with galactopyranose in the backbone and arabinofuranose 

units in side branches accounted for the hypoglycæmic activity. It was suggested that the 

arabinogalactan proteins in this fraction were important for the biological activity [129]. 

Arabinogalactan proteins are proteoglycans with a high content of arabinose and galactose 

monosaccharides but less than 10% protein. LBP is also rich in arabinose and galactose and has 

hypoglycæmic effects [130]. An early study identified the structural characteristics of several 

arabinoglactan-protein extracted from the fruits of Lycium chinense Mill (a closed related species 

to L. barbarum [131]. It is possible that these arabinoglactan-proteins are responsible for the 

hypoglycæmic activity. 

(C) Immunomodulation effects 

 The immune system can serve as a link between the periphery and the CNS. Systemic 

inflammation can affect the progression of neurodegenerative diseases [132, 133]. 

Polysaccharides that can modulate the immune responses and reduce inflammation may therefore 

be beneficial. We have demonstrated that LBP from L. barbarum can attenuate the activation of 

microglia in the retina in glaucoma [134]. Anti-inflammatory effects of polysaccharides from 

medicinal plants such as Cryptoporus volvatus have been reported [135]. Many non-starch 

polysaccharides found in plants can elicit direct immunomodulatory effects. These 

polysaccharides bind to glycan-binding receptors expressed on dendritic cells, which are the 

immune cells in the peripheral circulation responsible for antigen presentation. Through this 

binding, the polysaccharides can modify signals from other pattern-recognition receptors, such as 

Toll-like receptors, on dendritic cells. This modification alters the effectiveness of both innate 

and adaptive immune responses [136]. Not all polysaccharides inhibit immune responses. We 

have shown that polysaccharides isolated from Prunella vulgaris L. can stimulate 

monocytes/macrophages and microglia to produce more free radicals and cytokines [137, 138] 
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4. THE BIOAVAILABILITY AND PERMEABILITY OF NUTRITIONAL 

MOLECULES AT THE BLOOD-BRAIN BARRIER 

 Many cell-culture and animal studies suggest the potential use of polyphenols such as 

flavonoids, stilbenes and polysaccharides in aged-related neurodegenerative diseases. However, 

there are debates on the effectiveness of these compounds in human subjects. Major concerns 

include bioavailability after gastrointestinal (GI) tract and liver metabolism and permeability 

across the blood-brain barrier (BBB).  

 It is important to note that the natural forms of plants flavonoids do not exist as shown in 

Figure 1b: they are often glycosylated, esterified, or polymerized, giving a huge variety of 

compounds that need further investigation [48, 49]. Nevertheless, it is generally believed that 

most flavonoids are hydrolyzed and conjugated by gut and liver enzymes before entering the 

circulation [50]. Except for the anthocyanins, the majority of circulating flavonoids do not occur 

as their plant forms, but as sulfates, glucuronides, and O-methylated derivatives [139]. These 

derivatives are likely to exhibit different bioactivities from their counterparts in plants, such as a 

reduction of their antioxidative activity [140, 141]. Many in vitro studies have focused on the 

neuroprotective properties of flavonoids that differ from their forms in vivo; caution must be 

exercised when extrapolating from these results. Both intact and/or derivative forms of 

flavonoids such as flavanols (e.g., tea catechins), flavanones (e.g., naringenin) and blueberry 

anthocyanins have been detected in the brain following oral and intravenous administration in 

animals, suggesting that they do pass through the BBB and can possibly take effect in the brain 

[142-144]. The degree of permeability is likely to be governed by several factors, including 

compound lipophilicity [145] and the action of specific transporters on the BBB [146]. However, 

the major questions which still need to be addressed are (1) whether levels attained in vivo are 

comparable to the effective dose used in vitro, and (2) if the in vivo forms also exert similar 

beneficial effects as their natural forms. Moreover, based on the numerous reports on the 

neuroprotective properties in animals [59, 147-151], it is possible that under an in vivo setting, 
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flavonoids, existing mostly as a mixture of metabolized forms, collectively protect the brain 

through a combination of many other important mechanisms that have not been identified. In 

future, it will be beneficial to develop ways to improve the oral bioavailability of flavonoids to 

maximize their benefits to the brain. For example, Scheepens et al have recently proposed the use 

of synergies between oral intakes of different polyphenols to boost bioavailability [152]. 

Additional studies are also need to investigate the usefulness of flavonoids to the human brain. 

In a similar fashion to flavonoids, resveratrol is metabolized into various forms before 

entering the circulation. Natural resveratrol is mainly present in the glycosylated piceid form, 

which greatly enhances its stability against oxidative degradation and raises its solubility and 

absorption from the GI tract [153]. Following absorption, resveratrol is converted into O-

glucuronides and O-sulfates by phase II drug-detoxifying enzymes in the liver [154]. In one 

human study led by Walle et al, following a 25 mg oral dose of resveratrol, as much as 70% of 

this dose was absorbed, with an increase of total resveratrol metabolites in the plasma reaching 2 

uM within 1 hour, but the level of unmodified resveratrol was as low as 5 ng/ml [83]. Moreoever, 

though it is still controversial whether orally administered resveratrol leads to its cerebral 

accumulation to an effective level, Wang et al have shown that an intraperitoneal injection of 

resveratrol (30 mg/kg body weight) in gerbils led to an increase of resveratrol metabolites 

(mostly as glucuronide conjugate form) in the brain, with the highest level, i.e. 400 ng/g of brain 

tissue, observed at the 4th hour, and rapidly declining thereafter [68]. This implies that resveratrol, 

particularly in glucuronide form, is capable of passing through the BBB, although the mechanism 

has yet been elucidated and it is unclear whether the level attained would be sufficient to protect 

the human brain. To date, there is only one report suggesting that orally administered resveratrol 

improves cerebral blood flow in human frontal cortices during cognitive tasks [94]. More work is 

needed to improve the CNS bioavailability of resveratrol and to clarify its effect on the human 

brain. In addition, we cannot rule out the possibility that resveratrol and its metabolites elicit 

protective effects in the brain which differ from those reported from cell culture studies.  
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Alternative route of drug administration can be a possible direction to improve the 

availability of flavonoids and resveratrol in the CNS. Recently, the nasal route of administration 

has gained increasing attention for brain uptake of drugs. Baicalin is a BBB-permeable natural 

flavonoid which has in vivo and in vitro neuroprotective effects against ischemic eye and brain 

damage [155, 156]. Studies on rats show that nasal administration can effectively increase the 

amount of baicalin detected in different brain regions compared with intravenous administration. 

More than half of the administrated baicalin can be transported to the brain via the olfactory 

pathway in 8 hour [157]. Further research should be conducted in human to confirm the 

effectiveness of using nasal administration for delivery of drugs to the brain.  

 There is relatively little information on polysaccharides. Some researchers are skeptical 

that polysaccharides can be developed as CNS drugs because they are less likely to pass through 

the BBB. However, animal studies show that the feeding of polysaccharides can reverse 

neuropathological changes in the eye [119, 122], suggesting that it is possible for these big 

molecules to exhibit effects in the CNS. How can these big molecules modify the CNS 

environment? There are several possibilities: (1) polysaccharides might be transported into the 

CNS by unknown mechanism; (2) their metabolites might reach the CNS; (3) polysaccharides 

might provide their CNS neuroprotection by modulating biological events in the periphery. There 

is insufficient data to draw any conclusion as yet. Low-molecular weight heparin derivatives can 

pass through the BBB to produce their protective effects [20, 158]. These derivatives are 

produced by the depolymerization of the full-length heparin, which has a polysaccharide 

backbone structure [158]. Following on from this, we speculate that some neuroprotective full-

length polysaccharides may be broken down into shorter BBB-permeable derivatives during GI 

tract metabolism. The example of heparin also sheds light on the possibility of synthesizing 

neuroprotective polysaccharide derivatives from natural plant or marine sources. If we can 

identify the structure that is critical for the neuroprotective function, it may be possible to 
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artificially break down the complex long-chain structure to enhance the BBB-permeability and at 

the same time preserve the neuroprotective properties.  

 Currently, most studies on neuroprotective polysaccharides fail to provide information on 

the chemical structure and thus create the major barrier for further characterization of the drug 

metabolism and pharmacokinetics (DMPK) profiles. We believe that this technical problem can 

be overcome. Early studies on the anti-cancer polysaccharides lentinan show that it is possible to 

isolate individual polysaccharide from herbs, characterize their structure and study its DMPK 

properties. An oral formulation of superfine dispersed lentinan is now under clinical trial to 

evaluate its safety and effectiveness in patients with various kinds of cancer [159, 160], 

suggesting that evaluation of the drug metabolism is practically feasible. We encourage 

researchers to conduct more chemical analysis on the potential neuroprotective polysaccharides. 

It will also be worth to study the effects of the metabolite of these compounds.  

 

5. CONCLUSION 

 We have summarized current knowledge on some small molecules such as polyphenols 

and big molecules such as polysaccharides for their potential neuroprotective actions. In the 

small molecules section, we try to link the biological actions of some polyphenols with their 

structures. In the big molecule section, we use several examples to demonstrate that 

polysaccharides are able to modulate neuronal activities and disease-risk factors. Current data 

suggest that many polyphenols and polysaccharides are potent anti-oxidant, anti-inflammatory, 

and immunomodulation agents. Hence, they have potential uses in different age-related 

neurodegenerative diseases. More research is required to enhance the bioavailability and BBB-

permeability of these compounds. 
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Table 1: Risk factors for AD, PD and AMD. 

 

 

Alzheimer’s 
disease 

Parkinson’s 
disease 

Age-related 
macular 

degeneration 

Age Major risk factor 

Depression Relation is not clear, but co-exists in many 
patients [123, 124] 

X 

Smoking Yes [36] X Yes [161] 

Diabetes Yes [37]  Inconsistent data 
[162, 163] 

Weak association 
[164] 

Hyperhomocysteinaemia Yes[165] As a side effect of 
L-Dopa treatment 

[39] 

X 

Hypertension Yes [38] X [163] Yes [133] 
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7. FIGURE LEGENDS 

Figure 1. The chemical structures of the flavonoid backbone (Figure 1a) and various flavonoid 

subclasses (Figure 1b). A. Flavonoids are formed by two benzene rings (rings A and B) 

interconnected by a 3-carbon oxygenated heterocycle (ring C). B. Different flavonoid subclasses 

differ from one another by the saturation of ring C, the presence or absence of the 4-oxo-function, 

and the chemical substitutions on the B and C rings. 

Figure 2. Chemical structures of epigallocatechin gallate (Figure 2a), quercetin (Figure 2b), and 

Naringenin (Figure 2c). A. Epigallocatechin gallate has a gallic group substitution at position 3. 

This group is thought to interact with iron to suppress iron-catalyzed oxidative stress via the 

Fenton reaction. B. Quercetin has strong antioxidant activity which can be attributed to the 

presence of (1) the ortho-dihydroxy groups in ring B, (2) the combination of 2,3 carbon-carbon 

double with the 4-oxo function in ring C, and (3) the possession of the 3-OH and 5-OH groups 

with the 4-oxo function on the A and C rings. The ortho-hydroxy groups in ring B and the 4 oxo-

function together with 3-OH or 5-OH in rings A and C are also responsible for the iron-chelating 

properties. C. Naringenin is a weaker antioxidant and iron chelator since it lacks many of the key 

structural features mentioned above.  

Figure 3. The chemical structure of the stilbene backbone. Stilbenes can either be in cis or trans 

conformations. In general, the trans isomer is more energetically stable and more biologically 

active. 

Figure 4. The chemical structures of resveratrol (Figure 4a), piceatannol (Figure 4b), and M8 

(Figure 4c). Piceatannol is a monohydroxylated resveratrol derivative with an additional OH 

group at position 3', while M8 is a hexahydroxylated stilbene with additional OH groups at 

positions 3', 5' and 4.  



 

24 

8. References 

[1] Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, 
the ketogenic diet, and ketone bodies. Brain Res Rev, 2009; 59: (2) 293-315. 

[2] Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk 
for Alzheimer's disease. Ann Neuro, 2006; 59: (6) 912-21. 

[3] Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of 
the ketogenic diet. Behav Pharmaco, 2006; 17: (5-6) 431-9. 

[4] Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y. 
Physical activity, diet, and risk of Alzheimer disease. JAMA, 2009; 302: (6) 627-37. 

[5] Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med, 2010; 362: (4) 329-44. 

[6] Schapira AH, Tolosa E. Molecular and clinical prodrome of Parkinson disease: 
implications for treatment. Nat Rev Neurol, 2010; 6: (6) 309-17. 

[7] Luthert PJ. Pathogenesis of age-related macular degeneration. Diagn Histopathol, 2011; 
17: (1) 10-6. 

[8] Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. 
Arch Ophthalmol, 2004; 122: (4) 598-614. 

[9] Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti 
SP. Global data on visual impairment in the year 2002. Bull World Health Organ, 2004; 
82: (11) 844-51. 

[10] Curcio CA, Medeiros NE, Millican CL. Photoreceptor loss in age-related macular 
degeneration. Invest Ophthalmol Vis Sci, 1996; 37: (7) 1236-49. 

[11] Maguire P, Vine AK. Geographic atrophy of the retinal pigment epithelium. Am J 
Ophthalmol, 1986; 102: (5) 621-5. 

[12] Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue 
light hazard. Acta Ophthalmol Scand, 2006; 84: (1) 4-15. 

[13] Mozaffarieh M, Sacu S, Wedrich A. The role of the carotenoids, lutein and zeaxanthin, in 
protecting against age-related macular degeneration: A review based on controversial 
evidence. Nutr J, 2003; 2: (1) 20. 

[14] Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, 
Klaver CC, Klein BE, Klein R, et al. An international classification and grading system 
for age-related maculopathy and age-related macular degeneration. The International 
ARM Epidemiological Study Group. Surv Ophthalmol, 1995; 39: (5) 367-74. 

[15] Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C. Targeting age-
related macular degeneration with Alzheimer's disease based immunotherapies: anti-
amyloid-beta antibody attenuates pathologies in an age-related macular degeneration 
mouse model. Vision Res, 2008; 48: (3) 339-45. 



 

25 

[16] Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J. Drusen deposits associated 
with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. 
J Clin Invest, 2006; 116: (2) 378-85. 

[17] Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the 
pathogenesis of Alzheimer's disease. Curr Pharm Des, 2010; 16: (25) 2766-78. 

[18] Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM. 
Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic 
neurodegeneration. J Neurosci, 2008; 28: (30) 7687-98. 

[19] Su BN, Cuendet M, Hawthorne ME, Kardono LB, Riswan S, Fong HH, Mehta RG, 
Pezzuto JM, Kinghorn AD. Constituents of the bark and twigs of Artocarpus dadah with 
cyclooxygenase inhibitory activity. J Natural Prod, 2002; 65: (2) 163-9. 

[20] Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, 
Breteler MM. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 2002; 
287: (24) 3223-29. 

[21] Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive 
function in community-dwelling elderly women. Am J Clin Nutr, 2003; 77: (4) 975-84. 

[22] Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H, Havlik R, 
White LR. Association of vitamin E and C supplement use with cognitive function and 
dementia in elderly men. Neurology, 2000; 54: (6) 1265-72. 

[23] Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, 
Javed H, Vaibhav K, Islam F. Resveratrol attenuates 6-hydroxydopamine-induced 
oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Res, 
2010; 1328:  139-51. 

[24] Richard T, Pawlus AD, Iglesias ML, Pedrot E, Waffo-Teguo P, Merillon JM, Monti JP. 
Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci, 2011; 1215:  
103-8. 

[25] Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. 
Neuromolecular Med, 2008; 10: (4) 259-74. 

[26] Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of 
fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch 
Ophthalmol, 2004; 122: (6) 883-92. 

[27] Fletcher AE, Bentham GC, Agnew M, Young IS, Augood C, Chakravarthy U, de Jong PT, 
Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Vioque J. 
Sunlight exposure, antioxidants, and age-related macular degeneration. Arch Ophthalmol, 
2008; 126: (10) 1396-403. 

[28] in t' Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler 
MM, Stricker BH. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's 
disease. N Engl J Med, 2001; 345: (21) 1515-21. 



 

26 

[29] McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal 
model and clinical studies. Neurobiol Aging, 2007; 28: (5) 639-47. 

[30] Szekely CA, Zandi PP. Non-steroidal anti-inflammatory drugs and Alzheimer's disease: 
the epidemiological evidence. CNS Neurol Disord Drug Targets, 2010; 9: (2) 132-9. 

[31] Heneka MT, Kummer MP, Weggen S, Bulic B, Multhaup G, Munter L, Hull M, 
Pflanzner T, Pietrzik CU. Molecular mechanisms and therapeutic application of NSAIDs 
and derived compounds in Alzheimer's disease. Curr Pharm Des, 2011; 8: (2) 115-31. 

[32] Di Bona D, Scapagnini G, Candore G, Castiglia L, Colonna-Romano G, Duro G, Nuzzo 
D, Iemolo F, Lio D, Pellicano M, Scafidi V, Caruso C, Vasto S. Immune-inflammatory 
responses and oxidative stress in Alzheimer's disease: therapeutic implications. Curr 
Pharm Des, 2010; 16: (6) 684-91. 

[33] Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory 
regulation in Alzheimer's disease. Mol Neurobiol, 2010; 41: (2-3) 115-28. 

[34] Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson's disease 
and a prime target for therapy. J Neural Transm, 2010; 117: (8) 971-9. 

[35] Karagianni N, Adamis AP. The case for complement and inflammation in AMD: open 
questions. Adv Exp Med Biol, 2010; 703:  1-7. 

[36] Flicker L. Modifiable lifestyle risk factors for Alzheimer's disease. J Alzheimers Dis, 
2010; 20: (3) 803-811. 

[37] Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, Purohit DP, 
Lesser G, Grossman HT, Haroutunian V. Insulin in combination with other diabetes 
medication is associated with less Alzheimer neuropathology. Neurology, 2008; 71: (10) 
750-7. 

[38] Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, Soininen 
H, Tuomilehto J, Nissinen A. Midlife vascular risk factors and Alzheimer's disease in 
later life: longitudinal, population based study. BMJ, 2001; 322: (7300) 1447-51. 

[39] Zoccolella S, dell'Aquila C, Specchio LM, Logroscino G, Lamberti P. Elevated 
homocysteine levels in Parkinson's Disease: is there anything besides L-dopa treatment? 
Curr Med Chem., 2010; 17: (3) 213-21. 

[40] Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson's disease and 
residential exposure to maneb and paraquat from agricultural applications in the central 
valley of California. Am J Epidemiol, 2009; 169: (8) 919-26. 

[41] Guo L, Duggan J, Cordeiro MF. Alzheimer's disease and retinal neurodegeneration. Curr 
Alzheimer Res, 2010; 7: (1) 3-14. 

[42] Watson GS, Leverenz JB. Profile of cognitive impairment in Parkinson's disease. Brain 
Pathol, 2010; 20: (3) 640-5. 



 

27 

[43] Chiu K CT, Wu A, Leung IYP, So KF, Chang RCC. Neurodegeneration of retina in 
mouse models of Alzheimer’s disease. What can we learn from the retina? Age, 2011; In 
press. (DOI 10.1007/s11357-011-9260-2) 

[44] Blanks JC, Torigoe Y, Hinton DR, Blanks RH. Retinal pathology in Alzheimer's disease. 
I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging, 1996; 17: (3) 377-84. 

[45] Isas JM, Luibl V, Johnson LV, Kayed R, Wetzel R, Glabe CG, Langen R, Chen J. 
Soluble and mature amyloid fibrils in drusen deposits. Invest Ophthalmol Vis Sci, 2010; 
51: (3) 1304-10. 

[46] Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL. Amyloid-beta is found in 
drusen from some age-related macular degeneration retinas, but not in drusen from 
normal retinas. Mol Vis, 2003; 9:  184-90. 

[47] Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C. Targeting age-
related macular degeneration with Alzheimer's disease based immunotherapies: anti-
amyloid-beta antibody attenuates pathologies in an age-related macular degeneration 
mouse model. Vis Res, 2008; 48: (3) 339-45. 

[48] D'Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. 
Polyphenols, dietary sources and bioavailability. Ann lst Super Sanita, 2007; 43: (4) 348-
61. 

[49] Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and 
bioavailability. The Am J Clin Nutr, 2004; 79: (5) 727-47. 

[50] Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The 
neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr, 2008; 3: (3-
4) 115-26. 

[51] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of 
flavonoids and phenolic acids. Free Radic Biol Med, 1996; 20: (7) 933-56. 

[52] Mullie P, Clarys P, Deriemaeker P, Hebbelinck M. Estimation of daily human intake of 
food flavonoids. Plant Foods Hum Nutr, 2007; 62: (3) 93-8. 

[53] Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic 
flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. 
Arch Biochem Biophys, 1995; 322: (2) 339-46. 

[54] Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci, 2010; 3: (1) 34-42. 

[55] Weinreb O, Amit T, Mandel S, Youdim MB. Neuroprotective molecular mechanisms of 
(-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and 
neuritogenic properties. Genes Nutr, 2009. 4: (4) 283-96. 

[56] Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin 
in primary neurons against Abeta(1-42): relevance to Alzheimer's disease. J Nutr 
Biochem, 2009; 20: (4) 269-75. 



 

28 

[57] Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress 
by three distinct mechanisms. Free Radic Biol Med, 2001; 30: (4) 433-46. 

[58] Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and 
neurodegenerative disorders. Mol Cellular Biochem, 2010; 345: (1-2) 91-104. 

[59] Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-
epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-
induced dopaminergic neurodegeneration. Journal Neurochem, 2001; 78: (5) 1073-82. 

[60] Spencer JP. Flavonoids: modulators of brain function? Br J Nutr, 2008; 99 E Suppl 1:  
ES60-77. 

[61] Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel 
neuroprotective agents. Molecules, 2010; 15: (11) 7792-814. 

[62] Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JP. The 
citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects 
against neuroinflammatory injury. Arch Biochem Biophys, 2009; 484: (1) 100-9. 

[63] Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. Cerebral blood flow response to 
flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat, 2008; 4: (2) 
433-40. 

[64] Baker J, Wolinski K. Isomerization of stilbene using enforced geometry optimization. J 
Comput Chem, 2011; 32: (1) 43-53. 

[65] Shen T, Wang XN, Lou HX. Natural stilbenes: an overview. Nat Prod Rep, 2009; 26: (7) 
916-35. 

[66] Szekeres T, Fritzer-Szekeres M, Saiko P, Jager W. Resveratrol and resveratrol analogues-
-structure-activity relationship. Pharmacol Res, 2010; 27: (6) 1042-8. 

[67] Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease 
amyloid-beta peptides. J Biol Chem, 2005; 280: (45) 37377-82. 

[68] Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY. Resveratrol 
protects against global cerebral ischemic injury in gerbils. Brain Res, 2002; 958: (2) 439-
47. 

[69] Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y 
neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med, 2007; 39: (3) 
376-84. 

[70] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc 
Natl Acad Sci U S A, 2007; 104: (17) 7217-22. 

[71] Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central 
administration of resveratrol improves diet-induced diabetes. Endocrinology, 2009; 150: 
(12) 5326-33. 



 

29 

[72] Minakawa M, Kawano A, Miura Y, Yagasaki K. Hypoglycemic effect of resveratrol in 
type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F 
pancreatic beta-cells. J Clin Biochem Nutr, 2011; 48: (3) 237-44. 

[73] Yang R, Zhang H, Zhu L. Inhibitory effect of resveratrol on the expression of the VEGF 
gene and proliferation in renal cancer cells. Mol Med Report, 2011; In press. (DOI: 
10.3892/mmr.2011.511) 

[74] Vanamala J, Reddivari L, Radhakrishnan S, Tarver C. Resveratrol suppresses IGF-1 
induced human colon cancer cell proliferation and elevates apoptosis via suppression of 
IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 2010; 10: 238. 

[75] Cui X, Jin Y, Hofseth AB, Pena E, Habiger J, Chumanevich A, Poudyal D, Nagarkatti M, 
Nagarkatti PS, Singh UP, Hofseth LJ. Resveratrol suppresses colitis and colon cancer 
associated with colitis. Cancer Prev Res, 2010; 3: (4) 549-59. 

[76] Yang Y, Wang X, Zhang L, An H, Zao Z. Inhibitory effects of resveratrol on platelet 
activation induced by thromboxane a(2) receptor agonist in human platelets. The Am J 
Chin Med, 2011; 39: (1) 145-59. 

[77] Robich MP, Osipov RM, Chu LM, Han Y, Feng J, Nezafat R, Clements RT, Manning WJ, 
Sellke FW. Resveratrol modifies risk factors for coronary artery disease in swine with 
metabolic syndrome and myocardial ischemia. Eur J Pharmacol, 2011; 664: (1-3) 45-53. 

[78] la Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N, Cameron DW. Steady-
State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, 
quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet, 2010; 49: 
(7) 449-54. 

[79] Almeida L, Vaz-da-Silva M, Falcao A, Soares E, Costa R, Loureiro AI, Fernandes-Lopes 
C, Rocha JF, Nunes T, Wright L, Soares-da-Silva P. Pharmacokinetic and safety profile 
of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food 
Res, 2009; 53 Suppl 1:  S7-15. 

[80] Urpi-Sarda M, Jauregui O, Lamuela-Raventos RM, Jaeger W, Miksits M, Covas MI, 
Andres-Lacueva C. Uptake of diet resveratrol into the human low-density lipoprotein. 
Identification and quantification of resveratrol metabolites by liquid chromatography 
coupled with tandem mass spectrometry. Anal Chem, 2005; 77: (10) 3149-55. 

[81] Chachay VS, Kirkpatrick CM, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol 
- pills to replace a healthy diet? Br J Clin Pharmacol, 2011; 72: (1) 27-38. 

[82] Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of 
resveratrol. Ann N Y Acad Sci, 2011; 1215:  161-9. 

[83] Walle T, Hsieh F, DeLegge MH, Oatis JE, Jr., Walle UK. High absorption but very low 
bioavailability of oral resveratrol in humans. Drug Metab Dispos, 2004; 32: (12) 1377-82. 

[84] Cheng JC, Fang JG, Chen WF, Zhou B, Yang L, Liu ZL. Structure-activity relationship 
studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein 
peroxidation. Bioorg Chem, 2006; 34: (3) 142-57. 



 

30 

[85] Shang YJ, Qian YP, Liu XD, Dai F, Shang XL, Jia WQ, Liu Q, Fang JG, Zhou B. 
Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence 
of the solvent, radical, and substitution. J Org Chem, 2009; 74: (14) 5025-31. 

[86] Murias M, Jager W, Handler N, Erker T, Horvath Z, Szekeres T, Nohl H, Gille L. 
Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: 
structure-activity relationship. Biochem Pharmacol, 2005; 69: (6) 903-12. 

[87] Saiko P, Szakmary A, Jaeger W, Szekeres T. Resveratrol and its analogs: defense against 
cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res, 2008; 
658: (1-2) 68-94. 

[88] Mokni M, Elkahoui S, Limam F, Amri M, Aouani E. Effect of resveratrol on antioxidant 
enzyme activities in the brain of healthy rat. Neurochem Res, 2007; 32: (6) 981-7. 

[89] Khanapure SP, Garvey DS, Janero DR, Letts LG. Eicosanoids in inflammation: 
biosynthesis, pharmacology, and therapeutic frontiers. Curr Top in Med Chem, 2007; 7: 
(3) 311-40. 

[90] Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, 
Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of 
sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003; 425: (6954) 191-6. 

[91] Tang BL, Chua CE. SIRT1 and neuronal diseases. Mol Aspects Med, 2008; 29: (3) 187-
200. 

[92] Chao J, Li H, Cheng KW, Yu MS, Chang RC, Wang M. Protective effects of pinostilbene, 
a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in 
SH-SY5Y cells. J Biol Chem, 2010; 21: (6) 482-9. 

[93] Lu KT, Chiou RY, Chen LG, Chen MH, Tseng WT, Hsieh HT, Yang YL. 
Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated 
by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem, 2006; 
54: (8) 3126-31. 

[94] Kennedy DO, Wightman EL, Reay JL, Lietz G, Okello EJ, Wilde A, Haskell CF. Effects 
of resveratrol on cerebral blood flow variables and cognitive performance in humans: a 
double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr, 2010; 91: (6) 
1590-7. 

[95] Chan HC, Chang RCC, Ip KC, Chiu K, Yuen WH, Zee SY, So KF. Neuroprotective 
effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular 
hypertension model of glaucoma. Exp Neurol, 2007; 203: (1) 269-73. 

[96] Chan WK, Cheung CC, Law HK, Lau YL, Chan GC. Ganoderma lucidum 
polysaccharides can induce human monocytic leukemia cells into dendritic cells with 
immuno-stimulatory function. J Hematol Oncol, 2008; 1:  9. 

[97] Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC. Polysaccharides from wolfberry 
antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol, 2009; 29: 
(8) 1233-44. 



 

31 

[98] Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar 
Drugs, 2010; 8: (9) 2435-24. 

[99] Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal 
neurons against glutamate-induced neurotoxicity. Neurosci Lett, 2008; 444: (3) 270-4. 

[100] Harish Prashanth KV, Dharmesh SM, Jagannatha Rao KS, Tharanathan RN. Free radical-
induced chitosan depolymerized products protect calf thymus DNA from oxidative 
damage. Carbohydr Res, 2007; 342: (2) 190-5. 

[101] Mendis E, Kim MM, Rajapakse N, Kim SK. An in vitro cellular analysis of the radical 
scavenging efficacy of chitooligosaccharides. Life Sci, 2007; 80: (23) 2118-27. 

[102] Xu W, Huang HC, Lin CJ, Jiang ZF. Chitooligosaccharides protect rat cortical neurons 
against copper induced damage by attenuating intracellular level of reactive oxygen 
species. Bioorg Med Chem Lett, 2010; 20: (10) 3084-8. 

[103] Kim MS, Sung MJ, Seo SB, Yoo SJ, Lim WK, Kim HM. Water-soluble chitosan inhibits 
the production of pro-inflammatory cytokine in human astrocytoma cells activated by 
amyloid beta peptide and interleukin-1beta. Neurosci Lett, 2002; 321: (1-2) 105-9. 

[104] Byun HG, Kim YT, Park PJ, Lin X, Kim SK. Chitooligosaccharides as a novel beta-
secretase inhibitor. Carbohydr Polymers, 2005; 61:  198-202. 

[105] Je JY, Kim SK. Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorg Med 
Chem, 2005; 13: (23) 6551-5. 

[106] Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel 
chitooligosaccharide derivatives. Carbohydr Polymers, 2009; 78:  869-72. 

[107] Yu MS, Leung SK, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang RCC. 
Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-
amyloid peptide neurotoxicity. Exp Gerontol, 2005; 40: (8-9) 716-27. 

[108] Zhu J, Zhao LH, Zhao XP, Chen Z. Lycium barbarum polysaccharides regulate 
phenotypic and functional maturation of murine dendritic cells. Cell Biol Int, 2007; 31: (6) 
615-9. 

[109] Lin CL, Wang CC, Chang SC, Inbaraj BS, Chen BH. Antioxidative activity of 
polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int J Biol Macromol, 
2009; 45: (2) 146-51. 

[110] Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC. Characterization of the 
effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J 
Mol Med, 2007; 20: (2) 261-8. 

[111] Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC. Neuroprotective effects of 
polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-
induced toxicity in rat cortical neurons. J Alzheimers Dis, 2010; 19: (3) 813-27. 



 

32 

[112] Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, Horowitz PM, Fu Y, Wang T, 
Cahill ME, Bigio EH, Berry RW, Binder LI. Tau truncation during neurofibrillary tangle 
evolution in Alzheimer's disease. Neurobiol Aging, 2005; 26: (7) 1015-22. 

[113] Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA. 
JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a 
mouse model of Parkinson's disease. Proc Natl Acad Sci U S A, 2004; 101: (2) 665-70. 

[114] Pons M, Cousins SW, Csaky KG, Striker G, Marin-Castano ME. Cigarette smoke-related 
hydroquinone induces filamentous actin reorganization and heat shock protein 27 
phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal 
pigment epithelium: implications for age-related macular degeneration. Am J Pathol, 
2010; 177: (3) 1198-1213. 

[115] Yu MS, Ho YS, So KF, Yuen WH, Chang RCC. Cytoprotective effects of Lycium 
barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med, 2006; 17: (6) 
1157-61. 

[116] Kim SY, Lee EJ, Kim HP, Kim YC, Moon A. A novel cerebroside from lycii fructus 
preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. 
Biol Pharm Bull, 1999; 22: (8) 873-75. 

[117] Li XM, Ma YL, Liu XJ. Effect of the Lycium barbarum polysaccharides on age-related 
oxidative stress in aged mice. J Ethnopharmacol, 2006; 111: (3) 504-11. 

[118] Niu AJ, Wu JM, Yu DH, Wang R. Protective effect of Lycium barbarum polysaccharides 
on oxidative damage in skeletal muscle of exhaustive exercise rats. Int J Biol Macromol, 
2008; 42: (5) 447-9. 

[119] Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF, Wong D, Lo AC. Lycium 
barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and 
oxidative stress in retinal ischemia/reperfusion injury. PLoS One, 2011; 6: (1) e16380. 

[120] Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF. 
Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in 
an ocular hypertension model of glaucoma. Exp nNeurol, 2007; 203: (1) 269-73. 

[121] Ho YS, Yu MS, Lai CS, So KF, Yuen WH, Chang RCC. Characterizing the 
neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide 
neurotoxicity. Brain Res, 2007; 1158C:  123-34. 

[122] Chiu K, Zhou Y, Yeung SC, Lok CKM, Chan OOC, So KF, Chang RCC. Up-regulation 
of crystallins is involved in the neuroprotective effect of Wolfberry on survival of retinal 
ganglion cells in rat ocular hypertensionmodel. J Cell Biochem, 2010; 110: 311-20. 

[123] Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, Rieke J, 
Volkmann J. Depression and Parkinson's disease. J Neurol, 2004; 251 Suppl 6:  VI/24-
VI/27. 

[124] Wuwongse S, Chang RCC, Law AC. The putative neurodegenerative links between 
depression and Alzheimer's disease. Prog Neurobiol, 2010; 91: (4) 362-75. 



 

33 

[125] Zhang E, Chang RCC, So KF. Elucidating beneficial effects of Wolfberry (Lycium 
barbarum) in experimental depression. Society for Neuroscience 2009, 2010:  540.13/X7. 

[126] Li YF, Gong ZH, Yang M, Zhao YM, Luo ZP. Inhibition of the oligosaccharides 
extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the 
corticosterone induced apoptosis in PC12 cells. Life Sci, 2003; 72: (8) 933-42. 

[127] Li YF, Liu YQ, Yang M, Wang HL, Huang WC, Zhao YM, Luo ZP. The cytoprotective 
effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells 
against the lesion induced by corticosterone. Life Sci, 2004; 75: (13) 1531-8. 

[128] Yang Z, Yi Y, Gao C, Hou D, Hu J, Zhao M. Isolation of inulin-type oligosaccharides 
from Chinese traditional medicine: Morinda officinalis How and their characterization 
using ESI-MS/MS. J Sep Sci, 2010; 33: (1) 120-5. 

[129] Zhou X, Wang D, Sun P, Bucheli P, Li L, Hou Y, Wang J. Effects of soluble tea 
polysaccharides on hyperglycemia in alloxan-diabetic mice. J Agric Food Chem, 2007; 
55: (14) 5523-8. 

[130] Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and 
antioxidant activity of fruit extracts from Lycium barbarum. Life Sci, 2004; 76: (2) 137-
49. 

[131] Qin X, Yamauchi R, Aizawa K, Inakuma T, Kato K. Structural features of 
arabinogalactan-proteins from the fruit of Lycium chinense Mill. Carbohydr Res, 2001; 
333: (1) 79-85. 

[132] Ferrari CC, Tarelli R. Parkinson's disease and systemic inflammation. Parkinsons Dis, 
2011; 2011:  436813. 

[133] Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive 
protein and age-related macular degeneration. JAMA, 2004; 291: (6) 704-10. 

[134] Chiu CJ, Klein R, Milton RC, Gensler G, Taylor A. Does eating particular diets alter the 
risk of age-related macular degeneration in users of the Age-Related Eye Disease Study 
supplements? Br J Ophthalmol, 2009; 93: (9) 1241-6. 

[135] Xie QM, Deng JF, Deng YM, Shao CS, Zhang H, Ke CK. Effects of cryptoporus 
polysaccharide on rat allergic rhinitis associated with inhibiting eotaxin mRNA 
expression. J Ethnopharmacol, 2006; 107: (3) 424-30. 

[136] Wismar R, Brix S, Laerke HN, Frokiaer H. Comparative analysis of a large panel of non-
starch polysaccharides reveals structures with selective regulatory properties in dendritic 
cells. Mol Nutr Food Res, 2011; 55: (3) 443-54. 

[137] Fang X, Yu MM, Yuen WH, Zee SY, Chang RCC. Immune modulatory effects of 
Prunella vulgaris L. on monocytes/macrophages. Int J Mol Med, 2005; 16: (6) 1109-16. 

[138] Fang X, Chang RCC, Yuen WH, Zee SY. Immune modulatory effects of Prunella 
vulgaris L. Int J Mol Med, 2005; 15: (3) 491-6. 



 

34 

[139] Brown L, Kroon PA, Das DK, Das S, Tosaki A, Chan V, Singer MV, Feick P. The 
biological responses to resveratrol and other polyphenols from alcoholic beverages. 
Alcohol Clinical Exp Res, 2009; 33: (9) 1513-23. 

[140] Yamamoto N, Moon JH, Tsushida T, Nagao A, Terao J. Inhibitory effect of quercetin 
metabolites and their related derivatives on copper ion-induced lipid peroxidation in 
human low-density lipoprotein. Arch Biochem Biophys, 1999; 372: (2) 347-54. 

[141] Spencer JP, Schroeter H, Crossthwaithe AJ, Kuhnle G, Williams RJ, Rice-Evans C. 
Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen 
peroxide-induced cell death in neurons and fibroblasts. Free Rad Biol Med, 2001; 31: (9) 
1139-46. 

[142] Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, 
O'Leary JM, Milbury PE. Identification of anthocyanins in the liver, eye, and brain of 
blueberry-fed pigs. J Agric Food Chem, 2008; 56: (3) 705-12. 

[143] Peng HW, Cheng FC, Huang YT, Chen CF, Tsai TH. Determination of naringenin and its 
glucuronide conjugate in rat plasma and brain tissue by high-performance liquid 
chromatography. J Chromatogr B Biomed Sci Appl, 1998; 714: (2) 369-74. 

[144] Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans 
CA. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. 
Free Radic Biol Med, 2002; 33: (12) 1693-702. 

[145] Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. 
Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem, 
2003; 85: (1) 180-92. 

[146] Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability 
across an in situ model of the blood-brain barrier. Free Radic Biol Med, 2004; 36: (5) 
592-604. 

[147] Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, 
Terao J. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A 
reaction in mouse brain mitochondria. Nutrition, 2011; 27: (7-8) 847-52. 

[148] Unno K, Ishikawa Y, Takabayashi F, Sasaki T, Takamori N, Iguchi K, Hoshino M. Daily 
ingestion of green tea catechins from adulthood suppressed brain dysfunction in aged 
mice. Biofactors, 2008; 34: (4) 263-71. 

[149] Kishido T, Unno K, Yoshida H, Choba D, Fukutomi R, Asahina S, Iguchi K, Oku N, 
Hoshino M. Decline in glutathione peroxidase activity is a reason for brain senescence: 
consumption of green tea catechin prevents the decline in its activity and protein 
oxidative damage in ageing mouse brain. Biogerontology, 2007; 8: (4) 423-30. 

[150] Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, Kishido T, Oku 
N, Hoshino M. Daily consumption of green tea catechin delays memory regression in 
aged mice. Biogerontology, 2007; 8: (2) 89-95. 



 

35 

[151] Unno K, Takabayashi F, Kishido T, Oku N. Suppressive effect of green tea catechins on 
morphologic and functional regression of the brain in aged mice with accelerated 
senescence (SAMP10). Exp Gerontol, 2004; 39: (7) 1027-34. 

[152] Scheepens A, Tan K, Paxton JW. Improving the oral bioavailability of beneficial 
polyphenols through designed synergies. Genes Nutr, 2010; 5: (1) 75-87. 

[153] Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL. Resveratrol: a 
review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol, 2007; 
224: (3) 274-83. 

[154] Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food 
Res, 2005; 49: (5) 472-81. 

[155] Jung SH, Kang KD, Ji D, Fawcett RJ, Safa R, Kamalden TA, Osborne NN. The flavonoid 
baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation 
to brain membranes. Neurochem Int, 2008; 53: (6-8) 325-37. 

[156] Huang H, Zhang Y, Yang R, Tang X. Determination of baicalin in rat cerebrospinal fluid 
and blood using microdialysis coupled with ultra-performance liquid chromatography-
tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2008; 874: 
(1-2) 77-83. 

[157] Li N, Je YJ, Yang M, Jiang XH, Ma JH. Pharmacokinetics of baicalin-phospholipid 
complex in rat plasma and brain tissues after intranasal and intravenous administration. 
Pharmazie, 2011; 66: (5) 374-7. 

[158] Leveugle B, Ding W, Laurence F, Dehouck MP, Scanameo A, Cecchelli R, Fillit H. 
Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor 
protein secretion and heparin binding to beta-amyloid peptide. J Neurochem, 1998; 70: (2) 
736-44. 

[159] Yoshino S, Watanabe S, Imano M, Suga T, Nakazawa S, Hazama S, Oka M. 
Improvement of QOL and prognosis by treatment of superfine dispersed lentinan in 
patients with advanced gastric cancer. Hepatogastroenterology, 2010; 57: (97) 172-7. 

[160] Hazama S, Watanabe S, Ohashi M, Yagi M, Suzuki M, Matsuda K, Yamamoto T, Suga Y, 
Suga T, Nakazawa S, Oka M. Efficacy of orally administered superfine dispersed lentinan 
(beta-1,3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res, 2009; 
29: (7) 2611-7. 

[161] Paetkau ME, Boyd TA, Grace M, Bach-Mills J, Winship B. Senile disciform macular 
degeneration and smoking. Can J Ophthalmol, 1978; 13: (2) 67-71. 

[162] Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H. Diabetes and risk 
of Parkinson's disease. Diabetes Care, 2011; 34: (4) 910-5. 

[163] Simon KC, Chen H, Schwarzschild M, Ascherio A. Hypertension, hypercholesterolemia, 
diabetes, and risk of Parkinson disease. Neurology, 2007; 69: (17) 1688-95. 



 

36 

[164] Chakravarthy U, Wong TY, Fletcher A, Piault E, Evans C, Zlateva G, Buggage R, Pleil A, 
Mitchell P. Clinical risk factors for age-related macular degeneration: a systematic review 
and meta-analysis. BMC ophthalmol, 2010; 10: 31. 

[165] Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, Porcellini E, Licastro F. 
Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin 
Nutr, 2005; 82: (3) 636-43. 

 

 
 



A. Chemical structure of the flavonoid backbone

b. Chemical structures of various flavonoid subclasses

Figure 1



C. Naringenin

5 OH 
group

4-oxo function

A

B

C

Orthohydroxy groups

B. Quercetin

2,3 C=C bond

3 OH group

Figure 2

A. Epigallocatechin gallate (EGCG)

Gallic group

C

B

A



Figure 3

Trans-stilbeneCis-stilbene



A. Resveratrol (3,5,4’-trihydroxy-trans-stibene)

B. Piceatannol (3,5,3’,4’-tetrahydroxy-trans-stibene)

Figure 4



C. M8 (3,4,5,3’,4’,5;-hexahydroxy-trans-stibene)

Figure 4


