
Title Numerical study of parametric pumping current in mesoscopic
systems in the presence of a magnetic field

Author(s) Xu, F; Xing, Y; Wang, J

Citation Physical Review B (Condensed Matter and Materials Physics),
2011, v. 84 n. 24, article no. 245323, p. 245323-1-245323-9

Issued Date 2011

URL http://hdl.handle.net/10722/145574

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37967012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PHYSICAL REVIEW B 84, 245323 (2011)

Numerical study of parametric pumping current in mesoscopic systems in the presence of a
magnetic field

Fuming Xu,1 Yanxia Xing,1,2 and Jian Wang1,*

1Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
2Department of Physics, Beijing Institute of Technology, Beijing 100081, China

(Received 28 September 2011; revised manuscript received 26 November 2011; published 28 December 2011)

We numerically study the parametric pumped current when magnetic field is applied both in the adiabatic
and nonadiabatic regimes. In particular, we investigate the nature of pumped current for systems with resonance
as well as antiresonance. It is found that, in the adiabatic regime, the pumped current changes sign across the
sharp resonance with long lifetime, while the nonadiabatic pumped current at finite frequency does not. When
the lifetime of the resonant level is short, the behaviors of the adiabatic and nonadiabatic pumped currents are
similar with sign changes. Our results show that, at the energy where complete transmission occurs, the adiabatic
pumped current is zero, while the nonadiabatic pumped current is nonzero. Different from the resonant case,
both the adiabatic and nonadiabatic pumped currents are zero at antiresonance with complete reflection. We also
investigate the pumped current when the other system parameters such as magnetic field, pumped frequency, and
pumping potentials are varied. Interesting behaviors are revealed. Finally, we study the symmetry relation of the
pumped current for several systems with different spatial symmetries upon reversal of magnetic field. Different
from the previous theoretical prediction, we find that a system with general inversion symmetry can pump out a
finite current in both the adiabatic and nonadiabatic regimes with an approximate relation I (B) ≈ I (−B) at small
magnetic field. It has been shown theoretically that for systems with reflection symmetry, the pumped current
satisfies the relation I (B) = I (−B) in the adiabatic regime. Our results show that even for systems evolving from
the inversion to reflection symmetry, the pumped current still obeys the relation I (B) = I (−B) in the adiabatic
regime at small magnetic field.

DOI: 10.1103/PhysRevB.84.245323 PACS number(s): 72.10.Bg, 73.23.−b, 73.40.Gk

I. INTRODUCTION

The idea of the parametric electron pump was first ad-
dressed by Thouless;1 it is a mechanism in which, at zero
bias, a dc current is pumped out by periodically varying two
or more system parameters. Over the years, there has been
intensive research interest concentrated on the parametric
electron pump.2–10 The electron pumping effect has been
explored on a quantum-dot setup consisting of AlGaAs/GaAs
heterojunction.11 Low-dimensional nanostructures, such as
carbon nanotubes12,13 (CNT) and graphene,14,15 were also
proposed as potential candidates. Investigation of the electron
pump also triggers the proposal of spin pump,16–18 in which a
spin current is induced by various means.

At the low pumping frequency limit, the variation of
the system is relatively slower than the process of energy
relaxation.19 Hence, the system is nearly in equilibrium
and we could deal with the adiabatic pump by equilibrium
methods. On the other hand, the nonadiabatic pump refers
to the case wherein the pumping process is operated at a
finite frequency. In the nonadiabatic regime, nonequilibrium
transport theory should be employed. Theoretical methods
adopted in the research field include conventional scattering
matrix theory,5,20,21 Floquet scattering matrix,9,22 and the
nonequilibrium Green’s function (NEGF) method,23,24 as well
as other methodologies to both adiabatic25 and nonadiabatic26

electron pumps.
The electron pump is a phase-coherent phenomenon since

the cyclic variation of system parameters affects the phase of
wave function with respect to its initial value.27 As a result, it
is very sensitive to the external magnetic field. It was found

theoretically, using the Floquet scattering matrix method,28–30

that the pumped current of a open quantum-dot system shows
strong dependence on the spatial symmetry when the magnetic
field applied in the system is reversed. Later, it was numerically
suggested31 that the pumped spin current also has certain
spatial symmetries.

In this paper, we aim to numerically investigate the pumped
current in the presence of magnetic field. Both adiabatic and
nonadiabatic pumped currents are calculated. We focus on the
nature of the pumped current for the mesoscopic systems with
resonance with complete transmission and antiresonance with
complete reflection. We find that the behaviors of adiabatic and
nonadiabatic pumped currents are very different. Our results
show that in the nonadiabatic regime, the pumped current is
nonzero at resonance, while it is zero at antiresonance. How-
ever, the adiabatic pumped current is always zero regardless of
types of resonance. Since there is no external driving force, the
direction of current depends only on the system parameters.
Our numerical results show that the adiabatic pumped current
reverses its sign at the resonance or antiresonance. For the
nonadiabatic pumped current, the sign reversal depends on
the lifetime of the resonant states. The nonadiabatic pumped
current changes the sign near the resonant point only when
the lifetime is short. We also study the pumped current as a
function of magnetic field. We find that as the system enters the
quantum Hall regime with increasing magnetic field strength,
the pumping current vanishes. Since in the quantum Hall
regime the electron wave function appears as edge state, it will
circumvent the confining potentials shown in Fig. 1. Pumping
potentials overlapping in space with confining potentials
provide no modulation on the electron wave function during
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FIG. 1. Sketch of the spatial reflection symmetries: (a) instan-
taneous up-down (IUD); (b) instantaneous left-right (ILR); (c) in-
stantaneous inversion (IIV); (d) general up-down (GUD); (e) general
left-right (GLR); (f) general inversion (GIV). Shadow rectangules
indicate the pumping region and dark gray blocks stand for potential
barriers defining the spatial symmetry of the system. The pumping
potentials are right on top of these confining potentials.

the variation period. Hence, there is zero pumped current in the
quantum Hall regime. We also examine the pumped current
and its relation with other system parameters such as pumping
frequency and pumping potential amplitude. Theoretically, it
was predicted that for systems that have reflection symmetry,
the adiabatic pumped current remains the same when the
magnetic field is reversed. Motivated by this result, we also
investigate the symmetry properties of the pumped electron
current of systems with certain spatial symmetries in the
presence of magnetic field by the Green’s function method. The
electron pump is driven by periodical modulation of potentials,
which share the same spatial coordinates with the confining
potentials, which preserve reflection symmetry of the system.

In this paper, six spatial symmetries studied in Ref. 29
are considered, both at the adiabatic and nonadiabatic cases,
which are schematically depicted in Fig. 1. For these systems,
the confining potential as well as pumping potential are given
in Eq. (1). Since the spatial profile of the confining potential
and pumping potential are the same, the spatial symmetries
are kept at any moment for the setups, Figs. 1(a)–1(c),
during the pumping period. Hence, we refer to them as
instantaneous up-down (IUD), instantaneous left-right (ILR),
and instantaneous inversion (IIV) symmetries, respectively. On
the other hand, symmetries are not preserved during the whole
pumping cycle except when φjk = nπ in setups 1(d)–1(f).
They are correspondingly referred to as general up-down
(GUD), general left-right (GLR), and general inversion (GIV)
symmetries. In our study, all potential profiles locate at the
boundary of the pumping region, i.e., the first and/or last layer
in the discrete lattice (see the dark gray region).

Most of our numerical results agree with the conclusions
from Floquet scattering theory28,29 except for the general
inversion symmetry (GIV) [setup in Fig. 1(f)]. In contrast with
the theoretical prediction that the adiabatic pumped current
I ad ≈ 0 for this spatial symmetry, our numerical calculation
shows that the pumped current is finite and further investigation

reveals that there is an approximate symmetry relation of the
current as setup Fig. 1(e) at small magnetic field, i.e., I (B) ≈
I (−B). Our results further show that for systems evolving
from the inversion to reflection symmetry, the pumped current
still obeys the relation I (B) = I (−B) in the adiabatic regime
at small magnetic field.

Our paper is organized as follows. In the next section,
we will describe the numerical method. It is then followed
by the numerical results and discussions in Sec. III. Finally,
conclusions are given in Sec. IV.

II. THEORETICAL FORMALISM AND METHODOLOGY

We consider a quantum-dot system consisting of a coherent
scattering region and two ideal leads, which connect the dot
to electron reservoirs. The whole system is placed in the
x-y plane and a magnetic field is applied. The single electron
Hamiltonian of the scattering region is simply

H = (p + eA/c)2

2m∗ + V (x,y,t),

where A is the vector potential of the magnetic field. Here,
the magnetic field is chosen to be along the z direction with
B = (0,0,B). The vector potential has only the x component
in the Landau gauge A = (−By,0,0). Expanding the potential
term according to the time dependency

V (x,y,t) = Vs(x,y) + Vt (x,y,t),

Vs(x,y) = V0

∑
j

�j (x,y), (1)

Vt (x,y,t) =
∑

j

Vp,j�j (x,y) cos(ωt + φj ),

where Vs is the static potential part and Vt is the time-dependent
term. j = 1 or 2 labels the indices of the potential in our
calculation setup shown in Fig. 1. V0 and Vp,j are amplitudes
of the static potential and pumping potential, respectively. To
maintain the symmetry of the system, we need to set that
Vp,1 = Vp,2 = Vp. �j represents the potential profile, which
is a scalar vector and φj is the initial phase of the time-varying
potential. Then, the Hamiltonian is expressed as

H = H0 + Vt ,

where

H0 =
(

−ih̄
∂

∂x
− e

c
By

)2

+
(

−ih̄
∂

∂y

)2

+ Vs(x,y).

For the adiabatic electron pump, the average current flowing
through lead α due to the slow variation of system parameter
Vt,j in one period is given by5

I ad
α = 1

τ

∫ τ

0
dt

dQα(t)

dt
= qω

2π

∫ τ

0
dt

∑
j

dNα

dVt,j

dVt,j

dt
, (2)

where τ = 2π/ω is the variation period of potential Vt,j and
ω is the corresponding pumping frequency. α = L or R labels
the lead. The so-called emissivity dNα/dVj is conventionally
defined in terms of the scattering matrix Sαβ as32

dNα

dVj

=
∫

dE

2π
(−∂Ef )

∑
β

Im
∂Sαβ

∂Vj

S∗
αβ. (3)
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Formally, the integration of Eq. (2) can be represented as

I ad
α = q

2π

∫ 2π/ω

0
i(ωt)d(ωt) = q

2π

∫ 2π

0
i(u)du.

Clearly, the integration does not involve the frequency ω under
variable substitution u = ωt . For simplicity, we can always
choose ω = 1 in the calculation, and the above expression is
further simplified as

I ad
α =

∫ 2π

0
iad(t)dt.

Hence, in the calculation of I ad, Vp is the only pumping
parameter and ω is absent in this regime.

In the language of Green’s function, the definition of I ad in
Eq. (2) is equivalent to the following form:24

I ad
α = q

∫ 2π

0
dt

∫
dE

2π
(−∂Ef )Tr

[

αGr dVt

dt
Ga

]
, (4)

where the instantaneous retarded Green’s function Gr in real
space is defined as

Gr (E,t) = [E − H (t) − �r ]−1, (5)

where �r is the self-energy due to the leads.
For the nonadiabatic pump at finite frequency, the pumped

current up to the second order in pumping potential is derived
as23

I nad
α = −iq

∑
jk=1,2

V 2
p

∫
dE

8π
Tr

{

αGr

0�j

[
(f − f−)

× (
Gr−

0 − Ga−
0

)
eiφkj + (f − f+)

× (
Gr+

0 − Ga+
0

)
e−iφkj

]
�kG

a
0

}
, (6)

where 
α is the linewidth function of lead α defined as

α = i[�r

α − �a
α]; f = f (E) and f± = f (E ± ω) are the

Fermi distribution functions; and φkj = ϕj − ϕk is the phase
difference between the two pumping potentials. Here, G0r =
G0r (E) and G0r± = G0r±(E ± ω) are the retarded Green’s
functions where there are no pumping potentials. We see from
Eq. (6) that the parameter Vp,j does not enter the calculation
of the nonadiabatic pumped current, which only involves
the equilibrium Hamiltonian of the system. Hence, in the
calculation, it is better to evaluate the scaled current I nad/V 2

p .
Then, in the nonadiabatic regime, the pumping parameter is
the frequency ω and Vp is absent.

In the following section, we will use Eqs. (4) and (6) to
carry on numerical investigations, and all the numerical work
is done at the zero temperature. In the calculation, we consider
a square quantum dot with size 0.7 μm × 0.7 μm. Two open
leads with the same width connect the dot to the electron
reservoirs. The quantum dot is then discretized into a 40 × 40
mesh. The hopping energy t = h̄2/2m∗a2 sets the energy scale
with a the lattice spacing and m∗ the effective mass of electrons
in the quantum dot. Dimensions of other relevant quantities are
then fixed with respect to t . For instance, the unit of magnetic
field strength is 13.5 T.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results will be presented. To test
our numerical method, we first study the reflection symmetry
of the pumped current on the inverse of magnetic field. Other
properties of the current will be discussed in Sec. III B.

A. Symmetry of pumped current

To check the symmetry of the pumped current,, we have
schematically plotted in Fig. 1 six setups with different
spatial symmetries of interest. Before presenting numerical
results, we would like to point out that for setup Fig. 1(c)
with instantaneous inversion symmetry (IIV), the theoretical
predictions28,29 and our numerical calculations give the same
result: the pumped current is exactly zero at both adiabatic
and nonadiabatic cases, which is independent of B and φ12.
The phenomena can be straightforwardly understood by
the Floquet scattering matrix theory.29 In the IIV setup, it
is obvious that the transmission coefficient of an electron
traveling from the left lead to the right TR←L is always
equal to that of an electron moving in the opposite direction
TL←R , i.e.,

TR←L = TL←R.

From the Landauer-Büttiker formula, the electric current
along the left to right region is given by

IR←L = 2e

h

∫
dE TR←L(E)f (E),

while IL←R is defined in a similar way. Then, the pumped
current through the left lead is defined as9,29

IL = IL→R − IR→L = 0. (7)

The conclusion holds for any particular moment, which
means that there will be no pumped current at all. Hence,
in the following, we will not discuss the case of setup
Fig. 1(c).

First, we examine the relation between the adiabatically
pumped current I ad and phase difference φ12 of the pumping
potentials calculated from Eq. (4). A sinusoidal behavior is
observed at a relatively small pumping amplitude Vp = 0.5
for all setups in Fig. 1. The sinusoidal form of I ad(φ12)
represents a generic property of adiabatic electron pump at
small Vp. Driven by the cyclic variation of two time-dependent
system parameters, the pumped current is directly related
to the area enclosed by the parameters in parametric space.
At small pumping amplitudes, the leading order of I ad is
proportional to the phase difference between the pumping
potentials I ad ∝ Vp sin φ12.5 However, the relation does not
hold for large pumping amplitude. To demonstrate this, we
have calculated current pumping through the setup with
symmetry ILR at a large potential Vp = 1.6. As shown in
Fig. 2, the sinusoidal relation is clearly destroyed. Except
for this difference arising from the pumping amplitude Vp,
there is a general antisymmetry relation between the pumped
current and the phase difference φ12 for all setups: I (φ12) =
−I (−φ12). Naturally, I (φ12 = nπ ) = 0. This is understand-
able since two simultaneously varying parameters enclose a
line rather than an area in the parametric space, and the pumped
current vanishes. This result, however, does not hold for the
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FIG. 2. (Color online) The adiabatically pumped current as a
function of phase difference φ12 for different spatial symmetries of
the pumping system at pumping amplitude Vp = 0.5. Inset: pumped
current of system with symmetry ILR at Vp = 1.6. Other system
parameters: EF = 0.62, B = 0.001, V0 = 1.

nonadiabatic case where the frequency gives an additional
dimension of parametric space. Another result of interest is
that, in contrast to the theoretical prediction I ad ≈ 0 for the
setup of GIV symmetry,29 the pumped current from the setup
of GIV is finite and has the same order of magnitude as that of
GLR symmetry.

Figure 3 plots the pumped current versus magnetic field
strength B at phase difference φ12 = π/2, where the mag-
nitude of I ad(φ12) is maximized. In Fig. 3(a), we see that
the current is either an even or odd function of magnetic
field strength B, I (B) = ±I (−B), for symmetries IUD, ILR,
and GUD, which agrees with the theoretical predictions.28,29

In Fig. 3(b), it is clear that the pumped current is invariant
upon the reversal of magnetic field for GLR.28,29 The sys-
tem with GIV symmetry shows an approximation relation
I (B) ≈ I (−B) only at small B, which is similar to that of
GLR symmetry. This does not agree with the theoretical
prediction.29 To further investigate the relation I (B) ≈ I (−B),
we studied three intermediate setups between GIV and GLR.
In Figs. 1(e) and 1(f), the length of the pumped potential profile
is fixed as 20 both for V1 and V2 in the system with 40 × 40
mesh. Then, we shift down the potential profile V2 of the GIV
symmetry five lattice spacings each time. After four shifts,
the system changes from GIV to GLR symmetry and in this
process, three intermediate systems are generated. Numerical
results shown in Fig. 3(b) suggest that all these setups have
the relation I (B) ≈ I (−B) at small magnetic fields, although
there are no spatial reflection symmetries in these systems.
The closer the system is to the GLR symmetry, the larger the
magnetic field for this relation. According to the unit of B,
B = 0.0005 in the calculation corresponds to magnetic field
strength 77 mT. These results suggest that the general left-right
symmetry is a rather strong spatial symmetry and even a rough
setup [cyan-down-triangle curve in Fig. 3(b)] can lead to an
accurate invariant relation of the pumped current, at least for
small magnetic field. In addition, the amplitude of pumped
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FIG. 3. (Color online) (a) The adiabatically pumped current
versus magnetic field strength B for system symmetries a(IUD),
b(ILR), and d(GUD). Curve for IUD is offset by −0.004 for a compact
illustration. (b) I ad vs B for spatial symmetry GLR, GIV, and three
intermediate setups. Calculation parameters: EF = 0.62, φ12 = π/2,
V0 = 1, Vp = 0.5.

current in this setup with GLR symmetry is relatively high
compared with other symmetries.

Now, we turn our attention to the nonadiabatic electron
pump with finite pumping frequency. The numerical results
are presented in Fig. 4. One of the major differences between
adiabatic and nonadiabatic pump is that a nonadiabatic pump
can operate with only one system parameter since the finite
pumping frequency supplies one extra degree of freedom and
it could act as another pumping parameter. In the theoretical
work of Ref. 23, they attributed this as a consequence of
photon-assisted processes, and it is a nonlinear transport
feature of nonadiabatic electron pump. In our numerical
results, we also found that I nad(φ12 = nπ ) �= 0 is a general
property of the pumped current, except for systems with spatial
symmetries IIV or GIV. Although the pumping frequency ω

can play the role of a variation parameter, the pumped current
in the system with symmetry IIV is always zero. For the
setup with GIV symmetry, we see from Fig. 4(a) that the
pumped current obeys an antisymmetric relation with phase
difference: I nad(φ12) = −I nad(−φ12). I nad(φ12 = nπ ) = 0 is
a natural result of this antisymmetry relation. By combining
this with the result from the adiabatic case (Fig. 2), we see
that this antisymmetry relation between pumped current and
phase difference φ12 is a general feature of the GIV symmetry.
Besides, from Fig. 4(b), we found that I nad for the GIV system
at a fixed phase φ12 = π/2 shows I nad(B) ≈ I nad(−B) at small
magnetic field. Our results confirm the theoretical predictions
on the parity of pumped current on reversal of magnetic
field for setups IUD and ILR,29 which are, respectively,
I (B) = I (−B) and I (B) = −I (−B) [see Fig. 4(b)]. However,
it does not hold for GUD and GLR in Fig. 4(c). In this
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better visualization.

case, one can only get the relations I (B,φ) = I (−B,−φ)
for GUD and I (B,φ) = −I (−B,−φ) for GLR.29 When the
two pumping potentials operate in phase or out of phase

(φ12 = nπ ), they reduce to a simple version: I (B) = I (−B)
for GUD and I (B) = −I (−B) for GLR, which are the same
for IUD and ILR at φ12 = nπ . It is worth mentioning that
these two relations are contrary to the adiabatic case where
φ12 �= nπ . These conclusions drawn from both adiabatic and
nonadiabatic pumps are summarized in Table. I.

B. Transport properties of the pumped current

In the preceding section, we have concentrated on the
symmetry of the pumped current with magnetic field B and
phase difference φ12 as the variables. Now, we study the effect
of other system parameters on the pumped current. Numerical
calculations were mostly performed on a system with instant
L-R symmetry (ILR), in which widths of the four potential
barriers are kept equal. The numerical results are plotted in the
following figures.

In Fig. 5(a), we plot the pumped current in the presence of
magnetic field as a function of Fermi energy EF , together with
the transmission coefficient T (EF ) at static potential barrier
V0 = 1.0. The sharp tips of the transmission coefficient suggest
that the quantum resonance effect dominates the transport
process. When a dc bias is applied, the tunneling current is
calculated from the transmission profile. However, the pumped
current is generated as zero bias by periodically varying ac
gate voltages. Although originating from different physical
mechanisms, we see that the pumped current clearly shows
resonance characteristics both in adiabatic and nonadiabatic
cases near the resonant energy of the static transmission
coefficient. These resonance-assisted behaviors of the pumped
current are a generic property of electron pump.8 Operating at
the coherent regime, quantum interference naturally results
in its resonant behavior. It is worth mentioning that near
the sharp resonance at EF = 0.011 87, the adiabatic pumped
current changes sign. This is understandable. In the presence
of dc bias, the direction of the current is determined by
the bias. For the parametric electron pump at zero bias, the
direction of the pumped current depends only on the system
parameters such as Fermi energy and magnetic field. Variation
of these parameters can change the current direction. For the
nonadiabatic pump, the pumped current changes slowly near
the resonance, but there are no sign changes for the pumped
current. In Fig. 5(a), we also see a second resonant point
with much broader peak. Near this resonant level, we see that

TABLE I. Symmetry of the pumped currents on inversion of the magnetic field for both adiabatic and nonadiabatic electron pumps.

Adiabatic pump Nonadiabatic pump

Symmetry φ12 = nπ φ12 �= nπ φ12 = nπ φ12 �= nπ

IUD I = 0a I (B) = I (−B)a I (B) = I (−B)a I (B) = I (−B)a

ILR I = 0a I (B) = −I (−B)a I (B) = −I (−B)a I (B) = −I (−B)a

IIV I = 0a I = 0a I = 0a I = 0a

GUD I = 0a I (B) = −I (−B)a I (B) = I (−B)a I (B,φ) = I (−B,−φ)a

GLR I = 0a I (B) = I (−B)a I (B) = −I (−B)a I (B,φ) = −I (−B,−φ)a

GIV I = 0a I ≈ 0b I = 0a I (B,φ) = −I (B,−φ)a

I (B) ≈ I (−B)c I (B) ≈ I (−B)c

aStands for the theoretical prediction from Ref. 29 confirmed by our numerical calculation.
bRepresents theoretical relation without numerical sustainment.
cCorresponds to our new finding in contrast to the theoretical prediction.
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FIG. 5. (Color online) (a), (b): The pumped current as well as transmission coefficient as a function of Fermi energy at static potential
height V0 = 1.0 and 5.0, respectively. For visualization purposes, a factor is multiplied to the pumped current in Fig. 5. For I ad, the factor is
50 in both (a) and (b). For I nad/V 2

p , this factor is 1.6 × 104 in (a) and 8 × 106 in (b). Other parameters: B = 0.001, φ12 = π/2. Vp = 0.5,
ω = 0.002 in (a) and Vp = 4.5, ω = 0.002 in (b). (c) Highlights the pumped current at small pumping amplitudes at the first resonant peak;
V0 = 1.0 and Vp = 0.05, ω = 0.0002. The factors for I ad and I nad/V 2

p are 1000 and 1.6 × 104, respectively.

the transmission coefficient and the pumped currents are well
correlated. The resonant feature of the pumped current is also
related to the width of the resonant peak in the transmission
coefficient. Similar behaviors are found for a higher static
potential barrier V0 = 5.0 in Fig. 5(b). A larger barrier makes
the resonant peaks much sharper, but it does not qualitatively
affect the pumped current. The noticeable difference is that the
pumped current peaks are shifted with that of the transmission
coefficient. In addition, it seems that the nonadiabatic pumped
current develops a plateau region near the first resonant
peak.

When zooming in at the first resonant peak [EF = 0.011 87
in Fig. 5(a)], we found that at small pumping amplitude, the
pumped currents are zeros for both adiabatic and nonadiabatic
cases when a complete transmission occurs (transmission
coefficient T = 1). The numerical evidence is shown in
Fig. 5(c). Note that there is only one transmission channel for
the incident energy so that T = 1 corresponds to complete
transmission. We emphasize that the nonadiabatic pumped
current goes to zero near the resonance only for very small
frequency. At larger frequency, such as the case in Figs. 5(a)
or 5(b), it is nonzero. For the nonadiabatic case, the pumped
current at complete transmission is in general nonzero.
However, if the frequency is very small, the adiabatic case is
recovered. This is numerically supported by Fig. 5(c), where
the two current curves are very similar.

Furthermore, the behavior of the pumped current for a
structure exhibiting antiresonance phenomena was studied and

the numerical results are shown in Fig. 6. To establish antireso-
nance, we use a T junction,33 which is schematically plotted in
the inset of Fig. 6. The side bar has longitudinal dimension 20
and transverse dimension 30. Pumping potentials are placed
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FIG. 6. (Color online) The pumped current versus Fermi energy
in a T -shaped system. The side bar is of length 20 and width 30.
Two gray blocks indicate the positions where the pumping potentials
are applied and the static potential is set to be zero. A factor of
50 is multiplied to I ad and it is 100 for I nad/V 2

p . Other parameters:
B = 0.001, φ12 = π/2, Vp = 0.05, ω = 0.002.
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FIG. 7. (Color online) (a) Adiabatic pumped current in one
pumping period at the resonant energy EF = 0.011 87. V0 = 1.0 and
Vp = 0.1 in this panel. (b) Adiabatic pumped current in one pumping
period at the antiresonant energy EF = 0.1132. Vp = 0.05 in this
panel. Other common calculation parameters: φ12 = π/2, B = 0.001.

on the two arms of the device and there are no static potential
barriers in the system. From the transmission curve shown
in Fig. 6, one clearly finds that T (EF ) drops sharply to zero
around EF = 0.1132, which is the signature of antiresonance.
At this point, both the adiabatic and nonadiabatic pumped
current are zero. Different from the resonant case, here, the
range where the current is zero or nearly zero is much broader.
We also see that at transmission minimum EF = 0.10 with
small but nonzero transmission coefficient, the pumped current
is nonzero, which indicates that the vanishing pumped current
can only be observed at the antiresonance point.

Theoretically, it is difficult to show why the adiabatic
pumped current vanishes at the resonant or antiresonant points.
In Fig. 7, we provide a numerical explanation for the zero
points of I ad at both resonance and antiresonance. Given
I ad = ∫ 2π

0 iad(t)dt , we see that the integrand iad remains
finite during the whole pumping period t ∈ [0,2π ]. But, the
average current I ad is zero. This statement holds for both
resonance and antiresonance cases. We note that, in both
panels of Fig. 7, there is no clear symmetry of iad(t) in the
pumping period. Therefore, we are not able to give a theoretical
explanation for the vanishing adiabatic pumped current at
resonances.

In Figs. 8(a) and 8(b), we examine the influence of
pumping amplitude Vp or pumping frequency ω on the pumped
currents with the static potential barrier fixed at V0 = 1, which
corresponds to the case shown in Fig. 5(a). At the first resonant
energy EF = 0.011 87, we plot I ad versus Vp, the pumping
potential amplitude. The nonadiabatic pumped current I nad

as a function of the pumping frequency ω is evaluated at the
second resonant peak EF = 0.0242. In both cases, magnitudes
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FIG. 8. (Color online) (a) Adiabatic current vs pumping potential
Vp at EF = 0.0118. (b) Nonadiabatic current versus pumping
frequency ω at EF = 0.0242. System parameters: φ12 = π/2, V0 =
1, B = 0.001. (c) Shows the pumped current and transmission
coefficient versus magnetic field B at Fermi energy EF = 0.12,
with other parameters: φ12 = π/2, V0 = 1, Vp = 0.5, ω = 0.002. For
illustration, a factor of 100 is multiplied to I ad and it is 1.6 × 104 for
I nad/V 2

p .

of the pumped current changes in a oscillatory fashion with
the increasing of Vp or ω. The pumped current can change
its sign, which also reflects the nature of the parametric pump
and manifest distinction between the pumped current and the
conventional resonant tunneling current.

The resonance behavior of pumped current is also visible in
Fig. 8(c), in which we depict Ip and transmission coefficient
versus magnetic field B at Fermi energy EF = 0.12. The
calculation is performed on a system with GLR symmetry,
and the length of the pumping potential is 20 in the setup.
Sweeping through magnetic field, there is a sharp change
of transmission coefficient near B ∼ 0.003 and the pumped
current changes accordingly. With increasing magnetic field,
T becomes quantized (there is only one transmission channel
at this magnetic field), indicating the occurrence of edge states
in the quantum Hall regime, and the pumped current vanishes.
In our setup, the electron pump operates by cycling modulation
of electron passing through the pumping potentials, which are
on top of static barriers defining the system. With increasing of
the magnetic field, the electron wave function tends to localize
near the edge, which decreases the modulation efficiency of
the pumping potentials. As the edge state emerges, the electron
will circumvent the confining potentials with no reflection
during their deformations. In this case, the variation of the
pumping potential has no effect on the moving electron. Hence,
there is no pumped current when the edge state is formed in
the system. Mathematically, it is also easy to show that when
the instantaneous reflection coefficient vanishes (in the case of
edge state) in the whole pumping period, there is no adiabatic
pumped current in a two-probe system. The argument is shown
below.
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FIG. 9. (Color online) The pumped current as well as transmis-
sion coefficient as a function of magnetic field B at Fermi energy
EF = 0.12. Other parameters: φ12 = π/2, V0 = 1, Vp = 0.5, ω =
0.002. I ad and I nad/V 2

p are scaled by factors of 100 and 1.6 × 104,
respectively.

For the case of the adiabatic pump, it is easy to understand
why I ad is zero at T = 1 (only one conducting channel in the
system). For a perfect transmission, the diagonal terms SLL

and SRR of the four-block scattering matrix are zero. Hence,
we have SLR = SRL = exp(iθ ). From Eq. (3), we have

dNα/dVj = (i∂θ/∂Vj )/π. (8)

For two pumping potentials, the current can be expressed in
parameter space. Using the Green’s theorem, Eq. (2) becomes5

Iα = 1

τ

∫ τ

0
dt

dQα(t)

dt

= qω

2π

∫
dV1dV2

(
∂

∂V1

dNα

dV2
− ∂

∂V2

dNα

dV1

)
. (9)

From Eq. (8), it is easy to see that the integrand is zero. Hence,
Iα = 0 if Sαα = 0.

We also provide a numerical evidence for the above
statement, which is shown in Fig. 9. In contrast to the
calculation of Fig. 8(c), the static potential barriers extend
to a width 40, which is exactly the width of the scattering
region. At the same time, the pumping barriers remain the

same as before (with width 10). Now, the static transmission
coefficient, labeled T1 in the figure, does not have quantized
value, but exhibits a resonant behavior. T0 is copied from Fig. 8
for comparison. As long as the edge state of an electron is
scattered with transmitted and reflected modes, the pumped
current will be generated with varying system parameters.

IV. CONCLUSION

In conclusion, we have studied the pumped current as a
function of pumping potential, magnetic field, and pumping
frequency in the resonant and antiresonant tunneling regimes.
Resonant features are clearly observed for adiabatic and
nonadiabatic pumped current. We found that when the resonant
peak is sharp, the adiabatic pumped current changes sign near
the resonance, while the nonadiabatic pumped current does
not. When the resonant peak is broad, the behaviors of the
pumped current in the adiabatic and nonadiabatic regimes
are similar and both change sign near the resonance. At
antiresonance, however, both the adiabatic and nonadiabatic
pumped currents are zero. As the system enters the quantum
Hall regime, the pumped currents vanish in all the setups shown
in Fig. 1 since the pumping potentials can not modulate the
electron wave function. Furthermore, we have numerically
investigated the symmetry of the adiabatic and nonadiabatic
pumped current of systems with different symmetries placed in
magnetic field. The calculated results are listed in Table I and
most of them are in agreement with the former theoretical
results derived from the Floquet scattering matrix theory.
Different from the theoretical prediction, we found that the
system with general spatial inversion symmetry (GIV) gives
rise to a finite pumped current at the adiabatic regime. At small
magnetic field, both the adiabatic and nonadiabatic currents
have an approximation relation I (B) ≈ I (−B).
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30M. Moskalets and M. Büttiker, Phys. Rev. B 72, 035324 (2005).
31C. S. Li, Y. J. Yu, Y. D. Wei, and J. Wang, Phys. Rev. B 75, 035312

(2007).
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