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The effect of magnetic field on electron transport in the inverted band structure of HgTe/CdTe quantum well
is investigated. Although magnetic field breaks the time-reversal symmetry, the quantum spin Hall effect can
still survive at large magnetic field up to 10 T. Moreover, two quantum anomalous Hall-like phases emerge, in
which the system only has a spin-up or spin-down edge state at a given sample edge and the edge current is
spin polarized. By tuning the Fermi energy, the system can transit between the quantum spin Hall phase and two
quantum anomalous Hall-like phases, so the polarized direction of the edge current is well controllable. Thus the
spin selectivity can be realized for potential applications of spintronics. Due to the quantum spin and anomalous
Hall-like effects, the longitudinal and Hall resistances exhibit quantum plateaus. In addition, at certain magnetic
field, some exotic plateaus like 2

3 fractional quantum Hall effect are also observed, where edge states with the
same spin counterpropagate at the one edge. At last, these plateaus are hardly affected by Rashba spin-orbit
interaction, Zeeman effect, and Anderson disorder.

DOI: 10.1103/PhysRevB.85.125401 PACS number(s): 73.23.−b, 85.75.−d, 73.43.−f

I. INTRODUCTION

Recently, much research attention has been attracted to
the field of the topological insulator, a topological nontrivial
state of matter.1–5 The two-dimensional topological insulator,
which exhibits the quantum spin Hall (QSH) effect, was
theoretically predicted first in graphene and the inverted-band
semiconductor HgTe/CdTe quantum well.1,3 Subsequently,
nonzero longitudinal resistance plateau 1

2h/e2 has been
confirmed experimentally.6 The two-dimensional topological
insulator has an insulating gap in the bulk band structure,
but has topologically protected gapless edge states inside the
bulk gap. At a given edge of the sample, two edge states
with opposite spin polarization counterpropagate.2,7 For two
edges of the sample, there is a total of four edge states,
i.e., there are two pairs of inverted subbands. These edge
states are immune to nonmagnetic impurities or geometric
perturbations due to the protection of time-reversal symmetry.
Soon after, a three-dimensional topological insulator was also
proposed theoretically8 and observed experimentally in many
materials,9 such as Bi1−xSbx , Bi2Te3, and Bi2Se3.

Based on the QSH state, it was proposed that only one pair
of subbands is inverted and the other pair of subbands is normal
by some means.10,11 In this case, at a given edge, only one edge
state, which is spin polarized, survives in the bulk gap. Nonzero
quantized Hall resistance and spin-polarized charge current
occur without external magnetic field, giving rise to a quantum
anomalous Hall (QAH) effect. This spin-polarized current
is dissipationless and can have many potential applications
in spintronics. But to obtain the QAH effect, time-reversal
symmetry must be broken. In previous studies, there are
two ways of breaking time-reversal symmetry in order to
investigate the QSH/QAH effect.10,12 On the one hand, the
QAH effect was proposed theoretically in HgTe/CdTe quantum
well by doping magnetically, and it was shown that the
quantized Hall conductance was due to the magnetic moments
rather than Landau levels (LLs).10 On the other hand, very
recently, the QAH and QSH states were found in the Kane
and Mele model of two-dimensional honeycomb lattice with

broken time-reversal symmetry by the exchange field, where a
topological phase transition from a QSH state to a QAH state
occurs when the bulk band gap just closes.12

In this work, we study the effect of magnetic field on
the QSH effect in inverted band structure of the HgTe/CdTe
quantum well, in which the time-reversal symmetry is broken
due to the presence of the magnetic field. We show that the
QSH state can survive even in the large magnetic field, similar
to the effect of exchange field in the Kane and Mele model.
The QSH state can be kept for large magnetic field up to 10 T.
Moreover, even at small magnetic field, a gap in spin-down
subbands is opened near the bottom of the bulk conduction
bands leading to a QAH-like (QAHL) state. In this QAHL
state, it has only one spin-up clockwise edge state and the
current along the sample edge is spin-up polarized with the
longitudinal and Hall resistance plateaus (RL,RH ) = (0,h/e2).
When the magnetic field exceeds a critical value, a gap in
spin-up subbands is also opened near the top of bulk valence
bands, giving rise to another QAHL state, in which only
one spin-down anticlockwise edge state is present and the
edge current is spin-down polarized with the longitudinal
and Hall resistance plateaus (RL,RH ) = (0, − h/e2). With
the increasing of the magnetic field, the gaps are widened
in both spin-up and spin-down subbands, so the ranges of two
QAHL states become wide but the range of QSH state becomes
narrow. By tuning Fermi energy, the system can transit between
the QSH and two QAHL states, thus the direction of spin
polarization of edge current can be well controlled. Finally, at
very large magnetic field (�10 T), the QSH state is destroyed
and an insulator state appears, but two QAHL states still exist
for a very wide range of Fermi energy.

Furthermore, at the upmost part of the bulk gap, four
pairs of longitudinal and Hall resistance plateaus (including
a pair of QAHL plateaus) are clearly exhibited at the small
magnetic field (about 0.2 T) due to the QSH edge state and
LL edge states. In particular, a pair of longitudinal and Hall
resistance plateaus RL = 2

9h/e2 and RH = 1
3h/e2 are found

in which the spin down has both clockwise and anticlockwise
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edge states. This means that the currents with the same spin
and opposite momentum coexist at a given edge, like 2

3
fractional quantum Hall effect in the two-dimensional electron
gas having strong electron-electron interaction. Moreover,
the effects of Rashba spin-orbit interaction and Anderson
disorder are also investigated. All of the above results for
the clean sample, including resistance plateaus and the QSH
and QAHL states, are hardly affected by Rashba spin-orbit
interaction, Zeeman effect, and Anderson disorder. Since the
Hall and longitudinal resistances in HgTe/CdTe quantum well
under magnetic field has been successfully measured6,13–15

the predicted phenomena should easily be observed in the
experiment.

The rest of the paper is organized as follows. In Sec. II,
we describe the model and give the details of our calculations.
In Sec. III, the numerical results are given. Finally, a brief
conclusion is presented in Sec. IV.

II. MODEL AND CALCULATION

The HgTe/CdTe quantum well under a perpendicular
magnetic field is modeled as a six-terminal device shown in
the inset of Fig. 1(b). We neglect the terms ∝k2, which is
small near the � point.16 Bulk inversion asymmetry is also
omitted because the subband mixing is suppressed by strong
magnetic field.17 Experimentally, Zeeman splitting is very
small in HgTe/CdTe quantum well if the magnetic field is not
very strong, e.g., smaller than 10 T.13 Here we first neglect the
Zeeman effect and it will be discussed at last. So we start from
the effective Hamiltonian in HgTe/CdTe quantum well with
magnetic field and Rashba spin-orbit interaction. Its discrete
form in the tight-binding representation of a square lattice is
given by18–20

H =
∑

i

[ϕ†
i V ϕi + (ϕ†

i Tx̂ϕi+x̂ + ϕ†
i Tŷϕi+ŷ + H.c.)], (1)

where i = (ix,iy) is the site index, x̂ and ŷ are unit vectors
along x and y directions. ϕi = (ai,bi,ci,di)T represents the four
annihilation operators of electron on the site i at the special
states |s, ↑〉, |px + ipy, ↑〉, |s, ↓〉, and |−(px − ipy), ↓〉,
respectively. V = diag(Es,Ep,Es,Ep) is the matrix of on-site
energy with Es/p = C ± M − 4(D ± B)/a2;

Tx̂ =

⎛
⎜⎜⎜⎝

Vss Vsp VR 0

−V ∗
sp Vpp 0 0

−V ∗
R 0 Vss V ∗

sp

0 0 −Vsp Vpp

⎞
⎟⎟⎟⎠ exp (iφi,i+x̂) (2)

and

Tŷ =

⎛
⎜⎜⎜⎝

Vss iVsp −iVR 0

iV ∗
sp Vpp 0 0

−iV ∗
R 0 Vss −iV ∗

sp

0 0 −iVsp Vpp

⎞
⎟⎟⎟⎠ exp (iφi,i+ŷ) (3)

are the hopping matrices along x and y directions, respec-
tively, with Vss/pp = (D ± B)/a2, Vsp = −iA/(2a) and VR =
α/(2a). Here, a is the lattice constant, α is the strength of
Rashba spin-orbit interaction, and A, B, C, D, and M are the
system parameters, which can be experimentally controlled.
The effect of the perpendicular magnetic field B⊥ is included

1

2 3

4

56

FIG. 1. (Color online) Longitudinal and Hall resistances as
a function of Fermi energy EF with fixed magnetic field B⊥:
(a) small and (b) large magnetic fields. Inset of (b): the schematic
of six-terminal device. (c) The widths of gaps in the spin-up (↑) and
spin-down (↓) subbands when varying the magnetic field B⊥ with
and without Rashba spin-orbit interaction.

by the phase φi,j = ∫ j
i A · dl/φ0 in the hopping matrices where

A = (−yB⊥,0,0) is the vector potential and φ0 = h̄/e.
From the Landauer-Büttiker formula at zero temperature,21

the current flowing into terminal p is given by

Ip = e2

h

∑
q(�=p)

Tpq(EF )(Vp − Vq). (4)

Here, Tpq(EF ) = Tr[�pGr�qGa] (p,q = 1,2, . . . ,6 and p �=
q) is the transmission coefficient from terminal q to terminal
p at Fermi energy EF , �p(EF ) = i[�r

p(EF ) − �a
p(EF )] are

the linewidth functions, Gr (EF ) = [Ga]† = 1/[EF − Hc −∑6
p=1 �r

p] are the retarded and advanced Green’s functions,
and Hc is the Hamiltonian of the region, which includes two
cross parts and the region between them [see the inset of
Fig. 1(b) with red grid]. The retarded self-energy �r

p(EF )
due to the coupling to the terminal p can be calculated
numerically.22 We applied a bias V across terminal 1 and
terminal 4, and the currents in the voltage probes (terminals 2,
3, 5, and 6) are set to zero. Then from the Landauer-Büttiker
formula, the voltages V2, V3, V5, and V6 of the voltage
probes and the currents I1 and I4 can be calculated. Owing to
current conservation, I1 = −I4 ≡ I14. Finally, the longitudinal
and Hall resistances are given by RL ≡ (V2 − V3)/I14 and
RH ≡ (V2 − V6)/I14, respectively.

125401-2
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In the following numerical calculation, the parameters of
the HgTe/CdTe quantum well is chosen as A = 364.5 meV nm,
B = −686 meV nm2, C = 0, D = −512 meV nm2, and M =
−10 meV, which correspond to the realistic well with 7 nm of
thickness15 exceeding the critical thickness 6.3 nm to invert
the band. So the quantum well without magnetic field is in
the topological phase. The lattice constant is adopted as a = 5
nm. The width of ribbon with square lattice is a(2N − 1) =
495 nm with N = 50, and the widths of voltage terminals 2,
3, 5, 6 are the same as those of ribbon. The distance between
terminal 2 and terminal 3 is aL = 100 nm with L = 20.

III. NUMERICAL RESULTS AND ANALYSIS

First, we consider the ideal six-terminal system under the
perpendicular magnetic field such that the edge state survives.
Hereafter the symbol (nc↑,na↑; nc↓,na↓) denotes the number of
edge states with different combinations. Here, ↑ (↓) refers the
spin up (down) and the subscript c (a) denotes the clockwise
(anticlockwise) chirality of edge state. So nc = nc↑ + nc↓
and na = na↑ + na↓ are the total numbers for clockwise and
anticlockwise edge states, respectively. Due to the chiral nature
of the edge state, we have Tp+1,p = T16 = nc, Tp,p+1 = T61 =
na , (p = 1,2, . . . ,5) and the rest of transmission coefficient
Tpq = 0. By substituting these transmission coefficients into
Eq. (4), the plateaus of the longitudinal and Hall resistances
can be analytically obtained as

RL = ncna

n3
c + n3

a

h

e2
, RH = nc − na

n2
c + n2

a − ncna

h

e2
. (5)

In Fig. 1, the longitudinal and Hall resistance are investi-
gated as we vary Fermi energy with fixed magnetic field and
no Rashba spin-orbit interaction. When there is no magnetic
field [see in Fig. 1(a)], the longitudinal and Hall resistances are
1
2h/e2 and zero, respectively, which indicate that QSH effect
occurs because of two edge states in the bulk gap (|E| < |M|)
of inverted bands. Except for this resistance plateau there is
no other plateau. For small magnetic field, besides the plateaus
of QSH effect, four pairs of longitudinal and Hall resistance
plateaus appear clearly for EF > |M| in Fig. 1(a). The first
pair of resistance plateaus are (RL,RH ) = (0,h/e2). This pair
of plateaus become wider with the increasing of magnetic
field. For instance, the width of the plateaus is 0.9 meV for
B⊥ = 0.08 T, but 3.8 meV for B⊥ = 0.26 T. If the Fermi
energy moves toward larger value, the second pair of resistance
plateaus occur with (RL,RH ) = ( 2

9h/e2, 1
3h/e2). The range of

quantized plateau for this pair is the largest for particular
magnetic field around 0.13 T. The wider the quantum well is,
the finer the plateaus are. Following these plateaus, the third
pair of resistance plateaus are RL = 0 and RH = 1

2h/e2, and
the fourth pair are RL = 0 and RH = 1

3h/e2. On the side of
EF < −|M|, we also see some plateaus due to Landau levels
(LLs), but these plateaus are quite vague.

In Fig. 1(b) for large magnetic field, the regime of QSH
effect with (RL,RH ) = ( 1

2e2/h,0) still exists, but its range
is reduced as the magnetic field increases. For example, the
width of regime decreases from 20 meV for B⊥ = 0.26 T to
9 meV for B⊥ = 5.23 T. On the side of EF > 0, compared
with small magnetic field, the first pair of plateaus with
(RL,RH ) = (0,h/e2) widen clearly, and other resistance pairs

FIG. 2. (Color online) The energy band structures of HgTe/CdTe
quantum well with (a) B⊥ = 0.13 T (small magnetic field) and
(b) B⊥ = 1.3 T (large magnetic field). The left and right halves of
each plot denote the spin-up and spin-down subbands, respectively.
The gray/yellow region is bulk gap (i.e., |E| < |M|) without magnetic
field.

are pushed into larger energy. What is more, on the side
of EF < 0, a new pair of resistance plateaus, (RL,RH ) =
(0, − h/e2), appear and become wider as magnetic field
increases. From Fig. 1(b), we can clearly see that this plateau
pair does not exist at B⊥ = 0.26 T, while for B⊥ = 0.53 T
the plateaus appear. So it indicates a critical magnetic field
Bc. When magnetic field is larger than Bc, the resistance
plateaus with (RL,RH ) = (0,−h/e2) occur. In Fig. 1(c), we
find Bc ≈ 0.5 T.

To understand the behaviors of Fig. 1, we plot the
energy-band structure of HgTe/CdTe quantum well with small
and large magnetic fields in Fig. 2. In the Hamiltonian of
Eq. (1), no coupling between two spin spaces exists in
the absence of Rashba interaction. So the spin subbands
can be depicted separately. In Fig. 2(a) for band structure
of small magnetic field, the regime of QSH effect is still
held for |E| � |M|, where two edge states counterpropagate
at one edge. One of edge states, such as spin up, is
clockwise and the other, spin down, is anticlockwise. Thus
(nc↑,na↑; nc↓,na↓) = (1,0; 0,1) and the longitudinal and Hall
resistances (RL,RH ) = ( 1

2h/e2,0), which is consistent with
the previous theoretical and experimental results.3,6 On the
side of E > |M|, a gap is opened in spin-down subbands
at the bottom of bulk conduction bands, which indicates a
transition from QSH state to quantum Hall (QH) state.23

If Fermi energy is located in this gap, the remaining edge
state is only spin up with clockwise chirality. Thus edge-state
numbers (nc↑,na↑; nc↓,na↓) = (1,0; 0,0), leading to the first
pair of the resistance plateaus (RL,RH ) = (0,h/e2), which can
be regarded as a result of special QH effect. This current is
spin polarized and dissipationless, like the spin polarization
in the QAH effect mentioned in Sec. I. In this regime, the
system has the behavior of the QAH system10 with the spin
Chern numbers C+ = 1 and C− = 0, so we name it as the
QAHL regime. Besides, on the topmost part of the gap in
spin-down subbands, there are two dips that result in the
edge-state numbers (nc↑,na↑; nc↓,na↓) = (1,0; 1,1) and the
plateaus of (RL,RH ) = ( 2

9h/e2, 1
3h/e2), which will be unveiled

with corresponding wave functions in Fig. 5. If Fermi energy
increases furthermore and just moves out of the dips of
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spin-down subbands, it enters into a narrow energy region
[a similar region is seen more clearly in Fig. 4(b)] where
the edge-state numbers are (1,0; 1,0) leading to the third pair
of plateaus (RL,RH ) = (0, 1

2h/e2). In this regime, both the
edge states of spin up and spin down are clockwise. If the
Fermi energy continues to increase, another spin-up Hall edge
state that is clockwise also participates in the conducting, so
edge states are (2,0; 1,0) now, which denote the fourth pair of
plateaus of (RL,RH ) = (0, 1

3h/e2). On the side of E < −|M|,
LLs begin to be formed in the small magnetic field (e.g.,
∼0.2 T). Accordingly, some vague plateaus appear in Fig. 1(a)
for EF < −|M|.

For the energy-band structure of large magnetic field in
Fig. 2(b), except for the gap of spin-down subbands, the
spin-up subbands also open a gap. The gaps in both spin-up
and spin-down subbands become wider with the increase
of magnetic field. As a result, the QSH regime with the
plateaus (RL,RH ) = ( 1

2h/e2,0) is reduced, e.g., from 20 meV
at B⊥ = 0.13 T to 17.5 meV at B⊥ = 1.3 T. Meanwhile, on the
side of E > |M|, due to the widening of the gap of spin-down
subbands, the QAHL regime with (RL,RH ) = (0,h/e2) and
the spin-polarized edge current can exist in a very large energy
range, ≈14.5 meV at B⊥ = 1.3 T [compared with 1.8 meV
for small B⊥ = 0.13 T in Fig. 2(a)]. The second pair of
plateaus ( 2

9h/e2, 1
3h/e2) are distorted and nearly disappear

due to the mixing between the QSH edge state and the
LL edge state. But the third and fourth pairs of plateaus
resulting from the bulk LLs are more visible under the large
magnetic field. On the side of E < −|M|, a gap of spin-up
subbands is opened as well. When Fermi energy is located
in this subband gap, there only exists an anticlockwise spin-
down edge state with (nc↑,na↑; nc↓,na↓) = (0,0; 0,1) and the
resistance plateaus (RL,RH ) = (0,−h/e2). In this gap regime,
the edge current is spin polarized and dissipationless, and it
likes the QAH effect with the spin Chern numbers C+ = 0 and
C− = −1 because only the anticlockwise spin-down edge state
contributes. Hence, under strong magnetic field, the system can
be controlled between the QSH (C± = ±1) and two QAHL
(C+ = 1 and C− = 0; C+ = 0 and C− = −1) phases by tuning
the Fermi energy. Notice that the current has the different spin-
polarization directions in the two QAHL phases, which means
we can control the direction of spin polarization by simply
tuning the Fermi energy. In Fig. 1(c), we show the spin-up and
spin-down subband gaps versus the magnetic field B⊥. With
the increase of magnetic field, the gaps (i.e., the ranges of the
QAHL effects) widen. The gap of spin-down subbands opens
with the presence of the magnetic field, but there is a critical
magnetic field Bc for the opening of the spin-up gap.

Next, the resistances (RL,RH ) with fixed Fermi energy as
a function of the magnetic field are investigated in Fig. 3.

FIG. 3. (Color online) The resistances RL and RH vs magnetic field B⊥ with different Fermi energies: (a) EF > |M|, (b) |M| > EF > −|M|,
and (c) −|M| > EF . (d) is an amplification of (c) for small magnetic field.
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The Fermi energy EF is divided into three regions: EF >

|M|, |M| > EF > −|M|, and −|M| > EF . For the region
of EF > |M| [see Fig. 3(a)], because of the carriers being
electron, the Hall resistance is positive and linearly increases
for small magnetic field B⊥, which is in good agreement
with the experiment results.6,13 Then with the magnetic
field increasing further, LLs are formed gradually and Hall
plateaus appear. There are four pairs of longitudinal and Hall
resistances (RL,RH ) = (0, 1

3h/e2), (0, 1
2h/e2), ( 2

9h/e2, 1
3h/e2),

and (0,h/e2), which have been mentioned in Fig. 1(a). These
plateaus are clearly shown, especially for EF = 12 meV. The
( 2

9h/e2, 1
3h/e2) plateaus are exhibited perfectly only when EF

is slightly higher than |M| (e.g., EF = 12 meV), and have
a departure for the high Fermi energy EF . The other three
pairs of resistance plateaus can be held in all ranges of Fermi
energy EF > |M|. The higher the Fermi energy is, the better
and wider the plateaus are.

The corresponding energy bands are depicted for four
resistance-plateau pairs in Fig. 4. As the magnetic field
increases, the conduction bands move toward higher energy
for both spin-up and spin-down subbands. At B⊥ = 0.08 T
[see Fig. 4(a)], the edge state numbers at EF = 12 meV
are (2,0; 1,0) and its plateaus are (RL,RH ) = (0, 1

3h/e2) [see
Fig. 3(a)]. At B⊥ = 0.11 T [see Fig. 4(b)], edge states
are (1,0; 1,0) on the crossing of bands with Fermi energy,
so the plateaus with (RL,RH ) = (0, 1

2h/e2) are shown in
Fig. 3(a). At B⊥ = 0.13 T [see Fig. 4(c)], a mixture between
the QSH edge state and electron LL edge states occurs,
leading to (nc↑,na↑; nc↓,na↓) = (1,0; 1,1) and (RL,RH ) =
( 2

9h/e2, 1
3h/e2). At B⊥ = 0.16 T [see Fig. 4(d)], Fermi energy

FIG. 4. (Color online) The energy-band structures of HgTe/CdTe
quantum well around Fermi energy EF = 12 meV with different
magnetic field selected from Fig. 3(a): (a)–(d) correspond B⊥ = 0.08,
0.11, 0.13, and 0.16 T, respectively. The left and right halves of each
plot denote the spin up and spin down.

FIG. 5. (Color online) The corresponding wave functions of six
momentum points owing to the crossing of Fermi energy with energy
bands in Fig. 4(c). The first arrow denotes the spin type, and the
second arrow denotes the current direction of edge state. Here, the
chirality of spin-up edge states is adopted as clockwise direction.

EF = 12 meV is located in the gap of spin-down subbands, in
which the system is in the QAHL regime with the edge states
being (1,0; 0,0) and (RL,RH ) = (0,h/e2).

To understand further (RL,RH ) = ( 2
9h/e2, 1

3h/e2) plateaus,
the corresponding wave functions of the momentums ku1,
ku2, kd1, kd2, kd3, and kd4 [see Fig. 4(c)] are depicted in
Fig. 5. The wave functions of ku1, kd1, and kd2 are located
on the left boundary and the others are on the right side,
which clearly show that they indeed are the edge states.
While for a wide device, these edge states locating on one
boundary are separated far from the opposite boundary. Spin
up only has one clockwise edge state (the state ku1), while spin
down has one clockwise (the state kd1) and one anticlockwise
(the state kd2). Here the anticlockwise state kd2 is the QSH
edge state and the clockwise state kd1 is the bulk electron LL
edge state. Thus the edge state numbers are (1,0; 1,1), giving
rise to resistance plateaus ( 2

9h/e2, 1
3h/e2). Here, it is exotic for

spin-down edge states that the edge states with the same spin
counterpropagate on the same boundary with little mixing. A
similar phenomenon occurs in (e.g., 2/3) fractional quantum
Hall effect only, in which there exists strong electron-electron
interaction.24,25

In the following, we investigate the resistance plateaus
as a function of magnetic field with Fermi energy in the
range of |M| > EF > −|M|. This range is the QSH regime
while without the magnetic field. The results are shown in
Fig. 3(b). With the increasing of the magnetic field, the regime
of the QSH effect, i.e., the width of the resistance plateaus
(RL,RH ) = ( 1

2h/e2,0) in Figs. 1(a) and 1(b), is narrowed and
finally disappears when the magnetic field is large enough
(>10 T). For Fermi energy EF > ED (ED ≈ 7.5 meV is the
Dirac point at B⊥ = 0), the system enters from the QSH
phase into the QAHL phase of C+ = 1 and C− = 0 at the
large magnetic field, in which there is only a clockwise
spin-up edge state and the corresponding resistance plateaus
are (RL,RH ) = (0,h/e2). On the other hand, if Fermi energy
EF < ED , the system enters into the QAHL phase of C+ = 0
and C− = −1 at large B⊥, in which only an anticlockwise
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FIG. 6. (Color online) Phase diagram in the EF -B⊥ plane without
(black solid) and with (red dotted) Zeeman effect.

spin-down edge state exists and the resistance plateaus are
(RL,RH ) = (0,−h/e2). Also, it is shown that the system
entering the QAHL phase occurs at larger magnetic field if
Fermi energy EF is closer to ED . For instance, from Fig. 3(b),
we can see that the phase transition occurs at magnetic field
B⊥ = 1.1, 3.4, 5.6, and 8.0 T, respectively, while EF = −8,
−4, 0, and 4 meV. For EF = ED , the QSH effect can persist
in a wide range of magnetic field, from zero to about 10 T
(see Fig. 6). If magnetic field B⊥ increases further, the spin-up
and spin-down gaps overlap, then a gap of the whole band is
opened and the system becomes an insulator. At Fermi energy
EF = ED , the system transits directly from the QSH phase
into the insulator phase, where the longitudinal resistance is
divergent. At the larger magnetic field, the insulator phase can
extend to a wider range of EF .

In Figs. 3(c) and 3(d) Fermi energy moves down into the
valence bands within −|M| > EF . The Hall resistance RH is
negative due to the carriers being hole now, and |RH | linearly
increases in small magnetic field B⊥. When the magnetic field
continues to increase, the quantized Hall-resistance plateaus
are shown due to LLs. The plateau values are at −h/ne2

with the integer n = 1,2,3, . . . . Eventually, the system enters
the QAHL phase and the resistance plateaus of (RL,RH ) =
(0, − h/e2) appear, because of the opening of the gap in
spin-up subbands. For the lower Fermi energy, the hole density
is higher and the system enters the QAHL phase at a larger
magnetic field.

In Fig. 6, the phase diagram in the EF -B⊥ plane is plotted.
There is a four-phase (QSH, insulator, and two QAHL phases)
crossing point located at EF = ED and B⊥ ≈ 10 T. For B⊥ <

10 T, the system can be three phases (one QSH and two QAHL
phases) depending on the Fermi energy. It is obvious that the
spin-up QAHL phase of C+ = 1 and C− = 0 emerges as soon
as B⊥ �= 0. But the spin-down QAHL phase of C+ = 0 and
C− = −1 has a threshold of magnetic field Bc ≈ 0.5 T, and it
emerges until the magnetic field B⊥ > Bc. With the increasing
of B⊥, the width of the QSH region decreases and the widths
of two QAHL states increase. For B⊥ > 10 T, the QSH phase
disappears and the insulator phase occurs because a gap of the
whole band is opened. In addition, in the outside of the four

FIG. 7. (Color online) The resistances RL and RH as a function of
Fermi energy with Rashba spin-orbit interaction and fixed magnetic
field. The Rashba strength is taken by α = 50 meV nm. For
comparison, the case of without Rashba spin-orbit interaction, α = 0,
is also shown. In the plots, the curves of α = 50 meV nm and α = 0
almost overlap.

phases, the system is in a metal state for the small magnetic
field, while it is in the quantum Hall (QH) phase at the large
magnetic field.

Let us study the effect of Zeeman splitting on the phase
diagram. The Zeeman effect can be considered by V → V +
μBB⊥diag(gE⊥,gH⊥,−gE⊥,−gH⊥) for Eq. (1), where μB is
the Bohr magneton and the out-of-plane g factors, gE⊥ = 22.7
and gH⊥ = −1.21, are given for the quantum well thickness
7 nm.15 The similar phase diagram is found in Fig. 6 (see the
red dotted curves). All four phases (QSH, insulator, and two
QAHL phases) survive well. In particular, the aforementioned
four pairs of longitudinal and Hall resistance plateaus at the
small magnetic field (B⊥ ∼ 0.1 T) are almost not affected.
On the other hand, due to Zeeman effect, the QSH phase
disappears for B⊥ >7.5 T instead of B⊥ >10 T.

Let us investigate the effect of Rashba spin-orbit interaction
on these resistance plateaus (see Fig. 7). We find that the
effect of the Rashba term is very weak. On the side of
EF > 0, the plateaus are almost not affected by the Rashba
term regardless of the magnetic field. In the QAHL regime,
there is only the spin-up edge state and the electron hopping
between different spin states cannot occur, so the width of
the plateaus (RL,RH ) = (0,h/e2) is the same as the case
of no Rashba interaction [see Fig. 1(c)]. The plateaus of
(RL,RH ) = ( 2

9h/e2, 1
3h/e2) are not changed also, because of

the spatial separation of the wave functions of the spin-up
edge state ku1 and spin-down edge state kd1 (see Fig. 5). For
the plateaus of higher energy, they result from bulk LLs and
affected very little by the weak Rashba term. On the side of
EF < 0, at the large magnetic field, the QAHL regime moves
lightly to the higher Fermi energy owing to Rashba interaction,
but its width is hardly changed, as seen in Fig. 1(c).

At last, the effect of disorder on the resistance plateaus in
QSH and QAHL regions is investigated as well in Fig. 8. Here,
Anderson on-site disorder is considered and only resides on
the region between two cross parts in the inset of Fig. 1(b).
Accordingly, in Eq. (1), V → V + ωidiag(1,1,1,1) for the
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FIG. 8. (Color online) The resistances RL and RH as a function of
disorder strength W with fixed magnetic field B⊥ = 2 T and α = 0.
The Fermi energies are selected from three black dots in Fig. 6 with
(a) 12 meV, (b) 6 meV, and (c) −10 meV. Each resistance value is
averaged over 500 disorder configurations.

corresponding sites, and the on-site disorder energy ωi is
uniformly distributed in the range [−W/2,W/2] with the
disorder strength W . For two QAHL states in Figs. 8(a) and
8(c), the Hall resistance plateaus are very robust against the
disorder and they can perfectly hold even though W reaches
500 meV. The longitudinal resistance plateaus (RL = 0) does
not change up to W = 300 meV, beyond which they begin
to increase. For the QSH state in Fig. 8(b), the longitudinal
resistance plateau departs from the plateau 1

2h/e2 when W >

350 meV, and the Hall resistance plateau RH = 0 can be kept
better than the corresponding longitudinal resistance plateau.

Therefore all these resistance plateaus are well maintained in
a large range of disorder strength.

IV. CONCLUSION

In summary, we have investigated the effect of magnetic
field on electron transport in the inverted band structure of the
HgTe/CdTe quantum well. Although magnetic field breaks
time-reversal symmetry, the QSH plateaus of (RL,RH ) =
( 1

2h/e2,0) can still remain until the magnetic field is larger than
10 T. Moreover, due to the gap opening in the spin-up and spin-
down subbands under the magnetic field, two QAHL phases
appear, in which the system has only one spin-up or spin-down
edge state. When the magnetic field is very large (>10 T), the
QSH phase disappears finally and an insulator phase emerges.
The phase diagram in Fermi energy versus magnetic field plane
is given and the longitudinal and Hall resistances are studied.
Owing to the QSH and QAHL effects, both longitudinal and
Hall resistances exhibit the plateau structures. Besides, in the
suitable magnetic field, a pair of exotic resistance plateaus of
(RL,RH ) = ( 2

9h/e2, 1
3h/e2) can occur, in which the edge states

with the same spin counterpropagate at the one edge, like
the 2

3 fractional quantum Hall effect. Finally, these plateaus
are hardly affected by Rashba spin-orbit interaction, Zeeman
effect, and Anderson disorder.
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